net/mlx5: support flow tag and packet header miniCQEs
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx_vec_neon.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_NEON_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_NEON_H_
8
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdlib.h>
12 #include <arm_neon.h>
13
14 #include <rte_mbuf.h>
15 #include <rte_mempool.h>
16 #include <rte_prefetch.h>
17
18 #include <mlx5_prm.h>
19
20 #include "mlx5_defs.h"
21 #include "mlx5.h"
22 #include "mlx5_utils.h"
23 #include "mlx5_rxtx.h"
24 #include "mlx5_rxtx_vec.h"
25 #include "mlx5_autoconf.h"
26
27 #pragma GCC diagnostic ignored "-Wcast-qual"
28
29 /**
30  * Store free buffers to RX SW ring.
31  *
32  * @param elts
33  *   Pointer to SW ring to be filled.
34  * @param pkts
35  *   Pointer to array of packets to be stored.
36  * @param pkts_n
37  *   Number of packets to be stored.
38  */
39 static inline void
40 rxq_copy_mbuf_v(struct rte_mbuf **elts, struct rte_mbuf **pkts, uint16_t n)
41 {
42         unsigned int pos;
43         uint16_t p = n & -2;
44
45         for (pos = 0; pos < p; pos += 2) {
46                 uint64x2_t mbp;
47
48                 mbp = vld1q_u64((void *)&elts[pos]);
49                 vst1q_u64((void *)&pkts[pos], mbp);
50         }
51         if (n & 1)
52                 pkts[pos] = elts[pos];
53 }
54
55 /**
56  * Decompress a compressed completion and fill in mbufs in RX SW ring with data
57  * extracted from the title completion descriptor.
58  *
59  * @param rxq
60  *   Pointer to RX queue structure.
61  * @param cq
62  *   Pointer to completion array having a compressed completion at first.
63  * @param elts
64  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
65  *   the title completion descriptor to be copied to the rest of mbufs.
66  *
67  * @return
68  *   Number of mini-CQEs successfully decompressed.
69  */
70 static inline uint16_t
71 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
72                     struct rte_mbuf **elts)
73 {
74         volatile struct mlx5_mini_cqe8 *mcq = (void *)&(cq + 1)->pkt_info;
75         struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
76         unsigned int pos;
77         unsigned int i;
78         unsigned int inv = 0;
79         /* Mask to shuffle from extracted mini CQE to mbuf. */
80         const uint8x16_t mcqe_shuf_m1 = {
81                 -1, -1, -1, -1, /* skip packet_type */
82                  7,  6, -1, -1, /* pkt_len, bswap16 */
83                  7,  6,         /* data_len, bswap16 */
84                 -1, -1,         /* skip vlan_tci */
85                  3,  2,  1,  0  /* hash.rss, bswap32 */
86         };
87         const uint8x16_t mcqe_shuf_m2 = {
88                 -1, -1, -1, -1, /* skip packet_type */
89                 15, 14, -1, -1, /* pkt_len, bswap16 */
90                 15, 14,         /* data_len, bswap16 */
91                 -1, -1,         /* skip vlan_tci */
92                 11, 10,  9,  8  /* hash.rss, bswap32 */
93         };
94         /* Restore the compressed count. Must be 16 bits. */
95         const uint16_t mcqe_n = t_pkt->data_len +
96                                 (rxq->crc_present * RTE_ETHER_CRC_LEN);
97         const uint64x2_t rearm =
98                 vld1q_u64((void *)&t_pkt->rearm_data);
99         const uint32x4_t rxdf_mask = {
100                 0xffffffff, /* packet_type */
101                 0,          /* skip pkt_len */
102                 0xffff0000, /* vlan_tci, skip data_len */
103                 0,          /* skip hash.rss */
104         };
105         const uint8x16_t rxdf =
106                 vandq_u8(vld1q_u8((void *)&t_pkt->rx_descriptor_fields1),
107                          vreinterpretq_u8_u32(rxdf_mask));
108         const uint16x8_t crc_adj = {
109                 0, 0,
110                 rxq->crc_present * RTE_ETHER_CRC_LEN, 0,
111                 rxq->crc_present * RTE_ETHER_CRC_LEN, 0,
112                 0, 0
113         };
114         uint32x4_t ol_flags = {0, 0, 0, 0};
115         uint32x4_t ol_flags_mask = {0, 0, 0, 0};
116 #ifdef MLX5_PMD_SOFT_COUNTERS
117         uint32_t rcvd_byte = 0;
118 #endif
119         /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
120         const uint8x8_t len_shuf_m = {
121                  7,  6,         /* 1st mCQE */
122                 15, 14,         /* 2nd mCQE */
123                 23, 22,         /* 3rd mCQE */
124                 31, 30          /* 4th mCQE */
125         };
126
127         /*
128          * A. load mCQEs into a 128bit register.
129          * B. store rearm data to mbuf.
130          * C. combine data from mCQEs with rx_descriptor_fields1.
131          * D. store rx_descriptor_fields1.
132          * E. store flow tag (rte_flow mark).
133          */
134         for (pos = 0; pos < mcqe_n; ) {
135                 uint8_t *p = (void *)&mcq[pos % 8];
136                 uint8_t *e0 = (void *)&elts[pos]->rearm_data;
137                 uint8_t *e1 = (void *)&elts[pos + 1]->rearm_data;
138                 uint8_t *e2 = (void *)&elts[pos + 2]->rearm_data;
139                 uint8_t *e3 = (void *)&elts[pos + 3]->rearm_data;
140                 uint16x4_t byte_cnt;
141 #ifdef MLX5_PMD_SOFT_COUNTERS
142                 uint16x4_t invalid_mask =
143                         vcreate_u16(mcqe_n - pos < MLX5_VPMD_DESCS_PER_LOOP ?
144                                     -1UL << ((mcqe_n - pos) *
145                                              sizeof(uint16_t) * 8) : 0);
146 #endif
147
148                 for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
149                         if (likely(pos + i < mcqe_n))
150                                 rte_prefetch0((void *)(cq + pos + i));
151                 __asm__ volatile (
152                 /* A.1 load mCQEs into a 128bit register. */
153                 "ld1 {v16.16b - v17.16b}, [%[mcq]] \n\t"
154                 /* B.1 store rearm data to mbuf. */
155                 "st1 {%[rearm].2d}, [%[e0]] \n\t"
156                 "add %[e0], %[e0], #16 \n\t"
157                 "st1 {%[rearm].2d}, [%[e1]] \n\t"
158                 "add %[e1], %[e1], #16 \n\t"
159                 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
160                 "tbl v18.16b, {v16.16b}, %[mcqe_shuf_m1].16b \n\t"
161                 "tbl v19.16b, {v16.16b}, %[mcqe_shuf_m2].16b \n\t"
162                 "sub v18.8h, v18.8h, %[crc_adj].8h \n\t"
163                 "sub v19.8h, v19.8h, %[crc_adj].8h \n\t"
164                 "orr v18.16b, v18.16b, %[rxdf].16b \n\t"
165                 "orr v19.16b, v19.16b, %[rxdf].16b \n\t"
166                 /* D.1 store rx_descriptor_fields1. */
167                 "st1 {v18.2d}, [%[e0]] \n\t"
168                 "st1 {v19.2d}, [%[e1]] \n\t"
169                 /* B.1 store rearm data to mbuf. */
170                 "st1 {%[rearm].2d}, [%[e2]] \n\t"
171                 "add %[e2], %[e2], #16 \n\t"
172                 "st1 {%[rearm].2d}, [%[e3]] \n\t"
173                 "add %[e3], %[e3], #16 \n\t"
174                 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
175                 "tbl v18.16b, {v17.16b}, %[mcqe_shuf_m1].16b \n\t"
176                 "tbl v19.16b, {v17.16b}, %[mcqe_shuf_m2].16b \n\t"
177                 "sub v18.8h, v18.8h, %[crc_adj].8h \n\t"
178                 "sub v19.8h, v19.8h, %[crc_adj].8h \n\t"
179                 "orr v18.16b, v18.16b, %[rxdf].16b \n\t"
180                 "orr v19.16b, v19.16b, %[rxdf].16b \n\t"
181                 /* D.1 store rx_descriptor_fields1. */
182                 "st1 {v18.2d}, [%[e2]] \n\t"
183                 "st1 {v19.2d}, [%[e3]] \n\t"
184 #ifdef MLX5_PMD_SOFT_COUNTERS
185                 "tbl %[byte_cnt].8b, {v16.16b - v17.16b}, %[len_shuf_m].8b \n\t"
186 #endif
187                 :[byte_cnt]"=&w"(byte_cnt)
188                 :[mcq]"r"(p),
189                  [rxdf]"w"(rxdf),
190                  [rearm]"w"(rearm),
191                  [e3]"r"(e3), [e2]"r"(e2), [e1]"r"(e1), [e0]"r"(e0),
192                  [mcqe_shuf_m1]"w"(mcqe_shuf_m1),
193                  [mcqe_shuf_m2]"w"(mcqe_shuf_m2),
194                  [crc_adj]"w"(crc_adj),
195                  [len_shuf_m]"w"(len_shuf_m)
196                 :"memory", "v16", "v17", "v18", "v19");
197 #ifdef MLX5_PMD_SOFT_COUNTERS
198                 byte_cnt = vbic_u16(byte_cnt, invalid_mask);
199                 rcvd_byte += vget_lane_u64(vpaddl_u32(vpaddl_u16(byte_cnt)), 0);
200 #endif
201                 if (rxq->mark) {
202                         if (rxq->mcqe_format !=
203                             MLX5_CQE_RESP_FORMAT_FTAG_STRIDX) {
204                                 const uint32_t flow_tag = t_pkt->hash.fdir.hi;
205
206                                 /* E.1 store flow tag (rte_flow mark). */
207                                 elts[pos]->hash.fdir.hi = flow_tag;
208                                 elts[pos + 1]->hash.fdir.hi = flow_tag;
209                                 elts[pos + 2]->hash.fdir.hi = flow_tag;
210                                 elts[pos + 3]->hash.fdir.hi = flow_tag;
211                         }  else {
212                                 const uint32x4_t flow_mark_adj = {
213                                         -1, -1, -1, -1 };
214                                 const uint8x16_t flow_mark_shuf = {
215                                         28, 24, 25, -1,
216                                         20, 16, 17, -1,
217                                         12,  8,  9, -1,
218                                          4,  0,  1, -1};
219                                 /* Extract flow_tag field. */
220                                 const uint32x4_t ft_mask =
221                                         vdupq_n_u32(MLX5_FLOW_MARK_DEFAULT);
222                                 const uint32x4_t fdir_flags =
223                                         vdupq_n_u32(PKT_RX_FDIR);
224                                 const uint32x4_t fdir_all_flags =
225                                         vdupq_n_u32(PKT_RX_FDIR |
226                                                     PKT_RX_FDIR_ID);
227                                 uint32x4_t fdir_id_flags =
228                                         vdupq_n_u32(PKT_RX_FDIR_ID);
229                                 uint32x4_t invalid_mask, ftag;
230
231                                 __asm__ volatile
232                                 /* A.1 load mCQEs into a 128bit register. */
233                                 ("ld1 {v16.16b - v17.16b}, [%[mcq]]\n\t"
234                                 /* Extract flow_tag. */
235                                  "tbl %[ftag].16b, {v16.16b - v17.16b}, %[flow_mark_shuf].16b\n\t"
236                                 : [ftag]"=&w"(ftag)
237                                 : [mcq]"r"(p),
238                                   [flow_mark_shuf]"w"(flow_mark_shuf)
239                                 : "memory", "v16", "v17");
240                                 invalid_mask = vceqzq_u32(ftag);
241                                 ol_flags_mask = vorrq_u32(ol_flags_mask,
242                                                           fdir_all_flags);
243                                 /* Set PKT_RX_FDIR if flow tag is non-zero. */
244                                 ol_flags = vorrq_u32(ol_flags,
245                                         vbicq_u32(fdir_flags, invalid_mask));
246                                 /* Mask out invalid entries. */
247                                 fdir_id_flags = vbicq_u32(fdir_id_flags,
248                                                           invalid_mask);
249                                 /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
250                                 ol_flags = vorrq_u32(ol_flags,
251                                         vbicq_u32(fdir_id_flags,
252                                                   vceqq_u32(ftag, ft_mask)));
253                                 ftag = vaddq_u32(ftag, flow_mark_adj);
254                                 elts[pos]->hash.fdir.hi =
255                                         vgetq_lane_u32(ftag, 3);
256                                 elts[pos + 1]->hash.fdir.hi =
257                                         vgetq_lane_u32(ftag, 2);
258                                 elts[pos + 2]->hash.fdir.hi =
259                                         vgetq_lane_u32(ftag, 1);
260                                 elts[pos + 3]->hash.fdir.hi =
261                                         vgetq_lane_u32(ftag, 0);
262                                 }
263                 }
264                 if (unlikely(rxq->mcqe_format !=
265                              MLX5_CQE_RESP_FORMAT_HASH)) {
266                         if (rxq->mcqe_format ==
267                             MLX5_CQE_RESP_FORMAT_L34H_STRIDX) {
268                                 const uint8_t pkt_info =
269                                         (cq->pkt_info & 0x3) << 6;
270                                 const uint8_t pkt_hdr0 =
271                                         mcq[pos % 8].hdr_type;
272                                 const uint8_t pkt_hdr1 =
273                                         mcq[pos % 8 + 1].hdr_type;
274                                 const uint8_t pkt_hdr2 =
275                                         mcq[pos % 8 + 2].hdr_type;
276                                 const uint8_t pkt_hdr3 =
277                                         mcq[pos % 8 + 3].hdr_type;
278                                 const uint32x4_t vlan_mask =
279                                         vdupq_n_u32(PKT_RX_VLAN |
280                                                     PKT_RX_VLAN_STRIPPED);
281                                 const uint32x4_t cv_mask =
282                                         vdupq_n_u32(MLX5_CQE_VLAN_STRIPPED);
283                                 const uint32x4_t pkt_cv = {
284                                         pkt_hdr0 & 0x1, pkt_hdr1 & 0x1,
285                                         pkt_hdr2 & 0x1, pkt_hdr3 & 0x1};
286
287                                 ol_flags_mask = vorrq_u32(ol_flags_mask,
288                                                           vlan_mask);
289                                 ol_flags = vorrq_u32(ol_flags,
290                                                 vandq_u32(vlan_mask,
291                                                 vceqq_u32(pkt_cv, cv_mask)));
292                                 elts[pos]->packet_type =
293                                         mlx5_ptype_table[(pkt_hdr0 >> 2) |
294                                                          pkt_info];
295                                 elts[pos + 1]->packet_type =
296                                         mlx5_ptype_table[(pkt_hdr1 >> 2) |
297                                                          pkt_info];
298                                 elts[pos + 2]->packet_type =
299                                         mlx5_ptype_table[(pkt_hdr2 >> 2) |
300                                                          pkt_info];
301                                 elts[pos + 3]->packet_type =
302                                         mlx5_ptype_table[(pkt_hdr3 >> 2) |
303                                                          pkt_info];
304                                 if (rxq->tunnel) {
305                                         elts[pos]->packet_type |=
306                                                 !!(((pkt_hdr0 >> 2) |
307                                                 pkt_info) & (1 << 6));
308                                         elts[pos + 1]->packet_type |=
309                                                 !!(((pkt_hdr1 >> 2) |
310                                                 pkt_info) & (1 << 6));
311                                         elts[pos + 2]->packet_type |=
312                                                 !!(((pkt_hdr2 >> 2) |
313                                                 pkt_info) & (1 << 6));
314                                         elts[pos + 3]->packet_type |=
315                                                 !!(((pkt_hdr3 >> 2) |
316                                                 pkt_info) & (1 << 6));
317                                 }
318                         }
319                         const uint32x4_t hash_flags =
320                                 vdupq_n_u32(PKT_RX_RSS_HASH);
321                         const uint32x4_t rearm_flags =
322                                 vdupq_n_u32((uint32_t)t_pkt->ol_flags);
323
324                         ol_flags_mask = vorrq_u32(ol_flags_mask, hash_flags);
325                         ol_flags = vorrq_u32(ol_flags,
326                                         vbicq_u32(rearm_flags, ol_flags_mask));
327                         elts[pos]->ol_flags = vgetq_lane_u32(ol_flags, 3);
328                         elts[pos + 1]->ol_flags = vgetq_lane_u32(ol_flags, 2);
329                         elts[pos + 2]->ol_flags = vgetq_lane_u32(ol_flags, 1);
330                         elts[pos + 3]->ol_flags = vgetq_lane_u32(ol_flags, 0);
331                         elts[pos]->hash.rss = 0;
332                         elts[pos + 1]->hash.rss = 0;
333                         elts[pos + 2]->hash.rss = 0;
334                         elts[pos + 3]->hash.rss = 0;
335                 }
336                 if (rxq->dynf_meta) {
337                         int32_t offs = rxq->flow_meta_offset;
338                         const uint32_t meta =
339                                 *RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
340
341                         /* Check if title packet has valid metadata. */
342                         if (meta) {
343                                 MLX5_ASSERT(t_pkt->ol_flags &
344                                             rxq->flow_meta_mask);
345                                 *RTE_MBUF_DYNFIELD(elts[pos], offs,
346                                                         uint32_t *) = meta;
347                                 *RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
348                                                         uint32_t *) = meta;
349                                 *RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
350                                                         uint32_t *) = meta;
351                                 *RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
352                                                         uint32_t *) = meta;
353                         }
354                 }
355                 pos += MLX5_VPMD_DESCS_PER_LOOP;
356                 /* Move to next CQE and invalidate consumed CQEs. */
357                 if (!(pos & 0x7) && pos < mcqe_n) {
358                         if (pos + 8 < mcqe_n)
359                                 rte_prefetch0((void *)(cq + pos + 8));
360                         mcq = (void *)&(cq + pos)->pkt_info;
361                         for (i = 0; i < 8; ++i)
362                                 cq[inv++].op_own = MLX5_CQE_INVALIDATE;
363                 }
364         }
365         /* Invalidate the rest of CQEs. */
366         for (; inv < mcqe_n; ++inv)
367                 cq[inv].op_own = MLX5_CQE_INVALIDATE;
368 #ifdef MLX5_PMD_SOFT_COUNTERS
369         rxq->stats.ipackets += mcqe_n;
370         rxq->stats.ibytes += rcvd_byte;
371 #endif
372         rxq->cq_ci += mcqe_n;
373         return mcqe_n;
374 }
375
376 /**
377  * Calculate packet type and offload flag for mbuf and store it.
378  *
379  * @param rxq
380  *   Pointer to RX queue structure.
381  * @param ptype_info
382  *   Array of four 4bytes packet type info extracted from the original
383  *   completion descriptor.
384  * @param flow_tag
385  *   Array of four 4bytes flow ID extracted from the original completion
386  *   descriptor.
387  * @param op_err
388  *   Opcode vector having responder error status. Each field is 4B.
389  * @param pkts
390  *   Pointer to array of packets to be filled.
391  */
392 static inline void
393 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq,
394                          uint32x4_t ptype_info, uint32x4_t flow_tag,
395                          uint16x4_t op_err, struct rte_mbuf **pkts)
396 {
397         uint16x4_t ptype;
398         uint32x4_t pinfo, cv_flags;
399         uint32x4_t ol_flags =
400                 vdupq_n_u32(rxq->rss_hash * PKT_RX_RSS_HASH |
401                             rxq->hw_timestamp * rxq->timestamp_rx_flag);
402         const uint32x4_t ptype_ol_mask = { 0x106, 0x106, 0x106, 0x106 };
403         const uint8x16_t cv_flag_sel = {
404                 0,
405                 (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
406                 (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
407                 0,
408                 (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
409                 0,
410                 (uint8_t)((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1),
411                 0, 0, 0, 0, 0, 0, 0, 0, 0
412         };
413         const uint32x4_t cv_mask =
414                 vdupq_n_u32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
415                             PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
416         const uint64x2_t mbuf_init = vld1q_u64
417                                 ((const uint64_t *)&rxq->mbuf_initializer);
418         uint64x2_t rearm0, rearm1, rearm2, rearm3;
419         uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
420
421         if (rxq->mark) {
422                 const uint32x4_t ft_def = vdupq_n_u32(MLX5_FLOW_MARK_DEFAULT);
423                 const uint32x4_t fdir_flags = vdupq_n_u32(PKT_RX_FDIR);
424                 uint32x4_t fdir_id_flags = vdupq_n_u32(PKT_RX_FDIR_ID);
425                 uint32x4_t invalid_mask;
426
427                 /* Check if flow tag is non-zero then set PKT_RX_FDIR. */
428                 invalid_mask = vceqzq_u32(flow_tag);
429                 ol_flags = vorrq_u32(ol_flags,
430                                      vbicq_u32(fdir_flags, invalid_mask));
431                 /* Mask out invalid entries. */
432                 fdir_id_flags = vbicq_u32(fdir_id_flags, invalid_mask);
433                 /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
434                 ol_flags = vorrq_u32(ol_flags,
435                                      vbicq_u32(fdir_id_flags,
436                                                vceqq_u32(flow_tag, ft_def)));
437         }
438         /*
439          * ptype_info has the following:
440          * bit[1]     = l3_ok
441          * bit[2]     = l4_ok
442          * bit[8]     = cv
443          * bit[11:10] = l3_hdr_type
444          * bit[14:12] = l4_hdr_type
445          * bit[15]    = ip_frag
446          * bit[16]    = tunneled
447          * bit[17]    = outer_l3_type
448          */
449         ptype = vshrn_n_u32(ptype_info, 10);
450         /* Errored packets will have RTE_PTYPE_ALL_MASK. */
451         ptype = vorr_u16(ptype, op_err);
452         pt_idx0 = vget_lane_u8(vreinterpret_u8_u16(ptype), 6);
453         pt_idx1 = vget_lane_u8(vreinterpret_u8_u16(ptype), 4);
454         pt_idx2 = vget_lane_u8(vreinterpret_u8_u16(ptype), 2);
455         pt_idx3 = vget_lane_u8(vreinterpret_u8_u16(ptype), 0);
456         pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
457                                !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
458         pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
459                                !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
460         pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
461                                !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
462         pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
463                                !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
464         /* Fill flags for checksum and VLAN. */
465         pinfo = vandq_u32(ptype_info, ptype_ol_mask);
466         pinfo = vreinterpretq_u32_u8(
467                 vqtbl1q_u8(cv_flag_sel, vreinterpretq_u8_u32(pinfo)));
468         /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
469         cv_flags = vshlq_n_u32(pinfo, 9);
470         cv_flags = vorrq_u32(pinfo, cv_flags);
471         /* Move back flags to start from byte[0]. */
472         cv_flags = vshrq_n_u32(cv_flags, 8);
473         /* Mask out garbage bits. */
474         cv_flags = vandq_u32(cv_flags, cv_mask);
475         /* Merge to ol_flags. */
476         ol_flags = vorrq_u32(ol_flags, cv_flags);
477         /* Merge mbuf_init and ol_flags, and store. */
478         rearm0 = vreinterpretq_u64_u32(vsetq_lane_u32
479                                         (vgetq_lane_u32(ol_flags, 3),
480                                          vreinterpretq_u32_u64(mbuf_init), 2));
481         rearm1 = vreinterpretq_u64_u32(vsetq_lane_u32
482                                         (vgetq_lane_u32(ol_flags, 2),
483                                          vreinterpretq_u32_u64(mbuf_init), 2));
484         rearm2 = vreinterpretq_u64_u32(vsetq_lane_u32
485                                         (vgetq_lane_u32(ol_flags, 1),
486                                          vreinterpretq_u32_u64(mbuf_init), 2));
487         rearm3 = vreinterpretq_u64_u32(vsetq_lane_u32
488                                         (vgetq_lane_u32(ol_flags, 0),
489                                          vreinterpretq_u32_u64(mbuf_init), 2));
490
491         vst1q_u64((void *)&pkts[0]->rearm_data, rearm0);
492         vst1q_u64((void *)&pkts[1]->rearm_data, rearm1);
493         vst1q_u64((void *)&pkts[2]->rearm_data, rearm2);
494         vst1q_u64((void *)&pkts[3]->rearm_data, rearm3);
495 }
496
497 /**
498  * Process a non-compressed completion and fill in mbufs in RX SW ring
499  * with data extracted from the title completion descriptor.
500  *
501  * @param rxq
502  *   Pointer to RX queue structure.
503  * @param cq
504  *   Pointer to completion array having a non-compressed completion at first.
505  * @param elts
506  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
507  *   the title completion descriptor to be copied to the rest of mbufs.
508  * @param[out] pkts
509  *   Array to store received packets.
510  * @param pkts_n
511  *   Maximum number of packets in array.
512  * @param[out] err
513  *   Pointer to a flag. Set non-zero value if pkts array has at least one error
514  *   packet to handle.
515  * @param[out] comp
516  *   Pointer to a index. Set it to the first compressed completion if any.
517  *
518  * @return
519  *   Number of CQEs successfully processed.
520  */
521 static inline uint16_t
522 rxq_cq_process_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
523                  struct rte_mbuf **elts, struct rte_mbuf **pkts,
524                  uint16_t pkts_n, uint64_t *err, uint64_t *comp)
525 {
526         const uint16_t q_n = 1 << rxq->cqe_n;
527         const uint16_t q_mask = q_n - 1;
528         unsigned int pos;
529         uint64_t n = 0;
530         uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
531         uint16_t nocmp_n = 0;
532         const uint16x4_t ownership = vdup_n_u16(!(rxq->cq_ci & (q_mask + 1)));
533         const uint16x4_t owner_check = vcreate_u16(0x0001000100010001);
534         const uint16x4_t opcode_check = vcreate_u16(0x00f000f000f000f0);
535         const uint16x4_t format_check = vcreate_u16(0x000c000c000c000c);
536         const uint16x4_t resp_err_check = vcreate_u16(0x00e000e000e000e0);
537 #ifdef MLX5_PMD_SOFT_COUNTERS
538         uint32_t rcvd_byte = 0;
539 #endif
540         /* Mask to generate 16B length vector. */
541         const uint8x8_t len_shuf_m = {
542                 52, 53,         /* 4th CQE */
543                 36, 37,         /* 3rd CQE */
544                 20, 21,         /* 2nd CQE */
545                  4,  5          /* 1st CQE */
546         };
547         /* Mask to extract 16B data from a 64B CQE. */
548         const uint8x16_t cqe_shuf_m = {
549                 28, 29,         /* hdr_type_etc */
550                  0,             /* pkt_info */
551                 -1,             /* null */
552                 47, 46,         /* byte_cnt, bswap16 */
553                 31, 30,         /* vlan_info, bswap16 */
554                 15, 14, 13, 12, /* rx_hash_res, bswap32 */
555                 57, 58, 59,     /* flow_tag */
556                 63              /* op_own */
557         };
558         /* Mask to generate 16B data for mbuf. */
559         const uint8x16_t mb_shuf_m = {
560                  4,  5, -1, -1, /* pkt_len */
561                  4,  5,         /* data_len */
562                  6,  7,         /* vlan_tci */
563                  8,  9, 10, 11, /* hash.rss */
564                 12, 13, 14, -1  /* hash.fdir.hi */
565         };
566         /* Mask to generate 16B owner vector. */
567         const uint8x8_t owner_shuf_m = {
568                 63, -1,         /* 4th CQE */
569                 47, -1,         /* 3rd CQE */
570                 31, -1,         /* 2nd CQE */
571                 15, -1          /* 1st CQE */
572         };
573         /* Mask to generate a vector having packet_type/ol_flags. */
574         const uint8x16_t ptype_shuf_m = {
575                 48, 49, 50, -1, /* 4th CQE */
576                 32, 33, 34, -1, /* 3rd CQE */
577                 16, 17, 18, -1, /* 2nd CQE */
578                  0,  1,  2, -1  /* 1st CQE */
579         };
580         /* Mask to generate a vector having flow tags. */
581         const uint8x16_t ftag_shuf_m = {
582                 60, 61, 62, -1, /* 4th CQE */
583                 44, 45, 46, -1, /* 3rd CQE */
584                 28, 29, 30, -1, /* 2nd CQE */
585                 12, 13, 14, -1  /* 1st CQE */
586         };
587         const uint16x8_t crc_adj = {
588                 0, 0, rxq->crc_present * RTE_ETHER_CRC_LEN, 0, 0, 0, 0, 0
589         };
590         const uint32x4_t flow_mark_adj = { 0, 0, 0, rxq->mark * (-1) };
591
592         /*
593          * Note that vectors have reverse order - {v3, v2, v1, v0}, because
594          * there's no instruction to count trailing zeros. __builtin_clzl() is
595          * used instead.
596          *
597          * A. copy 4 mbuf pointers from elts ring to returing pkts.
598          * B. load 64B CQE and extract necessary fields
599          *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
600          *    following structure:
601          *        struct {
602          *          uint16_t hdr_type_etc;
603          *          uint8_t  pkt_info;
604          *          uint8_t  rsvd;
605          *          uint16_t byte_cnt;
606          *          uint16_t vlan_info;
607          *          uint32_t rx_has_res;
608          *          uint8_t  flow_tag[3];
609          *          uint8_t  op_own;
610          *        } c;
611          * C. fill in mbuf.
612          * D. get valid CQEs.
613          * E. find compressed CQE.
614          */
615         for (pos = 0;
616              pos < pkts_n;
617              pos += MLX5_VPMD_DESCS_PER_LOOP) {
618                 uint16x4_t op_own;
619                 uint16x4_t opcode, owner_mask, invalid_mask;
620                 uint16x4_t comp_mask;
621                 uint16x4_t mask;
622                 uint16x4_t byte_cnt;
623                 uint32x4_t ptype_info, flow_tag;
624                 register uint64x2_t c0, c1, c2, c3;
625                 uint8_t *p0, *p1, *p2, *p3;
626                 uint8_t *e0 = (void *)&elts[pos]->pkt_len;
627                 uint8_t *e1 = (void *)&elts[pos + 1]->pkt_len;
628                 uint8_t *e2 = (void *)&elts[pos + 2]->pkt_len;
629                 uint8_t *e3 = (void *)&elts[pos + 3]->pkt_len;
630                 void *elts_p = (void *)&elts[pos];
631                 void *pkts_p = (void *)&pkts[pos];
632
633                 /* A.0 do not cross the end of CQ. */
634                 mask = vcreate_u16(pkts_n - pos < MLX5_VPMD_DESCS_PER_LOOP ?
635                                    -1UL >> ((pkts_n - pos) *
636                                             sizeof(uint16_t) * 8) : 0);
637                 p0 = (void *)&cq[pos].pkt_info;
638                 p1 = p0 + (pkts_n - pos > 1) * sizeof(struct mlx5_cqe);
639                 p2 = p1 + (pkts_n - pos > 2) * sizeof(struct mlx5_cqe);
640                 p3 = p2 + (pkts_n - pos > 3) * sizeof(struct mlx5_cqe);
641                 /* B.0 (CQE 3) load a block having op_own. */
642                 c3 = vld1q_u64((uint64_t *)(p3 + 48));
643                 /* B.0 (CQE 2) load a block having op_own. */
644                 c2 = vld1q_u64((uint64_t *)(p2 + 48));
645                 /* B.0 (CQE 1) load a block having op_own. */
646                 c1 = vld1q_u64((uint64_t *)(p1 + 48));
647                 /* B.0 (CQE 0) load a block having op_own. */
648                 c0 = vld1q_u64((uint64_t *)(p0 + 48));
649                 /* Synchronize for loading the rest of blocks. */
650                 rte_io_rmb();
651                 /* Prefetch next 4 CQEs. */
652                 if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
653                         unsigned int next = pos + MLX5_VPMD_DESCS_PER_LOOP;
654                         rte_prefetch_non_temporal(&cq[next]);
655                         rte_prefetch_non_temporal(&cq[next + 1]);
656                         rte_prefetch_non_temporal(&cq[next + 2]);
657                         rte_prefetch_non_temporal(&cq[next + 3]);
658                 }
659                 __asm__ volatile (
660                 /* B.1 (CQE 3) load the rest of blocks. */
661                 "ld1 {v16.16b - v18.16b}, [%[p3]] \n\t"
662                 /* B.2 (CQE 3) move the block having op_own. */
663                 "mov v19.16b, %[c3].16b \n\t"
664                 /* B.3 (CQE 3) extract 16B fields. */
665                 "tbl v23.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
666                 /* B.1 (CQE 2) load the rest of blocks. */
667                 "ld1 {v16.16b - v18.16b}, [%[p2]] \n\t"
668                 /* B.4 (CQE 3) adjust CRC length. */
669                 "sub v23.8h, v23.8h, %[crc_adj].8h \n\t"
670                 /* C.1 (CQE 3) generate final structure for mbuf. */
671                 "tbl v15.16b, {v23.16b}, %[mb_shuf_m].16b \n\t"
672                 /* B.2 (CQE 2) move the block having op_own. */
673                 "mov v19.16b, %[c2].16b \n\t"
674                 /* B.3 (CQE 2) extract 16B fields. */
675                 "tbl v22.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
676                 /* B.1 (CQE 1) load the rest of blocks. */
677                 "ld1 {v16.16b - v18.16b}, [%[p1]] \n\t"
678                 /* B.4 (CQE 2) adjust CRC length. */
679                 "sub v22.8h, v22.8h, %[crc_adj].8h \n\t"
680                 /* C.1 (CQE 2) generate final structure for mbuf. */
681                 "tbl v14.16b, {v22.16b}, %[mb_shuf_m].16b \n\t"
682                 /* B.2 (CQE 1) move the block having op_own. */
683                 "mov v19.16b, %[c1].16b \n\t"
684                 /* B.3 (CQE 1) extract 16B fields. */
685                 "tbl v21.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
686                 /* B.1 (CQE 0) load the rest of blocks. */
687                 "ld1 {v16.16b - v18.16b}, [%[p0]] \n\t"
688                 /* B.4 (CQE 1) adjust CRC length. */
689                 "sub v21.8h, v21.8h, %[crc_adj].8h \n\t"
690                 /* C.1 (CQE 1) generate final structure for mbuf. */
691                 "tbl v13.16b, {v21.16b}, %[mb_shuf_m].16b \n\t"
692                 /* B.2 (CQE 0) move the block having op_own. */
693                 "mov v19.16b, %[c0].16b \n\t"
694                 /* A.1 load mbuf pointers. */
695                 "ld1 {v24.2d - v25.2d}, [%[elts_p]] \n\t"
696                 /* B.3 (CQE 0) extract 16B fields. */
697                 "tbl v20.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
698                 /* B.4 (CQE 0) adjust CRC length. */
699                 "sub v20.8h, v20.8h, %[crc_adj].8h \n\t"
700                 /* D.1 extract op_own byte. */
701                 "tbl %[op_own].8b, {v20.16b - v23.16b}, %[owner_shuf_m].8b \n\t"
702                 /* C.2 (CQE 3) adjust flow mark. */
703                 "add v15.4s, v15.4s, %[flow_mark_adj].4s \n\t"
704                 /* C.3 (CQE 3) fill in mbuf - rx_descriptor_fields1. */
705                 "st1 {v15.2d}, [%[e3]] \n\t"
706                 /* C.2 (CQE 2) adjust flow mark. */
707                 "add v14.4s, v14.4s, %[flow_mark_adj].4s \n\t"
708                 /* C.3 (CQE 2) fill in mbuf - rx_descriptor_fields1. */
709                 "st1 {v14.2d}, [%[e2]] \n\t"
710                 /* C.1 (CQE 0) generate final structure for mbuf. */
711                 "tbl v12.16b, {v20.16b}, %[mb_shuf_m].16b \n\t"
712                 /* C.2 (CQE 1) adjust flow mark. */
713                 "add v13.4s, v13.4s, %[flow_mark_adj].4s \n\t"
714                 /* C.3 (CQE 1) fill in mbuf - rx_descriptor_fields1. */
715                 "st1 {v13.2d}, [%[e1]] \n\t"
716 #ifdef MLX5_PMD_SOFT_COUNTERS
717                 /* Extract byte_cnt. */
718                 "tbl %[byte_cnt].8b, {v20.16b - v23.16b}, %[len_shuf_m].8b \n\t"
719 #endif
720                 /* Extract ptype_info. */
721                 "tbl %[ptype_info].16b, {v20.16b - v23.16b}, %[ptype_shuf_m].16b \n\t"
722                 /* Extract flow_tag. */
723                 "tbl %[flow_tag].16b, {v20.16b - v23.16b}, %[ftag_shuf_m].16b \n\t"
724                 /* A.2 copy mbuf pointers. */
725                 "st1 {v24.2d - v25.2d}, [%[pkts_p]] \n\t"
726                 /* C.2 (CQE 0) adjust flow mark. */
727                 "add v12.4s, v12.4s, %[flow_mark_adj].4s \n\t"
728                 /* C.3 (CQE 1) fill in mbuf - rx_descriptor_fields1. */
729                 "st1 {v12.2d}, [%[e0]] \n\t"
730                 :[op_own]"=&w"(op_own),
731                  [byte_cnt]"=&w"(byte_cnt),
732                  [ptype_info]"=&w"(ptype_info),
733                  [flow_tag]"=&w"(flow_tag)
734                 :[p3]"r"(p3), [p2]"r"(p2), [p1]"r"(p1), [p0]"r"(p0),
735                  [e3]"r"(e3), [e2]"r"(e2), [e1]"r"(e1), [e0]"r"(e0),
736                  [c3]"w"(c3), [c2]"w"(c2), [c1]"w"(c1), [c0]"w"(c0),
737                  [elts_p]"r"(elts_p),
738                  [pkts_p]"r"(pkts_p),
739                  [cqe_shuf_m]"w"(cqe_shuf_m),
740                  [mb_shuf_m]"w"(mb_shuf_m),
741                  [owner_shuf_m]"w"(owner_shuf_m),
742                  [len_shuf_m]"w"(len_shuf_m),
743                  [ptype_shuf_m]"w"(ptype_shuf_m),
744                  [ftag_shuf_m]"w"(ftag_shuf_m),
745                  [crc_adj]"w"(crc_adj),
746                  [flow_mark_adj]"w"(flow_mark_adj)
747                 :"memory",
748                  "v12", "v13", "v14", "v15",
749                  "v16", "v17", "v18", "v19",
750                  "v20", "v21", "v22", "v23",
751                  "v24", "v25");
752                 /* D.2 flip owner bit to mark CQEs from last round. */
753                 owner_mask = vand_u16(op_own, owner_check);
754                 owner_mask = vceq_u16(owner_mask, ownership);
755                 /* D.3 get mask for invalidated CQEs. */
756                 opcode = vand_u16(op_own, opcode_check);
757                 invalid_mask = vceq_u16(opcode_check, opcode);
758                 /* E.1 find compressed CQE format. */
759                 comp_mask = vand_u16(op_own, format_check);
760                 comp_mask = vceq_u16(comp_mask, format_check);
761                 /* D.4 mask out beyond boundary. */
762                 invalid_mask = vorr_u16(invalid_mask, mask);
763                 /* D.5 merge invalid_mask with invalid owner. */
764                 invalid_mask = vorr_u16(invalid_mask, owner_mask);
765                 /* E.2 mask out invalid entries. */
766                 comp_mask = vbic_u16(comp_mask, invalid_mask);
767                 /* E.3 get the first compressed CQE. */
768                 comp_idx = __builtin_clzl(vget_lane_u64(vreinterpret_u64_u16(
769                                           comp_mask), 0)) /
770                                           (sizeof(uint16_t) * 8);
771                 /* D.6 mask out entries after the compressed CQE. */
772                 mask = vcreate_u16(comp_idx < MLX5_VPMD_DESCS_PER_LOOP ?
773                                    -1UL >> (comp_idx * sizeof(uint16_t) * 8) :
774                                    0);
775                 invalid_mask = vorr_u16(invalid_mask, mask);
776                 /* D.7 count non-compressed valid CQEs. */
777                 n = __builtin_clzl(vget_lane_u64(vreinterpret_u64_u16(
778                                    invalid_mask), 0)) / (sizeof(uint16_t) * 8);
779                 nocmp_n += n;
780                 /* D.2 get the final invalid mask. */
781                 mask = vcreate_u16(n < MLX5_VPMD_DESCS_PER_LOOP ?
782                                    -1UL >> (n * sizeof(uint16_t) * 8) : 0);
783                 invalid_mask = vorr_u16(invalid_mask, mask);
784                 /* D.3 check error in opcode. */
785                 opcode = vceq_u16(resp_err_check, opcode);
786                 opcode = vbic_u16(opcode, invalid_mask);
787                 /* D.4 mark if any error is set */
788                 *err |= vget_lane_u64(vreinterpret_u64_u16(opcode), 0);
789                 /* C.4 fill in mbuf - rearm_data and packet_type. */
790                 rxq_cq_to_ptype_oflags_v(rxq, ptype_info, flow_tag,
791                                          opcode, &elts[pos]);
792                 if (rxq->hw_timestamp) {
793                         int offset = rxq->timestamp_offset;
794                         if (rxq->rt_timestamp) {
795                                 struct mlx5_dev_ctx_shared *sh = rxq->sh;
796                                 uint64_t ts;
797
798                                 ts = rte_be_to_cpu_64
799                                         (container_of(p0, struct mlx5_cqe,
800                                                       pkt_info)->timestamp);
801                                 mlx5_timestamp_set(elts[pos], offset,
802                                         mlx5_txpp_convert_rx_ts(sh, ts));
803                                 ts = rte_be_to_cpu_64
804                                         (container_of(p1, struct mlx5_cqe,
805                                                       pkt_info)->timestamp);
806                                 mlx5_timestamp_set(elts[pos + 1], offset,
807                                         mlx5_txpp_convert_rx_ts(sh, ts));
808                                 ts = rte_be_to_cpu_64
809                                         (container_of(p2, struct mlx5_cqe,
810                                                       pkt_info)->timestamp);
811                                 mlx5_timestamp_set(elts[pos + 2], offset,
812                                         mlx5_txpp_convert_rx_ts(sh, ts));
813                                 ts = rte_be_to_cpu_64
814                                         (container_of(p3, struct mlx5_cqe,
815                                                       pkt_info)->timestamp);
816                                 mlx5_timestamp_set(elts[pos + 3], offset,
817                                         mlx5_txpp_convert_rx_ts(sh, ts));
818                         } else {
819                                 mlx5_timestamp_set(elts[pos], offset,
820                                         rte_be_to_cpu_64(container_of(p0,
821                                         struct mlx5_cqe, pkt_info)->timestamp));
822                                 mlx5_timestamp_set(elts[pos + 1], offset,
823                                         rte_be_to_cpu_64(container_of(p1,
824                                         struct mlx5_cqe, pkt_info)->timestamp));
825                                 mlx5_timestamp_set(elts[pos + 2], offset,
826                                         rte_be_to_cpu_64(container_of(p2,
827                                         struct mlx5_cqe, pkt_info)->timestamp));
828                                 mlx5_timestamp_set(elts[pos + 3], offset,
829                                         rte_be_to_cpu_64(container_of(p3,
830                                         struct mlx5_cqe, pkt_info)->timestamp));
831                         }
832                 }
833                 if (rxq->dynf_meta) {
834                         /* This code is subject for futher optimization. */
835                         int32_t offs = rxq->flow_meta_offset;
836
837                         *RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
838                                 container_of(p0, struct mlx5_cqe,
839                                              pkt_info)->flow_table_metadata;
840                         *RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
841                                 container_of(p1, struct mlx5_cqe,
842                                              pkt_info)->flow_table_metadata;
843                         *RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
844                                 container_of(p2, struct mlx5_cqe,
845                                              pkt_info)->flow_table_metadata;
846                         *RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
847                                 container_of(p3, struct mlx5_cqe,
848                                              pkt_info)->flow_table_metadata;
849                         if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
850                                 elts[pos]->ol_flags |= rxq->flow_meta_mask;
851                         if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
852                                 elts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
853                         if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
854                                 elts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
855                         if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
856                                 elts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
857                 }
858 #ifdef MLX5_PMD_SOFT_COUNTERS
859                 /* Add up received bytes count. */
860                 byte_cnt = vbic_u16(byte_cnt, invalid_mask);
861                 rcvd_byte += vget_lane_u64(vpaddl_u32(vpaddl_u16(byte_cnt)), 0);
862 #endif
863                 /*
864                  * Break the loop unless more valid CQE is expected, or if
865                  * there's a compressed CQE.
866                  */
867                 if (n != MLX5_VPMD_DESCS_PER_LOOP)
868                         break;
869         }
870 #ifdef MLX5_PMD_SOFT_COUNTERS
871         rxq->stats.ipackets += nocmp_n;
872         rxq->stats.ibytes += rcvd_byte;
873 #endif
874         if (comp_idx == n)
875                 *comp = comp_idx;
876         return nocmp_n;
877 }
878
879 #endif /* RTE_PMD_MLX5_RXTX_VEC_NEON_H_ */