net/mlx5: recover secondary process Tx errors
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28 #include <rte_cycles.h>
29
30 #include "mlx5.h"
31 #include "mlx5_utils.h"
32 #include "mlx5_rxtx.h"
33 #include "mlx5_autoconf.h"
34 #include "mlx5_defs.h"
35 #include "mlx5_prm.h"
36
37 static __rte_always_inline uint32_t
38 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
39
40 static __rte_always_inline int
41 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
42                  uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
43
44 static __rte_always_inline uint32_t
45 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
46
47 static __rte_always_inline void
48 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
49                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
50
51 static __rte_always_inline void
52 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);
53
54 static int
55 mlx5_queue_state_modify(struct rte_eth_dev *dev,
56                         struct mlx5_mp_arg_queue_state_modify *sm);
57
58 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
59         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
60 };
61
62 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
63 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
64
65 /**
66  * Build a table to translate Rx completion flags to packet type.
67  *
68  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
69  */
70 void
71 mlx5_set_ptype_table(void)
72 {
73         unsigned int i;
74         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
75
76         /* Last entry must not be overwritten, reserved for errored packet. */
77         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
78                 (*p)[i] = RTE_PTYPE_UNKNOWN;
79         /*
80          * The index to the array should have:
81          * bit[1:0] = l3_hdr_type
82          * bit[4:2] = l4_hdr_type
83          * bit[5] = ip_frag
84          * bit[6] = tunneled
85          * bit[7] = outer_l3_type
86          */
87         /* L2 */
88         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
89         /* L3 */
90         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
91                      RTE_PTYPE_L4_NONFRAG;
92         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93                      RTE_PTYPE_L4_NONFRAG;
94         /* Fragmented */
95         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
96                      RTE_PTYPE_L4_FRAG;
97         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98                      RTE_PTYPE_L4_FRAG;
99         /* TCP */
100         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
101                      RTE_PTYPE_L4_TCP;
102         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
103                      RTE_PTYPE_L4_TCP;
104         (*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
105                      RTE_PTYPE_L4_TCP;
106         (*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
107                      RTE_PTYPE_L4_TCP;
108         (*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_TCP;
110         (*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_TCP;
112         /* UDP */
113         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_UDP;
115         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_UDP;
117         /* Repeat with outer_l3_type being set. Just in case. */
118         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
119                      RTE_PTYPE_L4_NONFRAG;
120         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
121                      RTE_PTYPE_L4_NONFRAG;
122         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
123                      RTE_PTYPE_L4_FRAG;
124         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
125                      RTE_PTYPE_L4_FRAG;
126         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
127                      RTE_PTYPE_L4_TCP;
128         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
129                      RTE_PTYPE_L4_TCP;
130         (*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
131                      RTE_PTYPE_L4_TCP;
132         (*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
133                      RTE_PTYPE_L4_TCP;
134         (*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
135                      RTE_PTYPE_L4_TCP;
136         (*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
137                      RTE_PTYPE_L4_TCP;
138         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
139                      RTE_PTYPE_L4_UDP;
140         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
141                      RTE_PTYPE_L4_UDP;
142         /* Tunneled - L3 */
143         (*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
144         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
146                      RTE_PTYPE_INNER_L4_NONFRAG;
147         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
149                      RTE_PTYPE_INNER_L4_NONFRAG;
150         (*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
151         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
153                      RTE_PTYPE_INNER_L4_NONFRAG;
154         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L4_NONFRAG;
157         /* Tunneled - Fragmented */
158         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
159                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L4_FRAG;
161         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
162                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L4_FRAG;
164         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
165                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
166                      RTE_PTYPE_INNER_L4_FRAG;
167         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L4_FRAG;
170         /* Tunneled - TCP */
171         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L4_TCP;
174         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
175                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L4_TCP;
177         (*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
178                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L4_TCP;
180         (*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
181                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L4_TCP;
183         (*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
184                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L4_TCP;
186         (*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
187                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L4_TCP;
189         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
190                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
191                      RTE_PTYPE_INNER_L4_TCP;
192         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
193                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
194                      RTE_PTYPE_INNER_L4_TCP;
195         (*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
196                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
197                      RTE_PTYPE_INNER_L4_TCP;
198         (*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
199                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
200                      RTE_PTYPE_INNER_L4_TCP;
201         (*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
202                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
203                      RTE_PTYPE_INNER_L4_TCP;
204         (*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
205                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
206                      RTE_PTYPE_INNER_L4_TCP;
207         /* Tunneled - UDP */
208         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
209                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
210                      RTE_PTYPE_INNER_L4_UDP;
211         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
212                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
213                      RTE_PTYPE_INNER_L4_UDP;
214         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
215                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
216                      RTE_PTYPE_INNER_L4_UDP;
217         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
218                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
219                      RTE_PTYPE_INNER_L4_UDP;
220 }
221
222 /**
223  * Build a table to translate packet to checksum type of Verbs.
224  */
225 void
226 mlx5_set_cksum_table(void)
227 {
228         unsigned int i;
229         uint8_t v;
230
231         /*
232          * The index should have:
233          * bit[0] = PKT_TX_TCP_SEG
234          * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
235          * bit[4] = PKT_TX_IP_CKSUM
236          * bit[8] = PKT_TX_OUTER_IP_CKSUM
237          * bit[9] = tunnel
238          */
239         for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
240                 v = 0;
241                 if (i & (1 << 9)) {
242                         /* Tunneled packet. */
243                         if (i & (1 << 8)) /* Outer IP. */
244                                 v |= MLX5_ETH_WQE_L3_CSUM;
245                         if (i & (1 << 4)) /* Inner IP. */
246                                 v |= MLX5_ETH_WQE_L3_INNER_CSUM;
247                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
248                                 v |= MLX5_ETH_WQE_L4_INNER_CSUM;
249                 } else {
250                         /* No tunnel. */
251                         if (i & (1 << 4)) /* IP. */
252                                 v |= MLX5_ETH_WQE_L3_CSUM;
253                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
254                                 v |= MLX5_ETH_WQE_L4_CSUM;
255                 }
256                 mlx5_cksum_table[i] = v;
257         }
258 }
259
260 /**
261  * Build a table to translate packet type of mbuf to SWP type of Verbs.
262  */
263 void
264 mlx5_set_swp_types_table(void)
265 {
266         unsigned int i;
267         uint8_t v;
268
269         /*
270          * The index should have:
271          * bit[0:1] = PKT_TX_L4_MASK
272          * bit[4] = PKT_TX_IPV6
273          * bit[8] = PKT_TX_OUTER_IPV6
274          * bit[9] = PKT_TX_OUTER_UDP
275          */
276         for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
277                 v = 0;
278                 if (i & (1 << 8))
279                         v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
280                 if (i & (1 << 9))
281                         v |= MLX5_ETH_WQE_L4_OUTER_UDP;
282                 if (i & (1 << 4))
283                         v |= MLX5_ETH_WQE_L3_INNER_IPV6;
284                 if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
285                         v |= MLX5_ETH_WQE_L4_INNER_UDP;
286                 mlx5_swp_types_table[i] = v;
287         }
288 }
289
290 /**
291  * Return the size of tailroom of WQ.
292  *
293  * @param txq
294  *   Pointer to TX queue structure.
295  * @param addr
296  *   Pointer to tail of WQ.
297  *
298  * @return
299  *   Size of tailroom.
300  */
301 static inline size_t
302 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
303 {
304         size_t tailroom;
305         tailroom = (uintptr_t)(txq->wqes) +
306                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
307                    (uintptr_t)addr;
308         return tailroom;
309 }
310
311 /**
312  * Copy data to tailroom of circular queue.
313  *
314  * @param dst
315  *   Pointer to destination.
316  * @param src
317  *   Pointer to source.
318  * @param n
319  *   Number of bytes to copy.
320  * @param base
321  *   Pointer to head of queue.
322  * @param tailroom
323  *   Size of tailroom from dst.
324  *
325  * @return
326  *   Pointer after copied data.
327  */
328 static inline void *
329 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
330                 void *base, size_t tailroom)
331 {
332         void *ret;
333
334         if (n > tailroom) {
335                 rte_memcpy(dst, src, tailroom);
336                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
337                            n - tailroom);
338                 ret = (uint8_t *)base + n - tailroom;
339         } else {
340                 rte_memcpy(dst, src, n);
341                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
342         }
343         return ret;
344 }
345
346 /**
347  * Inline TSO headers into WQE.
348  *
349  * @return
350  *   0 on success, negative errno value on failure.
351  */
352 static int
353 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
354            uint32_t *length,
355            uintptr_t *addr,
356            uint16_t *pkt_inline_sz,
357            uint8_t **raw,
358            uint16_t *max_wqe,
359            uint16_t *tso_segsz,
360            uint16_t *tso_header_sz)
361 {
362         uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
363                                     (1 << txq->wqe_n) * MLX5_WQE_SIZE);
364         unsigned int copy_b;
365         uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
366         const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
367                                  PKT_TX_TUNNEL_MASK);
368         uint16_t n_wqe;
369
370         *tso_segsz = buf->tso_segsz;
371         *tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
372         if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
373                 txq->stats.oerrors++;
374                 return -EINVAL;
375         }
376         if (tunneled)
377                 *tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
378         /* First seg must contain all TSO headers. */
379         if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
380                      *tso_header_sz > DATA_LEN(buf)) {
381                 txq->stats.oerrors++;
382                 return -EINVAL;
383         }
384         copy_b = *tso_header_sz - *pkt_inline_sz;
385         if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
386                 return -EAGAIN;
387         n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
388         if (unlikely(*max_wqe < n_wqe))
389                 return -EINVAL;
390         *max_wqe -= n_wqe;
391         rte_memcpy((void *)*raw, (void *)*addr, copy_b);
392         *length -= copy_b;
393         *addr += copy_b;
394         copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
395         *pkt_inline_sz += copy_b;
396         *raw += copy_b;
397         return 0;
398 }
399
400 /**
401  * DPDK callback to check the status of a tx descriptor.
402  *
403  * @param tx_queue
404  *   The tx queue.
405  * @param[in] offset
406  *   The index of the descriptor in the ring.
407  *
408  * @return
409  *   The status of the tx descriptor.
410  */
411 int
412 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
413 {
414         struct mlx5_txq_data *txq = tx_queue;
415         uint16_t used;
416
417         mlx5_tx_complete(txq);
418         used = txq->elts_head - txq->elts_tail;
419         if (offset < used)
420                 return RTE_ETH_TX_DESC_FULL;
421         return RTE_ETH_TX_DESC_DONE;
422 }
423
424 /**
425  * Internal function to compute the number of used descriptors in an RX queue
426  *
427  * @param rxq
428  *   The Rx queue.
429  *
430  * @return
431  *   The number of used rx descriptor.
432  */
433 static uint32_t
434 rx_queue_count(struct mlx5_rxq_data *rxq)
435 {
436         struct rxq_zip *zip = &rxq->zip;
437         volatile struct mlx5_cqe *cqe;
438         const unsigned int cqe_n = (1 << rxq->cqe_n);
439         const unsigned int cqe_cnt = cqe_n - 1;
440         unsigned int cq_ci;
441         unsigned int used;
442
443         /* if we are processing a compressed cqe */
444         if (zip->ai) {
445                 used = zip->cqe_cnt - zip->ca;
446                 cq_ci = zip->cq_ci;
447         } else {
448                 used = 0;
449                 cq_ci = rxq->cq_ci;
450         }
451         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
452         while (check_cqe(cqe, cqe_n, cq_ci) != MLX5_CQE_STATUS_HW_OWN) {
453                 int8_t op_own;
454                 unsigned int n;
455
456                 op_own = cqe->op_own;
457                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
458                         n = rte_be_to_cpu_32(cqe->byte_cnt);
459                 else
460                         n = 1;
461                 cq_ci += n;
462                 used += n;
463                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
464         }
465         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
466         return used;
467 }
468
469 /**
470  * DPDK callback to check the status of a rx descriptor.
471  *
472  * @param rx_queue
473  *   The Rx queue.
474  * @param[in] offset
475  *   The index of the descriptor in the ring.
476  *
477  * @return
478  *   The status of the tx descriptor.
479  */
480 int
481 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
482 {
483         struct mlx5_rxq_data *rxq = rx_queue;
484         struct mlx5_rxq_ctrl *rxq_ctrl =
485                         container_of(rxq, struct mlx5_rxq_ctrl, rxq);
486         struct rte_eth_dev *dev = ETH_DEV(rxq_ctrl->priv);
487
488         if (dev->rx_pkt_burst != mlx5_rx_burst) {
489                 rte_errno = ENOTSUP;
490                 return -rte_errno;
491         }
492         if (offset >= (1 << rxq->elts_n)) {
493                 rte_errno = EINVAL;
494                 return -rte_errno;
495         }
496         if (offset < rx_queue_count(rxq))
497                 return RTE_ETH_RX_DESC_DONE;
498         return RTE_ETH_RX_DESC_AVAIL;
499 }
500
501 /**
502  * DPDK callback to get the number of used descriptors in a RX queue
503  *
504  * @param dev
505  *   Pointer to the device structure.
506  *
507  * @param rx_queue_id
508  *   The Rx queue.
509  *
510  * @return
511  *   The number of used rx descriptor.
512  *   -EINVAL if the queue is invalid
513  */
514 uint32_t
515 mlx5_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
516 {
517         struct mlx5_priv *priv = dev->data->dev_private;
518         struct mlx5_rxq_data *rxq;
519
520         if (dev->rx_pkt_burst != mlx5_rx_burst) {
521                 rte_errno = ENOTSUP;
522                 return -rte_errno;
523         }
524         rxq = (*priv->rxqs)[rx_queue_id];
525         if (!rxq) {
526                 rte_errno = EINVAL;
527                 return -rte_errno;
528         }
529         return rx_queue_count(rxq);
530 }
531
532 #define MLX5_SYSTEM_LOG_DIR "/var/log"
533 /**
534  * Dump debug information to log file.
535  *
536  * @param fname
537  *   The file name.
538  * @param hex_title
539  *   If not NULL this string is printed as a header to the output
540  *   and the output will be in hexadecimal view.
541  * @param buf
542  *   This is the buffer address to print out.
543  * @param len
544  *   The number of bytes to dump out.
545  */
546 void
547 mlx5_dump_debug_information(const char *fname, const char *hex_title,
548                             const void *buf, unsigned int hex_len)
549 {
550         FILE *fd;
551
552         MKSTR(path, "%s/%s", MLX5_SYSTEM_LOG_DIR, fname);
553         fd = fopen(path, "a+");
554         if (!fd) {
555                 DRV_LOG(WARNING, "cannot open %s for debug dump\n",
556                         path);
557                 MKSTR(path2, "./%s", fname);
558                 fd = fopen(path2, "a+");
559                 if (!fd) {
560                         DRV_LOG(ERR, "cannot open %s for debug dump\n",
561                                 path2);
562                         return;
563                 }
564                 DRV_LOG(INFO, "New debug dump in file %s\n", path2);
565         } else {
566                 DRV_LOG(INFO, "New debug dump in file %s\n", path);
567         }
568         if (hex_title)
569                 rte_hexdump(fd, hex_title, buf, hex_len);
570         else
571                 fprintf(fd, "%s", (const char *)buf);
572         fprintf(fd, "\n\n\n");
573         fclose(fd);
574 }
575
576 /**
577  * Move QP from error state to running state and initialize indexes.
578  *
579  * @param txq_ctrl
580  *   Pointer to TX queue control structure.
581  *
582  * @return
583  *   0 on success, else -1.
584  */
585 static int
586 tx_recover_qp(struct mlx5_txq_ctrl *txq_ctrl)
587 {
588         struct mlx5_mp_arg_queue_state_modify sm = {
589                         .is_wq = 0,
590                         .queue_id = txq_ctrl->txq.idx,
591         };
592
593         if (mlx5_queue_state_modify(ETH_DEV(txq_ctrl->priv), &sm))
594                 return -1;
595         txq_ctrl->txq.wqe_ci = 0;
596         txq_ctrl->txq.wqe_pi = 0;
597         txq_ctrl->txq.elts_comp = 0;
598         return 0;
599 }
600
601 /* Return 1 if the error CQE is signed otherwise, sign it and return 0. */
602 static int
603 check_err_cqe_seen(volatile struct mlx5_err_cqe *err_cqe)
604 {
605         static const uint8_t magic[] = "seen";
606         int ret = 1;
607         unsigned int i;
608
609         for (i = 0; i < sizeof(magic); ++i)
610                 if (!ret || err_cqe->rsvd1[i] != magic[i]) {
611                         ret = 0;
612                         err_cqe->rsvd1[i] = magic[i];
613                 }
614         return ret;
615 }
616
617 /**
618  * Handle error CQE.
619  *
620  * @param txq
621  *   Pointer to TX queue structure.
622  * @param error_cqe
623  *   Pointer to the error CQE.
624  *
625  * @return
626  *   The last Tx buffer element to free.
627  */
628 uint16_t
629 mlx5_tx_error_cqe_handle(struct mlx5_txq_data *txq,
630                          volatile struct mlx5_err_cqe *err_cqe)
631 {
632         if (err_cqe->syndrome != MLX5_CQE_SYNDROME_WR_FLUSH_ERR) {
633                 const uint16_t wqe_m = ((1 << txq->wqe_n) - 1);
634                 struct mlx5_txq_ctrl *txq_ctrl =
635                                 container_of(txq, struct mlx5_txq_ctrl, txq);
636                 uint16_t new_wqe_pi = rte_be_to_cpu_16(err_cqe->wqe_counter);
637                 int seen = check_err_cqe_seen(err_cqe);
638
639                 if (!seen && txq_ctrl->dump_file_n <
640                     txq_ctrl->priv->config.max_dump_files_num) {
641                         MKSTR(err_str, "Unexpected CQE error syndrome "
642                               "0x%02x CQN = %u SQN = %u wqe_counter = %u "
643                               "wq_ci = %u cq_ci = %u", err_cqe->syndrome,
644                               txq_ctrl->cqn, txq->qp_num_8s >> 8,
645                               rte_be_to_cpu_16(err_cqe->wqe_counter),
646                               txq->wqe_ci, txq->cq_ci);
647                         MKSTR(name, "dpdk_mlx5_port_%u_txq_%u_index_%u_%u",
648                               PORT_ID(txq_ctrl->priv), txq->idx,
649                               txq_ctrl->dump_file_n, (uint32_t)rte_rdtsc());
650                         mlx5_dump_debug_information(name, NULL, err_str, 0);
651                         mlx5_dump_debug_information(name, "MLX5 Error CQ:",
652                                                     (const void *)((uintptr_t)
653                                                     &(*txq->cqes)[0]),
654                                                     sizeof(*err_cqe) *
655                                                     (1 << txq->cqe_n));
656                         mlx5_dump_debug_information(name, "MLX5 Error SQ:",
657                                                     (const void *)((uintptr_t)
658                                                     tx_mlx5_wqe(txq, 0)),
659                                                     MLX5_WQE_SIZE *
660                                                     (1 << txq->wqe_n));
661                         txq_ctrl->dump_file_n++;
662                 }
663                 if (!seen)
664                         /*
665                          * Count errors in WQEs units.
666                          * Later it can be improved to count error packets,
667                          * for example, by SQ parsing to find how much packets
668                          * should be counted for each WQE.
669                          */
670                         txq->stats.oerrors += ((txq->wqe_ci & wqe_m) -
671                                                 new_wqe_pi) & wqe_m;
672                 if (tx_recover_qp(txq_ctrl) == 0) {
673                         txq->cq_ci++;
674                         /* Release all the remaining buffers. */
675                         return txq->elts_head;
676                 }
677                 /* Recovering failed - try again later on the same WQE. */
678         } else {
679                 txq->cq_ci++;
680         }
681         /* Do not release buffers. */
682         return txq->elts_tail;
683 }
684
685 /**
686  * DPDK callback for TX.
687  *
688  * @param dpdk_txq
689  *   Generic pointer to TX queue structure.
690  * @param[in] pkts
691  *   Packets to transmit.
692  * @param pkts_n
693  *   Number of packets in array.
694  *
695  * @return
696  *   Number of packets successfully transmitted (<= pkts_n).
697  */
698 uint16_t
699 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
700 {
701         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
702         uint16_t elts_head = txq->elts_head;
703         const uint16_t elts_n = 1 << txq->elts_n;
704         const uint16_t elts_m = elts_n - 1;
705         unsigned int i = 0;
706         unsigned int j = 0;
707         unsigned int k = 0;
708         uint16_t max_elts;
709         uint16_t max_wqe;
710         unsigned int comp;
711         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
712         unsigned int segs_n = 0;
713         const unsigned int max_inline = txq->max_inline;
714         uint64_t addr_64;
715
716         if (unlikely(!pkts_n))
717                 return 0;
718         /* Prefetch first packet cacheline. */
719         rte_prefetch0(*pkts);
720         /* Start processing. */
721         mlx5_tx_complete(txq);
722         max_elts = (elts_n - (elts_head - txq->elts_tail));
723         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
724         if (unlikely(!max_wqe))
725                 return 0;
726         do {
727                 struct rte_mbuf *buf = *pkts; /* First_seg. */
728                 uint8_t *raw;
729                 volatile struct mlx5_wqe_v *wqe = NULL;
730                 volatile rte_v128u32_t *dseg = NULL;
731                 uint32_t length;
732                 unsigned int ds = 0;
733                 unsigned int sg = 0; /* counter of additional segs attached. */
734                 uintptr_t addr;
735                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
736                 uint16_t tso_header_sz = 0;
737                 uint16_t ehdr;
738                 uint8_t cs_flags;
739                 uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
740                 uint32_t swp_offsets = 0;
741                 uint8_t swp_types = 0;
742                 rte_be32_t metadata;
743                 uint16_t tso_segsz = 0;
744 #ifdef MLX5_PMD_SOFT_COUNTERS
745                 uint32_t total_length = 0;
746 #endif
747                 int ret;
748
749                 segs_n = buf->nb_segs;
750                 /*
751                  * Make sure there is enough room to store this packet and
752                  * that one ring entry remains unused.
753                  */
754                 assert(segs_n);
755                 if (max_elts < segs_n)
756                         break;
757                 max_elts -= segs_n;
758                 sg = --segs_n;
759                 if (unlikely(--max_wqe == 0))
760                         break;
761                 wqe = (volatile struct mlx5_wqe_v *)
762                         tx_mlx5_wqe(txq, txq->wqe_ci);
763                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
764                 if (pkts_n - i > 1)
765                         rte_prefetch0(*(pkts + 1));
766                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
767                 length = DATA_LEN(buf);
768                 ehdr = (((uint8_t *)addr)[1] << 8) |
769                        ((uint8_t *)addr)[0];
770 #ifdef MLX5_PMD_SOFT_COUNTERS
771                 total_length = length;
772 #endif
773                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
774                         txq->stats.oerrors++;
775                         break;
776                 }
777                 /* Update element. */
778                 (*txq->elts)[elts_head & elts_m] = buf;
779                 /* Prefetch next buffer data. */
780                 if (pkts_n - i > 1)
781                         rte_prefetch0(
782                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
783                 cs_flags = txq_ol_cksum_to_cs(buf);
784                 txq_mbuf_to_swp(txq, buf, (uint8_t *)&swp_offsets, &swp_types);
785                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
786                 /* Copy metadata from mbuf if valid */
787                 metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
788                                                              0;
789                 /* Replace the Ethernet type by the VLAN if necessary. */
790                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
791                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
792                                                          buf->vlan_tci);
793                         unsigned int len = 2 * RTE_ETHER_ADDR_LEN - 2;
794
795                         addr += 2;
796                         length -= 2;
797                         /* Copy Destination and source mac address. */
798                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
799                         /* Copy VLAN. */
800                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
801                         /* Copy missing two bytes to end the DSeg. */
802                         memcpy((uint8_t *)raw + len + sizeof(vlan),
803                                ((uint8_t *)addr) + len, 2);
804                         addr += len + 2;
805                         length -= (len + 2);
806                 } else {
807                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
808                                MLX5_WQE_DWORD_SIZE);
809                         length -= pkt_inline_sz;
810                         addr += pkt_inline_sz;
811                 }
812                 raw += MLX5_WQE_DWORD_SIZE;
813                 if (tso) {
814                         ret = inline_tso(txq, buf, &length,
815                                          &addr, &pkt_inline_sz,
816                                          &raw, &max_wqe,
817                                          &tso_segsz, &tso_header_sz);
818                         if (ret == -EINVAL) {
819                                 break;
820                         } else if (ret == -EAGAIN) {
821                                 /* NOP WQE. */
822                                 wqe->ctrl = (rte_v128u32_t){
823                                         rte_cpu_to_be_32(txq->wqe_ci << 8),
824                                         rte_cpu_to_be_32(txq->qp_num_8s | 1),
825                                         rte_cpu_to_be_32
826                                                 (MLX5_COMP_ONLY_FIRST_ERR <<
827                                                  MLX5_COMP_MODE_OFFSET),
828                                         0,
829                                 };
830                                 ds = 1;
831 #ifdef MLX5_PMD_SOFT_COUNTERS
832                                 total_length = 0;
833 #endif
834                                 k++;
835                                 goto next_wqe;
836                         }
837                 }
838                 /* Inline if enough room. */
839                 if (max_inline || tso) {
840                         uint32_t inl = 0;
841                         uintptr_t end = (uintptr_t)
842                                 (((uintptr_t)txq->wqes) +
843                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
844                         unsigned int inline_room = max_inline *
845                                                    RTE_CACHE_LINE_SIZE -
846                                                    (pkt_inline_sz - 2) -
847                                                    !!tso * sizeof(inl);
848                         uintptr_t addr_end;
849                         unsigned int copy_b;
850
851 pkt_inline:
852                         addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
853                                                    RTE_CACHE_LINE_SIZE);
854                         copy_b = (addr_end > addr) ?
855                                  RTE_MIN((addr_end - addr), length) : 0;
856                         if (copy_b && ((end - (uintptr_t)raw) >
857                                        (copy_b + sizeof(inl)))) {
858                                 /*
859                                  * One Dseg remains in the current WQE.  To
860                                  * keep the computation positive, it is
861                                  * removed after the bytes to Dseg conversion.
862                                  */
863                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
864
865                                 if (unlikely(max_wqe < n))
866                                         break;
867                                 max_wqe -= n;
868                                 if (tso) {
869                                         assert(inl == 0);
870                                         inl = rte_cpu_to_be_32(copy_b |
871                                                                MLX5_INLINE_SEG);
872                                         rte_memcpy((void *)raw,
873                                                    (void *)&inl, sizeof(inl));
874                                         raw += sizeof(inl);
875                                         pkt_inline_sz += sizeof(inl);
876                                 }
877                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
878                                 addr += copy_b;
879                                 length -= copy_b;
880                                 pkt_inline_sz += copy_b;
881                         }
882                         /*
883                          * 2 DWORDs consumed by the WQE header + ETH segment +
884                          * the size of the inline part of the packet.
885                          */
886                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
887                         if (length > 0) {
888                                 if (ds % (MLX5_WQE_SIZE /
889                                           MLX5_WQE_DWORD_SIZE) == 0) {
890                                         if (unlikely(--max_wqe == 0))
891                                                 break;
892                                         dseg = (volatile rte_v128u32_t *)
893                                                tx_mlx5_wqe(txq, txq->wqe_ci +
894                                                            ds / 4);
895                                 } else {
896                                         dseg = (volatile rte_v128u32_t *)
897                                                 ((uintptr_t)wqe +
898                                                  (ds * MLX5_WQE_DWORD_SIZE));
899                                 }
900                                 goto use_dseg;
901                         } else if (!segs_n) {
902                                 goto next_pkt;
903                         } else {
904                                 /*
905                                  * Further inline the next segment only for
906                                  * non-TSO packets.
907                                  */
908                                 if (!tso) {
909                                         raw += copy_b;
910                                         inline_room -= copy_b;
911                                 } else {
912                                         inline_room = 0;
913                                 }
914                                 /* Move to the next segment. */
915                                 --segs_n;
916                                 buf = buf->next;
917                                 assert(buf);
918                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
919                                 length = DATA_LEN(buf);
920 #ifdef MLX5_PMD_SOFT_COUNTERS
921                                 total_length += length;
922 #endif
923                                 (*txq->elts)[++elts_head & elts_m] = buf;
924                                 goto pkt_inline;
925                         }
926                 } else {
927                         /*
928                          * No inline has been done in the packet, only the
929                          * Ethernet Header as been stored.
930                          */
931                         dseg = (volatile rte_v128u32_t *)
932                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
933                         ds = 3;
934 use_dseg:
935                         /* Add the remaining packet as a simple ds. */
936                         addr_64 = rte_cpu_to_be_64(addr);
937                         *dseg = (rte_v128u32_t){
938                                 rte_cpu_to_be_32(length),
939                                 mlx5_tx_mb2mr(txq, buf),
940                                 addr_64,
941                                 addr_64 >> 32,
942                         };
943                         ++ds;
944                         if (!segs_n)
945                                 goto next_pkt;
946                 }
947 next_seg:
948                 assert(buf);
949                 assert(ds);
950                 assert(wqe);
951                 /*
952                  * Spill on next WQE when the current one does not have
953                  * enough room left. Size of WQE must a be a multiple
954                  * of data segment size.
955                  */
956                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
957                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
958                         if (unlikely(--max_wqe == 0))
959                                 break;
960                         dseg = (volatile rte_v128u32_t *)
961                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
962                         rte_prefetch0(tx_mlx5_wqe(txq,
963                                                   txq->wqe_ci + ds / 4 + 1));
964                 } else {
965                         ++dseg;
966                 }
967                 ++ds;
968                 buf = buf->next;
969                 assert(buf);
970                 length = DATA_LEN(buf);
971 #ifdef MLX5_PMD_SOFT_COUNTERS
972                 total_length += length;
973 #endif
974                 /* Store segment information. */
975                 addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
976                 *dseg = (rte_v128u32_t){
977                         rte_cpu_to_be_32(length),
978                         mlx5_tx_mb2mr(txq, buf),
979                         addr_64,
980                         addr_64 >> 32,
981                 };
982                 (*txq->elts)[++elts_head & elts_m] = buf;
983                 if (--segs_n)
984                         goto next_seg;
985 next_pkt:
986                 if (ds > MLX5_DSEG_MAX) {
987                         txq->stats.oerrors++;
988                         break;
989                 }
990                 ++elts_head;
991                 ++pkts;
992                 ++i;
993                 j += sg;
994                 /* Initialize known and common part of the WQE structure. */
995                 if (tso) {
996                         wqe->ctrl = (rte_v128u32_t){
997                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
998                                                  MLX5_OPCODE_TSO),
999                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
1000                                 rte_cpu_to_be_32(MLX5_COMP_ONLY_FIRST_ERR <<
1001                                                  MLX5_COMP_MODE_OFFSET),
1002                                 0,
1003                         };
1004                         wqe->eseg = (rte_v128u32_t){
1005                                 swp_offsets,
1006                                 cs_flags | (swp_types << 8) |
1007                                 (rte_cpu_to_be_16(tso_segsz) << 16),
1008                                 metadata,
1009                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
1010                         };
1011                 } else {
1012                         wqe->ctrl = (rte_v128u32_t){
1013                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
1014                                                  MLX5_OPCODE_SEND),
1015                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
1016                                 rte_cpu_to_be_32(MLX5_COMP_ONLY_FIRST_ERR <<
1017                                                  MLX5_COMP_MODE_OFFSET),
1018                                 0,
1019                         };
1020                         wqe->eseg = (rte_v128u32_t){
1021                                 swp_offsets,
1022                                 cs_flags | (swp_types << 8),
1023                                 metadata,
1024                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
1025                         };
1026                 }
1027 next_wqe:
1028                 txq->wqe_ci += (ds + 3) / 4;
1029                 /* Save the last successful WQE for completion request */
1030                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
1031 #ifdef MLX5_PMD_SOFT_COUNTERS
1032                 /* Increment sent bytes counter. */
1033                 txq->stats.obytes += total_length;
1034 #endif
1035         } while (i < pkts_n);
1036         /* Take a shortcut if nothing must be sent. */
1037         if (unlikely((i + k) == 0))
1038                 return 0;
1039         txq->elts_head += (i + j);
1040         /* Check whether completion threshold has been reached. */
1041         comp = txq->elts_comp + i + j + k;
1042         if (comp >= MLX5_TX_COMP_THRESH) {
1043                 /* A CQE slot must always be available. */
1044                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1045                 /* Request completion on last WQE. */
1046                 last_wqe->ctrl2 = rte_cpu_to_be_32(MLX5_COMP_ALWAYS <<
1047                                                    MLX5_COMP_MODE_OFFSET);
1048                 /* Save elts_head in unused "immediate" field of WQE. */
1049                 last_wqe->ctrl3 = txq->elts_head;
1050                 txq->elts_comp = 0;
1051         } else {
1052                 txq->elts_comp = comp;
1053         }
1054 #ifdef MLX5_PMD_SOFT_COUNTERS
1055         /* Increment sent packets counter. */
1056         txq->stats.opackets += i;
1057 #endif
1058         /* Ring QP doorbell. */
1059         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
1060         return i;
1061 }
1062
1063 /**
1064  * Open a MPW session.
1065  *
1066  * @param txq
1067  *   Pointer to TX queue structure.
1068  * @param mpw
1069  *   Pointer to MPW session structure.
1070  * @param length
1071  *   Packet length.
1072  */
1073 static inline void
1074 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
1075 {
1076         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1077         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
1078                 (volatile struct mlx5_wqe_data_seg (*)[])
1079                 tx_mlx5_wqe(txq, idx + 1);
1080
1081         mpw->state = MLX5_MPW_STATE_OPENED;
1082         mpw->pkts_n = 0;
1083         mpw->len = length;
1084         mpw->total_len = 0;
1085         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1086         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1087         mpw->wqe->eseg.inline_hdr_sz = 0;
1088         mpw->wqe->eseg.rsvd0 = 0;
1089         mpw->wqe->eseg.rsvd1 = 0;
1090         mpw->wqe->eseg.flow_table_metadata = 0;
1091         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1092                                              (txq->wqe_ci << 8) |
1093                                              MLX5_OPCODE_TSO);
1094         mpw->wqe->ctrl[2] = rte_cpu_to_be_32(MLX5_COMP_ONLY_FIRST_ERR <<
1095                                              MLX5_COMP_MODE_OFFSET);
1096         mpw->wqe->ctrl[3] = 0;
1097         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
1098                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1099         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
1100                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
1101         mpw->data.dseg[2] = &(*dseg)[0];
1102         mpw->data.dseg[3] = &(*dseg)[1];
1103         mpw->data.dseg[4] = &(*dseg)[2];
1104 }
1105
1106 /**
1107  * Close a MPW session.
1108  *
1109  * @param txq
1110  *   Pointer to TX queue structure.
1111  * @param mpw
1112  *   Pointer to MPW session structure.
1113  */
1114 static inline void
1115 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1116 {
1117         unsigned int num = mpw->pkts_n;
1118
1119         /*
1120          * Store size in multiple of 16 bytes. Control and Ethernet segments
1121          * count as 2.
1122          */
1123         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
1124         mpw->state = MLX5_MPW_STATE_CLOSED;
1125         if (num < 3)
1126                 ++txq->wqe_ci;
1127         else
1128                 txq->wqe_ci += 2;
1129         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1130         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1131 }
1132
1133 /**
1134  * DPDK callback for TX with MPW support.
1135  *
1136  * @param dpdk_txq
1137  *   Generic pointer to TX queue structure.
1138  * @param[in] pkts
1139  *   Packets to transmit.
1140  * @param pkts_n
1141  *   Number of packets in array.
1142  *
1143  * @return
1144  *   Number of packets successfully transmitted (<= pkts_n).
1145  */
1146 uint16_t
1147 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1148 {
1149         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1150         uint16_t elts_head = txq->elts_head;
1151         const uint16_t elts_n = 1 << txq->elts_n;
1152         const uint16_t elts_m = elts_n - 1;
1153         unsigned int i = 0;
1154         unsigned int j = 0;
1155         uint16_t max_elts;
1156         uint16_t max_wqe;
1157         unsigned int comp;
1158         struct mlx5_mpw mpw = {
1159                 .state = MLX5_MPW_STATE_CLOSED,
1160         };
1161
1162         if (unlikely(!pkts_n))
1163                 return 0;
1164         /* Prefetch first packet cacheline. */
1165         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1166         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1167         /* Start processing. */
1168         mlx5_tx_complete(txq);
1169         max_elts = (elts_n - (elts_head - txq->elts_tail));
1170         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1171         if (unlikely(!max_wqe))
1172                 return 0;
1173         do {
1174                 struct rte_mbuf *buf = *(pkts++);
1175                 uint32_t length;
1176                 unsigned int segs_n = buf->nb_segs;
1177                 uint32_t cs_flags;
1178                 rte_be32_t metadata;
1179
1180                 /*
1181                  * Make sure there is enough room to store this packet and
1182                  * that one ring entry remains unused.
1183                  */
1184                 assert(segs_n);
1185                 if (max_elts < segs_n)
1186                         break;
1187                 /* Do not bother with large packets MPW cannot handle. */
1188                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1189                         txq->stats.oerrors++;
1190                         break;
1191                 }
1192                 max_elts -= segs_n;
1193                 --pkts_n;
1194                 cs_flags = txq_ol_cksum_to_cs(buf);
1195                 /* Copy metadata from mbuf if valid */
1196                 metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1197                                                              0;
1198                 /* Retrieve packet information. */
1199                 length = PKT_LEN(buf);
1200                 assert(length);
1201                 /* Start new session if packet differs. */
1202                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
1203                     ((mpw.len != length) ||
1204                      (segs_n != 1) ||
1205                      (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1206                      (mpw.wqe->eseg.cs_flags != cs_flags)))
1207                         mlx5_mpw_close(txq, &mpw);
1208                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1209                         /*
1210                          * Multi-Packet WQE consumes at most two WQE.
1211                          * mlx5_mpw_new() expects to be able to use such
1212                          * resources.
1213                          */
1214                         if (unlikely(max_wqe < 2))
1215                                 break;
1216                         max_wqe -= 2;
1217                         mlx5_mpw_new(txq, &mpw, length);
1218                         mpw.wqe->eseg.cs_flags = cs_flags;
1219                         mpw.wqe->eseg.flow_table_metadata = metadata;
1220                 }
1221                 /* Multi-segment packets must be alone in their MPW. */
1222                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1223 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1224                 length = 0;
1225 #endif
1226                 do {
1227                         volatile struct mlx5_wqe_data_seg *dseg;
1228                         uintptr_t addr;
1229
1230                         assert(buf);
1231                         (*txq->elts)[elts_head++ & elts_m] = buf;
1232                         dseg = mpw.data.dseg[mpw.pkts_n];
1233                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1234                         *dseg = (struct mlx5_wqe_data_seg){
1235                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
1236                                 .lkey = mlx5_tx_mb2mr(txq, buf),
1237                                 .addr = rte_cpu_to_be_64(addr),
1238                         };
1239 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1240                         length += DATA_LEN(buf);
1241 #endif
1242                         buf = buf->next;
1243                         ++mpw.pkts_n;
1244                         ++j;
1245                 } while (--segs_n);
1246                 assert(length == mpw.len);
1247                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1248                         mlx5_mpw_close(txq, &mpw);
1249 #ifdef MLX5_PMD_SOFT_COUNTERS
1250                 /* Increment sent bytes counter. */
1251                 txq->stats.obytes += length;
1252 #endif
1253                 ++i;
1254         } while (pkts_n);
1255         /* Take a shortcut if nothing must be sent. */
1256         if (unlikely(i == 0))
1257                 return 0;
1258         /* Check whether completion threshold has been reached. */
1259         /* "j" includes both packets and segments. */
1260         comp = txq->elts_comp + j;
1261         if (comp >= MLX5_TX_COMP_THRESH) {
1262                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1263
1264                 /* A CQE slot must always be available. */
1265                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1266                 /* Request completion on last WQE. */
1267                 wqe->ctrl[2] = rte_cpu_to_be_32(MLX5_COMP_ALWAYS <<
1268                                                 MLX5_COMP_MODE_OFFSET);
1269                 /* Save elts_head in unused "immediate" field of WQE. */
1270                 wqe->ctrl[3] = elts_head;
1271                 txq->elts_comp = 0;
1272         } else {
1273                 txq->elts_comp = comp;
1274         }
1275 #ifdef MLX5_PMD_SOFT_COUNTERS
1276         /* Increment sent packets counter. */
1277         txq->stats.opackets += i;
1278 #endif
1279         /* Ring QP doorbell. */
1280         if (mpw.state == MLX5_MPW_STATE_OPENED)
1281                 mlx5_mpw_close(txq, &mpw);
1282         mlx5_tx_dbrec(txq, mpw.wqe);
1283         txq->elts_head = elts_head;
1284         return i;
1285 }
1286
1287 /**
1288  * Open a MPW inline session.
1289  *
1290  * @param txq
1291  *   Pointer to TX queue structure.
1292  * @param mpw
1293  *   Pointer to MPW session structure.
1294  * @param length
1295  *   Packet length.
1296  */
1297 static inline void
1298 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
1299                     uint32_t length)
1300 {
1301         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1302         struct mlx5_wqe_inl_small *inl;
1303
1304         mpw->state = MLX5_MPW_INL_STATE_OPENED;
1305         mpw->pkts_n = 0;
1306         mpw->len = length;
1307         mpw->total_len = 0;
1308         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1309         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1310                                              (txq->wqe_ci << 8) |
1311                                              MLX5_OPCODE_TSO);
1312         mpw->wqe->ctrl[2] = rte_cpu_to_be_32(MLX5_COMP_ONLY_FIRST_ERR <<
1313                                              MLX5_COMP_MODE_OFFSET);
1314         mpw->wqe->ctrl[3] = 0;
1315         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1316         mpw->wqe->eseg.inline_hdr_sz = 0;
1317         mpw->wqe->eseg.cs_flags = 0;
1318         mpw->wqe->eseg.rsvd0 = 0;
1319         mpw->wqe->eseg.rsvd1 = 0;
1320         mpw->wqe->eseg.flow_table_metadata = 0;
1321         inl = (struct mlx5_wqe_inl_small *)
1322                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1323         mpw->data.raw = (uint8_t *)&inl->raw;
1324 }
1325
1326 /**
1327  * Close a MPW inline session.
1328  *
1329  * @param txq
1330  *   Pointer to TX queue structure.
1331  * @param mpw
1332  *   Pointer to MPW session structure.
1333  */
1334 static inline void
1335 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1336 {
1337         unsigned int size;
1338         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1339                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1340
1341         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1342         /*
1343          * Store size in multiple of 16 bytes. Control and Ethernet segments
1344          * count as 2.
1345          */
1346         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1347                                              MLX5_WQE_DS(size));
1348         mpw->state = MLX5_MPW_STATE_CLOSED;
1349         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1350         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1351 }
1352
1353 /**
1354  * DPDK callback for TX with MPW inline support.
1355  *
1356  * @param dpdk_txq
1357  *   Generic pointer to TX queue structure.
1358  * @param[in] pkts
1359  *   Packets to transmit.
1360  * @param pkts_n
1361  *   Number of packets in array.
1362  *
1363  * @return
1364  *   Number of packets successfully transmitted (<= pkts_n).
1365  */
1366 uint16_t
1367 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1368                          uint16_t pkts_n)
1369 {
1370         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1371         uint16_t elts_head = txq->elts_head;
1372         const uint16_t elts_n = 1 << txq->elts_n;
1373         const uint16_t elts_m = elts_n - 1;
1374         unsigned int i = 0;
1375         unsigned int j = 0;
1376         uint16_t max_elts;
1377         uint16_t max_wqe;
1378         unsigned int comp;
1379         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1380         struct mlx5_mpw mpw = {
1381                 .state = MLX5_MPW_STATE_CLOSED,
1382         };
1383         /*
1384          * Compute the maximum number of WQE which can be consumed by inline
1385          * code.
1386          * - 2 DSEG for:
1387          *   - 1 control segment,
1388          *   - 1 Ethernet segment,
1389          * - N Dseg from the inline request.
1390          */
1391         const unsigned int wqe_inl_n =
1392                 ((2 * MLX5_WQE_DWORD_SIZE +
1393                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1394                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1395
1396         if (unlikely(!pkts_n))
1397                 return 0;
1398         /* Prefetch first packet cacheline. */
1399         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1400         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1401         /* Start processing. */
1402         mlx5_tx_complete(txq);
1403         max_elts = (elts_n - (elts_head - txq->elts_tail));
1404         do {
1405                 struct rte_mbuf *buf = *(pkts++);
1406                 uintptr_t addr;
1407                 uint32_t length;
1408                 unsigned int segs_n = buf->nb_segs;
1409                 uint8_t cs_flags;
1410                 rte_be32_t metadata;
1411
1412                 /*
1413                  * Make sure there is enough room to store this packet and
1414                  * that one ring entry remains unused.
1415                  */
1416                 assert(segs_n);
1417                 if (max_elts < segs_n)
1418                         break;
1419                 /* Do not bother with large packets MPW cannot handle. */
1420                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1421                         txq->stats.oerrors++;
1422                         break;
1423                 }
1424                 max_elts -= segs_n;
1425                 --pkts_n;
1426                 /*
1427                  * Compute max_wqe in case less WQE were consumed in previous
1428                  * iteration.
1429                  */
1430                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1431                 cs_flags = txq_ol_cksum_to_cs(buf);
1432                 /* Copy metadata from mbuf if valid */
1433                 metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1434                                                              0;
1435                 /* Retrieve packet information. */
1436                 length = PKT_LEN(buf);
1437                 /* Start new session if packet differs. */
1438                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1439                         if ((mpw.len != length) ||
1440                             (segs_n != 1) ||
1441                             (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1442                             (mpw.wqe->eseg.cs_flags != cs_flags))
1443                                 mlx5_mpw_close(txq, &mpw);
1444                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1445                         if ((mpw.len != length) ||
1446                             (segs_n != 1) ||
1447                             (length > inline_room) ||
1448                             (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1449                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1450                                 mlx5_mpw_inline_close(txq, &mpw);
1451                                 inline_room =
1452                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1453                         }
1454                 }
1455                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1456                         if ((segs_n != 1) ||
1457                             (length > inline_room)) {
1458                                 /*
1459                                  * Multi-Packet WQE consumes at most two WQE.
1460                                  * mlx5_mpw_new() expects to be able to use
1461                                  * such resources.
1462                                  */
1463                                 if (unlikely(max_wqe < 2))
1464                                         break;
1465                                 max_wqe -= 2;
1466                                 mlx5_mpw_new(txq, &mpw, length);
1467                                 mpw.wqe->eseg.cs_flags = cs_flags;
1468                                 mpw.wqe->eseg.flow_table_metadata = metadata;
1469                         } else {
1470                                 if (unlikely(max_wqe < wqe_inl_n))
1471                                         break;
1472                                 max_wqe -= wqe_inl_n;
1473                                 mlx5_mpw_inline_new(txq, &mpw, length);
1474                                 mpw.wqe->eseg.cs_flags = cs_flags;
1475                                 mpw.wqe->eseg.flow_table_metadata = metadata;
1476                         }
1477                 }
1478                 /* Multi-segment packets must be alone in their MPW. */
1479                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1480                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1481                         assert(inline_room ==
1482                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1483 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1484                         length = 0;
1485 #endif
1486                         do {
1487                                 volatile struct mlx5_wqe_data_seg *dseg;
1488
1489                                 assert(buf);
1490                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1491                                 dseg = mpw.data.dseg[mpw.pkts_n];
1492                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1493                                 *dseg = (struct mlx5_wqe_data_seg){
1494                                         .byte_count =
1495                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1496                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1497                                         .addr = rte_cpu_to_be_64(addr),
1498                                 };
1499 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1500                                 length += DATA_LEN(buf);
1501 #endif
1502                                 buf = buf->next;
1503                                 ++mpw.pkts_n;
1504                                 ++j;
1505                         } while (--segs_n);
1506                         assert(length == mpw.len);
1507                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1508                                 mlx5_mpw_close(txq, &mpw);
1509                 } else {
1510                         unsigned int max;
1511
1512                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1513                         assert(length <= inline_room);
1514                         assert(length == DATA_LEN(buf));
1515                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1516                         (*txq->elts)[elts_head++ & elts_m] = buf;
1517                         /* Maximum number of bytes before wrapping. */
1518                         max = ((((uintptr_t)(txq->wqes)) +
1519                                 (1 << txq->wqe_n) *
1520                                 MLX5_WQE_SIZE) -
1521                                (uintptr_t)mpw.data.raw);
1522                         if (length > max) {
1523                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1524                                            (void *)addr,
1525                                            max);
1526                                 mpw.data.raw = (volatile void *)txq->wqes;
1527                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1528                                            (void *)(addr + max),
1529                                            length - max);
1530                                 mpw.data.raw += length - max;
1531                         } else {
1532                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1533                                            (void *)addr,
1534                                            length);
1535
1536                                 if (length == max)
1537                                         mpw.data.raw =
1538                                                 (volatile void *)txq->wqes;
1539                                 else
1540                                         mpw.data.raw += length;
1541                         }
1542                         ++mpw.pkts_n;
1543                         mpw.total_len += length;
1544                         ++j;
1545                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1546                                 mlx5_mpw_inline_close(txq, &mpw);
1547                                 inline_room =
1548                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1549                         } else {
1550                                 inline_room -= length;
1551                         }
1552                 }
1553 #ifdef MLX5_PMD_SOFT_COUNTERS
1554                 /* Increment sent bytes counter. */
1555                 txq->stats.obytes += length;
1556 #endif
1557                 ++i;
1558         } while (pkts_n);
1559         /* Take a shortcut if nothing must be sent. */
1560         if (unlikely(i == 0))
1561                 return 0;
1562         /* Check whether completion threshold has been reached. */
1563         /* "j" includes both packets and segments. */
1564         comp = txq->elts_comp + j;
1565         if (comp >= MLX5_TX_COMP_THRESH) {
1566                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1567
1568                 /* A CQE slot must always be available. */
1569                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1570                 /* Request completion on last WQE. */
1571                 wqe->ctrl[2] = rte_cpu_to_be_32(MLX5_COMP_ALWAYS <<
1572                                                 MLX5_COMP_MODE_OFFSET);
1573                 /* Save elts_head in unused "immediate" field of WQE. */
1574                 wqe->ctrl[3] = elts_head;
1575                 txq->elts_comp = 0;
1576         } else {
1577                 txq->elts_comp = comp;
1578         }
1579 #ifdef MLX5_PMD_SOFT_COUNTERS
1580         /* Increment sent packets counter. */
1581         txq->stats.opackets += i;
1582 #endif
1583         /* Ring QP doorbell. */
1584         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1585                 mlx5_mpw_inline_close(txq, &mpw);
1586         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1587                 mlx5_mpw_close(txq, &mpw);
1588         mlx5_tx_dbrec(txq, mpw.wqe);
1589         txq->elts_head = elts_head;
1590         return i;
1591 }
1592
1593 /**
1594  * Open an Enhanced MPW session.
1595  *
1596  * @param txq
1597  *   Pointer to TX queue structure.
1598  * @param mpw
1599  *   Pointer to MPW session structure.
1600  * @param length
1601  *   Packet length.
1602  */
1603 static inline void
1604 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1605 {
1606         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1607
1608         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1609         mpw->pkts_n = 0;
1610         mpw->total_len = sizeof(struct mlx5_wqe);
1611         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1612         mpw->wqe->ctrl[0] =
1613                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1614                                  (txq->wqe_ci << 8) |
1615                                  MLX5_OPCODE_ENHANCED_MPSW);
1616         mpw->wqe->ctrl[2] = rte_cpu_to_be_32(MLX5_COMP_ONLY_FIRST_ERR <<
1617                                              MLX5_COMP_MODE_OFFSET);
1618         mpw->wqe->ctrl[3] = 0;
1619         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1620         if (unlikely(padding)) {
1621                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1622
1623                 /* Pad the first 2 DWORDs with zero-length inline header. */
1624                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1625                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1626                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1627                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1628                 /* Start from the next WQEBB. */
1629                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1630         } else {
1631                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1632         }
1633 }
1634
1635 /**
1636  * Close an Enhanced MPW session.
1637  *
1638  * @param txq
1639  *   Pointer to TX queue structure.
1640  * @param mpw
1641  *   Pointer to MPW session structure.
1642  *
1643  * @return
1644  *   Number of consumed WQEs.
1645  */
1646 static inline uint16_t
1647 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1648 {
1649         uint16_t ret;
1650
1651         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1652          * count as 2.
1653          */
1654         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1655                                              MLX5_WQE_DS(mpw->total_len));
1656         mpw->state = MLX5_MPW_STATE_CLOSED;
1657         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1658         txq->wqe_ci += ret;
1659         return ret;
1660 }
1661
1662 /**
1663  * TX with Enhanced MPW support.
1664  *
1665  * @param txq
1666  *   Pointer to TX queue structure.
1667  * @param[in] pkts
1668  *   Packets to transmit.
1669  * @param pkts_n
1670  *   Number of packets in array.
1671  *
1672  * @return
1673  *   Number of packets successfully transmitted (<= pkts_n).
1674  */
1675 static inline uint16_t
1676 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1677                uint16_t pkts_n)
1678 {
1679         uint16_t elts_head = txq->elts_head;
1680         const uint16_t elts_n = 1 << txq->elts_n;
1681         const uint16_t elts_m = elts_n - 1;
1682         unsigned int i = 0;
1683         unsigned int j = 0;
1684         uint16_t max_elts;
1685         uint16_t max_wqe;
1686         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1687         unsigned int mpw_room = 0;
1688         unsigned int inl_pad = 0;
1689         uint32_t inl_hdr;
1690         uint64_t addr_64;
1691         struct mlx5_mpw mpw = {
1692                 .state = MLX5_MPW_STATE_CLOSED,
1693         };
1694
1695         if (unlikely(!pkts_n))
1696                 return 0;
1697         /* Start processing. */
1698         mlx5_tx_complete(txq);
1699         max_elts = (elts_n - (elts_head - txq->elts_tail));
1700         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1701         if (unlikely(!max_wqe))
1702                 return 0;
1703         do {
1704                 struct rte_mbuf *buf = *(pkts++);
1705                 uintptr_t addr;
1706                 unsigned int do_inline = 0; /* Whether inline is possible. */
1707                 uint32_t length;
1708                 uint8_t cs_flags;
1709                 rte_be32_t metadata;
1710
1711                 /* Multi-segmented packet is handled in slow-path outside. */
1712                 assert(NB_SEGS(buf) == 1);
1713                 /* Make sure there is enough room to store this packet. */
1714                 if (max_elts - j == 0)
1715                         break;
1716                 cs_flags = txq_ol_cksum_to_cs(buf);
1717                 /* Copy metadata from mbuf if valid */
1718                 metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1719                                                              0;
1720                 /* Retrieve packet information. */
1721                 length = PKT_LEN(buf);
1722                 /* Start new session if:
1723                  * - multi-segment packet
1724                  * - no space left even for a dseg
1725                  * - next packet can be inlined with a new WQE
1726                  * - cs_flag differs
1727                  */
1728                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1729                         if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1730                              mpw_room) ||
1731                             (length <= txq->inline_max_packet_sz &&
1732                              inl_pad + sizeof(inl_hdr) + length >
1733                              mpw_room) ||
1734                              (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1735                             (mpw.wqe->eseg.cs_flags != cs_flags))
1736                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1737                 }
1738                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1739                         /* In Enhanced MPW, inline as much as the budget is
1740                          * allowed. The remaining space is to be filled with
1741                          * dsegs. If the title WQEBB isn't padded, it will have
1742                          * 2 dsegs there.
1743                          */
1744                         mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1745                                            (max_inline ? max_inline :
1746                                             pkts_n * MLX5_WQE_DWORD_SIZE) +
1747                                            MLX5_WQE_SIZE);
1748                         if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1749                                 break;
1750                         /* Don't pad the title WQEBB to not waste WQ. */
1751                         mlx5_empw_new(txq, &mpw, 0);
1752                         mpw_room -= mpw.total_len;
1753                         inl_pad = 0;
1754                         do_inline = length <= txq->inline_max_packet_sz &&
1755                                     sizeof(inl_hdr) + length <= mpw_room &&
1756                                     !txq->mpw_hdr_dseg;
1757                         mpw.wqe->eseg.cs_flags = cs_flags;
1758                         mpw.wqe->eseg.flow_table_metadata = metadata;
1759                 } else {
1760                         /* Evaluate whether the next packet can be inlined.
1761                          * Inlininig is possible when:
1762                          * - length is less than configured value
1763                          * - length fits for remaining space
1764                          * - not required to fill the title WQEBB with dsegs
1765                          */
1766                         do_inline =
1767                                 length <= txq->inline_max_packet_sz &&
1768                                 inl_pad + sizeof(inl_hdr) + length <=
1769                                  mpw_room &&
1770                                 (!txq->mpw_hdr_dseg ||
1771                                  mpw.total_len >= MLX5_WQE_SIZE);
1772                 }
1773                 if (max_inline && do_inline) {
1774                         /* Inline packet into WQE. */
1775                         unsigned int max;
1776
1777                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1778                         assert(length == DATA_LEN(buf));
1779                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1780                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1781                         mpw.data.raw = (volatile void *)
1782                                 ((uintptr_t)mpw.data.raw + inl_pad);
1783                         max = tx_mlx5_wq_tailroom(txq,
1784                                         (void *)(uintptr_t)mpw.data.raw);
1785                         /* Copy inline header. */
1786                         mpw.data.raw = (volatile void *)
1787                                 mlx5_copy_to_wq(
1788                                           (void *)(uintptr_t)mpw.data.raw,
1789                                           &inl_hdr,
1790                                           sizeof(inl_hdr),
1791                                           (void *)(uintptr_t)txq->wqes,
1792                                           max);
1793                         max = tx_mlx5_wq_tailroom(txq,
1794                                         (void *)(uintptr_t)mpw.data.raw);
1795                         /* Copy packet data. */
1796                         mpw.data.raw = (volatile void *)
1797                                 mlx5_copy_to_wq(
1798                                           (void *)(uintptr_t)mpw.data.raw,
1799                                           (void *)addr,
1800                                           length,
1801                                           (void *)(uintptr_t)txq->wqes,
1802                                           max);
1803                         ++mpw.pkts_n;
1804                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1805                         /* No need to get completion as the entire packet is
1806                          * copied to WQ. Free the buf right away.
1807                          */
1808                         rte_pktmbuf_free_seg(buf);
1809                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1810                         /* Add pad in the next packet if any. */
1811                         inl_pad = (((uintptr_t)mpw.data.raw +
1812                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1813                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1814                                   (uintptr_t)mpw.data.raw;
1815                 } else {
1816                         /* No inline. Load a dseg of packet pointer. */
1817                         volatile rte_v128u32_t *dseg;
1818
1819                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1820                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1821                         assert(length == DATA_LEN(buf));
1822                         if (!tx_mlx5_wq_tailroom(txq,
1823                                         (void *)((uintptr_t)mpw.data.raw
1824                                                 + inl_pad)))
1825                                 dseg = (volatile void *)txq->wqes;
1826                         else
1827                                 dseg = (volatile void *)
1828                                         ((uintptr_t)mpw.data.raw +
1829                                          inl_pad);
1830                         (*txq->elts)[elts_head++ & elts_m] = buf;
1831                         addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1832                                                                     uintptr_t));
1833                         *dseg = (rte_v128u32_t) {
1834                                 rte_cpu_to_be_32(length),
1835                                 mlx5_tx_mb2mr(txq, buf),
1836                                 addr_64,
1837                                 addr_64 >> 32,
1838                         };
1839                         mpw.data.raw = (volatile void *)(dseg + 1);
1840                         mpw.total_len += (inl_pad + sizeof(*dseg));
1841                         ++j;
1842                         ++mpw.pkts_n;
1843                         mpw_room -= (inl_pad + sizeof(*dseg));
1844                         inl_pad = 0;
1845                 }
1846 #ifdef MLX5_PMD_SOFT_COUNTERS
1847                 /* Increment sent bytes counter. */
1848                 txq->stats.obytes += length;
1849 #endif
1850                 ++i;
1851         } while (i < pkts_n);
1852         /* Take a shortcut if nothing must be sent. */
1853         if (unlikely(i == 0))
1854                 return 0;
1855         /* Check whether completion threshold has been reached. */
1856         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1857                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1858                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1859                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1860
1861                 /* A CQE slot must always be available. */
1862                 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1863                 /* Request completion on last WQE. */
1864                 wqe->ctrl[2] = rte_cpu_to_be_32(MLX5_COMP_ALWAYS <<
1865                                                 MLX5_COMP_MODE_OFFSET);
1866                 /* Save elts_head in unused "immediate" field of WQE. */
1867                 wqe->ctrl[3] = elts_head;
1868                 txq->elts_comp = 0;
1869                 txq->mpw_comp = txq->wqe_ci;
1870         } else {
1871                 txq->elts_comp += j;
1872         }
1873 #ifdef MLX5_PMD_SOFT_COUNTERS
1874         /* Increment sent packets counter. */
1875         txq->stats.opackets += i;
1876 #endif
1877         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1878                 mlx5_empw_close(txq, &mpw);
1879         /* Ring QP doorbell. */
1880         mlx5_tx_dbrec(txq, mpw.wqe);
1881         txq->elts_head = elts_head;
1882         return i;
1883 }
1884
1885 /**
1886  * DPDK callback for TX with Enhanced MPW support.
1887  *
1888  * @param dpdk_txq
1889  *   Generic pointer to TX queue structure.
1890  * @param[in] pkts
1891  *   Packets to transmit.
1892  * @param pkts_n
1893  *   Number of packets in array.
1894  *
1895  * @return
1896  *   Number of packets successfully transmitted (<= pkts_n).
1897  */
1898 uint16_t
1899 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1900 {
1901         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1902         uint16_t nb_tx = 0;
1903
1904         while (pkts_n > nb_tx) {
1905                 uint16_t n;
1906                 uint16_t ret;
1907
1908                 n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1909                 if (n) {
1910                         ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1911                         if (!ret)
1912                                 break;
1913                         nb_tx += ret;
1914                 }
1915                 n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1916                 if (n) {
1917                         ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1918                         if (!ret)
1919                                 break;
1920                         nb_tx += ret;
1921                 }
1922         }
1923         return nb_tx;
1924 }
1925
1926 /**
1927  * Translate RX completion flags to packet type.
1928  *
1929  * @param[in] rxq
1930  *   Pointer to RX queue structure.
1931  * @param[in] cqe
1932  *   Pointer to CQE.
1933  *
1934  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1935  *
1936  * @return
1937  *   Packet type for struct rte_mbuf.
1938  */
1939 static inline uint32_t
1940 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1941 {
1942         uint8_t idx;
1943         uint8_t pinfo = cqe->pkt_info;
1944         uint16_t ptype = cqe->hdr_type_etc;
1945
1946         /*
1947          * The index to the array should have:
1948          * bit[1:0] = l3_hdr_type
1949          * bit[4:2] = l4_hdr_type
1950          * bit[5] = ip_frag
1951          * bit[6] = tunneled
1952          * bit[7] = outer_l3_type
1953          */
1954         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1955         return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
1956 }
1957
1958 /**
1959  * Initialize Rx WQ and indexes.
1960  *
1961  * @param[in] rxq
1962  *   Pointer to RX queue structure.
1963  */
1964 void
1965 mlx5_rxq_initialize(struct mlx5_rxq_data *rxq)
1966 {
1967         const unsigned int wqe_n = 1 << rxq->elts_n;
1968         unsigned int i;
1969
1970         for (i = 0; (i != wqe_n); ++i) {
1971                 volatile struct mlx5_wqe_data_seg *scat;
1972                 uintptr_t addr;
1973                 uint32_t byte_count;
1974
1975                 if (mlx5_rxq_mprq_enabled(rxq)) {
1976                         struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[i];
1977
1978                         scat = &((volatile struct mlx5_wqe_mprq *)
1979                                 rxq->wqes)[i].dseg;
1980                         addr = (uintptr_t)mlx5_mprq_buf_addr(buf);
1981                         byte_count = (1 << rxq->strd_sz_n) *
1982                                         (1 << rxq->strd_num_n);
1983                 } else {
1984                         struct rte_mbuf *buf = (*rxq->elts)[i];
1985
1986                         scat = &((volatile struct mlx5_wqe_data_seg *)
1987                                         rxq->wqes)[i];
1988                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1989                         byte_count = DATA_LEN(buf);
1990                 }
1991                 /* scat->addr must be able to store a pointer. */
1992                 assert(sizeof(scat->addr) >= sizeof(uintptr_t));
1993                 *scat = (struct mlx5_wqe_data_seg){
1994                         .addr = rte_cpu_to_be_64(addr),
1995                         .byte_count = rte_cpu_to_be_32(byte_count),
1996                         .lkey = mlx5_rx_addr2mr(rxq, addr),
1997                 };
1998         }
1999         rxq->consumed_strd = 0;
2000         rxq->decompressed = 0;
2001         rxq->rq_pi = 0;
2002         rxq->zip = (struct rxq_zip){
2003                 .ai = 0,
2004         };
2005         /* Update doorbell counter. */
2006         rxq->rq_ci = wqe_n >> rxq->sges_n;
2007         rte_cio_wmb();
2008         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2009 }
2010
2011 /**
2012  * Modify a Verbs queue state.
2013  * This must be called from the primary process.
2014  *
2015  * @param dev
2016  *   Pointer to Ethernet device.
2017  * @param sm
2018  *   State modify request parameters.
2019  *
2020  * @return
2021  *   0 in case of success else non-zero value and rte_errno is set.
2022  */
2023 int
2024 mlx5_queue_state_modify_primary(struct rte_eth_dev *dev,
2025                         const struct mlx5_mp_arg_queue_state_modify *sm)
2026 {
2027         int ret;
2028         struct mlx5_priv *priv = dev->data->dev_private;
2029
2030         if (sm->is_wq) {
2031                 struct ibv_wq_attr mod = {
2032                         .attr_mask = IBV_WQ_ATTR_STATE,
2033                         .wq_state = sm->state,
2034                 };
2035                 struct mlx5_rxq_data *rxq = (*priv->rxqs)[sm->queue_id];
2036                 struct mlx5_rxq_ctrl *rxq_ctrl =
2037                         container_of(rxq, struct mlx5_rxq_ctrl, rxq);
2038
2039                 ret = mlx5_glue->modify_wq(rxq_ctrl->ibv->wq, &mod);
2040                 if (ret) {
2041                         DRV_LOG(ERR, "Cannot change Rx WQ state to %u  - %s\n",
2042                                         sm->state, strerror(errno));
2043                         rte_errno = errno;
2044                         return ret;
2045                 }
2046         } else {
2047                 struct mlx5_txq_data *txq = (*priv->txqs)[sm->queue_id];
2048                 struct mlx5_txq_ctrl *txq_ctrl =
2049                         container_of(txq, struct mlx5_txq_ctrl, txq);
2050                 struct ibv_qp_attr mod = {
2051                         .qp_state = IBV_QPS_RESET,
2052                         .port_num = (uint8_t)priv->ibv_port,
2053                 };
2054                 struct ibv_qp *qp = txq_ctrl->ibv->qp;
2055
2056                 ret = mlx5_glue->modify_qp(qp, &mod, IBV_QP_STATE);
2057                 if (ret) {
2058                         DRV_LOG(ERR, "Cannot change the Tx QP state to RESET "
2059                                 "%s\n", strerror(errno));
2060                         rte_errno = errno;
2061                         return ret;
2062                 }
2063                 mod.qp_state = IBV_QPS_INIT;
2064                 ret = mlx5_glue->modify_qp(qp, &mod,
2065                                            (IBV_QP_STATE | IBV_QP_PORT));
2066                 if (ret) {
2067                         DRV_LOG(ERR, "Cannot change Tx QP state to INIT %s\n",
2068                                 strerror(errno));
2069                         rte_errno = errno;
2070                         return ret;
2071                 }
2072                 mod.qp_state = IBV_QPS_RTR;
2073                 ret = mlx5_glue->modify_qp(qp, &mod, IBV_QP_STATE);
2074                 if (ret) {
2075                         DRV_LOG(ERR, "Cannot change Tx QP state to RTR %s\n",
2076                                 strerror(errno));
2077                         rte_errno = errno;
2078                         return ret;
2079                 }
2080                 mod.qp_state = IBV_QPS_RTS;
2081                 ret = mlx5_glue->modify_qp(qp, &mod, IBV_QP_STATE);
2082                 if (ret) {
2083                         DRV_LOG(ERR, "Cannot change Tx QP state to RTS %s\n",
2084                                 strerror(errno));
2085                         rte_errno = errno;
2086                         return ret;
2087                 }
2088         }
2089         return 0;
2090 }
2091
2092 /**
2093  * Modify a Verbs queue state.
2094  *
2095  * @param dev
2096  *   Pointer to Ethernet device.
2097  * @param sm
2098  *   State modify request parameters.
2099  *
2100  * @return
2101  *   0 in case of success else non-zero value.
2102  */
2103 static int
2104 mlx5_queue_state_modify(struct rte_eth_dev *dev,
2105                         struct mlx5_mp_arg_queue_state_modify *sm)
2106 {
2107         int ret = 0;
2108
2109         switch (rte_eal_process_type()) {
2110         case RTE_PROC_PRIMARY:
2111                 ret = mlx5_queue_state_modify_primary(dev, sm);
2112                 break;
2113         case RTE_PROC_SECONDARY:
2114                 ret = mlx5_mp_req_queue_state_modify(dev, sm);
2115                 break;
2116         default:
2117                 break;
2118         }
2119         return ret;
2120 }
2121
2122 /**
2123  * Handle a Rx error.
2124  * The function inserts the RQ state to reset when the first error CQE is
2125  * shown, then drains the CQ by the caller function loop. When the CQ is empty,
2126  * it moves the RQ state to ready and initializes the RQ.
2127  * Next CQE identification and error counting are in the caller responsibility.
2128  *
2129  * @param[in] rxq
2130  *   Pointer to RX queue structure.
2131  * @param[in] mbuf_prepare
2132  *   Whether to prepare mbufs for the RQ.
2133  *
2134  * @return
2135  *   -1 in case of recovery error, otherwise the CQE status.
2136  */
2137 int
2138 mlx5_rx_err_handle(struct mlx5_rxq_data *rxq, uint8_t mbuf_prepare)
2139 {
2140         const uint16_t cqe_n = 1 << rxq->cqe_n;
2141         const uint16_t cqe_mask = cqe_n - 1;
2142         const unsigned int wqe_n = 1 << rxq->elts_n;
2143         struct mlx5_rxq_ctrl *rxq_ctrl =
2144                         container_of(rxq, struct mlx5_rxq_ctrl, rxq);
2145         union {
2146                 volatile struct mlx5_cqe *cqe;
2147                 volatile struct mlx5_err_cqe *err_cqe;
2148         } u = {
2149                 .cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_mask],
2150         };
2151         struct mlx5_mp_arg_queue_state_modify sm;
2152         int ret;
2153
2154         switch (rxq->err_state) {
2155         case MLX5_RXQ_ERR_STATE_NO_ERROR:
2156                 rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_RESET;
2157                 /* Fall-through */
2158         case MLX5_RXQ_ERR_STATE_NEED_RESET:
2159                 sm.is_wq = 1;
2160                 sm.queue_id = rxq->idx;
2161                 sm.state = IBV_WQS_RESET;
2162                 if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv), &sm))
2163                         return -1;
2164                 if (rxq_ctrl->dump_file_n <
2165                     rxq_ctrl->priv->config.max_dump_files_num) {
2166                         MKSTR(err_str, "Unexpected CQE error syndrome "
2167                               "0x%02x CQN = %u RQN = %u wqe_counter = %u"
2168                               " rq_ci = %u cq_ci = %u", u.err_cqe->syndrome,
2169                               rxq->cqn, rxq_ctrl->wqn,
2170                               rte_be_to_cpu_16(u.err_cqe->wqe_counter),
2171                               rxq->rq_ci << rxq->sges_n, rxq->cq_ci);
2172                         MKSTR(name, "dpdk_mlx5_port_%u_rxq_%u_%u",
2173                               rxq->port_id, rxq->idx, (uint32_t)rte_rdtsc());
2174                         mlx5_dump_debug_information(name, NULL, err_str, 0);
2175                         mlx5_dump_debug_information(name, "MLX5 Error CQ:",
2176                                                     (const void *)((uintptr_t)
2177                                                                     rxq->cqes),
2178                                                     sizeof(*u.cqe) * cqe_n);
2179                         mlx5_dump_debug_information(name, "MLX5 Error RQ:",
2180                                                     (const void *)((uintptr_t)
2181                                                                     rxq->wqes),
2182                                                     16 * wqe_n);
2183                         rxq_ctrl->dump_file_n++;
2184                 }
2185                 rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_READY;
2186                 /* Fall-through */
2187         case MLX5_RXQ_ERR_STATE_NEED_READY:
2188                 ret = check_cqe(u.cqe, cqe_n, rxq->cq_ci);
2189                 if (ret == MLX5_CQE_STATUS_HW_OWN) {
2190                         rte_cio_wmb();
2191                         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2192                         rte_cio_wmb();
2193                         /*
2194                          * The RQ consumer index must be zeroed while moving
2195                          * from RESET state to RDY state.
2196                          */
2197                         *rxq->rq_db = rte_cpu_to_be_32(0);
2198                         rte_cio_wmb();
2199                         sm.is_wq = 1;
2200                         sm.queue_id = rxq->idx;
2201                         sm.state = IBV_WQS_RDY;
2202                         if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv),
2203                                                     &sm))
2204                                 return -1;
2205                         if (mbuf_prepare) {
2206                                 const uint16_t q_mask = wqe_n - 1;
2207                                 uint16_t elt_idx;
2208                                 struct rte_mbuf **elt;
2209                                 int i;
2210                                 unsigned int n = wqe_n - (rxq->rq_ci -
2211                                                           rxq->rq_pi);
2212
2213                                 for (i = 0; i < (int)n; ++i) {
2214                                         elt_idx = (rxq->rq_ci + i) & q_mask;
2215                                         elt = &(*rxq->elts)[elt_idx];
2216                                         *elt = rte_mbuf_raw_alloc(rxq->mp);
2217                                         if (!*elt) {
2218                                                 for (i--; i >= 0; --i) {
2219                                                         elt_idx = (rxq->rq_ci +
2220                                                                    i) & q_mask;
2221                                                         elt = &(*rxq->elts)
2222                                                                 [elt_idx];
2223                                                         rte_pktmbuf_free_seg
2224                                                                 (*elt);
2225                                                 }
2226                                                 return -1;
2227                                         }
2228                                 }
2229                         }
2230                         mlx5_rxq_initialize(rxq);
2231                         rxq->err_state = MLX5_RXQ_ERR_STATE_NO_ERROR;
2232                 }
2233                 return ret;
2234         default:
2235                 return -1;
2236         }
2237 }
2238
2239 /**
2240  * Get size of the next packet for a given CQE. For compressed CQEs, the
2241  * consumer index is updated only once all packets of the current one have
2242  * been processed.
2243  *
2244  * @param rxq
2245  *   Pointer to RX queue.
2246  * @param cqe
2247  *   CQE to process.
2248  * @param[out] mcqe
2249  *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
2250  *   written.
2251  *
2252  * @return
2253  *   0 in case of empty CQE, otherwise the packet size in bytes.
2254  */
2255 static inline int
2256 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
2257                  uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
2258 {
2259         struct rxq_zip *zip = &rxq->zip;
2260         uint16_t cqe_n = cqe_cnt + 1;
2261         int len;
2262         uint16_t idx, end;
2263
2264         do {
2265                 len = 0;
2266                 /* Process compressed data in the CQE and mini arrays. */
2267                 if (zip->ai) {
2268                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
2269                                 (volatile struct mlx5_mini_cqe8 (*)[8])
2270                                 (uintptr_t)(&(*rxq->cqes)[zip->ca &
2271                                                           cqe_cnt].pkt_info);
2272
2273                         len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
2274                         *mcqe = &(*mc)[zip->ai & 7];
2275                         if ((++zip->ai & 7) == 0) {
2276                                 /* Invalidate consumed CQEs */
2277                                 idx = zip->ca;
2278                                 end = zip->na;
2279                                 while (idx != end) {
2280                                         (*rxq->cqes)[idx & cqe_cnt].op_own =
2281                                                 MLX5_CQE_INVALIDATE;
2282                                         ++idx;
2283                                 }
2284                                 /*
2285                                  * Increment consumer index to skip the number
2286                                  * of CQEs consumed. Hardware leaves holes in
2287                                  * the CQ ring for software use.
2288                                  */
2289                                 zip->ca = zip->na;
2290                                 zip->na += 8;
2291                         }
2292                         if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
2293                                 /* Invalidate the rest */
2294                                 idx = zip->ca;
2295                                 end = zip->cq_ci;
2296
2297                                 while (idx != end) {
2298                                         (*rxq->cqes)[idx & cqe_cnt].op_own =
2299                                                 MLX5_CQE_INVALIDATE;
2300                                         ++idx;
2301                                 }
2302                                 rxq->cq_ci = zip->cq_ci;
2303                                 zip->ai = 0;
2304                         }
2305                 /*
2306                  * No compressed data, get next CQE and verify if it is
2307                  * compressed.
2308                  */
2309                 } else {
2310                         int ret;
2311                         int8_t op_own;
2312
2313                         ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
2314                         if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
2315                                 if (unlikely(ret == MLX5_CQE_STATUS_ERR ||
2316                                              rxq->err_state)) {
2317                                         ret = mlx5_rx_err_handle(rxq, 0);
2318                                         if (ret == MLX5_CQE_STATUS_HW_OWN ||
2319                                             ret == -1)
2320                                                 return 0;
2321                                 } else {
2322                                         return 0;
2323                                 }
2324                         }
2325                         ++rxq->cq_ci;
2326                         op_own = cqe->op_own;
2327                         if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
2328                                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
2329                                         (volatile struct mlx5_mini_cqe8 (*)[8])
2330                                         (uintptr_t)(&(*rxq->cqes)
2331                                                 [rxq->cq_ci &
2332                                                  cqe_cnt].pkt_info);
2333
2334                                 /* Fix endianness. */
2335                                 zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
2336                                 /*
2337                                  * Current mini array position is the one
2338                                  * returned by check_cqe64().
2339                                  *
2340                                  * If completion comprises several mini arrays,
2341                                  * as a special case the second one is located
2342                                  * 7 CQEs after the initial CQE instead of 8
2343                                  * for subsequent ones.
2344                                  */
2345                                 zip->ca = rxq->cq_ci;
2346                                 zip->na = zip->ca + 7;
2347                                 /* Compute the next non compressed CQE. */
2348                                 --rxq->cq_ci;
2349                                 zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
2350                                 /* Get packet size to return. */
2351                                 len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
2352                                 *mcqe = &(*mc)[0];
2353                                 zip->ai = 1;
2354                                 /* Prefetch all to be invalidated */
2355                                 idx = zip->ca;
2356                                 end = zip->cq_ci;
2357                                 while (idx != end) {
2358                                         rte_prefetch0(&(*rxq->cqes)[(idx) &
2359                                                                     cqe_cnt]);
2360                                         ++idx;
2361                                 }
2362                         } else {
2363                                 len = rte_be_to_cpu_32(cqe->byte_cnt);
2364                         }
2365                 }
2366                 if (unlikely(rxq->err_state)) {
2367                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
2368                         ++rxq->stats.idropped;
2369                 } else {
2370                         return len;
2371                 }
2372         } while (1);
2373 }
2374
2375 /**
2376  * Translate RX completion flags to offload flags.
2377  *
2378  * @param[in] cqe
2379  *   Pointer to CQE.
2380  *
2381  * @return
2382  *   Offload flags (ol_flags) for struct rte_mbuf.
2383  */
2384 static inline uint32_t
2385 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
2386 {
2387         uint32_t ol_flags = 0;
2388         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
2389
2390         ol_flags =
2391                 TRANSPOSE(flags,
2392                           MLX5_CQE_RX_L3_HDR_VALID,
2393                           PKT_RX_IP_CKSUM_GOOD) |
2394                 TRANSPOSE(flags,
2395                           MLX5_CQE_RX_L4_HDR_VALID,
2396                           PKT_RX_L4_CKSUM_GOOD);
2397         return ol_flags;
2398 }
2399
2400 /**
2401  * Fill in mbuf fields from RX completion flags.
2402  * Note that pkt->ol_flags should be initialized outside of this function.
2403  *
2404  * @param rxq
2405  *   Pointer to RX queue.
2406  * @param pkt
2407  *   mbuf to fill.
2408  * @param cqe
2409  *   CQE to process.
2410  * @param rss_hash_res
2411  *   Packet RSS Hash result.
2412  */
2413 static inline void
2414 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
2415                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
2416 {
2417         /* Update packet information. */
2418         pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
2419         if (rss_hash_res && rxq->rss_hash) {
2420                 pkt->hash.rss = rss_hash_res;
2421                 pkt->ol_flags |= PKT_RX_RSS_HASH;
2422         }
2423         if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
2424                 pkt->ol_flags |= PKT_RX_FDIR;
2425                 if (cqe->sop_drop_qpn !=
2426                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
2427                         uint32_t mark = cqe->sop_drop_qpn;
2428
2429                         pkt->ol_flags |= PKT_RX_FDIR_ID;
2430                         pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
2431                 }
2432         }
2433         if (rxq->csum)
2434                 pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
2435         if (rxq->vlan_strip &&
2436             (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
2437                 pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
2438                 pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
2439         }
2440         if (rxq->hw_timestamp) {
2441                 pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
2442                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
2443         }
2444 }
2445
2446 /**
2447  * DPDK callback for RX.
2448  *
2449  * @param dpdk_rxq
2450  *   Generic pointer to RX queue structure.
2451  * @param[out] pkts
2452  *   Array to store received packets.
2453  * @param pkts_n
2454  *   Maximum number of packets in array.
2455  *
2456  * @return
2457  *   Number of packets successfully received (<= pkts_n).
2458  */
2459 uint16_t
2460 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2461 {
2462         struct mlx5_rxq_data *rxq = dpdk_rxq;
2463         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
2464         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
2465         const unsigned int sges_n = rxq->sges_n;
2466         struct rte_mbuf *pkt = NULL;
2467         struct rte_mbuf *seg = NULL;
2468         volatile struct mlx5_cqe *cqe =
2469                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
2470         unsigned int i = 0;
2471         unsigned int rq_ci = rxq->rq_ci << sges_n;
2472         int len = 0; /* keep its value across iterations. */
2473
2474         while (pkts_n) {
2475                 unsigned int idx = rq_ci & wqe_cnt;
2476                 volatile struct mlx5_wqe_data_seg *wqe =
2477                         &((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
2478                 struct rte_mbuf *rep = (*rxq->elts)[idx];
2479                 volatile struct mlx5_mini_cqe8 *mcqe = NULL;
2480                 uint32_t rss_hash_res;
2481
2482                 if (pkt)
2483                         NEXT(seg) = rep;
2484                 seg = rep;
2485                 rte_prefetch0(seg);
2486                 rte_prefetch0(cqe);
2487                 rte_prefetch0(wqe);
2488                 rep = rte_mbuf_raw_alloc(rxq->mp);
2489                 if (unlikely(rep == NULL)) {
2490                         ++rxq->stats.rx_nombuf;
2491                         if (!pkt) {
2492                                 /*
2493                                  * no buffers before we even started,
2494                                  * bail out silently.
2495                                  */
2496                                 break;
2497                         }
2498                         while (pkt != seg) {
2499                                 assert(pkt != (*rxq->elts)[idx]);
2500                                 rep = NEXT(pkt);
2501                                 NEXT(pkt) = NULL;
2502                                 NB_SEGS(pkt) = 1;
2503                                 rte_mbuf_raw_free(pkt);
2504                                 pkt = rep;
2505                         }
2506                         break;
2507                 }
2508                 if (!pkt) {
2509                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
2510                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
2511                         if (!len) {
2512                                 rte_mbuf_raw_free(rep);
2513                                 break;
2514                         }
2515                         pkt = seg;
2516                         assert(len >= (rxq->crc_present << 2));
2517                         pkt->ol_flags = 0;
2518                         /* If compressed, take hash result from mini-CQE. */
2519                         rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ?
2520                                                         cqe->rx_hash_res :
2521                                                         mcqe->rx_hash_result);
2522                         rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2523                         if (rxq->crc_present)
2524                                 len -= RTE_ETHER_CRC_LEN;
2525                         PKT_LEN(pkt) = len;
2526                 }
2527                 DATA_LEN(rep) = DATA_LEN(seg);
2528                 PKT_LEN(rep) = PKT_LEN(seg);
2529                 SET_DATA_OFF(rep, DATA_OFF(seg));
2530                 PORT(rep) = PORT(seg);
2531                 (*rxq->elts)[idx] = rep;
2532                 /*
2533                  * Fill NIC descriptor with the new buffer.  The lkey and size
2534                  * of the buffers are already known, only the buffer address
2535                  * changes.
2536                  */
2537                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
2538                 /* If there's only one MR, no need to replace LKey in WQE. */
2539                 if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2540                         wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
2541                 if (len > DATA_LEN(seg)) {
2542                         len -= DATA_LEN(seg);
2543                         ++NB_SEGS(pkt);
2544                         ++rq_ci;
2545                         continue;
2546                 }
2547                 DATA_LEN(seg) = len;
2548 #ifdef MLX5_PMD_SOFT_COUNTERS
2549                 /* Increment bytes counter. */
2550                 rxq->stats.ibytes += PKT_LEN(pkt);
2551 #endif
2552                 /* Return packet. */
2553                 *(pkts++) = pkt;
2554                 pkt = NULL;
2555                 --pkts_n;
2556                 ++i;
2557                 /* Align consumer index to the next stride. */
2558                 rq_ci >>= sges_n;
2559                 ++rq_ci;
2560                 rq_ci <<= sges_n;
2561         }
2562         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
2563                 return 0;
2564         /* Update the consumer index. */
2565         rxq->rq_ci = rq_ci >> sges_n;
2566         rte_cio_wmb();
2567         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2568         rte_cio_wmb();
2569         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2570 #ifdef MLX5_PMD_SOFT_COUNTERS
2571         /* Increment packets counter. */
2572         rxq->stats.ipackets += i;
2573 #endif
2574         return i;
2575 }
2576
2577 void
2578 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
2579 {
2580         struct mlx5_mprq_buf *buf = opaque;
2581
2582         if (rte_atomic16_read(&buf->refcnt) == 1) {
2583                 rte_mempool_put(buf->mp, buf);
2584         } else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
2585                 rte_atomic16_set(&buf->refcnt, 1);
2586                 rte_mempool_put(buf->mp, buf);
2587         }
2588 }
2589
2590 void
2591 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
2592 {
2593         mlx5_mprq_buf_free_cb(NULL, buf);
2594 }
2595
2596 static inline void
2597 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
2598 {
2599         struct mlx5_mprq_buf *rep = rxq->mprq_repl;
2600         volatile struct mlx5_wqe_data_seg *wqe =
2601                 &((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
2602         void *addr;
2603
2604         assert(rep != NULL);
2605         /* Replace MPRQ buf. */
2606         (*rxq->mprq_bufs)[rq_idx] = rep;
2607         /* Replace WQE. */
2608         addr = mlx5_mprq_buf_addr(rep);
2609         wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
2610         /* If there's only one MR, no need to replace LKey in WQE. */
2611         if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2612                 wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
2613         /* Stash a mbuf for next replacement. */
2614         if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
2615                 rxq->mprq_repl = rep;
2616         else
2617                 rxq->mprq_repl = NULL;
2618 }
2619
2620 /**
2621  * DPDK callback for RX with Multi-Packet RQ support.
2622  *
2623  * @param dpdk_rxq
2624  *   Generic pointer to RX queue structure.
2625  * @param[out] pkts
2626  *   Array to store received packets.
2627  * @param pkts_n
2628  *   Maximum number of packets in array.
2629  *
2630  * @return
2631  *   Number of packets successfully received (<= pkts_n).
2632  */
2633 uint16_t
2634 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2635 {
2636         struct mlx5_rxq_data *rxq = dpdk_rxq;
2637         const unsigned int strd_n = 1 << rxq->strd_num_n;
2638         const unsigned int strd_sz = 1 << rxq->strd_sz_n;
2639         const unsigned int strd_shift =
2640                 MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
2641         const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
2642         const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
2643         volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2644         unsigned int i = 0;
2645         uint32_t rq_ci = rxq->rq_ci;
2646         uint16_t consumed_strd = rxq->consumed_strd;
2647         struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2648
2649         while (i < pkts_n) {
2650                 struct rte_mbuf *pkt;
2651                 void *addr;
2652                 int ret;
2653                 unsigned int len;
2654                 uint16_t strd_cnt;
2655                 uint16_t strd_idx;
2656                 uint32_t offset;
2657                 uint32_t byte_cnt;
2658                 volatile struct mlx5_mini_cqe8 *mcqe = NULL;
2659                 uint32_t rss_hash_res = 0;
2660
2661                 if (consumed_strd == strd_n) {
2662                         /* Replace WQE only if the buffer is still in use. */
2663                         if (rte_atomic16_read(&buf->refcnt) > 1) {
2664                                 mprq_buf_replace(rxq, rq_ci & wq_mask);
2665                                 /* Release the old buffer. */
2666                                 mlx5_mprq_buf_free(buf);
2667                         } else if (unlikely(rxq->mprq_repl == NULL)) {
2668                                 struct mlx5_mprq_buf *rep;
2669
2670                                 /*
2671                                  * Currently, the MPRQ mempool is out of buffer
2672                                  * and doing memcpy regardless of the size of Rx
2673                                  * packet. Retry allocation to get back to
2674                                  * normal.
2675                                  */
2676                                 if (!rte_mempool_get(rxq->mprq_mp,
2677                                                      (void **)&rep))
2678                                         rxq->mprq_repl = rep;
2679                         }
2680                         /* Advance to the next WQE. */
2681                         consumed_strd = 0;
2682                         ++rq_ci;
2683                         buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2684                 }
2685                 cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2686                 ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
2687                 if (!ret)
2688                         break;
2689                 byte_cnt = ret;
2690                 strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
2691                            MLX5_MPRQ_STRIDE_NUM_SHIFT;
2692                 assert(strd_cnt);
2693                 consumed_strd += strd_cnt;
2694                 if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
2695                         continue;
2696                 if (mcqe == NULL) {
2697                         rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
2698                         strd_idx = rte_be_to_cpu_16(cqe->wqe_counter);
2699                 } else {
2700                         /* mini-CQE for MPRQ doesn't have hash result. */
2701                         strd_idx = rte_be_to_cpu_16(mcqe->stride_idx);
2702                 }
2703                 assert(strd_idx < strd_n);
2704                 assert(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) & wq_mask));
2705                 /*
2706                  * Currently configured to receive a packet per a stride. But if
2707                  * MTU is adjusted through kernel interface, device could
2708                  * consume multiple strides without raising an error. In this
2709                  * case, the packet should be dropped because it is bigger than
2710                  * the max_rx_pkt_len.
2711                  */
2712                 if (unlikely(strd_cnt > 1)) {
2713                         ++rxq->stats.idropped;
2714                         continue;
2715                 }
2716                 pkt = rte_pktmbuf_alloc(rxq->mp);
2717                 if (unlikely(pkt == NULL)) {
2718                         ++rxq->stats.rx_nombuf;
2719                         break;
2720                 }
2721                 len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
2722                 assert((int)len >= (rxq->crc_present << 2));
2723                 if (rxq->crc_present)
2724                         len -= RTE_ETHER_CRC_LEN;
2725                 offset = strd_idx * strd_sz + strd_shift;
2726                 addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
2727                 /* Initialize the offload flag. */
2728                 pkt->ol_flags = 0;
2729                 /*
2730                  * Memcpy packets to the target mbuf if:
2731                  * - The size of packet is smaller than mprq_max_memcpy_len.
2732                  * - Out of buffer in the Mempool for Multi-Packet RQ.
2733                  */
2734                 if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
2735                         /*
2736                          * When memcpy'ing packet due to out-of-buffer, the
2737                          * packet must be smaller than the target mbuf.
2738                          */
2739                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2740                                 rte_pktmbuf_free_seg(pkt);
2741                                 ++rxq->stats.idropped;
2742                                 continue;
2743                         }
2744                         rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
2745                 } else {
2746                         rte_iova_t buf_iova;
2747                         struct rte_mbuf_ext_shared_info *shinfo;
2748                         uint16_t buf_len = strd_cnt * strd_sz;
2749
2750                         /* Increment the refcnt of the whole chunk. */
2751                         rte_atomic16_add_return(&buf->refcnt, 1);
2752                         assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
2753                                strd_n + 1);
2754                         addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
2755                         /*
2756                          * MLX5 device doesn't use iova but it is necessary in a
2757                          * case where the Rx packet is transmitted via a
2758                          * different PMD.
2759                          */
2760                         buf_iova = rte_mempool_virt2iova(buf) +
2761                                    RTE_PTR_DIFF(addr, buf);
2762                         shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
2763                                         &buf_len, mlx5_mprq_buf_free_cb, buf);
2764                         /*
2765                          * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
2766                          * attaching the stride to mbuf and more offload flags
2767                          * will be added below by calling rxq_cq_to_mbuf().
2768                          * Other fields will be overwritten.
2769                          */
2770                         rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
2771                                                   shinfo);
2772                         rte_pktmbuf_reset_headroom(pkt);
2773                         assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
2774                         /*
2775                          * Prevent potential overflow due to MTU change through
2776                          * kernel interface.
2777                          */
2778                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2779                                 rte_pktmbuf_free_seg(pkt);
2780                                 ++rxq->stats.idropped;
2781                                 continue;
2782                         }
2783                 }
2784                 rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2785                 PKT_LEN(pkt) = len;
2786                 DATA_LEN(pkt) = len;
2787                 PORT(pkt) = rxq->port_id;
2788 #ifdef MLX5_PMD_SOFT_COUNTERS
2789                 /* Increment bytes counter. */
2790                 rxq->stats.ibytes += PKT_LEN(pkt);
2791 #endif
2792                 /* Return packet. */
2793                 *(pkts++) = pkt;
2794                 ++i;
2795         }
2796         /* Update the consumer indexes. */
2797         rxq->consumed_strd = consumed_strd;
2798         rte_cio_wmb();
2799         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2800         if (rq_ci != rxq->rq_ci) {
2801                 rxq->rq_ci = rq_ci;
2802                 rte_cio_wmb();
2803                 *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2804         }
2805 #ifdef MLX5_PMD_SOFT_COUNTERS
2806         /* Increment packets counter. */
2807         rxq->stats.ipackets += i;
2808 #endif
2809         return i;
2810 }
2811
2812 /**
2813  * Dummy DPDK callback for TX.
2814  *
2815  * This function is used to temporarily replace the real callback during
2816  * unsafe control operations on the queue, or in case of error.
2817  *
2818  * @param dpdk_txq
2819  *   Generic pointer to TX queue structure.
2820  * @param[in] pkts
2821  *   Packets to transmit.
2822  * @param pkts_n
2823  *   Number of packets in array.
2824  *
2825  * @return
2826  *   Number of packets successfully transmitted (<= pkts_n).
2827  */
2828 uint16_t
2829 removed_tx_burst(void *dpdk_txq __rte_unused,
2830                  struct rte_mbuf **pkts __rte_unused,
2831                  uint16_t pkts_n __rte_unused)
2832 {
2833         rte_mb();
2834         return 0;
2835 }
2836
2837 /**
2838  * Dummy DPDK callback for RX.
2839  *
2840  * This function is used to temporarily replace the real callback during
2841  * unsafe control operations on the queue, or in case of error.
2842  *
2843  * @param dpdk_rxq
2844  *   Generic pointer to RX queue structure.
2845  * @param[out] pkts
2846  *   Array to store received packets.
2847  * @param pkts_n
2848  *   Maximum number of packets in array.
2849  *
2850  * @return
2851  *   Number of packets successfully received (<= pkts_n).
2852  */
2853 uint16_t
2854 removed_rx_burst(void *dpdk_txq __rte_unused,
2855                  struct rte_mbuf **pkts __rte_unused,
2856                  uint16_t pkts_n __rte_unused)
2857 {
2858         rte_mb();
2859         return 0;
2860 }
2861
2862 /*
2863  * Vectorized Rx/Tx routines are not compiled in when required vector
2864  * instructions are not supported on a target architecture. The following null
2865  * stubs are needed for linkage when those are not included outside of this file
2866  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2867  */
2868
2869 __rte_weak uint16_t
2870 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2871                       struct rte_mbuf **pkts __rte_unused,
2872                       uint16_t pkts_n __rte_unused)
2873 {
2874         return 0;
2875 }
2876
2877 __rte_weak uint16_t
2878 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2879                   struct rte_mbuf **pkts __rte_unused,
2880                   uint16_t pkts_n __rte_unused)
2881 {
2882         return 0;
2883 }
2884
2885 __rte_weak uint16_t
2886 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2887                   struct rte_mbuf **pkts __rte_unused,
2888                   uint16_t pkts_n __rte_unused)
2889 {
2890         return 0;
2891 }
2892
2893 __rte_weak int
2894 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2895 {
2896         return -ENOTSUP;
2897 }
2898
2899 __rte_weak int
2900 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2901 {
2902         return -ENOTSUP;
2903 }
2904
2905 __rte_weak int
2906 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2907 {
2908         return -ENOTSUP;
2909 }
2910
2911 __rte_weak int
2912 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2913 {
2914         return -ENOTSUP;
2915 }