net/mlx5: remove redundant checks
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
38
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41                  uint16_t cqe_cnt, uint32_t *rss_hash);
42
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
45
46 static __rte_always_inline void
47 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
48                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
49
50 static __rte_always_inline void
51 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);
52
53 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
54         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
55 };
56
57 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
58 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
59
60 /**
61  * Build a table to translate Rx completion flags to packet type.
62  *
63  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
64  */
65 void
66 mlx5_set_ptype_table(void)
67 {
68         unsigned int i;
69         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
70
71         /* Last entry must not be overwritten, reserved for errored packet. */
72         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
73                 (*p)[i] = RTE_PTYPE_UNKNOWN;
74         /*
75          * The index to the array should have:
76          * bit[1:0] = l3_hdr_type
77          * bit[4:2] = l4_hdr_type
78          * bit[5] = ip_frag
79          * bit[6] = tunneled
80          * bit[7] = outer_l3_type
81          */
82         /* L2 */
83         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
84         /* L3 */
85         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
86                      RTE_PTYPE_L4_NONFRAG;
87         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
88                      RTE_PTYPE_L4_NONFRAG;
89         /* Fragmented */
90         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
91                      RTE_PTYPE_L4_FRAG;
92         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93                      RTE_PTYPE_L4_FRAG;
94         /* TCP */
95         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
96                      RTE_PTYPE_L4_TCP;
97         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98                      RTE_PTYPE_L4_TCP;
99         (*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
100                      RTE_PTYPE_L4_TCP;
101         (*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
102                      RTE_PTYPE_L4_TCP;
103         (*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_TCP;
105         (*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106                      RTE_PTYPE_L4_TCP;
107         /* UDP */
108         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_UDP;
110         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_UDP;
112         /* Repeat with outer_l3_type being set. Just in case. */
113         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_NONFRAG;
115         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116                      RTE_PTYPE_L4_NONFRAG;
117         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
118                      RTE_PTYPE_L4_FRAG;
119         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
120                      RTE_PTYPE_L4_FRAG;
121         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
122                      RTE_PTYPE_L4_TCP;
123         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
124                      RTE_PTYPE_L4_TCP;
125         (*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126                      RTE_PTYPE_L4_TCP;
127         (*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
128                      RTE_PTYPE_L4_TCP;
129         (*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130                      RTE_PTYPE_L4_TCP;
131         (*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132                      RTE_PTYPE_L4_TCP;
133         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_L4_UDP;
135         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136                      RTE_PTYPE_L4_UDP;
137         /* Tunneled - L3 */
138         (*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
139         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
140                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L4_NONFRAG;
142         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
143                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L4_NONFRAG;
145         (*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
146         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_NONFRAG;
149         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_NONFRAG;
152         /* Tunneled - Fragmented */
153         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L4_FRAG;
156         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L4_FRAG;
159         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_FRAG;
162         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_FRAG;
165         /* Tunneled - TCP */
166         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L4_TCP;
169         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171                      RTE_PTYPE_INNER_L4_TCP;
172         (*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174                      RTE_PTYPE_INNER_L4_TCP;
175         (*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_TCP;
178         (*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180                      RTE_PTYPE_INNER_L4_TCP;
181         (*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183                      RTE_PTYPE_INNER_L4_TCP;
184         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186                      RTE_PTYPE_INNER_L4_TCP;
187         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189                      RTE_PTYPE_INNER_L4_TCP;
190         (*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
191                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L4_TCP;
193         (*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
194                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L4_TCP;
196         (*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
197                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L4_TCP;
199         (*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
200                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L4_TCP;
202         /* Tunneled - UDP */
203         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
205                      RTE_PTYPE_INNER_L4_UDP;
206         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
208                      RTE_PTYPE_INNER_L4_UDP;
209         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
210                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L4_UDP;
212         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
213                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L4_UDP;
215 }
216
217 /**
218  * Build a table to translate packet to checksum type of Verbs.
219  */
220 void
221 mlx5_set_cksum_table(void)
222 {
223         unsigned int i;
224         uint8_t v;
225
226         /*
227          * The index should have:
228          * bit[0] = PKT_TX_TCP_SEG
229          * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
230          * bit[4] = PKT_TX_IP_CKSUM
231          * bit[8] = PKT_TX_OUTER_IP_CKSUM
232          * bit[9] = tunnel
233          */
234         for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
235                 v = 0;
236                 if (i & (1 << 9)) {
237                         /* Tunneled packet. */
238                         if (i & (1 << 8)) /* Outer IP. */
239                                 v |= MLX5_ETH_WQE_L3_CSUM;
240                         if (i & (1 << 4)) /* Inner IP. */
241                                 v |= MLX5_ETH_WQE_L3_INNER_CSUM;
242                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
243                                 v |= MLX5_ETH_WQE_L4_INNER_CSUM;
244                 } else {
245                         /* No tunnel. */
246                         if (i & (1 << 4)) /* IP. */
247                                 v |= MLX5_ETH_WQE_L3_CSUM;
248                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
249                                 v |= MLX5_ETH_WQE_L4_CSUM;
250                 }
251                 mlx5_cksum_table[i] = v;
252         }
253 }
254
255 /**
256  * Build a table to translate packet type of mbuf to SWP type of Verbs.
257  */
258 void
259 mlx5_set_swp_types_table(void)
260 {
261         unsigned int i;
262         uint8_t v;
263
264         /*
265          * The index should have:
266          * bit[0:1] = PKT_TX_L4_MASK
267          * bit[4] = PKT_TX_IPV6
268          * bit[8] = PKT_TX_OUTER_IPV6
269          * bit[9] = PKT_TX_OUTER_UDP
270          */
271         for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
272                 v = 0;
273                 if (i & (1 << 8))
274                         v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
275                 if (i & (1 << 9))
276                         v |= MLX5_ETH_WQE_L4_OUTER_UDP;
277                 if (i & (1 << 4))
278                         v |= MLX5_ETH_WQE_L3_INNER_IPV6;
279                 if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
280                         v |= MLX5_ETH_WQE_L4_INNER_UDP;
281                 mlx5_swp_types_table[i] = v;
282         }
283 }
284
285 /**
286  * Return the size of tailroom of WQ.
287  *
288  * @param txq
289  *   Pointer to TX queue structure.
290  * @param addr
291  *   Pointer to tail of WQ.
292  *
293  * @return
294  *   Size of tailroom.
295  */
296 static inline size_t
297 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
298 {
299         size_t tailroom;
300         tailroom = (uintptr_t)(txq->wqes) +
301                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
302                    (uintptr_t)addr;
303         return tailroom;
304 }
305
306 /**
307  * Copy data to tailroom of circular queue.
308  *
309  * @param dst
310  *   Pointer to destination.
311  * @param src
312  *   Pointer to source.
313  * @param n
314  *   Number of bytes to copy.
315  * @param base
316  *   Pointer to head of queue.
317  * @param tailroom
318  *   Size of tailroom from dst.
319  *
320  * @return
321  *   Pointer after copied data.
322  */
323 static inline void *
324 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
325                 void *base, size_t tailroom)
326 {
327         void *ret;
328
329         if (n > tailroom) {
330                 rte_memcpy(dst, src, tailroom);
331                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
332                            n - tailroom);
333                 ret = (uint8_t *)base + n - tailroom;
334         } else {
335                 rte_memcpy(dst, src, n);
336                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
337         }
338         return ret;
339 }
340
341 /**
342  * Inline TSO headers into WQE.
343  *
344  * @return
345  *   0 on success, negative errno value on failure.
346  */
347 static int
348 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
349            uint32_t *length,
350            uintptr_t *addr,
351            uint16_t *pkt_inline_sz,
352            uint8_t **raw,
353            uint16_t *max_wqe,
354            uint16_t *tso_segsz,
355            uint16_t *tso_header_sz)
356 {
357         uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
358                                     (1 << txq->wqe_n) * MLX5_WQE_SIZE);
359         unsigned int copy_b;
360         uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
361         const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
362                                  PKT_TX_TUNNEL_MASK);
363         uint16_t n_wqe;
364
365         *tso_segsz = buf->tso_segsz;
366         *tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
367         if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
368                 txq->stats.oerrors++;
369                 return -EINVAL;
370         }
371         if (tunneled)
372                 *tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
373         /* First seg must contain all TSO headers. */
374         if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
375                      *tso_header_sz > DATA_LEN(buf)) {
376                 txq->stats.oerrors++;
377                 return -EINVAL;
378         }
379         copy_b = *tso_header_sz - *pkt_inline_sz;
380         if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
381                 return -EAGAIN;
382         n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
383         if (unlikely(*max_wqe < n_wqe))
384                 return -EINVAL;
385         *max_wqe -= n_wqe;
386         rte_memcpy((void *)*raw, (void *)*addr, copy_b);
387         *length -= copy_b;
388         *addr += copy_b;
389         copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
390         *pkt_inline_sz += copy_b;
391         *raw += copy_b;
392         return 0;
393 }
394
395 /**
396  * DPDK callback to check the status of a tx descriptor.
397  *
398  * @param tx_queue
399  *   The tx queue.
400  * @param[in] offset
401  *   The index of the descriptor in the ring.
402  *
403  * @return
404  *   The status of the tx descriptor.
405  */
406 int
407 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
408 {
409         struct mlx5_txq_data *txq = tx_queue;
410         uint16_t used;
411
412         mlx5_tx_complete(txq);
413         used = txq->elts_head - txq->elts_tail;
414         if (offset < used)
415                 return RTE_ETH_TX_DESC_FULL;
416         return RTE_ETH_TX_DESC_DONE;
417 }
418
419 /**
420  * DPDK callback to check the status of a rx descriptor.
421  *
422  * @param rx_queue
423  *   The rx queue.
424  * @param[in] offset
425  *   The index of the descriptor in the ring.
426  *
427  * @return
428  *   The status of the tx descriptor.
429  */
430 int
431 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
432 {
433         struct mlx5_rxq_data *rxq = rx_queue;
434         struct rxq_zip *zip = &rxq->zip;
435         volatile struct mlx5_cqe *cqe;
436         const unsigned int cqe_n = (1 << rxq->cqe_n);
437         const unsigned int cqe_cnt = cqe_n - 1;
438         unsigned int cq_ci;
439         unsigned int used;
440
441         /* if we are processing a compressed cqe */
442         if (zip->ai) {
443                 used = zip->cqe_cnt - zip->ca;
444                 cq_ci = zip->cq_ci;
445         } else {
446                 used = 0;
447                 cq_ci = rxq->cq_ci;
448         }
449         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
450         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
451                 int8_t op_own;
452                 unsigned int n;
453
454                 op_own = cqe->op_own;
455                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
456                         n = rte_be_to_cpu_32(cqe->byte_cnt);
457                 else
458                         n = 1;
459                 cq_ci += n;
460                 used += n;
461                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
462         }
463         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
464         if (offset < used)
465                 return RTE_ETH_RX_DESC_DONE;
466         return RTE_ETH_RX_DESC_AVAIL;
467 }
468
469 /**
470  * DPDK callback for TX.
471  *
472  * @param dpdk_txq
473  *   Generic pointer to TX queue structure.
474  * @param[in] pkts
475  *   Packets to transmit.
476  * @param pkts_n
477  *   Number of packets in array.
478  *
479  * @return
480  *   Number of packets successfully transmitted (<= pkts_n).
481  */
482 uint16_t
483 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
484 {
485         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
486         uint16_t elts_head = txq->elts_head;
487         const uint16_t elts_n = 1 << txq->elts_n;
488         const uint16_t elts_m = elts_n - 1;
489         unsigned int i = 0;
490         unsigned int j = 0;
491         unsigned int k = 0;
492         uint16_t max_elts;
493         uint16_t max_wqe;
494         unsigned int comp;
495         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
496         unsigned int segs_n = 0;
497         const unsigned int max_inline = txq->max_inline;
498
499         if (unlikely(!pkts_n))
500                 return 0;
501         /* Prefetch first packet cacheline. */
502         rte_prefetch0(*pkts);
503         /* Start processing. */
504         mlx5_tx_complete(txq);
505         max_elts = (elts_n - (elts_head - txq->elts_tail));
506         /* A CQE slot must always be available. */
507         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
508         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
509         if (unlikely(!max_wqe))
510                 return 0;
511         do {
512                 struct rte_mbuf *buf = *pkts; /* First_seg. */
513                 uint8_t *raw;
514                 volatile struct mlx5_wqe_v *wqe = NULL;
515                 volatile rte_v128u32_t *dseg = NULL;
516                 uint32_t length;
517                 unsigned int ds = 0;
518                 unsigned int sg = 0; /* counter of additional segs attached. */
519                 uintptr_t addr;
520                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
521                 uint16_t tso_header_sz = 0;
522                 uint16_t ehdr;
523                 uint8_t cs_flags;
524                 uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
525                 uint32_t swp_offsets = 0;
526                 uint8_t swp_types = 0;
527                 uint16_t tso_segsz = 0;
528 #ifdef MLX5_PMD_SOFT_COUNTERS
529                 uint32_t total_length = 0;
530 #endif
531                 int ret;
532
533                 segs_n = buf->nb_segs;
534                 /*
535                  * Make sure there is enough room to store this packet and
536                  * that one ring entry remains unused.
537                  */
538                 assert(segs_n);
539                 if (max_elts < segs_n)
540                         break;
541                 max_elts -= segs_n;
542                 sg = --segs_n;
543                 if (unlikely(--max_wqe == 0))
544                         break;
545                 wqe = (volatile struct mlx5_wqe_v *)
546                         tx_mlx5_wqe(txq, txq->wqe_ci);
547                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
548                 if (pkts_n - i > 1)
549                         rte_prefetch0(*(pkts + 1));
550                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
551                 length = DATA_LEN(buf);
552                 ehdr = (((uint8_t *)addr)[1] << 8) |
553                        ((uint8_t *)addr)[0];
554 #ifdef MLX5_PMD_SOFT_COUNTERS
555                 total_length = length;
556 #endif
557                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
558                         txq->stats.oerrors++;
559                         break;
560                 }
561                 /* Update element. */
562                 (*txq->elts)[elts_head & elts_m] = buf;
563                 /* Prefetch next buffer data. */
564                 if (pkts_n - i > 1)
565                         rte_prefetch0(
566                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
567                 cs_flags = txq_ol_cksum_to_cs(buf);
568                 txq_mbuf_to_swp(txq, buf, (uint8_t *)&swp_offsets, &swp_types);
569                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
570                 /* Replace the Ethernet type by the VLAN if necessary. */
571                 if (buf->ol_flags & PKT_TX_VLAN_PKT) {
572                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
573                                                          buf->vlan_tci);
574                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
575
576                         addr += 2;
577                         length -= 2;
578                         /* Copy Destination and source mac address. */
579                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
580                         /* Copy VLAN. */
581                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
582                         /* Copy missing two bytes to end the DSeg. */
583                         memcpy((uint8_t *)raw + len + sizeof(vlan),
584                                ((uint8_t *)addr) + len, 2);
585                         addr += len + 2;
586                         length -= (len + 2);
587                 } else {
588                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
589                                MLX5_WQE_DWORD_SIZE);
590                         length -= pkt_inline_sz;
591                         addr += pkt_inline_sz;
592                 }
593                 raw += MLX5_WQE_DWORD_SIZE;
594                 if (tso) {
595                         ret = inline_tso(txq, buf, &length,
596                                          &addr, &pkt_inline_sz,
597                                          &raw, &max_wqe,
598                                          &tso_segsz, &tso_header_sz);
599                         if (ret == -EINVAL) {
600                                 break;
601                         } else if (ret == -EAGAIN) {
602                                 /* NOP WQE. */
603                                 wqe->ctrl = (rte_v128u32_t){
604                                         rte_cpu_to_be_32(txq->wqe_ci << 8),
605                                         rte_cpu_to_be_32(txq->qp_num_8s | 1),
606                                         0,
607                                         0,
608                                 };
609                                 ds = 1;
610 #ifdef MLX5_PMD_SOFT_COUNTERS
611                                 total_length = 0;
612 #endif
613                                 k++;
614                                 goto next_wqe;
615                         }
616                 }
617                 /* Inline if enough room. */
618                 if (max_inline || tso) {
619                         uint32_t inl = 0;
620                         uintptr_t end = (uintptr_t)
621                                 (((uintptr_t)txq->wqes) +
622                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
623                         unsigned int inline_room = max_inline *
624                                                    RTE_CACHE_LINE_SIZE -
625                                                    (pkt_inline_sz - 2) -
626                                                    !!tso * sizeof(inl);
627                         uintptr_t addr_end;
628                         unsigned int copy_b;
629
630 pkt_inline:
631                         addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
632                                                    RTE_CACHE_LINE_SIZE);
633                         copy_b = (addr_end > addr) ?
634                                  RTE_MIN((addr_end - addr), length) : 0;
635                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
636                                 /*
637                                  * One Dseg remains in the current WQE.  To
638                                  * keep the computation positive, it is
639                                  * removed after the bytes to Dseg conversion.
640                                  */
641                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
642
643                                 if (unlikely(max_wqe < n))
644                                         break;
645                                 max_wqe -= n;
646                                 if (tso) {
647                                         assert(inl == 0);
648                                         inl = rte_cpu_to_be_32(copy_b |
649                                                                MLX5_INLINE_SEG);
650                                         rte_memcpy((void *)raw,
651                                                    (void *)&inl, sizeof(inl));
652                                         raw += sizeof(inl);
653                                         pkt_inline_sz += sizeof(inl);
654                                 }
655                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
656                                 addr += copy_b;
657                                 length -= copy_b;
658                                 pkt_inline_sz += copy_b;
659                         }
660                         /*
661                          * 2 DWORDs consumed by the WQE header + ETH segment +
662                          * the size of the inline part of the packet.
663                          */
664                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
665                         if (length > 0) {
666                                 if (ds % (MLX5_WQE_SIZE /
667                                           MLX5_WQE_DWORD_SIZE) == 0) {
668                                         if (unlikely(--max_wqe == 0))
669                                                 break;
670                                         dseg = (volatile rte_v128u32_t *)
671                                                tx_mlx5_wqe(txq, txq->wqe_ci +
672                                                            ds / 4);
673                                 } else {
674                                         dseg = (volatile rte_v128u32_t *)
675                                                 ((uintptr_t)wqe +
676                                                  (ds * MLX5_WQE_DWORD_SIZE));
677                                 }
678                                 goto use_dseg;
679                         } else if (!segs_n) {
680                                 goto next_pkt;
681                         } else {
682                                 /*
683                                  * Further inline the next segment only for
684                                  * non-TSO packets.
685                                  */
686                                 if (!tso) {
687                                         raw += copy_b;
688                                         inline_room -= copy_b;
689                                 } else {
690                                         inline_room = 0;
691                                 }
692                                 /* Move to the next segment. */
693                                 --segs_n;
694                                 buf = buf->next;
695                                 assert(buf);
696                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
697                                 length = DATA_LEN(buf);
698 #ifdef MLX5_PMD_SOFT_COUNTERS
699                                 total_length += length;
700 #endif
701                                 (*txq->elts)[++elts_head & elts_m] = buf;
702                                 goto pkt_inline;
703                         }
704                 } else {
705                         /*
706                          * No inline has been done in the packet, only the
707                          * Ethernet Header as been stored.
708                          */
709                         dseg = (volatile rte_v128u32_t *)
710                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
711                         ds = 3;
712 use_dseg:
713                         /* Add the remaining packet as a simple ds. */
714                         addr = rte_cpu_to_be_64(addr);
715                         *dseg = (rte_v128u32_t){
716                                 rte_cpu_to_be_32(length),
717                                 mlx5_tx_mb2mr(txq, buf),
718                                 addr,
719                                 addr >> 32,
720                         };
721                         ++ds;
722                         if (!segs_n)
723                                 goto next_pkt;
724                 }
725 next_seg:
726                 assert(buf);
727                 assert(ds);
728                 assert(wqe);
729                 /*
730                  * Spill on next WQE when the current one does not have
731                  * enough room left. Size of WQE must a be a multiple
732                  * of data segment size.
733                  */
734                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
735                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
736                         if (unlikely(--max_wqe == 0))
737                                 break;
738                         dseg = (volatile rte_v128u32_t *)
739                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
740                         rte_prefetch0(tx_mlx5_wqe(txq,
741                                                   txq->wqe_ci + ds / 4 + 1));
742                 } else {
743                         ++dseg;
744                 }
745                 ++ds;
746                 buf = buf->next;
747                 assert(buf);
748                 length = DATA_LEN(buf);
749 #ifdef MLX5_PMD_SOFT_COUNTERS
750                 total_length += length;
751 #endif
752                 /* Store segment information. */
753                 addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
754                 *dseg = (rte_v128u32_t){
755                         rte_cpu_to_be_32(length),
756                         mlx5_tx_mb2mr(txq, buf),
757                         addr,
758                         addr >> 32,
759                 };
760                 (*txq->elts)[++elts_head & elts_m] = buf;
761                 if (--segs_n)
762                         goto next_seg;
763 next_pkt:
764                 if (ds > MLX5_DSEG_MAX) {
765                         txq->stats.oerrors++;
766                         break;
767                 }
768                 ++elts_head;
769                 ++pkts;
770                 ++i;
771                 j += sg;
772                 /* Initialize known and common part of the WQE structure. */
773                 if (tso) {
774                         wqe->ctrl = (rte_v128u32_t){
775                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
776                                                  MLX5_OPCODE_TSO),
777                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
778                                 0,
779                                 0,
780                         };
781                         wqe->eseg = (rte_v128u32_t){
782                                 swp_offsets,
783                                 cs_flags | (swp_types << 8) |
784                                 (rte_cpu_to_be_16(tso_segsz) << 16),
785                                 0,
786                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
787                         };
788                 } else {
789                         wqe->ctrl = (rte_v128u32_t){
790                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
791                                                  MLX5_OPCODE_SEND),
792                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
793                                 0,
794                                 0,
795                         };
796                         wqe->eseg = (rte_v128u32_t){
797                                 swp_offsets,
798                                 cs_flags | (swp_types << 8),
799                                 0,
800                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
801                         };
802                 }
803 next_wqe:
804                 txq->wqe_ci += (ds + 3) / 4;
805                 /* Save the last successful WQE for completion request */
806                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
807 #ifdef MLX5_PMD_SOFT_COUNTERS
808                 /* Increment sent bytes counter. */
809                 txq->stats.obytes += total_length;
810 #endif
811         } while (i < pkts_n);
812         /* Take a shortcut if nothing must be sent. */
813         if (unlikely((i + k) == 0))
814                 return 0;
815         txq->elts_head += (i + j);
816         /* Check whether completion threshold has been reached. */
817         comp = txq->elts_comp + i + j + k;
818         if (comp >= MLX5_TX_COMP_THRESH) {
819                 /* Request completion on last WQE. */
820                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
821                 /* Save elts_head in unused "immediate" field of WQE. */
822                 last_wqe->ctrl3 = txq->elts_head;
823                 txq->elts_comp = 0;
824 #ifndef NDEBUG
825                 ++txq->cq_pi;
826 #endif
827         } else {
828                 txq->elts_comp = comp;
829         }
830 #ifdef MLX5_PMD_SOFT_COUNTERS
831         /* Increment sent packets counter. */
832         txq->stats.opackets += i;
833 #endif
834         /* Ring QP doorbell. */
835         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
836         return i;
837 }
838
839 /**
840  * Open a MPW session.
841  *
842  * @param txq
843  *   Pointer to TX queue structure.
844  * @param mpw
845  *   Pointer to MPW session structure.
846  * @param length
847  *   Packet length.
848  */
849 static inline void
850 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
851 {
852         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
853         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
854                 (volatile struct mlx5_wqe_data_seg (*)[])
855                 tx_mlx5_wqe(txq, idx + 1);
856
857         mpw->state = MLX5_MPW_STATE_OPENED;
858         mpw->pkts_n = 0;
859         mpw->len = length;
860         mpw->total_len = 0;
861         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
862         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
863         mpw->wqe->eseg.inline_hdr_sz = 0;
864         mpw->wqe->eseg.rsvd0 = 0;
865         mpw->wqe->eseg.rsvd1 = 0;
866         mpw->wqe->eseg.rsvd2 = 0;
867         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
868                                              (txq->wqe_ci << 8) |
869                                              MLX5_OPCODE_TSO);
870         mpw->wqe->ctrl[2] = 0;
871         mpw->wqe->ctrl[3] = 0;
872         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
873                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
874         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
875                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
876         mpw->data.dseg[2] = &(*dseg)[0];
877         mpw->data.dseg[3] = &(*dseg)[1];
878         mpw->data.dseg[4] = &(*dseg)[2];
879 }
880
881 /**
882  * Close a MPW session.
883  *
884  * @param txq
885  *   Pointer to TX queue structure.
886  * @param mpw
887  *   Pointer to MPW session structure.
888  */
889 static inline void
890 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
891 {
892         unsigned int num = mpw->pkts_n;
893
894         /*
895          * Store size in multiple of 16 bytes. Control and Ethernet segments
896          * count as 2.
897          */
898         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
899         mpw->state = MLX5_MPW_STATE_CLOSED;
900         if (num < 3)
901                 ++txq->wqe_ci;
902         else
903                 txq->wqe_ci += 2;
904         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
905         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
906 }
907
908 /**
909  * DPDK callback for TX with MPW support.
910  *
911  * @param dpdk_txq
912  *   Generic pointer to TX queue structure.
913  * @param[in] pkts
914  *   Packets to transmit.
915  * @param pkts_n
916  *   Number of packets in array.
917  *
918  * @return
919  *   Number of packets successfully transmitted (<= pkts_n).
920  */
921 uint16_t
922 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
923 {
924         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
925         uint16_t elts_head = txq->elts_head;
926         const uint16_t elts_n = 1 << txq->elts_n;
927         const uint16_t elts_m = elts_n - 1;
928         unsigned int i = 0;
929         unsigned int j = 0;
930         uint16_t max_elts;
931         uint16_t max_wqe;
932         unsigned int comp;
933         struct mlx5_mpw mpw = {
934                 .state = MLX5_MPW_STATE_CLOSED,
935         };
936
937         if (unlikely(!pkts_n))
938                 return 0;
939         /* Prefetch first packet cacheline. */
940         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
941         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
942         /* Start processing. */
943         mlx5_tx_complete(txq);
944         max_elts = (elts_n - (elts_head - txq->elts_tail));
945         /* A CQE slot must always be available. */
946         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
947         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
948         if (unlikely(!max_wqe))
949                 return 0;
950         do {
951                 struct rte_mbuf *buf = *(pkts++);
952                 uint32_t length;
953                 unsigned int segs_n = buf->nb_segs;
954                 uint32_t cs_flags;
955
956                 /*
957                  * Make sure there is enough room to store this packet and
958                  * that one ring entry remains unused.
959                  */
960                 assert(segs_n);
961                 if (max_elts < segs_n)
962                         break;
963                 /* Do not bother with large packets MPW cannot handle. */
964                 if (segs_n > MLX5_MPW_DSEG_MAX) {
965                         txq->stats.oerrors++;
966                         break;
967                 }
968                 max_elts -= segs_n;
969                 --pkts_n;
970                 cs_flags = txq_ol_cksum_to_cs(buf);
971                 /* Retrieve packet information. */
972                 length = PKT_LEN(buf);
973                 assert(length);
974                 /* Start new session if packet differs. */
975                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
976                     ((mpw.len != length) ||
977                      (segs_n != 1) ||
978                      (mpw.wqe->eseg.cs_flags != cs_flags)))
979                         mlx5_mpw_close(txq, &mpw);
980                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
981                         /*
982                          * Multi-Packet WQE consumes at most two WQE.
983                          * mlx5_mpw_new() expects to be able to use such
984                          * resources.
985                          */
986                         if (unlikely(max_wqe < 2))
987                                 break;
988                         max_wqe -= 2;
989                         mlx5_mpw_new(txq, &mpw, length);
990                         mpw.wqe->eseg.cs_flags = cs_flags;
991                 }
992                 /* Multi-segment packets must be alone in their MPW. */
993                 assert((segs_n == 1) || (mpw.pkts_n == 0));
994 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
995                 length = 0;
996 #endif
997                 do {
998                         volatile struct mlx5_wqe_data_seg *dseg;
999                         uintptr_t addr;
1000
1001                         assert(buf);
1002                         (*txq->elts)[elts_head++ & elts_m] = buf;
1003                         dseg = mpw.data.dseg[mpw.pkts_n];
1004                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1005                         *dseg = (struct mlx5_wqe_data_seg){
1006                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
1007                                 .lkey = mlx5_tx_mb2mr(txq, buf),
1008                                 .addr = rte_cpu_to_be_64(addr),
1009                         };
1010 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1011                         length += DATA_LEN(buf);
1012 #endif
1013                         buf = buf->next;
1014                         ++mpw.pkts_n;
1015                         ++j;
1016                 } while (--segs_n);
1017                 assert(length == mpw.len);
1018                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1019                         mlx5_mpw_close(txq, &mpw);
1020 #ifdef MLX5_PMD_SOFT_COUNTERS
1021                 /* Increment sent bytes counter. */
1022                 txq->stats.obytes += length;
1023 #endif
1024                 ++i;
1025         } while (pkts_n);
1026         /* Take a shortcut if nothing must be sent. */
1027         if (unlikely(i == 0))
1028                 return 0;
1029         /* Check whether completion threshold has been reached. */
1030         /* "j" includes both packets and segments. */
1031         comp = txq->elts_comp + j;
1032         if (comp >= MLX5_TX_COMP_THRESH) {
1033                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1034
1035                 /* Request completion on last WQE. */
1036                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1037                 /* Save elts_head in unused "immediate" field of WQE. */
1038                 wqe->ctrl[3] = elts_head;
1039                 txq->elts_comp = 0;
1040 #ifndef NDEBUG
1041                 ++txq->cq_pi;
1042 #endif
1043         } else {
1044                 txq->elts_comp = comp;
1045         }
1046 #ifdef MLX5_PMD_SOFT_COUNTERS
1047         /* Increment sent packets counter. */
1048         txq->stats.opackets += i;
1049 #endif
1050         /* Ring QP doorbell. */
1051         if (mpw.state == MLX5_MPW_STATE_OPENED)
1052                 mlx5_mpw_close(txq, &mpw);
1053         mlx5_tx_dbrec(txq, mpw.wqe);
1054         txq->elts_head = elts_head;
1055         return i;
1056 }
1057
1058 /**
1059  * Open a MPW inline session.
1060  *
1061  * @param txq
1062  *   Pointer to TX queue structure.
1063  * @param mpw
1064  *   Pointer to MPW session structure.
1065  * @param length
1066  *   Packet length.
1067  */
1068 static inline void
1069 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
1070                     uint32_t length)
1071 {
1072         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1073         struct mlx5_wqe_inl_small *inl;
1074
1075         mpw->state = MLX5_MPW_INL_STATE_OPENED;
1076         mpw->pkts_n = 0;
1077         mpw->len = length;
1078         mpw->total_len = 0;
1079         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1080         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1081                                              (txq->wqe_ci << 8) |
1082                                              MLX5_OPCODE_TSO);
1083         mpw->wqe->ctrl[2] = 0;
1084         mpw->wqe->ctrl[3] = 0;
1085         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1086         mpw->wqe->eseg.inline_hdr_sz = 0;
1087         mpw->wqe->eseg.cs_flags = 0;
1088         mpw->wqe->eseg.rsvd0 = 0;
1089         mpw->wqe->eseg.rsvd1 = 0;
1090         mpw->wqe->eseg.rsvd2 = 0;
1091         inl = (struct mlx5_wqe_inl_small *)
1092                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1093         mpw->data.raw = (uint8_t *)&inl->raw;
1094 }
1095
1096 /**
1097  * Close a MPW inline session.
1098  *
1099  * @param txq
1100  *   Pointer to TX queue structure.
1101  * @param mpw
1102  *   Pointer to MPW session structure.
1103  */
1104 static inline void
1105 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1106 {
1107         unsigned int size;
1108         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1109                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1110
1111         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1112         /*
1113          * Store size in multiple of 16 bytes. Control and Ethernet segments
1114          * count as 2.
1115          */
1116         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1117                                              MLX5_WQE_DS(size));
1118         mpw->state = MLX5_MPW_STATE_CLOSED;
1119         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1120         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1121 }
1122
1123 /**
1124  * DPDK callback for TX with MPW inline support.
1125  *
1126  * @param dpdk_txq
1127  *   Generic pointer to TX queue structure.
1128  * @param[in] pkts
1129  *   Packets to transmit.
1130  * @param pkts_n
1131  *   Number of packets in array.
1132  *
1133  * @return
1134  *   Number of packets successfully transmitted (<= pkts_n).
1135  */
1136 uint16_t
1137 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1138                          uint16_t pkts_n)
1139 {
1140         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1141         uint16_t elts_head = txq->elts_head;
1142         const uint16_t elts_n = 1 << txq->elts_n;
1143         const uint16_t elts_m = elts_n - 1;
1144         unsigned int i = 0;
1145         unsigned int j = 0;
1146         uint16_t max_elts;
1147         uint16_t max_wqe;
1148         unsigned int comp;
1149         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1150         struct mlx5_mpw mpw = {
1151                 .state = MLX5_MPW_STATE_CLOSED,
1152         };
1153         /*
1154          * Compute the maximum number of WQE which can be consumed by inline
1155          * code.
1156          * - 2 DSEG for:
1157          *   - 1 control segment,
1158          *   - 1 Ethernet segment,
1159          * - N Dseg from the inline request.
1160          */
1161         const unsigned int wqe_inl_n =
1162                 ((2 * MLX5_WQE_DWORD_SIZE +
1163                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1164                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1165
1166         if (unlikely(!pkts_n))
1167                 return 0;
1168         /* Prefetch first packet cacheline. */
1169         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1170         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1171         /* Start processing. */
1172         mlx5_tx_complete(txq);
1173         max_elts = (elts_n - (elts_head - txq->elts_tail));
1174         /* A CQE slot must always be available. */
1175         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1176         do {
1177                 struct rte_mbuf *buf = *(pkts++);
1178                 uintptr_t addr;
1179                 uint32_t length;
1180                 unsigned int segs_n = buf->nb_segs;
1181                 uint8_t cs_flags;
1182
1183                 /*
1184                  * Make sure there is enough room to store this packet and
1185                  * that one ring entry remains unused.
1186                  */
1187                 assert(segs_n);
1188                 if (max_elts < segs_n)
1189                         break;
1190                 /* Do not bother with large packets MPW cannot handle. */
1191                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1192                         txq->stats.oerrors++;
1193                         break;
1194                 }
1195                 max_elts -= segs_n;
1196                 --pkts_n;
1197                 /*
1198                  * Compute max_wqe in case less WQE were consumed in previous
1199                  * iteration.
1200                  */
1201                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1202                 cs_flags = txq_ol_cksum_to_cs(buf);
1203                 /* Retrieve packet information. */
1204                 length = PKT_LEN(buf);
1205                 /* Start new session if packet differs. */
1206                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1207                         if ((mpw.len != length) ||
1208                             (segs_n != 1) ||
1209                             (mpw.wqe->eseg.cs_flags != cs_flags))
1210                                 mlx5_mpw_close(txq, &mpw);
1211                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1212                         if ((mpw.len != length) ||
1213                             (segs_n != 1) ||
1214                             (length > inline_room) ||
1215                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1216                                 mlx5_mpw_inline_close(txq, &mpw);
1217                                 inline_room =
1218                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1219                         }
1220                 }
1221                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1222                         if ((segs_n != 1) ||
1223                             (length > inline_room)) {
1224                                 /*
1225                                  * Multi-Packet WQE consumes at most two WQE.
1226                                  * mlx5_mpw_new() expects to be able to use
1227                                  * such resources.
1228                                  */
1229                                 if (unlikely(max_wqe < 2))
1230                                         break;
1231                                 max_wqe -= 2;
1232                                 mlx5_mpw_new(txq, &mpw, length);
1233                                 mpw.wqe->eseg.cs_flags = cs_flags;
1234                         } else {
1235                                 if (unlikely(max_wqe < wqe_inl_n))
1236                                         break;
1237                                 max_wqe -= wqe_inl_n;
1238                                 mlx5_mpw_inline_new(txq, &mpw, length);
1239                                 mpw.wqe->eseg.cs_flags = cs_flags;
1240                         }
1241                 }
1242                 /* Multi-segment packets must be alone in their MPW. */
1243                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1244                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1245                         assert(inline_room ==
1246                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1247 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1248                         length = 0;
1249 #endif
1250                         do {
1251                                 volatile struct mlx5_wqe_data_seg *dseg;
1252
1253                                 assert(buf);
1254                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1255                                 dseg = mpw.data.dseg[mpw.pkts_n];
1256                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1257                                 *dseg = (struct mlx5_wqe_data_seg){
1258                                         .byte_count =
1259                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1260                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1261                                         .addr = rte_cpu_to_be_64(addr),
1262                                 };
1263 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1264                                 length += DATA_LEN(buf);
1265 #endif
1266                                 buf = buf->next;
1267                                 ++mpw.pkts_n;
1268                                 ++j;
1269                         } while (--segs_n);
1270                         assert(length == mpw.len);
1271                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1272                                 mlx5_mpw_close(txq, &mpw);
1273                 } else {
1274                         unsigned int max;
1275
1276                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1277                         assert(length <= inline_room);
1278                         assert(length == DATA_LEN(buf));
1279                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1280                         (*txq->elts)[elts_head++ & elts_m] = buf;
1281                         /* Maximum number of bytes before wrapping. */
1282                         max = ((((uintptr_t)(txq->wqes)) +
1283                                 (1 << txq->wqe_n) *
1284                                 MLX5_WQE_SIZE) -
1285                                (uintptr_t)mpw.data.raw);
1286                         if (length > max) {
1287                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1288                                            (void *)addr,
1289                                            max);
1290                                 mpw.data.raw = (volatile void *)txq->wqes;
1291                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1292                                            (void *)(addr + max),
1293                                            length - max);
1294                                 mpw.data.raw += length - max;
1295                         } else {
1296                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1297                                            (void *)addr,
1298                                            length);
1299
1300                                 if (length == max)
1301                                         mpw.data.raw =
1302                                                 (volatile void *)txq->wqes;
1303                                 else
1304                                         mpw.data.raw += length;
1305                         }
1306                         ++mpw.pkts_n;
1307                         mpw.total_len += length;
1308                         ++j;
1309                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1310                                 mlx5_mpw_inline_close(txq, &mpw);
1311                                 inline_room =
1312                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1313                         } else {
1314                                 inline_room -= length;
1315                         }
1316                 }
1317 #ifdef MLX5_PMD_SOFT_COUNTERS
1318                 /* Increment sent bytes counter. */
1319                 txq->stats.obytes += length;
1320 #endif
1321                 ++i;
1322         } while (pkts_n);
1323         /* Take a shortcut if nothing must be sent. */
1324         if (unlikely(i == 0))
1325                 return 0;
1326         /* Check whether completion threshold has been reached. */
1327         /* "j" includes both packets and segments. */
1328         comp = txq->elts_comp + j;
1329         if (comp >= MLX5_TX_COMP_THRESH) {
1330                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1331
1332                 /* Request completion on last WQE. */
1333                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1334                 /* Save elts_head in unused "immediate" field of WQE. */
1335                 wqe->ctrl[3] = elts_head;
1336                 txq->elts_comp = 0;
1337 #ifndef NDEBUG
1338                 ++txq->cq_pi;
1339 #endif
1340         } else {
1341                 txq->elts_comp = comp;
1342         }
1343 #ifdef MLX5_PMD_SOFT_COUNTERS
1344         /* Increment sent packets counter. */
1345         txq->stats.opackets += i;
1346 #endif
1347         /* Ring QP doorbell. */
1348         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1349                 mlx5_mpw_inline_close(txq, &mpw);
1350         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1351                 mlx5_mpw_close(txq, &mpw);
1352         mlx5_tx_dbrec(txq, mpw.wqe);
1353         txq->elts_head = elts_head;
1354         return i;
1355 }
1356
1357 /**
1358  * Open an Enhanced MPW session.
1359  *
1360  * @param txq
1361  *   Pointer to TX queue structure.
1362  * @param mpw
1363  *   Pointer to MPW session structure.
1364  * @param length
1365  *   Packet length.
1366  */
1367 static inline void
1368 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1369 {
1370         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1371
1372         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1373         mpw->pkts_n = 0;
1374         mpw->total_len = sizeof(struct mlx5_wqe);
1375         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1376         mpw->wqe->ctrl[0] =
1377                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1378                                  (txq->wqe_ci << 8) |
1379                                  MLX5_OPCODE_ENHANCED_MPSW);
1380         mpw->wqe->ctrl[2] = 0;
1381         mpw->wqe->ctrl[3] = 0;
1382         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1383         if (unlikely(padding)) {
1384                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1385
1386                 /* Pad the first 2 DWORDs with zero-length inline header. */
1387                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1388                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1389                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1390                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1391                 /* Start from the next WQEBB. */
1392                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1393         } else {
1394                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1395         }
1396 }
1397
1398 /**
1399  * Close an Enhanced MPW session.
1400  *
1401  * @param txq
1402  *   Pointer to TX queue structure.
1403  * @param mpw
1404  *   Pointer to MPW session structure.
1405  *
1406  * @return
1407  *   Number of consumed WQEs.
1408  */
1409 static inline uint16_t
1410 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1411 {
1412         uint16_t ret;
1413
1414         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1415          * count as 2.
1416          */
1417         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1418                                              MLX5_WQE_DS(mpw->total_len));
1419         mpw->state = MLX5_MPW_STATE_CLOSED;
1420         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1421         txq->wqe_ci += ret;
1422         return ret;
1423 }
1424
1425 /**
1426  * TX with Enhanced MPW support.
1427  *
1428  * @param txq
1429  *   Pointer to TX queue structure.
1430  * @param[in] pkts
1431  *   Packets to transmit.
1432  * @param pkts_n
1433  *   Number of packets in array.
1434  *
1435  * @return
1436  *   Number of packets successfully transmitted (<= pkts_n).
1437  */
1438 static inline uint16_t
1439 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1440                uint16_t pkts_n)
1441 {
1442         uint16_t elts_head = txq->elts_head;
1443         const uint16_t elts_n = 1 << txq->elts_n;
1444         const uint16_t elts_m = elts_n - 1;
1445         unsigned int i = 0;
1446         unsigned int j = 0;
1447         uint16_t max_elts;
1448         uint16_t max_wqe;
1449         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1450         unsigned int mpw_room = 0;
1451         unsigned int inl_pad = 0;
1452         uint32_t inl_hdr;
1453         struct mlx5_mpw mpw = {
1454                 .state = MLX5_MPW_STATE_CLOSED,
1455         };
1456
1457         if (unlikely(!pkts_n))
1458                 return 0;
1459         /* Start processing. */
1460         mlx5_tx_complete(txq);
1461         max_elts = (elts_n - (elts_head - txq->elts_tail));
1462         /* A CQE slot must always be available. */
1463         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1464         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1465         if (unlikely(!max_wqe))
1466                 return 0;
1467         do {
1468                 struct rte_mbuf *buf = *(pkts++);
1469                 uintptr_t addr;
1470                 unsigned int do_inline = 0; /* Whether inline is possible. */
1471                 uint32_t length;
1472                 uint8_t cs_flags;
1473
1474                 /* Multi-segmented packet is handled in slow-path outside. */
1475                 assert(NB_SEGS(buf) == 1);
1476                 /* Make sure there is enough room to store this packet. */
1477                 if (max_elts - j == 0)
1478                         break;
1479                 cs_flags = txq_ol_cksum_to_cs(buf);
1480                 /* Retrieve packet information. */
1481                 length = PKT_LEN(buf);
1482                 /* Start new session if:
1483                  * - multi-segment packet
1484                  * - no space left even for a dseg
1485                  * - next packet can be inlined with a new WQE
1486                  * - cs_flag differs
1487                  */
1488                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1489                         if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1490                              mpw_room) ||
1491                             (length <= txq->inline_max_packet_sz &&
1492                              inl_pad + sizeof(inl_hdr) + length >
1493                              mpw_room) ||
1494                             (mpw.wqe->eseg.cs_flags != cs_flags))
1495                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1496                 }
1497                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1498                         /* In Enhanced MPW, inline as much as the budget is
1499                          * allowed. The remaining space is to be filled with
1500                          * dsegs. If the title WQEBB isn't padded, it will have
1501                          * 2 dsegs there.
1502                          */
1503                         mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1504                                            (max_inline ? max_inline :
1505                                             pkts_n * MLX5_WQE_DWORD_SIZE) +
1506                                            MLX5_WQE_SIZE);
1507                         if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1508                                 break;
1509                         /* Don't pad the title WQEBB to not waste WQ. */
1510                         mlx5_empw_new(txq, &mpw, 0);
1511                         mpw_room -= mpw.total_len;
1512                         inl_pad = 0;
1513                         do_inline = length <= txq->inline_max_packet_sz &&
1514                                     sizeof(inl_hdr) + length <= mpw_room &&
1515                                     !txq->mpw_hdr_dseg;
1516                         mpw.wqe->eseg.cs_flags = cs_flags;
1517                 } else {
1518                         /* Evaluate whether the next packet can be inlined.
1519                          * Inlininig is possible when:
1520                          * - length is less than configured value
1521                          * - length fits for remaining space
1522                          * - not required to fill the title WQEBB with dsegs
1523                          */
1524                         do_inline =
1525                                 length <= txq->inline_max_packet_sz &&
1526                                 inl_pad + sizeof(inl_hdr) + length <=
1527                                  mpw_room &&
1528                                 (!txq->mpw_hdr_dseg ||
1529                                  mpw.total_len >= MLX5_WQE_SIZE);
1530                 }
1531                 if (max_inline && do_inline) {
1532                         /* Inline packet into WQE. */
1533                         unsigned int max;
1534
1535                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1536                         assert(length == DATA_LEN(buf));
1537                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1538                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1539                         mpw.data.raw = (volatile void *)
1540                                 ((uintptr_t)mpw.data.raw + inl_pad);
1541                         max = tx_mlx5_wq_tailroom(txq,
1542                                         (void *)(uintptr_t)mpw.data.raw);
1543                         /* Copy inline header. */
1544                         mpw.data.raw = (volatile void *)
1545                                 mlx5_copy_to_wq(
1546                                           (void *)(uintptr_t)mpw.data.raw,
1547                                           &inl_hdr,
1548                                           sizeof(inl_hdr),
1549                                           (void *)(uintptr_t)txq->wqes,
1550                                           max);
1551                         max = tx_mlx5_wq_tailroom(txq,
1552                                         (void *)(uintptr_t)mpw.data.raw);
1553                         /* Copy packet data. */
1554                         mpw.data.raw = (volatile void *)
1555                                 mlx5_copy_to_wq(
1556                                           (void *)(uintptr_t)mpw.data.raw,
1557                                           (void *)addr,
1558                                           length,
1559                                           (void *)(uintptr_t)txq->wqes,
1560                                           max);
1561                         ++mpw.pkts_n;
1562                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1563                         /* No need to get completion as the entire packet is
1564                          * copied to WQ. Free the buf right away.
1565                          */
1566                         rte_pktmbuf_free_seg(buf);
1567                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1568                         /* Add pad in the next packet if any. */
1569                         inl_pad = (((uintptr_t)mpw.data.raw +
1570                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1571                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1572                                   (uintptr_t)mpw.data.raw;
1573                 } else {
1574                         /* No inline. Load a dseg of packet pointer. */
1575                         volatile rte_v128u32_t *dseg;
1576
1577                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1578                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1579                         assert(length == DATA_LEN(buf));
1580                         if (!tx_mlx5_wq_tailroom(txq,
1581                                         (void *)((uintptr_t)mpw.data.raw
1582                                                 + inl_pad)))
1583                                 dseg = (volatile void *)txq->wqes;
1584                         else
1585                                 dseg = (volatile void *)
1586                                         ((uintptr_t)mpw.data.raw +
1587                                          inl_pad);
1588                         (*txq->elts)[elts_head++ & elts_m] = buf;
1589                         addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1590                                                                  uintptr_t));
1591                         *dseg = (rte_v128u32_t) {
1592                                 rte_cpu_to_be_32(length),
1593                                 mlx5_tx_mb2mr(txq, buf),
1594                                 addr,
1595                                 addr >> 32,
1596                         };
1597                         mpw.data.raw = (volatile void *)(dseg + 1);
1598                         mpw.total_len += (inl_pad + sizeof(*dseg));
1599                         ++j;
1600                         ++mpw.pkts_n;
1601                         mpw_room -= (inl_pad + sizeof(*dseg));
1602                         inl_pad = 0;
1603                 }
1604 #ifdef MLX5_PMD_SOFT_COUNTERS
1605                 /* Increment sent bytes counter. */
1606                 txq->stats.obytes += length;
1607 #endif
1608                 ++i;
1609         } while (i < pkts_n);
1610         /* Take a shortcut if nothing must be sent. */
1611         if (unlikely(i == 0))
1612                 return 0;
1613         /* Check whether completion threshold has been reached. */
1614         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1615                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1616                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1617                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1618
1619                 /* Request completion on last WQE. */
1620                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1621                 /* Save elts_head in unused "immediate" field of WQE. */
1622                 wqe->ctrl[3] = elts_head;
1623                 txq->elts_comp = 0;
1624                 txq->mpw_comp = txq->wqe_ci;
1625 #ifndef NDEBUG
1626                 ++txq->cq_pi;
1627 #endif
1628         } else {
1629                 txq->elts_comp += j;
1630         }
1631 #ifdef MLX5_PMD_SOFT_COUNTERS
1632         /* Increment sent packets counter. */
1633         txq->stats.opackets += i;
1634 #endif
1635         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1636                 mlx5_empw_close(txq, &mpw);
1637         /* Ring QP doorbell. */
1638         mlx5_tx_dbrec(txq, mpw.wqe);
1639         txq->elts_head = elts_head;
1640         return i;
1641 }
1642
1643 /**
1644  * DPDK callback for TX with Enhanced MPW support.
1645  *
1646  * @param dpdk_txq
1647  *   Generic pointer to TX queue structure.
1648  * @param[in] pkts
1649  *   Packets to transmit.
1650  * @param pkts_n
1651  *   Number of packets in array.
1652  *
1653  * @return
1654  *   Number of packets successfully transmitted (<= pkts_n).
1655  */
1656 uint16_t
1657 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1658 {
1659         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1660         uint16_t nb_tx = 0;
1661
1662         while (pkts_n > nb_tx) {
1663                 uint16_t n;
1664                 uint16_t ret;
1665
1666                 n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1667                 if (n) {
1668                         ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1669                         if (!ret)
1670                                 break;
1671                         nb_tx += ret;
1672                 }
1673                 n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1674                 if (n) {
1675                         ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1676                         if (!ret)
1677                                 break;
1678                         nb_tx += ret;
1679                 }
1680         }
1681         return nb_tx;
1682 }
1683
1684 /**
1685  * Translate RX completion flags to packet type.
1686  *
1687  * @param[in] rxq
1688  *   Pointer to RX queue structure.
1689  * @param[in] cqe
1690  *   Pointer to CQE.
1691  *
1692  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1693  *
1694  * @return
1695  *   Packet type for struct rte_mbuf.
1696  */
1697 static inline uint32_t
1698 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1699 {
1700         uint8_t idx;
1701         uint8_t pinfo = cqe->pkt_info;
1702         uint16_t ptype = cqe->hdr_type_etc;
1703
1704         /*
1705          * The index to the array should have:
1706          * bit[1:0] = l3_hdr_type
1707          * bit[4:2] = l4_hdr_type
1708          * bit[5] = ip_frag
1709          * bit[6] = tunneled
1710          * bit[7] = outer_l3_type
1711          */
1712         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1713         return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
1714 }
1715
1716 /**
1717  * Get size of the next packet for a given CQE. For compressed CQEs, the
1718  * consumer index is updated only once all packets of the current one have
1719  * been processed.
1720  *
1721  * @param rxq
1722  *   Pointer to RX queue.
1723  * @param cqe
1724  *   CQE to process.
1725  * @param[out] rss_hash
1726  *   Packet RSS Hash result.
1727  *
1728  * @return
1729  *   Packet size in bytes (0 if there is none), -1 in case of completion
1730  *   with error.
1731  */
1732 static inline int
1733 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1734                  uint16_t cqe_cnt, uint32_t *rss_hash)
1735 {
1736         struct rxq_zip *zip = &rxq->zip;
1737         uint16_t cqe_n = cqe_cnt + 1;
1738         int len = 0;
1739         uint16_t idx, end;
1740
1741         /* Process compressed data in the CQE and mini arrays. */
1742         if (zip->ai) {
1743                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1744                         (volatile struct mlx5_mini_cqe8 (*)[8])
1745                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1746
1747                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1748                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1749                 if ((++zip->ai & 7) == 0) {
1750                         /* Invalidate consumed CQEs */
1751                         idx = zip->ca;
1752                         end = zip->na;
1753                         while (idx != end) {
1754                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1755                                         MLX5_CQE_INVALIDATE;
1756                                 ++idx;
1757                         }
1758                         /*
1759                          * Increment consumer index to skip the number of
1760                          * CQEs consumed. Hardware leaves holes in the CQ
1761                          * ring for software use.
1762                          */
1763                         zip->ca = zip->na;
1764                         zip->na += 8;
1765                 }
1766                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1767                         /* Invalidate the rest */
1768                         idx = zip->ca;
1769                         end = zip->cq_ci;
1770
1771                         while (idx != end) {
1772                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1773                                         MLX5_CQE_INVALIDATE;
1774                                 ++idx;
1775                         }
1776                         rxq->cq_ci = zip->cq_ci;
1777                         zip->ai = 0;
1778                 }
1779         /* No compressed data, get next CQE and verify if it is compressed. */
1780         } else {
1781                 int ret;
1782                 int8_t op_own;
1783
1784                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1785                 if (unlikely(ret == 1))
1786                         return 0;
1787                 ++rxq->cq_ci;
1788                 op_own = cqe->op_own;
1789                 rte_cio_rmb();
1790                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1791                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1792                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1793                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1794                                                           cqe_cnt].pkt_info);
1795
1796                         /* Fix endianness. */
1797                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1798                         /*
1799                          * Current mini array position is the one returned by
1800                          * check_cqe64().
1801                          *
1802                          * If completion comprises several mini arrays, as a
1803                          * special case the second one is located 7 CQEs after
1804                          * the initial CQE instead of 8 for subsequent ones.
1805                          */
1806                         zip->ca = rxq->cq_ci;
1807                         zip->na = zip->ca + 7;
1808                         /* Compute the next non compressed CQE. */
1809                         --rxq->cq_ci;
1810                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1811                         /* Get packet size to return. */
1812                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1813                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1814                         zip->ai = 1;
1815                         /* Prefetch all the entries to be invalidated */
1816                         idx = zip->ca;
1817                         end = zip->cq_ci;
1818                         while (idx != end) {
1819                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1820                                 ++idx;
1821                         }
1822                 } else {
1823                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1824                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1825                 }
1826                 /* Error while receiving packet. */
1827                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1828                         return -1;
1829         }
1830         return len;
1831 }
1832
1833 /**
1834  * Translate RX completion flags to offload flags.
1835  *
1836  * @param[in] cqe
1837  *   Pointer to CQE.
1838  *
1839  * @return
1840  *   Offload flags (ol_flags) for struct rte_mbuf.
1841  */
1842 static inline uint32_t
1843 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1844 {
1845         uint32_t ol_flags = 0;
1846         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1847
1848         ol_flags =
1849                 TRANSPOSE(flags,
1850                           MLX5_CQE_RX_L3_HDR_VALID,
1851                           PKT_RX_IP_CKSUM_GOOD) |
1852                 TRANSPOSE(flags,
1853                           MLX5_CQE_RX_L4_HDR_VALID,
1854                           PKT_RX_L4_CKSUM_GOOD);
1855         return ol_flags;
1856 }
1857
1858 /**
1859  * Fill in mbuf fields from RX completion flags.
1860  * Note that pkt->ol_flags should be initialized outside of this function.
1861  *
1862  * @param rxq
1863  *   Pointer to RX queue.
1864  * @param pkt
1865  *   mbuf to fill.
1866  * @param cqe
1867  *   CQE to process.
1868  * @param rss_hash_res
1869  *   Packet RSS Hash result.
1870  */
1871 static inline void
1872 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
1873                volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
1874 {
1875         /* Update packet information. */
1876         pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
1877         if (rss_hash_res && rxq->rss_hash) {
1878                 pkt->hash.rss = rss_hash_res;
1879                 pkt->ol_flags |= PKT_RX_RSS_HASH;
1880         }
1881         if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1882                 pkt->ol_flags |= PKT_RX_FDIR;
1883                 if (cqe->sop_drop_qpn !=
1884                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1885                         uint32_t mark = cqe->sop_drop_qpn;
1886
1887                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1888                         pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
1889                 }
1890         }
1891         if (rxq->csum)
1892                 pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1893         if (rxq->vlan_strip &&
1894             (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1895                 pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1896                 pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
1897         }
1898         if (rxq->hw_timestamp) {
1899                 pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
1900                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1901         }
1902 }
1903
1904 /**
1905  * DPDK callback for RX.
1906  *
1907  * @param dpdk_rxq
1908  *   Generic pointer to RX queue structure.
1909  * @param[out] pkts
1910  *   Array to store received packets.
1911  * @param pkts_n
1912  *   Maximum number of packets in array.
1913  *
1914  * @return
1915  *   Number of packets successfully received (<= pkts_n).
1916  */
1917 uint16_t
1918 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1919 {
1920         struct mlx5_rxq_data *rxq = dpdk_rxq;
1921         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1922         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1923         const unsigned int sges_n = rxq->sges_n;
1924         struct rte_mbuf *pkt = NULL;
1925         struct rte_mbuf *seg = NULL;
1926         volatile struct mlx5_cqe *cqe =
1927                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1928         unsigned int i = 0;
1929         unsigned int rq_ci = rxq->rq_ci << sges_n;
1930         int len = 0; /* keep its value across iterations. */
1931
1932         while (pkts_n) {
1933                 unsigned int idx = rq_ci & wqe_cnt;
1934                 volatile struct mlx5_wqe_data_seg *wqe =
1935                         &((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
1936                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1937                 uint32_t rss_hash_res = 0;
1938
1939                 if (pkt)
1940                         NEXT(seg) = rep;
1941                 seg = rep;
1942                 rte_prefetch0(seg);
1943                 rte_prefetch0(cqe);
1944                 rte_prefetch0(wqe);
1945                 rep = rte_mbuf_raw_alloc(rxq->mp);
1946                 if (unlikely(rep == NULL)) {
1947                         ++rxq->stats.rx_nombuf;
1948                         if (!pkt) {
1949                                 /*
1950                                  * no buffers before we even started,
1951                                  * bail out silently.
1952                                  */
1953                                 break;
1954                         }
1955                         while (pkt != seg) {
1956                                 assert(pkt != (*rxq->elts)[idx]);
1957                                 rep = NEXT(pkt);
1958                                 NEXT(pkt) = NULL;
1959                                 NB_SEGS(pkt) = 1;
1960                                 rte_mbuf_raw_free(pkt);
1961                                 pkt = rep;
1962                         }
1963                         break;
1964                 }
1965                 if (!pkt) {
1966                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1967                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1968                                                &rss_hash_res);
1969                         if (!len) {
1970                                 rte_mbuf_raw_free(rep);
1971                                 break;
1972                         }
1973                         if (unlikely(len == -1)) {
1974                                 /* RX error, packet is likely too large. */
1975                                 rte_mbuf_raw_free(rep);
1976                                 ++rxq->stats.idropped;
1977                                 goto skip;
1978                         }
1979                         pkt = seg;
1980                         assert(len >= (rxq->crc_present << 2));
1981                         pkt->ol_flags = 0;
1982                         rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
1983                         if (rxq->crc_present)
1984                                 len -= ETHER_CRC_LEN;
1985                         PKT_LEN(pkt) = len;
1986                 }
1987                 DATA_LEN(rep) = DATA_LEN(seg);
1988                 PKT_LEN(rep) = PKT_LEN(seg);
1989                 SET_DATA_OFF(rep, DATA_OFF(seg));
1990                 PORT(rep) = PORT(seg);
1991                 (*rxq->elts)[idx] = rep;
1992                 /*
1993                  * Fill NIC descriptor with the new buffer.  The lkey and size
1994                  * of the buffers are already known, only the buffer address
1995                  * changes.
1996                  */
1997                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1998                 /* If there's only one MR, no need to replace LKey in WQE. */
1999                 if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2000                         wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
2001                 if (len > DATA_LEN(seg)) {
2002                         len -= DATA_LEN(seg);
2003                         ++NB_SEGS(pkt);
2004                         ++rq_ci;
2005                         continue;
2006                 }
2007                 DATA_LEN(seg) = len;
2008 #ifdef MLX5_PMD_SOFT_COUNTERS
2009                 /* Increment bytes counter. */
2010                 rxq->stats.ibytes += PKT_LEN(pkt);
2011 #endif
2012                 /* Return packet. */
2013                 *(pkts++) = pkt;
2014                 pkt = NULL;
2015                 --pkts_n;
2016                 ++i;
2017 skip:
2018                 /* Align consumer index to the next stride. */
2019                 rq_ci >>= sges_n;
2020                 ++rq_ci;
2021                 rq_ci <<= sges_n;
2022         }
2023         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
2024                 return 0;
2025         /* Update the consumer index. */
2026         rxq->rq_ci = rq_ci >> sges_n;
2027         rte_cio_wmb();
2028         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2029         rte_cio_wmb();
2030         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2031 #ifdef MLX5_PMD_SOFT_COUNTERS
2032         /* Increment packets counter. */
2033         rxq->stats.ipackets += i;
2034 #endif
2035         return i;
2036 }
2037
2038 void
2039 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
2040 {
2041         struct mlx5_mprq_buf *buf = opaque;
2042
2043         if (rte_atomic16_read(&buf->refcnt) == 1) {
2044                 rte_mempool_put(buf->mp, buf);
2045         } else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
2046                 rte_atomic16_set(&buf->refcnt, 1);
2047                 rte_mempool_put(buf->mp, buf);
2048         }
2049 }
2050
2051 void
2052 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
2053 {
2054         mlx5_mprq_buf_free_cb(NULL, buf);
2055 }
2056
2057 static inline void
2058 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
2059 {
2060         struct mlx5_mprq_buf *rep = rxq->mprq_repl;
2061         volatile struct mlx5_wqe_data_seg *wqe =
2062                 &((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
2063         void *addr;
2064
2065         assert(rep != NULL);
2066         /* Replace MPRQ buf. */
2067         (*rxq->mprq_bufs)[rq_idx] = rep;
2068         /* Replace WQE. */
2069         addr = mlx5_mprq_buf_addr(rep);
2070         wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
2071         /* If there's only one MR, no need to replace LKey in WQE. */
2072         if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2073                 wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
2074         /* Stash a mbuf for next replacement. */
2075         if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
2076                 rxq->mprq_repl = rep;
2077         else
2078                 rxq->mprq_repl = NULL;
2079 }
2080
2081 /**
2082  * DPDK callback for RX with Multi-Packet RQ support.
2083  *
2084  * @param dpdk_rxq
2085  *   Generic pointer to RX queue structure.
2086  * @param[out] pkts
2087  *   Array to store received packets.
2088  * @param pkts_n
2089  *   Maximum number of packets in array.
2090  *
2091  * @return
2092  *   Number of packets successfully received (<= pkts_n).
2093  */
2094 uint16_t
2095 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2096 {
2097         struct mlx5_rxq_data *rxq = dpdk_rxq;
2098         const unsigned int strd_n = 1 << rxq->strd_num_n;
2099         const unsigned int strd_sz = 1 << rxq->strd_sz_n;
2100         const unsigned int strd_shift =
2101                 MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
2102         const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
2103         const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
2104         volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2105         unsigned int i = 0;
2106         uint16_t rq_ci = rxq->rq_ci;
2107         uint16_t strd_idx = rxq->strd_ci;
2108         struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2109
2110         while (i < pkts_n) {
2111                 struct rte_mbuf *pkt;
2112                 void *addr;
2113                 int ret;
2114                 unsigned int len;
2115                 uint16_t consumed_strd;
2116                 uint32_t offset;
2117                 uint32_t byte_cnt;
2118                 uint32_t rss_hash_res = 0;
2119
2120                 if (strd_idx == strd_n) {
2121                         /* Replace WQE only if the buffer is still in use. */
2122                         if (rte_atomic16_read(&buf->refcnt) > 1) {
2123                                 mprq_buf_replace(rxq, rq_ci & wq_mask);
2124                                 /* Release the old buffer. */
2125                                 mlx5_mprq_buf_free(buf);
2126                         } else if (unlikely(rxq->mprq_repl == NULL)) {
2127                                 struct mlx5_mprq_buf *rep;
2128
2129                                 /*
2130                                  * Currently, the MPRQ mempool is out of buffer
2131                                  * and doing memcpy regardless of the size of Rx
2132                                  * packet. Retry allocation to get back to
2133                                  * normal.
2134                                  */
2135                                 if (!rte_mempool_get(rxq->mprq_mp,
2136                                                      (void **)&rep))
2137                                         rxq->mprq_repl = rep;
2138                         }
2139                         /* Advance to the next WQE. */
2140                         strd_idx = 0;
2141                         ++rq_ci;
2142                         buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2143                 }
2144                 cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2145                 ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &rss_hash_res);
2146                 if (!ret)
2147                         break;
2148                 if (unlikely(ret == -1)) {
2149                         /* RX error, packet is likely too large. */
2150                         ++rxq->stats.idropped;
2151                         continue;
2152                 }
2153                 byte_cnt = ret;
2154                 consumed_strd = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
2155                                 MLX5_MPRQ_STRIDE_NUM_SHIFT;
2156                 assert(consumed_strd);
2157                 /* Calculate offset before adding up stride index. */
2158                 offset = strd_idx * strd_sz + strd_shift;
2159                 strd_idx += consumed_strd;
2160                 if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
2161                         continue;
2162                 /*
2163                  * Currently configured to receive a packet per a stride. But if
2164                  * MTU is adjusted through kernel interface, device could
2165                  * consume multiple strides without raising an error. In this
2166                  * case, the packet should be dropped because it is bigger than
2167                  * the max_rx_pkt_len.
2168                  */
2169                 if (unlikely(consumed_strd > 1)) {
2170                         ++rxq->stats.idropped;
2171                         continue;
2172                 }
2173                 pkt = rte_pktmbuf_alloc(rxq->mp);
2174                 if (unlikely(pkt == NULL)) {
2175                         ++rxq->stats.rx_nombuf;
2176                         break;
2177                 }
2178                 len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
2179                 assert((int)len >= (rxq->crc_present << 2));
2180                 if (rxq->crc_present)
2181                         len -= ETHER_CRC_LEN;
2182                 addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
2183                 /* Initialize the offload flag. */
2184                 pkt->ol_flags = 0;
2185                 /*
2186                  * Memcpy packets to the target mbuf if:
2187                  * - The size of packet is smaller than mprq_max_memcpy_len.
2188                  * - Out of buffer in the Mempool for Multi-Packet RQ.
2189                  */
2190                 if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
2191                         /*
2192                          * When memcpy'ing packet due to out-of-buffer, the
2193                          * packet must be smaller than the target mbuf.
2194                          */
2195                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2196                                 rte_pktmbuf_free_seg(pkt);
2197                                 ++rxq->stats.idropped;
2198                                 continue;
2199                         }
2200                         rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
2201                 } else {
2202                         rte_iova_t buf_iova;
2203                         struct rte_mbuf_ext_shared_info *shinfo;
2204                         uint16_t buf_len = consumed_strd * strd_sz;
2205
2206                         /* Increment the refcnt of the whole chunk. */
2207                         rte_atomic16_add_return(&buf->refcnt, 1);
2208                         assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
2209                                strd_n + 1);
2210                         addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
2211                         /*
2212                          * MLX5 device doesn't use iova but it is necessary in a
2213                          * case where the Rx packet is transmitted via a
2214                          * different PMD.
2215                          */
2216                         buf_iova = rte_mempool_virt2iova(buf) +
2217                                    RTE_PTR_DIFF(addr, buf);
2218                         shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
2219                                         &buf_len, mlx5_mprq_buf_free_cb, buf);
2220                         /*
2221                          * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
2222                          * attaching the stride to mbuf and more offload flags
2223                          * will be added below by calling rxq_cq_to_mbuf().
2224                          * Other fields will be overwritten.
2225                          */
2226                         rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
2227                                                   shinfo);
2228                         rte_pktmbuf_reset_headroom(pkt);
2229                         assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
2230                         /*
2231                          * Prevent potential overflow due to MTU change through
2232                          * kernel interface.
2233                          */
2234                         if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2235                                 rte_pktmbuf_free_seg(pkt);
2236                                 ++rxq->stats.idropped;
2237                                 continue;
2238                         }
2239                 }
2240                 rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2241                 PKT_LEN(pkt) = len;
2242                 DATA_LEN(pkt) = len;
2243                 PORT(pkt) = rxq->port_id;
2244 #ifdef MLX5_PMD_SOFT_COUNTERS
2245                 /* Increment bytes counter. */
2246                 rxq->stats.ibytes += PKT_LEN(pkt);
2247 #endif
2248                 /* Return packet. */
2249                 *(pkts++) = pkt;
2250                 ++i;
2251         }
2252         /* Update the consumer indexes. */
2253         rxq->strd_ci = strd_idx;
2254         rte_cio_wmb();
2255         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2256         if (rq_ci != rxq->rq_ci) {
2257                 rxq->rq_ci = rq_ci;
2258                 rte_cio_wmb();
2259                 *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2260         }
2261 #ifdef MLX5_PMD_SOFT_COUNTERS
2262         /* Increment packets counter. */
2263         rxq->stats.ipackets += i;
2264 #endif
2265         return i;
2266 }
2267
2268 /**
2269  * Dummy DPDK callback for TX.
2270  *
2271  * This function is used to temporarily replace the real callback during
2272  * unsafe control operations on the queue, or in case of error.
2273  *
2274  * @param dpdk_txq
2275  *   Generic pointer to TX queue structure.
2276  * @param[in] pkts
2277  *   Packets to transmit.
2278  * @param pkts_n
2279  *   Number of packets in array.
2280  *
2281  * @return
2282  *   Number of packets successfully transmitted (<= pkts_n).
2283  */
2284 uint16_t
2285 removed_tx_burst(void *dpdk_txq __rte_unused,
2286                  struct rte_mbuf **pkts __rte_unused,
2287                  uint16_t pkts_n __rte_unused)
2288 {
2289         return 0;
2290 }
2291
2292 /**
2293  * Dummy DPDK callback for RX.
2294  *
2295  * This function is used to temporarily replace the real callback during
2296  * unsafe control operations on the queue, or in case of error.
2297  *
2298  * @param dpdk_rxq
2299  *   Generic pointer to RX queue structure.
2300  * @param[out] pkts
2301  *   Array to store received packets.
2302  * @param pkts_n
2303  *   Maximum number of packets in array.
2304  *
2305  * @return
2306  *   Number of packets successfully received (<= pkts_n).
2307  */
2308 uint16_t
2309 removed_rx_burst(void *dpdk_txq __rte_unused,
2310                  struct rte_mbuf **pkts __rte_unused,
2311                  uint16_t pkts_n __rte_unused)
2312 {
2313         return 0;
2314 }
2315
2316 /*
2317  * Vectorized Rx/Tx routines are not compiled in when required vector
2318  * instructions are not supported on a target architecture. The following null
2319  * stubs are needed for linkage when those are not included outside of this file
2320  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2321  */
2322
2323 uint16_t __attribute__((weak))
2324 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2325                       struct rte_mbuf **pkts __rte_unused,
2326                       uint16_t pkts_n __rte_unused)
2327 {
2328         return 0;
2329 }
2330
2331 uint16_t __attribute__((weak))
2332 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2333                   struct rte_mbuf **pkts __rte_unused,
2334                   uint16_t pkts_n __rte_unused)
2335 {
2336         return 0;
2337 }
2338
2339 uint16_t __attribute__((weak))
2340 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2341                   struct rte_mbuf **pkts __rte_unused,
2342                   uint16_t pkts_n __rte_unused)
2343 {
2344         return 0;
2345 }
2346
2347 int __attribute__((weak))
2348 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2349 {
2350         return -ENOTSUP;
2351 }
2352
2353 int __attribute__((weak))
2354 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2355 {
2356         return -ENOTSUP;
2357 }
2358
2359 int __attribute__((weak))
2360 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2361 {
2362         return -ENOTSUP;
2363 }
2364
2365 int __attribute__((weak))
2366 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2367 {
2368         return -ENOTSUP;
2369 }