7941248c0137abc7d1eae42cdd75fcbb1522c3c2
[dpdk.git] / drivers / net / nfp / nfp_net.c
1 /*
2  * Copyright (c) 2014-2018 Netronome Systems, Inc.
3  * All rights reserved.
4  *
5  * Small portions derived from code Copyright(c) 2010-2015 Intel Corporation.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright notice,
11  *  this list of conditions and the following disclaimer.
12  *
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *  notice, this list of conditions and the following disclaimer in the
15  *  documentation and/or other materials provided with the distribution
16  *
17  * 3. Neither the name of the copyright holder nor the names of its
18  *  contributors may be used to endorse or promote products derived from this
19  *  software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /*
35  * vim:shiftwidth=8:noexpandtab
36  *
37  * @file dpdk/pmd/nfp_net.c
38  *
39  * Netronome vNIC DPDK Poll-Mode Driver: Main entry point
40  */
41
42 #include <rte_byteorder.h>
43 #include <rte_common.h>
44 #include <rte_log.h>
45 #include <rte_debug.h>
46 #include <rte_ethdev_driver.h>
47 #include <rte_ethdev_pci.h>
48 #include <rte_dev.h>
49 #include <rte_ether.h>
50 #include <rte_malloc.h>
51 #include <rte_memzone.h>
52 #include <rte_mempool.h>
53 #include <rte_version.h>
54 #include <rte_string_fns.h>
55 #include <rte_alarm.h>
56 #include <rte_spinlock.h>
57 #include <rte_service_component.h>
58
59 #include "nfpcore/nfp_cpp.h"
60 #include "nfpcore/nfp_nffw.h"
61 #include "nfpcore/nfp_hwinfo.h"
62 #include "nfpcore/nfp_mip.h"
63 #include "nfpcore/nfp_rtsym.h"
64 #include "nfpcore/nfp_nsp.h"
65
66 #include "nfp_net_pmd.h"
67 #include "nfp_net_logs.h"
68 #include "nfp_net_ctrl.h"
69
70 #include <sys/types.h>
71 #include <sys/socket.h>
72 #include <sys/un.h>
73 #include <unistd.h>
74 #include <stdio.h>
75 #include <sys/ioctl.h>
76 #include <errno.h>
77
78 /* Prototypes */
79 static void nfp_net_close(struct rte_eth_dev *dev);
80 static int nfp_net_configure(struct rte_eth_dev *dev);
81 static void nfp_net_dev_interrupt_handler(void *param);
82 static void nfp_net_dev_interrupt_delayed_handler(void *param);
83 static int nfp_net_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
84 static int nfp_net_infos_get(struct rte_eth_dev *dev,
85                              struct rte_eth_dev_info *dev_info);
86 static int nfp_net_init(struct rte_eth_dev *eth_dev);
87 static int nfp_net_link_update(struct rte_eth_dev *dev, int wait_to_complete);
88 static int nfp_net_promisc_enable(struct rte_eth_dev *dev);
89 static int nfp_net_promisc_disable(struct rte_eth_dev *dev);
90 static int nfp_net_rx_fill_freelist(struct nfp_net_rxq *rxq);
91 static uint32_t nfp_net_rx_queue_count(struct rte_eth_dev *dev,
92                                        uint16_t queue_idx);
93 static uint16_t nfp_net_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
94                                   uint16_t nb_pkts);
95 static void nfp_net_rx_queue_release(void *rxq);
96 static int nfp_net_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
97                                   uint16_t nb_desc, unsigned int socket_id,
98                                   const struct rte_eth_rxconf *rx_conf,
99                                   struct rte_mempool *mp);
100 static int nfp_net_tx_free_bufs(struct nfp_net_txq *txq);
101 static void nfp_net_tx_queue_release(void *txq);
102 static int nfp_net_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
103                                   uint16_t nb_desc, unsigned int socket_id,
104                                   const struct rte_eth_txconf *tx_conf);
105 static int nfp_net_start(struct rte_eth_dev *dev);
106 static int nfp_net_stats_get(struct rte_eth_dev *dev,
107                               struct rte_eth_stats *stats);
108 static int nfp_net_stats_reset(struct rte_eth_dev *dev);
109 static void nfp_net_stop(struct rte_eth_dev *dev);
110 static uint16_t nfp_net_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
111                                   uint16_t nb_pkts);
112
113 static int nfp_net_rss_config_default(struct rte_eth_dev *dev);
114 static int nfp_net_rss_hash_update(struct rte_eth_dev *dev,
115                                    struct rte_eth_rss_conf *rss_conf);
116 static int nfp_net_rss_reta_write(struct rte_eth_dev *dev,
117                     struct rte_eth_rss_reta_entry64 *reta_conf,
118                     uint16_t reta_size);
119 static int nfp_net_rss_hash_write(struct rte_eth_dev *dev,
120                         struct rte_eth_rss_conf *rss_conf);
121 static int nfp_set_mac_addr(struct rte_eth_dev *dev,
122                              struct rte_ether_addr *mac_addr);
123
124 /* The offset of the queue controller queues in the PCIe Target */
125 #define NFP_PCIE_QUEUE(_q) (0x80000 + (NFP_QCP_QUEUE_ADDR_SZ * ((_q) & 0xff)))
126
127 /* Maximum value which can be added to a queue with one transaction */
128 #define NFP_QCP_MAX_ADD 0x7f
129
130 #define RTE_MBUF_DMA_ADDR_DEFAULT(mb) \
131         (uint64_t)((mb)->buf_iova + RTE_PKTMBUF_HEADROOM)
132
133 /* nfp_qcp_ptr - Read or Write Pointer of a queue */
134 enum nfp_qcp_ptr {
135         NFP_QCP_READ_PTR = 0,
136         NFP_QCP_WRITE_PTR
137 };
138
139 /*
140  * nfp_qcp_ptr_add - Add the value to the selected pointer of a queue
141  * @q: Base address for queue structure
142  * @ptr: Add to the Read or Write pointer
143  * @val: Value to add to the queue pointer
144  *
145  * If @val is greater than @NFP_QCP_MAX_ADD multiple writes are performed.
146  */
147 static inline void
148 nfp_qcp_ptr_add(uint8_t *q, enum nfp_qcp_ptr ptr, uint32_t val)
149 {
150         uint32_t off;
151
152         if (ptr == NFP_QCP_READ_PTR)
153                 off = NFP_QCP_QUEUE_ADD_RPTR;
154         else
155                 off = NFP_QCP_QUEUE_ADD_WPTR;
156
157         while (val > NFP_QCP_MAX_ADD) {
158                 nn_writel(rte_cpu_to_le_32(NFP_QCP_MAX_ADD), q + off);
159                 val -= NFP_QCP_MAX_ADD;
160         }
161
162         nn_writel(rte_cpu_to_le_32(val), q + off);
163 }
164
165 /*
166  * nfp_qcp_read - Read the current Read/Write pointer value for a queue
167  * @q:  Base address for queue structure
168  * @ptr: Read or Write pointer
169  */
170 static inline uint32_t
171 nfp_qcp_read(uint8_t *q, enum nfp_qcp_ptr ptr)
172 {
173         uint32_t off;
174         uint32_t val;
175
176         if (ptr == NFP_QCP_READ_PTR)
177                 off = NFP_QCP_QUEUE_STS_LO;
178         else
179                 off = NFP_QCP_QUEUE_STS_HI;
180
181         val = rte_cpu_to_le_32(nn_readl(q + off));
182
183         if (ptr == NFP_QCP_READ_PTR)
184                 return val & NFP_QCP_QUEUE_STS_LO_READPTR_mask;
185         else
186                 return val & NFP_QCP_QUEUE_STS_HI_WRITEPTR_mask;
187 }
188
189 /*
190  * Functions to read/write from/to Config BAR
191  * Performs any endian conversion necessary.
192  */
193 static inline uint8_t
194 nn_cfg_readb(struct nfp_net_hw *hw, int off)
195 {
196         return nn_readb(hw->ctrl_bar + off);
197 }
198
199 static inline void
200 nn_cfg_writeb(struct nfp_net_hw *hw, int off, uint8_t val)
201 {
202         nn_writeb(val, hw->ctrl_bar + off);
203 }
204
205 static inline uint32_t
206 nn_cfg_readl(struct nfp_net_hw *hw, int off)
207 {
208         return rte_le_to_cpu_32(nn_readl(hw->ctrl_bar + off));
209 }
210
211 static inline void
212 nn_cfg_writel(struct nfp_net_hw *hw, int off, uint32_t val)
213 {
214         nn_writel(rte_cpu_to_le_32(val), hw->ctrl_bar + off);
215 }
216
217 static inline uint64_t
218 nn_cfg_readq(struct nfp_net_hw *hw, int off)
219 {
220         return rte_le_to_cpu_64(nn_readq(hw->ctrl_bar + off));
221 }
222
223 static inline void
224 nn_cfg_writeq(struct nfp_net_hw *hw, int off, uint64_t val)
225 {
226         nn_writeq(rte_cpu_to_le_64(val), hw->ctrl_bar + off);
227 }
228
229 static void
230 nfp_net_rx_queue_release_mbufs(struct nfp_net_rxq *rxq)
231 {
232         unsigned i;
233
234         if (rxq->rxbufs == NULL)
235                 return;
236
237         for (i = 0; i < rxq->rx_count; i++) {
238                 if (rxq->rxbufs[i].mbuf) {
239                         rte_pktmbuf_free_seg(rxq->rxbufs[i].mbuf);
240                         rxq->rxbufs[i].mbuf = NULL;
241                 }
242         }
243 }
244
245 static void
246 nfp_net_rx_queue_release(void *rx_queue)
247 {
248         struct nfp_net_rxq *rxq = rx_queue;
249
250         if (rxq) {
251                 nfp_net_rx_queue_release_mbufs(rxq);
252                 rte_free(rxq->rxbufs);
253                 rte_free(rxq);
254         }
255 }
256
257 static void
258 nfp_net_reset_rx_queue(struct nfp_net_rxq *rxq)
259 {
260         nfp_net_rx_queue_release_mbufs(rxq);
261         rxq->rd_p = 0;
262         rxq->nb_rx_hold = 0;
263 }
264
265 static void
266 nfp_net_tx_queue_release_mbufs(struct nfp_net_txq *txq)
267 {
268         unsigned i;
269
270         if (txq->txbufs == NULL)
271                 return;
272
273         for (i = 0; i < txq->tx_count; i++) {
274                 if (txq->txbufs[i].mbuf) {
275                         rte_pktmbuf_free_seg(txq->txbufs[i].mbuf);
276                         txq->txbufs[i].mbuf = NULL;
277                 }
278         }
279 }
280
281 static void
282 nfp_net_tx_queue_release(void *tx_queue)
283 {
284         struct nfp_net_txq *txq = tx_queue;
285
286         if (txq) {
287                 nfp_net_tx_queue_release_mbufs(txq);
288                 rte_free(txq->txbufs);
289                 rte_free(txq);
290         }
291 }
292
293 static void
294 nfp_net_reset_tx_queue(struct nfp_net_txq *txq)
295 {
296         nfp_net_tx_queue_release_mbufs(txq);
297         txq->wr_p = 0;
298         txq->rd_p = 0;
299 }
300
301 static int
302 __nfp_net_reconfig(struct nfp_net_hw *hw, uint32_t update)
303 {
304         int cnt;
305         uint32_t new;
306         struct timespec wait;
307
308         PMD_DRV_LOG(DEBUG, "Writing to the configuration queue (%p)...",
309                     hw->qcp_cfg);
310
311         if (hw->qcp_cfg == NULL)
312                 rte_panic("Bad configuration queue pointer\n");
313
314         nfp_qcp_ptr_add(hw->qcp_cfg, NFP_QCP_WRITE_PTR, 1);
315
316         wait.tv_sec = 0;
317         wait.tv_nsec = 1000000;
318
319         PMD_DRV_LOG(DEBUG, "Polling for update ack...");
320
321         /* Poll update field, waiting for NFP to ack the config */
322         for (cnt = 0; ; cnt++) {
323                 new = nn_cfg_readl(hw, NFP_NET_CFG_UPDATE);
324                 if (new == 0)
325                         break;
326                 if (new & NFP_NET_CFG_UPDATE_ERR) {
327                         PMD_INIT_LOG(ERR, "Reconfig error: 0x%08x", new);
328                         return -1;
329                 }
330                 if (cnt >= NFP_NET_POLL_TIMEOUT) {
331                         PMD_INIT_LOG(ERR, "Reconfig timeout for 0x%08x after"
332                                           " %dms", update, cnt);
333                         rte_panic("Exiting\n");
334                 }
335                 nanosleep(&wait, 0); /* waiting for a 1ms */
336         }
337         PMD_DRV_LOG(DEBUG, "Ack DONE");
338         return 0;
339 }
340
341 /*
342  * Reconfigure the NIC
343  * @nn:    device to reconfigure
344  * @ctrl:    The value for the ctrl field in the BAR config
345  * @update:  The value for the update field in the BAR config
346  *
347  * Write the update word to the BAR and ping the reconfig queue. Then poll
348  * until the firmware has acknowledged the update by zeroing the update word.
349  */
350 static int
351 nfp_net_reconfig(struct nfp_net_hw *hw, uint32_t ctrl, uint32_t update)
352 {
353         uint32_t err;
354
355         PMD_DRV_LOG(DEBUG, "nfp_net_reconfig: ctrl=%08x update=%08x",
356                     ctrl, update);
357
358         rte_spinlock_lock(&hw->reconfig_lock);
359
360         nn_cfg_writel(hw, NFP_NET_CFG_CTRL, ctrl);
361         nn_cfg_writel(hw, NFP_NET_CFG_UPDATE, update);
362
363         rte_wmb();
364
365         err = __nfp_net_reconfig(hw, update);
366
367         rte_spinlock_unlock(&hw->reconfig_lock);
368
369         if (!err)
370                 return 0;
371
372         /*
373          * Reconfig errors imply situations where they can be handled.
374          * Otherwise, rte_panic is called inside __nfp_net_reconfig
375          */
376         PMD_INIT_LOG(ERR, "Error nfp_net reconfig for ctrl: %x update: %x",
377                      ctrl, update);
378         return -EIO;
379 }
380
381 /*
382  * Configure an Ethernet device. This function must be invoked first
383  * before any other function in the Ethernet API. This function can
384  * also be re-invoked when a device is in the stopped state.
385  */
386 static int
387 nfp_net_configure(struct rte_eth_dev *dev)
388 {
389         struct rte_eth_conf *dev_conf;
390         struct rte_eth_rxmode *rxmode;
391         struct rte_eth_txmode *txmode;
392         struct nfp_net_hw *hw;
393
394         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
395
396         /*
397          * A DPDK app sends info about how many queues to use and how
398          * those queues need to be configured. This is used by the
399          * DPDK core and it makes sure no more queues than those
400          * advertised by the driver are requested. This function is
401          * called after that internal process
402          */
403
404         PMD_INIT_LOG(DEBUG, "Configure");
405
406         dev_conf = &dev->data->dev_conf;
407         rxmode = &dev_conf->rxmode;
408         txmode = &dev_conf->txmode;
409
410         rxmode->offloads |= DEV_RX_OFFLOAD_RSS_HASH;
411
412         /* Checking TX mode */
413         if (txmode->mq_mode) {
414                 PMD_INIT_LOG(INFO, "TX mq_mode DCB and VMDq not supported");
415                 return -EINVAL;
416         }
417
418         /* Checking RX mode */
419         if (rxmode->mq_mode & ETH_MQ_RX_RSS &&
420             !(hw->cap & NFP_NET_CFG_CTRL_RSS)) {
421                 PMD_INIT_LOG(INFO, "RSS not supported");
422                 return -EINVAL;
423         }
424
425         return 0;
426 }
427
428 static void
429 nfp_net_enable_queues(struct rte_eth_dev *dev)
430 {
431         struct nfp_net_hw *hw;
432         uint64_t enabled_queues = 0;
433         int i;
434
435         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
436
437         /* Enabling the required TX queues in the device */
438         for (i = 0; i < dev->data->nb_tx_queues; i++)
439                 enabled_queues |= (1 << i);
440
441         nn_cfg_writeq(hw, NFP_NET_CFG_TXRS_ENABLE, enabled_queues);
442
443         enabled_queues = 0;
444
445         /* Enabling the required RX queues in the device */
446         for (i = 0; i < dev->data->nb_rx_queues; i++)
447                 enabled_queues |= (1 << i);
448
449         nn_cfg_writeq(hw, NFP_NET_CFG_RXRS_ENABLE, enabled_queues);
450 }
451
452 static void
453 nfp_net_disable_queues(struct rte_eth_dev *dev)
454 {
455         struct nfp_net_hw *hw;
456         uint32_t new_ctrl, update = 0;
457
458         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
459
460         nn_cfg_writeq(hw, NFP_NET_CFG_TXRS_ENABLE, 0);
461         nn_cfg_writeq(hw, NFP_NET_CFG_RXRS_ENABLE, 0);
462
463         new_ctrl = hw->ctrl & ~NFP_NET_CFG_CTRL_ENABLE;
464         update = NFP_NET_CFG_UPDATE_GEN | NFP_NET_CFG_UPDATE_RING |
465                  NFP_NET_CFG_UPDATE_MSIX;
466
467         if (hw->cap & NFP_NET_CFG_CTRL_RINGCFG)
468                 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
469
470         /* If an error when reconfig we avoid to change hw state */
471         if (nfp_net_reconfig(hw, new_ctrl, update) < 0)
472                 return;
473
474         hw->ctrl = new_ctrl;
475 }
476
477 static int
478 nfp_net_rx_freelist_setup(struct rte_eth_dev *dev)
479 {
480         int i;
481
482         for (i = 0; i < dev->data->nb_rx_queues; i++) {
483                 if (nfp_net_rx_fill_freelist(dev->data->rx_queues[i]) < 0)
484                         return -1;
485         }
486         return 0;
487 }
488
489 static void
490 nfp_net_params_setup(struct nfp_net_hw *hw)
491 {
492         nn_cfg_writel(hw, NFP_NET_CFG_MTU, hw->mtu);
493         nn_cfg_writel(hw, NFP_NET_CFG_FLBUFSZ, hw->flbufsz);
494 }
495
496 static void
497 nfp_net_cfg_queue_setup(struct nfp_net_hw *hw)
498 {
499         hw->qcp_cfg = hw->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
500 }
501
502 #define ETH_ADDR_LEN    6
503
504 static void
505 nfp_eth_copy_mac(uint8_t *dst, const uint8_t *src)
506 {
507         int i;
508
509         for (i = 0; i < ETH_ADDR_LEN; i++)
510                 dst[i] = src[i];
511 }
512
513 static int
514 nfp_net_pf_read_mac(struct nfp_net_hw *hw, int port)
515 {
516         struct nfp_eth_table *nfp_eth_table;
517
518         nfp_eth_table = nfp_eth_read_ports(hw->cpp);
519         /*
520          * hw points to port0 private data. We need hw now pointing to
521          * right port.
522          */
523         hw += port;
524         nfp_eth_copy_mac((uint8_t *)&hw->mac_addr,
525                          (uint8_t *)&nfp_eth_table->ports[port].mac_addr);
526
527         free(nfp_eth_table);
528         return 0;
529 }
530
531 static void
532 nfp_net_vf_read_mac(struct nfp_net_hw *hw)
533 {
534         uint32_t tmp;
535
536         tmp = rte_be_to_cpu_32(nn_cfg_readl(hw, NFP_NET_CFG_MACADDR));
537         memcpy(&hw->mac_addr[0], &tmp, 4);
538
539         tmp = rte_be_to_cpu_32(nn_cfg_readl(hw, NFP_NET_CFG_MACADDR + 4));
540         memcpy(&hw->mac_addr[4], &tmp, 2);
541 }
542
543 static void
544 nfp_net_write_mac(struct nfp_net_hw *hw, uint8_t *mac)
545 {
546         uint32_t mac0 = *(uint32_t *)mac;
547         uint16_t mac1;
548
549         nn_writel(rte_cpu_to_be_32(mac0), hw->ctrl_bar + NFP_NET_CFG_MACADDR);
550
551         mac += 4;
552         mac1 = *(uint16_t *)mac;
553         nn_writew(rte_cpu_to_be_16(mac1),
554                   hw->ctrl_bar + NFP_NET_CFG_MACADDR + 6);
555 }
556
557 int
558 nfp_set_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
559 {
560         struct nfp_net_hw *hw;
561         uint32_t update, ctrl;
562
563         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
564         if ((hw->ctrl & NFP_NET_CFG_CTRL_ENABLE) &&
565             !(hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)) {
566                 PMD_INIT_LOG(INFO, "MAC address unable to change when"
567                                   " port enabled");
568                 return -EBUSY;
569         }
570
571         if ((hw->ctrl & NFP_NET_CFG_CTRL_ENABLE) &&
572             !(hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR))
573                 return -EBUSY;
574
575         /* Writing new MAC to the specific port BAR address */
576         nfp_net_write_mac(hw, (uint8_t *)mac_addr);
577
578         /* Signal the NIC about the change */
579         update = NFP_NET_CFG_UPDATE_MACADDR;
580         ctrl = hw->ctrl;
581         if ((hw->ctrl & NFP_NET_CFG_CTRL_ENABLE) &&
582             (hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR))
583                 ctrl |= NFP_NET_CFG_CTRL_LIVE_ADDR;
584         if (nfp_net_reconfig(hw, ctrl, update) < 0) {
585                 PMD_INIT_LOG(INFO, "MAC address update failed");
586                 return -EIO;
587         }
588         return 0;
589 }
590
591 static int
592 nfp_configure_rx_interrupt(struct rte_eth_dev *dev,
593                            struct rte_intr_handle *intr_handle)
594 {
595         struct nfp_net_hw *hw;
596         int i;
597
598         if (!intr_handle->intr_vec) {
599                 intr_handle->intr_vec =
600                         rte_zmalloc("intr_vec",
601                                     dev->data->nb_rx_queues * sizeof(int), 0);
602                 if (!intr_handle->intr_vec) {
603                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
604                                      " intr_vec", dev->data->nb_rx_queues);
605                         return -ENOMEM;
606                 }
607         }
608
609         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
610
611         if (intr_handle->type == RTE_INTR_HANDLE_UIO) {
612                 PMD_INIT_LOG(INFO, "VF: enabling RX interrupt with UIO");
613                 /* UIO just supports one queue and no LSC*/
614                 nn_cfg_writeb(hw, NFP_NET_CFG_RXR_VEC(0), 0);
615                 intr_handle->intr_vec[0] = 0;
616         } else {
617                 PMD_INIT_LOG(INFO, "VF: enabling RX interrupt with VFIO");
618                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
619                         /*
620                          * The first msix vector is reserved for non
621                          * efd interrupts
622                         */
623                         nn_cfg_writeb(hw, NFP_NET_CFG_RXR_VEC(i), i + 1);
624                         intr_handle->intr_vec[i] = i + 1;
625                         PMD_INIT_LOG(DEBUG, "intr_vec[%d]= %d", i,
626                                             intr_handle->intr_vec[i]);
627                 }
628         }
629
630         /* Avoiding TX interrupts */
631         hw->ctrl |= NFP_NET_CFG_CTRL_MSIX_TX_OFF;
632         return 0;
633 }
634
635 static uint32_t
636 nfp_check_offloads(struct rte_eth_dev *dev)
637 {
638         struct nfp_net_hw *hw;
639         struct rte_eth_conf *dev_conf;
640         struct rte_eth_rxmode *rxmode;
641         struct rte_eth_txmode *txmode;
642         uint32_t ctrl = 0;
643
644         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
645
646         dev_conf = &dev->data->dev_conf;
647         rxmode = &dev_conf->rxmode;
648         txmode = &dev_conf->txmode;
649
650         if (rxmode->offloads & DEV_RX_OFFLOAD_IPV4_CKSUM) {
651                 if (hw->cap & NFP_NET_CFG_CTRL_RXCSUM)
652                         ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
653         }
654
655         if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP) {
656                 if (hw->cap & NFP_NET_CFG_CTRL_RXVLAN)
657                         ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
658         }
659
660         if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
661                 hw->mtu = rxmode->max_rx_pkt_len;
662
663         if (txmode->offloads & DEV_TX_OFFLOAD_VLAN_INSERT)
664                 ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
665
666         /* L2 broadcast */
667         if (hw->cap & NFP_NET_CFG_CTRL_L2BC)
668                 ctrl |= NFP_NET_CFG_CTRL_L2BC;
669
670         /* L2 multicast */
671         if (hw->cap & NFP_NET_CFG_CTRL_L2MC)
672                 ctrl |= NFP_NET_CFG_CTRL_L2MC;
673
674         /* TX checksum offload */
675         if (txmode->offloads & DEV_TX_OFFLOAD_IPV4_CKSUM ||
676             txmode->offloads & DEV_TX_OFFLOAD_UDP_CKSUM ||
677             txmode->offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
678                 ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
679
680         /* LSO offload */
681         if (txmode->offloads & DEV_TX_OFFLOAD_TCP_TSO) {
682                 if (hw->cap & NFP_NET_CFG_CTRL_LSO)
683                         ctrl |= NFP_NET_CFG_CTRL_LSO;
684                 else
685                         ctrl |= NFP_NET_CFG_CTRL_LSO2;
686         }
687
688         /* RX gather */
689         if (txmode->offloads & DEV_TX_OFFLOAD_MULTI_SEGS)
690                 ctrl |= NFP_NET_CFG_CTRL_GATHER;
691
692         return ctrl;
693 }
694
695 static int
696 nfp_net_start(struct rte_eth_dev *dev)
697 {
698         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
699         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
700         uint32_t new_ctrl, update = 0;
701         struct nfp_net_hw *hw;
702         struct rte_eth_conf *dev_conf;
703         struct rte_eth_rxmode *rxmode;
704         uint32_t intr_vector;
705         int ret;
706
707         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
708
709         PMD_INIT_LOG(DEBUG, "Start");
710
711         /* Disabling queues just in case... */
712         nfp_net_disable_queues(dev);
713
714         /* Enabling the required queues in the device */
715         nfp_net_enable_queues(dev);
716
717         /* check and configure queue intr-vector mapping */
718         if (dev->data->dev_conf.intr_conf.rxq != 0) {
719                 if (hw->pf_multiport_enabled) {
720                         PMD_INIT_LOG(ERR, "PMD rx interrupt is not supported "
721                                           "with NFP multiport PF");
722                                 return -EINVAL;
723                 }
724                 if (intr_handle->type == RTE_INTR_HANDLE_UIO) {
725                         /*
726                          * Better not to share LSC with RX interrupts.
727                          * Unregistering LSC interrupt handler
728                          */
729                         rte_intr_callback_unregister(&pci_dev->intr_handle,
730                                 nfp_net_dev_interrupt_handler, (void *)dev);
731
732                         if (dev->data->nb_rx_queues > 1) {
733                                 PMD_INIT_LOG(ERR, "PMD rx interrupt only "
734                                              "supports 1 queue with UIO");
735                                 return -EIO;
736                         }
737                 }
738                 intr_vector = dev->data->nb_rx_queues;
739                 if (rte_intr_efd_enable(intr_handle, intr_vector))
740                         return -1;
741
742                 nfp_configure_rx_interrupt(dev, intr_handle);
743                 update = NFP_NET_CFG_UPDATE_MSIX;
744         }
745
746         rte_intr_enable(intr_handle);
747
748         new_ctrl = nfp_check_offloads(dev);
749
750         /* Writing configuration parameters in the device */
751         nfp_net_params_setup(hw);
752
753         dev_conf = &dev->data->dev_conf;
754         rxmode = &dev_conf->rxmode;
755
756         if (rxmode->mq_mode & ETH_MQ_RX_RSS) {
757                 nfp_net_rss_config_default(dev);
758                 update |= NFP_NET_CFG_UPDATE_RSS;
759                 new_ctrl |= NFP_NET_CFG_CTRL_RSS;
760         }
761
762         /* Enable device */
763         new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
764
765         update |= NFP_NET_CFG_UPDATE_GEN | NFP_NET_CFG_UPDATE_RING;
766
767         if (hw->cap & NFP_NET_CFG_CTRL_RINGCFG)
768                 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
769
770         nn_cfg_writel(hw, NFP_NET_CFG_CTRL, new_ctrl);
771         if (nfp_net_reconfig(hw, new_ctrl, update) < 0)
772                 return -EIO;
773
774         /*
775          * Allocating rte mbufs for configured rx queues.
776          * This requires queues being enabled before
777          */
778         if (nfp_net_rx_freelist_setup(dev) < 0) {
779                 ret = -ENOMEM;
780                 goto error;
781         }
782
783         if (hw->is_pf) {
784                 if (rte_eal_process_type() == RTE_PROC_PRIMARY)
785                         /* Configure the physical port up */
786                         nfp_eth_set_configured(hw->cpp, hw->pf_port_idx, 1);
787                 else
788                         nfp_eth_set_configured(dev->process_private,
789                                                hw->pf_port_idx, 1);
790         }
791
792         hw->ctrl = new_ctrl;
793
794         return 0;
795
796 error:
797         /*
798          * An error returned by this function should mean the app
799          * exiting and then the system releasing all the memory
800          * allocated even memory coming from hugepages.
801          *
802          * The device could be enabled at this point with some queues
803          * ready for getting packets. This is true if the call to
804          * nfp_net_rx_freelist_setup() succeeds for some queues but
805          * fails for subsequent queues.
806          *
807          * This should make the app exiting but better if we tell the
808          * device first.
809          */
810         nfp_net_disable_queues(dev);
811
812         return ret;
813 }
814
815 /* Stop device: disable rx and tx functions to allow for reconfiguring. */
816 static void
817 nfp_net_stop(struct rte_eth_dev *dev)
818 {
819         int i;
820         struct nfp_net_hw *hw;
821
822         PMD_INIT_LOG(DEBUG, "Stop");
823
824         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
825
826         nfp_net_disable_queues(dev);
827
828         /* Clear queues */
829         for (i = 0; i < dev->data->nb_tx_queues; i++) {
830                 nfp_net_reset_tx_queue(
831                         (struct nfp_net_txq *)dev->data->tx_queues[i]);
832         }
833
834         for (i = 0; i < dev->data->nb_rx_queues; i++) {
835                 nfp_net_reset_rx_queue(
836                         (struct nfp_net_rxq *)dev->data->rx_queues[i]);
837         }
838
839         if (hw->is_pf) {
840                 if (rte_eal_process_type() == RTE_PROC_PRIMARY)
841                         /* Configure the physical port down */
842                         nfp_eth_set_configured(hw->cpp, hw->pf_port_idx, 0);
843                 else
844                         nfp_eth_set_configured(dev->process_private,
845                                                hw->pf_port_idx, 0);
846         }
847 }
848
849 /* Set the link up. */
850 static int
851 nfp_net_set_link_up(struct rte_eth_dev *dev)
852 {
853         struct nfp_net_hw *hw;
854
855         PMD_DRV_LOG(DEBUG, "Set link up");
856
857         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
858
859         if (!hw->is_pf)
860                 return -ENOTSUP;
861
862         if (rte_eal_process_type() == RTE_PROC_PRIMARY)
863                 /* Configure the physical port down */
864                 return nfp_eth_set_configured(hw->cpp, hw->pf_port_idx, 1);
865         else
866                 return nfp_eth_set_configured(dev->process_private,
867                                               hw->pf_port_idx, 1);
868 }
869
870 /* Set the link down. */
871 static int
872 nfp_net_set_link_down(struct rte_eth_dev *dev)
873 {
874         struct nfp_net_hw *hw;
875
876         PMD_DRV_LOG(DEBUG, "Set link down");
877
878         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
879
880         if (!hw->is_pf)
881                 return -ENOTSUP;
882
883         if (rte_eal_process_type() == RTE_PROC_PRIMARY)
884                 /* Configure the physical port down */
885                 return nfp_eth_set_configured(hw->cpp, hw->pf_port_idx, 0);
886         else
887                 return nfp_eth_set_configured(dev->process_private,
888                                               hw->pf_port_idx, 0);
889 }
890
891 /* Reset and stop device. The device can not be restarted. */
892 static void
893 nfp_net_close(struct rte_eth_dev *dev)
894 {
895         struct nfp_net_hw *hw;
896         struct rte_pci_device *pci_dev;
897         int i;
898
899         PMD_INIT_LOG(DEBUG, "Close");
900
901         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
902         pci_dev = RTE_ETH_DEV_TO_PCI(dev);
903
904         /*
905          * We assume that the DPDK application is stopping all the
906          * threads/queues before calling the device close function.
907          */
908
909         nfp_net_disable_queues(dev);
910
911         /* Clear queues */
912         for (i = 0; i < dev->data->nb_tx_queues; i++) {
913                 nfp_net_reset_tx_queue(
914                         (struct nfp_net_txq *)dev->data->tx_queues[i]);
915         }
916
917         for (i = 0; i < dev->data->nb_rx_queues; i++) {
918                 nfp_net_reset_rx_queue(
919                         (struct nfp_net_rxq *)dev->data->rx_queues[i]);
920         }
921
922         rte_intr_disable(&pci_dev->intr_handle);
923         nn_cfg_writeb(hw, NFP_NET_CFG_LSC, 0xff);
924
925         /* unregister callback func from eal lib */
926         rte_intr_callback_unregister(&pci_dev->intr_handle,
927                                      nfp_net_dev_interrupt_handler,
928                                      (void *)dev);
929
930         /*
931          * The ixgbe PMD driver disables the pcie master on the
932          * device. The i40e does not...
933          */
934 }
935
936 static int
937 nfp_net_promisc_enable(struct rte_eth_dev *dev)
938 {
939         uint32_t new_ctrl, update = 0;
940         struct nfp_net_hw *hw;
941         int ret;
942
943         PMD_DRV_LOG(DEBUG, "Promiscuous mode enable");
944
945         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
946
947         if (!(hw->cap & NFP_NET_CFG_CTRL_PROMISC)) {
948                 PMD_INIT_LOG(INFO, "Promiscuous mode not supported");
949                 return -ENOTSUP;
950         }
951
952         if (hw->ctrl & NFP_NET_CFG_CTRL_PROMISC) {
953                 PMD_DRV_LOG(INFO, "Promiscuous mode already enabled");
954                 return 0;
955         }
956
957         new_ctrl = hw->ctrl | NFP_NET_CFG_CTRL_PROMISC;
958         update = NFP_NET_CFG_UPDATE_GEN;
959
960         /*
961          * DPDK sets promiscuous mode on just after this call assuming
962          * it can not fail ...
963          */
964         ret = nfp_net_reconfig(hw, new_ctrl, update);
965         if (ret < 0)
966                 return ret;
967
968         hw->ctrl = new_ctrl;
969
970         return 0;
971 }
972
973 static int
974 nfp_net_promisc_disable(struct rte_eth_dev *dev)
975 {
976         uint32_t new_ctrl, update = 0;
977         struct nfp_net_hw *hw;
978         int ret;
979
980         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
981
982         if ((hw->ctrl & NFP_NET_CFG_CTRL_PROMISC) == 0) {
983                 PMD_DRV_LOG(INFO, "Promiscuous mode already disabled");
984                 return 0;
985         }
986
987         new_ctrl = hw->ctrl & ~NFP_NET_CFG_CTRL_PROMISC;
988         update = NFP_NET_CFG_UPDATE_GEN;
989
990         /*
991          * DPDK sets promiscuous mode off just before this call
992          * assuming it can not fail ...
993          */
994         ret = nfp_net_reconfig(hw, new_ctrl, update);
995         if (ret < 0)
996                 return ret;
997
998         hw->ctrl = new_ctrl;
999
1000         return 0;
1001 }
1002
1003 /*
1004  * return 0 means link status changed, -1 means not changed
1005  *
1006  * Wait to complete is needed as it can take up to 9 seconds to get the Link
1007  * status.
1008  */
1009 static int
1010 nfp_net_link_update(struct rte_eth_dev *dev, __rte_unused int wait_to_complete)
1011 {
1012         struct nfp_net_hw *hw;
1013         struct rte_eth_link link;
1014         uint32_t nn_link_status;
1015         int ret;
1016
1017         static const uint32_t ls_to_ethtool[] = {
1018                 [NFP_NET_CFG_STS_LINK_RATE_UNSUPPORTED] = ETH_SPEED_NUM_NONE,
1019                 [NFP_NET_CFG_STS_LINK_RATE_UNKNOWN]     = ETH_SPEED_NUM_NONE,
1020                 [NFP_NET_CFG_STS_LINK_RATE_1G]          = ETH_SPEED_NUM_1G,
1021                 [NFP_NET_CFG_STS_LINK_RATE_10G]         = ETH_SPEED_NUM_10G,
1022                 [NFP_NET_CFG_STS_LINK_RATE_25G]         = ETH_SPEED_NUM_25G,
1023                 [NFP_NET_CFG_STS_LINK_RATE_40G]         = ETH_SPEED_NUM_40G,
1024                 [NFP_NET_CFG_STS_LINK_RATE_50G]         = ETH_SPEED_NUM_50G,
1025                 [NFP_NET_CFG_STS_LINK_RATE_100G]        = ETH_SPEED_NUM_100G,
1026         };
1027
1028         PMD_DRV_LOG(DEBUG, "Link update");
1029
1030         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1031
1032         nn_link_status = nn_cfg_readl(hw, NFP_NET_CFG_STS);
1033
1034         memset(&link, 0, sizeof(struct rte_eth_link));
1035
1036         if (nn_link_status & NFP_NET_CFG_STS_LINK)
1037                 link.link_status = ETH_LINK_UP;
1038
1039         link.link_duplex = ETH_LINK_FULL_DUPLEX;
1040
1041         nn_link_status = (nn_link_status >> NFP_NET_CFG_STS_LINK_RATE_SHIFT) &
1042                          NFP_NET_CFG_STS_LINK_RATE_MASK;
1043
1044         if (nn_link_status >= RTE_DIM(ls_to_ethtool))
1045                 link.link_speed = ETH_SPEED_NUM_NONE;
1046         else
1047                 link.link_speed = ls_to_ethtool[nn_link_status];
1048
1049         ret = rte_eth_linkstatus_set(dev, &link);
1050         if (ret == 0) {
1051                 if (link.link_status)
1052                         PMD_DRV_LOG(INFO, "NIC Link is Up");
1053                 else
1054                         PMD_DRV_LOG(INFO, "NIC Link is Down");
1055         }
1056         return ret;
1057 }
1058
1059 static int
1060 nfp_net_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1061 {
1062         int i;
1063         struct nfp_net_hw *hw;
1064         struct rte_eth_stats nfp_dev_stats;
1065
1066         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1067
1068         /* RTE_ETHDEV_QUEUE_STAT_CNTRS default value is 16 */
1069
1070         memset(&nfp_dev_stats, 0, sizeof(nfp_dev_stats));
1071
1072         /* reading per RX ring stats */
1073         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1074                 if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
1075                         break;
1076
1077                 nfp_dev_stats.q_ipackets[i] =
1078                         nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i));
1079
1080                 nfp_dev_stats.q_ipackets[i] -=
1081                         hw->eth_stats_base.q_ipackets[i];
1082
1083                 nfp_dev_stats.q_ibytes[i] =
1084                         nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i) + 0x8);
1085
1086                 nfp_dev_stats.q_ibytes[i] -=
1087                         hw->eth_stats_base.q_ibytes[i];
1088         }
1089
1090         /* reading per TX ring stats */
1091         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1092                 if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
1093                         break;
1094
1095                 nfp_dev_stats.q_opackets[i] =
1096                         nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i));
1097
1098                 nfp_dev_stats.q_opackets[i] -=
1099                         hw->eth_stats_base.q_opackets[i];
1100
1101                 nfp_dev_stats.q_obytes[i] =
1102                         nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i) + 0x8);
1103
1104                 nfp_dev_stats.q_obytes[i] -=
1105                         hw->eth_stats_base.q_obytes[i];
1106         }
1107
1108         nfp_dev_stats.ipackets =
1109                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_FRAMES);
1110
1111         nfp_dev_stats.ipackets -= hw->eth_stats_base.ipackets;
1112
1113         nfp_dev_stats.ibytes =
1114                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_OCTETS);
1115
1116         nfp_dev_stats.ibytes -= hw->eth_stats_base.ibytes;
1117
1118         nfp_dev_stats.opackets =
1119                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_FRAMES);
1120
1121         nfp_dev_stats.opackets -= hw->eth_stats_base.opackets;
1122
1123         nfp_dev_stats.obytes =
1124                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_OCTETS);
1125
1126         nfp_dev_stats.obytes -= hw->eth_stats_base.obytes;
1127
1128         /* reading general device stats */
1129         nfp_dev_stats.ierrors =
1130                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_ERRORS);
1131
1132         nfp_dev_stats.ierrors -= hw->eth_stats_base.ierrors;
1133
1134         nfp_dev_stats.oerrors =
1135                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_ERRORS);
1136
1137         nfp_dev_stats.oerrors -= hw->eth_stats_base.oerrors;
1138
1139         /* RX ring mbuf allocation failures */
1140         nfp_dev_stats.rx_nombuf = dev->data->rx_mbuf_alloc_failed;
1141
1142         nfp_dev_stats.imissed =
1143                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_DISCARDS);
1144
1145         nfp_dev_stats.imissed -= hw->eth_stats_base.imissed;
1146
1147         if (stats) {
1148                 memcpy(stats, &nfp_dev_stats, sizeof(*stats));
1149                 return 0;
1150         }
1151         return -EINVAL;
1152 }
1153
1154 static int
1155 nfp_net_stats_reset(struct rte_eth_dev *dev)
1156 {
1157         int i;
1158         struct nfp_net_hw *hw;
1159
1160         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1161
1162         /*
1163          * hw->eth_stats_base records the per counter starting point.
1164          * Lets update it now
1165          */
1166
1167         /* reading per RX ring stats */
1168         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1169                 if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
1170                         break;
1171
1172                 hw->eth_stats_base.q_ipackets[i] =
1173                         nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i));
1174
1175                 hw->eth_stats_base.q_ibytes[i] =
1176                         nn_cfg_readq(hw, NFP_NET_CFG_RXR_STATS(i) + 0x8);
1177         }
1178
1179         /* reading per TX ring stats */
1180         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1181                 if (i == RTE_ETHDEV_QUEUE_STAT_CNTRS)
1182                         break;
1183
1184                 hw->eth_stats_base.q_opackets[i] =
1185                         nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i));
1186
1187                 hw->eth_stats_base.q_obytes[i] =
1188                         nn_cfg_readq(hw, NFP_NET_CFG_TXR_STATS(i) + 0x8);
1189         }
1190
1191         hw->eth_stats_base.ipackets =
1192                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_FRAMES);
1193
1194         hw->eth_stats_base.ibytes =
1195                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_OCTETS);
1196
1197         hw->eth_stats_base.opackets =
1198                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_FRAMES);
1199
1200         hw->eth_stats_base.obytes =
1201                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_OCTETS);
1202
1203         /* reading general device stats */
1204         hw->eth_stats_base.ierrors =
1205                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_ERRORS);
1206
1207         hw->eth_stats_base.oerrors =
1208                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_TX_ERRORS);
1209
1210         /* RX ring mbuf allocation failures */
1211         dev->data->rx_mbuf_alloc_failed = 0;
1212
1213         hw->eth_stats_base.imissed =
1214                 nn_cfg_readq(hw, NFP_NET_CFG_STATS_RX_DISCARDS);
1215
1216         return 0;
1217 }
1218
1219 static int
1220 nfp_net_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1221 {
1222         struct nfp_net_hw *hw;
1223
1224         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1225
1226         dev_info->max_rx_queues = (uint16_t)hw->max_rx_queues;
1227         dev_info->max_tx_queues = (uint16_t)hw->max_tx_queues;
1228         dev_info->min_rx_bufsize = RTE_ETHER_MIN_MTU;
1229         dev_info->max_rx_pktlen = hw->max_mtu;
1230         /* Next should change when PF support is implemented */
1231         dev_info->max_mac_addrs = 1;
1232
1233         if (hw->cap & NFP_NET_CFG_CTRL_RXVLAN)
1234                 dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
1235
1236         if (hw->cap & NFP_NET_CFG_CTRL_RXCSUM)
1237                 dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_IPV4_CKSUM |
1238                                              DEV_RX_OFFLOAD_UDP_CKSUM |
1239                                              DEV_RX_OFFLOAD_TCP_CKSUM;
1240
1241         dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_JUMBO_FRAME |
1242                                      DEV_RX_OFFLOAD_RSS_HASH;
1243
1244         if (hw->cap & NFP_NET_CFG_CTRL_TXVLAN)
1245                 dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT;
1246
1247         if (hw->cap & NFP_NET_CFG_CTRL_TXCSUM)
1248                 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_IPV4_CKSUM |
1249                                              DEV_TX_OFFLOAD_UDP_CKSUM |
1250                                              DEV_TX_OFFLOAD_TCP_CKSUM;
1251
1252         if (hw->cap & NFP_NET_CFG_CTRL_LSO_ANY)
1253                 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO;
1254
1255         if (hw->cap & NFP_NET_CFG_CTRL_GATHER)
1256                 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_MULTI_SEGS;
1257
1258         dev_info->default_rxconf = (struct rte_eth_rxconf) {
1259                 .rx_thresh = {
1260                         .pthresh = DEFAULT_RX_PTHRESH,
1261                         .hthresh = DEFAULT_RX_HTHRESH,
1262                         .wthresh = DEFAULT_RX_WTHRESH,
1263                 },
1264                 .rx_free_thresh = DEFAULT_RX_FREE_THRESH,
1265                 .rx_drop_en = 0,
1266         };
1267
1268         dev_info->default_txconf = (struct rte_eth_txconf) {
1269                 .tx_thresh = {
1270                         .pthresh = DEFAULT_TX_PTHRESH,
1271                         .hthresh = DEFAULT_TX_HTHRESH,
1272                         .wthresh = DEFAULT_TX_WTHRESH,
1273                 },
1274                 .tx_free_thresh = DEFAULT_TX_FREE_THRESH,
1275                 .tx_rs_thresh = DEFAULT_TX_RSBIT_THRESH,
1276         };
1277
1278         dev_info->flow_type_rss_offloads = ETH_RSS_IPV4 |
1279                                            ETH_RSS_NONFRAG_IPV4_TCP |
1280                                            ETH_RSS_NONFRAG_IPV4_UDP |
1281                                            ETH_RSS_IPV6 |
1282                                            ETH_RSS_NONFRAG_IPV6_TCP |
1283                                            ETH_RSS_NONFRAG_IPV6_UDP;
1284
1285         dev_info->reta_size = NFP_NET_CFG_RSS_ITBL_SZ;
1286         dev_info->hash_key_size = NFP_NET_CFG_RSS_KEY_SZ;
1287
1288         dev_info->speed_capa = ETH_LINK_SPEED_1G | ETH_LINK_SPEED_10G |
1289                                ETH_LINK_SPEED_25G | ETH_LINK_SPEED_40G |
1290                                ETH_LINK_SPEED_50G | ETH_LINK_SPEED_100G;
1291
1292         return 0;
1293 }
1294
1295 static const uint32_t *
1296 nfp_net_supported_ptypes_get(struct rte_eth_dev *dev)
1297 {
1298         static const uint32_t ptypes[] = {
1299                 /* refers to nfp_net_set_hash() */
1300                 RTE_PTYPE_INNER_L3_IPV4,
1301                 RTE_PTYPE_INNER_L3_IPV6,
1302                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1303                 RTE_PTYPE_INNER_L4_MASK,
1304                 RTE_PTYPE_UNKNOWN
1305         };
1306
1307         if (dev->rx_pkt_burst == nfp_net_recv_pkts)
1308                 return ptypes;
1309         return NULL;
1310 }
1311
1312 static uint32_t
1313 nfp_net_rx_queue_count(struct rte_eth_dev *dev, uint16_t queue_idx)
1314 {
1315         struct nfp_net_rxq *rxq;
1316         struct nfp_net_rx_desc *rxds;
1317         uint32_t idx;
1318         uint32_t count;
1319
1320         rxq = (struct nfp_net_rxq *)dev->data->rx_queues[queue_idx];
1321
1322         idx = rxq->rd_p;
1323
1324         count = 0;
1325
1326         /*
1327          * Other PMDs are just checking the DD bit in intervals of 4
1328          * descriptors and counting all four if the first has the DD
1329          * bit on. Of course, this is not accurate but can be good for
1330          * performance. But ideally that should be done in descriptors
1331          * chunks belonging to the same cache line
1332          */
1333
1334         while (count < rxq->rx_count) {
1335                 rxds = &rxq->rxds[idx];
1336                 if ((rxds->rxd.meta_len_dd & PCIE_DESC_RX_DD) == 0)
1337                         break;
1338
1339                 count++;
1340                 idx++;
1341
1342                 /* Wrapping? */
1343                 if ((idx) == rxq->rx_count)
1344                         idx = 0;
1345         }
1346
1347         return count;
1348 }
1349
1350 static int
1351 nfp_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1352 {
1353         struct rte_pci_device *pci_dev;
1354         struct nfp_net_hw *hw;
1355         int base = 0;
1356
1357         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1358         pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1359
1360         if (pci_dev->intr_handle.type != RTE_INTR_HANDLE_UIO)
1361                 base = 1;
1362
1363         /* Make sure all updates are written before un-masking */
1364         rte_wmb();
1365         nn_cfg_writeb(hw, NFP_NET_CFG_ICR(base + queue_id),
1366                       NFP_NET_CFG_ICR_UNMASKED);
1367         return 0;
1368 }
1369
1370 static int
1371 nfp_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1372 {
1373         struct rte_pci_device *pci_dev;
1374         struct nfp_net_hw *hw;
1375         int base = 0;
1376
1377         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1378         pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1379
1380         if (pci_dev->intr_handle.type != RTE_INTR_HANDLE_UIO)
1381                 base = 1;
1382
1383         /* Make sure all updates are written before un-masking */
1384         rte_wmb();
1385         nn_cfg_writeb(hw, NFP_NET_CFG_ICR(base + queue_id), 0x1);
1386         return 0;
1387 }
1388
1389 static void
1390 nfp_net_dev_link_status_print(struct rte_eth_dev *dev)
1391 {
1392         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1393         struct rte_eth_link link;
1394
1395         rte_eth_linkstatus_get(dev, &link);
1396         if (link.link_status)
1397                 PMD_DRV_LOG(INFO, "Port %d: Link Up - speed %u Mbps - %s",
1398                             dev->data->port_id, link.link_speed,
1399                             link.link_duplex == ETH_LINK_FULL_DUPLEX
1400                             ? "full-duplex" : "half-duplex");
1401         else
1402                 PMD_DRV_LOG(INFO, " Port %d: Link Down",
1403                             dev->data->port_id);
1404
1405         PMD_DRV_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
1406                 pci_dev->addr.domain, pci_dev->addr.bus,
1407                 pci_dev->addr.devid, pci_dev->addr.function);
1408 }
1409
1410 /* Interrupt configuration and handling */
1411
1412 /*
1413  * nfp_net_irq_unmask - Unmask an interrupt
1414  *
1415  * If MSI-X auto-masking is enabled clear the mask bit, otherwise
1416  * clear the ICR for the entry.
1417  */
1418 static void
1419 nfp_net_irq_unmask(struct rte_eth_dev *dev)
1420 {
1421         struct nfp_net_hw *hw;
1422         struct rte_pci_device *pci_dev;
1423
1424         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1425         pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1426
1427         if (hw->ctrl & NFP_NET_CFG_CTRL_MSIXAUTO) {
1428                 /* If MSI-X auto-masking is used, clear the entry */
1429                 rte_wmb();
1430                 rte_intr_ack(&pci_dev->intr_handle);
1431         } else {
1432                 /* Make sure all updates are written before un-masking */
1433                 rte_wmb();
1434                 nn_cfg_writeb(hw, NFP_NET_CFG_ICR(NFP_NET_IRQ_LSC_IDX),
1435                               NFP_NET_CFG_ICR_UNMASKED);
1436         }
1437 }
1438
1439 static void
1440 nfp_net_dev_interrupt_handler(void *param)
1441 {
1442         int64_t timeout;
1443         struct rte_eth_link link;
1444         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1445
1446         PMD_DRV_LOG(DEBUG, "We got a LSC interrupt!!!");
1447
1448         rte_eth_linkstatus_get(dev, &link);
1449
1450         nfp_net_link_update(dev, 0);
1451
1452         /* likely to up */
1453         if (!link.link_status) {
1454                 /* handle it 1 sec later, wait it being stable */
1455                 timeout = NFP_NET_LINK_UP_CHECK_TIMEOUT;
1456                 /* likely to down */
1457         } else {
1458                 /* handle it 4 sec later, wait it being stable */
1459                 timeout = NFP_NET_LINK_DOWN_CHECK_TIMEOUT;
1460         }
1461
1462         if (rte_eal_alarm_set(timeout * 1000,
1463                               nfp_net_dev_interrupt_delayed_handler,
1464                               (void *)dev) < 0) {
1465                 PMD_INIT_LOG(ERR, "Error setting alarm");
1466                 /* Unmasking */
1467                 nfp_net_irq_unmask(dev);
1468         }
1469 }
1470
1471 /*
1472  * Interrupt handler which shall be registered for alarm callback for delayed
1473  * handling specific interrupt to wait for the stable nic state. As the NIC
1474  * interrupt state is not stable for nfp after link is just down, it needs
1475  * to wait 4 seconds to get the stable status.
1476  *
1477  * @param handle   Pointer to interrupt handle.
1478  * @param param    The address of parameter (struct rte_eth_dev *)
1479  *
1480  * @return  void
1481  */
1482 static void
1483 nfp_net_dev_interrupt_delayed_handler(void *param)
1484 {
1485         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1486
1487         nfp_net_link_update(dev, 0);
1488         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1489
1490         nfp_net_dev_link_status_print(dev);
1491
1492         /* Unmasking */
1493         nfp_net_irq_unmask(dev);
1494 }
1495
1496 static int
1497 nfp_net_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1498 {
1499         struct nfp_net_hw *hw;
1500
1501         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1502
1503         /* check that mtu is within the allowed range */
1504         if (mtu < RTE_ETHER_MIN_MTU || (uint32_t)mtu > hw->max_mtu)
1505                 return -EINVAL;
1506
1507         /* mtu setting is forbidden if port is started */
1508         if (dev->data->dev_started) {
1509                 PMD_DRV_LOG(ERR, "port %d must be stopped before configuration",
1510                             dev->data->port_id);
1511                 return -EBUSY;
1512         }
1513
1514         /* switch to jumbo mode if needed */
1515         if ((uint32_t)mtu > RTE_ETHER_MAX_LEN)
1516                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1517         else
1518                 dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1519
1520         /* update max frame size */
1521         dev->data->dev_conf.rxmode.max_rx_pkt_len = (uint32_t)mtu;
1522
1523         /* writing to configuration space */
1524         nn_cfg_writel(hw, NFP_NET_CFG_MTU, (uint32_t)mtu);
1525
1526         hw->mtu = mtu;
1527
1528         return 0;
1529 }
1530
1531 static int
1532 nfp_net_rx_queue_setup(struct rte_eth_dev *dev,
1533                        uint16_t queue_idx, uint16_t nb_desc,
1534                        unsigned int socket_id,
1535                        const struct rte_eth_rxconf *rx_conf,
1536                        struct rte_mempool *mp)
1537 {
1538         const struct rte_memzone *tz;
1539         struct nfp_net_rxq *rxq;
1540         struct nfp_net_hw *hw;
1541
1542         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1543
1544         PMD_INIT_FUNC_TRACE();
1545
1546         /* Validating number of descriptors */
1547         if (((nb_desc * sizeof(struct nfp_net_rx_desc)) % 128) != 0 ||
1548             (nb_desc > NFP_NET_MAX_RX_DESC) ||
1549             (nb_desc < NFP_NET_MIN_RX_DESC)) {
1550                 PMD_DRV_LOG(ERR, "Wrong nb_desc value");
1551                 return -EINVAL;
1552         }
1553
1554         /*
1555          * Free memory prior to re-allocation if needed. This is the case after
1556          * calling nfp_net_stop
1557          */
1558         if (dev->data->rx_queues[queue_idx]) {
1559                 nfp_net_rx_queue_release(dev->data->rx_queues[queue_idx]);
1560                 dev->data->rx_queues[queue_idx] = NULL;
1561         }
1562
1563         /* Allocating rx queue data structure */
1564         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct nfp_net_rxq),
1565                                  RTE_CACHE_LINE_SIZE, socket_id);
1566         if (rxq == NULL)
1567                 return -ENOMEM;
1568
1569         /* Hw queues mapping based on firmware configuration */
1570         rxq->qidx = queue_idx;
1571         rxq->fl_qcidx = queue_idx * hw->stride_rx;
1572         rxq->rx_qcidx = rxq->fl_qcidx + (hw->stride_rx - 1);
1573         rxq->qcp_fl = hw->rx_bar + NFP_QCP_QUEUE_OFF(rxq->fl_qcidx);
1574         rxq->qcp_rx = hw->rx_bar + NFP_QCP_QUEUE_OFF(rxq->rx_qcidx);
1575
1576         /*
1577          * Tracking mbuf size for detecting a potential mbuf overflow due to
1578          * RX offset
1579          */
1580         rxq->mem_pool = mp;
1581         rxq->mbuf_size = rxq->mem_pool->elt_size;
1582         rxq->mbuf_size -= (sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM);
1583         hw->flbufsz = rxq->mbuf_size;
1584
1585         rxq->rx_count = nb_desc;
1586         rxq->port_id = dev->data->port_id;
1587         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1588         rxq->drop_en = rx_conf->rx_drop_en;
1589
1590         /*
1591          * Allocate RX ring hardware descriptors. A memzone large enough to
1592          * handle the maximum ring size is allocated in order to allow for
1593          * resizing in later calls to the queue setup function.
1594          */
1595         tz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1596                                    sizeof(struct nfp_net_rx_desc) *
1597                                    NFP_NET_MAX_RX_DESC, NFP_MEMZONE_ALIGN,
1598                                    socket_id);
1599
1600         if (tz == NULL) {
1601                 PMD_DRV_LOG(ERR, "Error allocating rx dma");
1602                 nfp_net_rx_queue_release(rxq);
1603                 return -ENOMEM;
1604         }
1605
1606         /* Saving physical and virtual addresses for the RX ring */
1607         rxq->dma = (uint64_t)tz->iova;
1608         rxq->rxds = (struct nfp_net_rx_desc *)tz->addr;
1609
1610         /* mbuf pointers array for referencing mbufs linked to RX descriptors */
1611         rxq->rxbufs = rte_zmalloc_socket("rxq->rxbufs",
1612                                          sizeof(*rxq->rxbufs) * nb_desc,
1613                                          RTE_CACHE_LINE_SIZE, socket_id);
1614         if (rxq->rxbufs == NULL) {
1615                 nfp_net_rx_queue_release(rxq);
1616                 return -ENOMEM;
1617         }
1618
1619         PMD_RX_LOG(DEBUG, "rxbufs=%p hw_ring=%p dma_addr=0x%" PRIx64,
1620                    rxq->rxbufs, rxq->rxds, (unsigned long int)rxq->dma);
1621
1622         nfp_net_reset_rx_queue(rxq);
1623
1624         dev->data->rx_queues[queue_idx] = rxq;
1625         rxq->hw = hw;
1626
1627         /*
1628          * Telling the HW about the physical address of the RX ring and number
1629          * of descriptors in log2 format
1630          */
1631         nn_cfg_writeq(hw, NFP_NET_CFG_RXR_ADDR(queue_idx), rxq->dma);
1632         nn_cfg_writeb(hw, NFP_NET_CFG_RXR_SZ(queue_idx), rte_log2_u32(nb_desc));
1633
1634         return 0;
1635 }
1636
1637 static int
1638 nfp_net_rx_fill_freelist(struct nfp_net_rxq *rxq)
1639 {
1640         struct nfp_net_rx_buff *rxe = rxq->rxbufs;
1641         uint64_t dma_addr;
1642         unsigned i;
1643
1644         PMD_RX_LOG(DEBUG, "nfp_net_rx_fill_freelist for %u descriptors",
1645                    rxq->rx_count);
1646
1647         for (i = 0; i < rxq->rx_count; i++) {
1648                 struct nfp_net_rx_desc *rxd;
1649                 struct rte_mbuf *mbuf = rte_pktmbuf_alloc(rxq->mem_pool);
1650
1651                 if (mbuf == NULL) {
1652                         PMD_DRV_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
1653                                 (unsigned)rxq->qidx);
1654                         return -ENOMEM;
1655                 }
1656
1657                 dma_addr = rte_cpu_to_le_64(RTE_MBUF_DMA_ADDR_DEFAULT(mbuf));
1658
1659                 rxd = &rxq->rxds[i];
1660                 rxd->fld.dd = 0;
1661                 rxd->fld.dma_addr_hi = (dma_addr >> 32) & 0xff;
1662                 rxd->fld.dma_addr_lo = dma_addr & 0xffffffff;
1663                 rxe[i].mbuf = mbuf;
1664                 PMD_RX_LOG(DEBUG, "[%d]: %" PRIx64, i, dma_addr);
1665         }
1666
1667         /* Make sure all writes are flushed before telling the hardware */
1668         rte_wmb();
1669
1670         /* Not advertising the whole ring as the firmware gets confused if so */
1671         PMD_RX_LOG(DEBUG, "Increment FL write pointer in %u",
1672                    rxq->rx_count - 1);
1673
1674         nfp_qcp_ptr_add(rxq->qcp_fl, NFP_QCP_WRITE_PTR, rxq->rx_count - 1);
1675
1676         return 0;
1677 }
1678
1679 static int
1680 nfp_net_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
1681                        uint16_t nb_desc, unsigned int socket_id,
1682                        const struct rte_eth_txconf *tx_conf)
1683 {
1684         const struct rte_memzone *tz;
1685         struct nfp_net_txq *txq;
1686         uint16_t tx_free_thresh;
1687         struct nfp_net_hw *hw;
1688
1689         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1690
1691         PMD_INIT_FUNC_TRACE();
1692
1693         /* Validating number of descriptors */
1694         if (((nb_desc * sizeof(struct nfp_net_tx_desc)) % 128) != 0 ||
1695             (nb_desc > NFP_NET_MAX_TX_DESC) ||
1696             (nb_desc < NFP_NET_MIN_TX_DESC)) {
1697                 PMD_DRV_LOG(ERR, "Wrong nb_desc value");
1698                 return -EINVAL;
1699         }
1700
1701         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
1702                                     tx_conf->tx_free_thresh :
1703                                     DEFAULT_TX_FREE_THRESH);
1704
1705         if (tx_free_thresh > (nb_desc)) {
1706                 PMD_DRV_LOG(ERR,
1707                         "tx_free_thresh must be less than the number of TX "
1708                         "descriptors. (tx_free_thresh=%u port=%d "
1709                         "queue=%d)", (unsigned int)tx_free_thresh,
1710                         dev->data->port_id, (int)queue_idx);
1711                 return -(EINVAL);
1712         }
1713
1714         /*
1715          * Free memory prior to re-allocation if needed. This is the case after
1716          * calling nfp_net_stop
1717          */
1718         if (dev->data->tx_queues[queue_idx]) {
1719                 PMD_TX_LOG(DEBUG, "Freeing memory prior to re-allocation %d",
1720                            queue_idx);
1721                 nfp_net_tx_queue_release(dev->data->tx_queues[queue_idx]);
1722                 dev->data->tx_queues[queue_idx] = NULL;
1723         }
1724
1725         /* Allocating tx queue data structure */
1726         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct nfp_net_txq),
1727                                  RTE_CACHE_LINE_SIZE, socket_id);
1728         if (txq == NULL) {
1729                 PMD_DRV_LOG(ERR, "Error allocating tx dma");
1730                 return -ENOMEM;
1731         }
1732
1733         /*
1734          * Allocate TX ring hardware descriptors. A memzone large enough to
1735          * handle the maximum ring size is allocated in order to allow for
1736          * resizing in later calls to the queue setup function.
1737          */
1738         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
1739                                    sizeof(struct nfp_net_tx_desc) *
1740                                    NFP_NET_MAX_TX_DESC, NFP_MEMZONE_ALIGN,
1741                                    socket_id);
1742         if (tz == NULL) {
1743                 PMD_DRV_LOG(ERR, "Error allocating tx dma");
1744                 nfp_net_tx_queue_release(txq);
1745                 return -ENOMEM;
1746         }
1747
1748         txq->tx_count = nb_desc;
1749         txq->tx_free_thresh = tx_free_thresh;
1750         txq->tx_pthresh = tx_conf->tx_thresh.pthresh;
1751         txq->tx_hthresh = tx_conf->tx_thresh.hthresh;
1752         txq->tx_wthresh = tx_conf->tx_thresh.wthresh;
1753
1754         /* queue mapping based on firmware configuration */
1755         txq->qidx = queue_idx;
1756         txq->tx_qcidx = queue_idx * hw->stride_tx;
1757         txq->qcp_q = hw->tx_bar + NFP_QCP_QUEUE_OFF(txq->tx_qcidx);
1758
1759         txq->port_id = dev->data->port_id;
1760
1761         /* Saving physical and virtual addresses for the TX ring */
1762         txq->dma = (uint64_t)tz->iova;
1763         txq->txds = (struct nfp_net_tx_desc *)tz->addr;
1764
1765         /* mbuf pointers array for referencing mbufs linked to TX descriptors */
1766         txq->txbufs = rte_zmalloc_socket("txq->txbufs",
1767                                          sizeof(*txq->txbufs) * nb_desc,
1768                                          RTE_CACHE_LINE_SIZE, socket_id);
1769         if (txq->txbufs == NULL) {
1770                 nfp_net_tx_queue_release(txq);
1771                 return -ENOMEM;
1772         }
1773         PMD_TX_LOG(DEBUG, "txbufs=%p hw_ring=%p dma_addr=0x%" PRIx64,
1774                    txq->txbufs, txq->txds, (unsigned long int)txq->dma);
1775
1776         nfp_net_reset_tx_queue(txq);
1777
1778         dev->data->tx_queues[queue_idx] = txq;
1779         txq->hw = hw;
1780
1781         /*
1782          * Telling the HW about the physical address of the TX ring and number
1783          * of descriptors in log2 format
1784          */
1785         nn_cfg_writeq(hw, NFP_NET_CFG_TXR_ADDR(queue_idx), txq->dma);
1786         nn_cfg_writeb(hw, NFP_NET_CFG_TXR_SZ(queue_idx), rte_log2_u32(nb_desc));
1787
1788         return 0;
1789 }
1790
1791 /* nfp_net_tx_tso - Set TX descriptor for TSO */
1792 static inline void
1793 nfp_net_tx_tso(struct nfp_net_txq *txq, struct nfp_net_tx_desc *txd,
1794                struct rte_mbuf *mb)
1795 {
1796         uint64_t ol_flags;
1797         struct nfp_net_hw *hw = txq->hw;
1798
1799         if (!(hw->cap & NFP_NET_CFG_CTRL_LSO_ANY))
1800                 goto clean_txd;
1801
1802         ol_flags = mb->ol_flags;
1803
1804         if (!(ol_flags & PKT_TX_TCP_SEG))
1805                 goto clean_txd;
1806
1807         txd->l3_offset = mb->l2_len;
1808         txd->l4_offset = mb->l2_len + mb->l3_len;
1809         txd->lso_hdrlen = mb->l2_len + mb->l3_len + mb->l4_len;
1810         txd->mss = rte_cpu_to_le_16(mb->tso_segsz);
1811         txd->flags = PCIE_DESC_TX_LSO;
1812         return;
1813
1814 clean_txd:
1815         txd->flags = 0;
1816         txd->l3_offset = 0;
1817         txd->l4_offset = 0;
1818         txd->lso_hdrlen = 0;
1819         txd->mss = 0;
1820 }
1821
1822 /* nfp_net_tx_cksum - Set TX CSUM offload flags in TX descriptor */
1823 static inline void
1824 nfp_net_tx_cksum(struct nfp_net_txq *txq, struct nfp_net_tx_desc *txd,
1825                  struct rte_mbuf *mb)
1826 {
1827         uint64_t ol_flags;
1828         struct nfp_net_hw *hw = txq->hw;
1829
1830         if (!(hw->cap & NFP_NET_CFG_CTRL_TXCSUM))
1831                 return;
1832
1833         ol_flags = mb->ol_flags;
1834
1835         /* IPv6 does not need checksum */
1836         if (ol_flags & PKT_TX_IP_CKSUM)
1837                 txd->flags |= PCIE_DESC_TX_IP4_CSUM;
1838
1839         switch (ol_flags & PKT_TX_L4_MASK) {
1840         case PKT_TX_UDP_CKSUM:
1841                 txd->flags |= PCIE_DESC_TX_UDP_CSUM;
1842                 break;
1843         case PKT_TX_TCP_CKSUM:
1844                 txd->flags |= PCIE_DESC_TX_TCP_CSUM;
1845                 break;
1846         }
1847
1848         if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
1849                 txd->flags |= PCIE_DESC_TX_CSUM;
1850 }
1851
1852 /* nfp_net_rx_cksum - set mbuf checksum flags based on RX descriptor flags */
1853 static inline void
1854 nfp_net_rx_cksum(struct nfp_net_rxq *rxq, struct nfp_net_rx_desc *rxd,
1855                  struct rte_mbuf *mb)
1856 {
1857         struct nfp_net_hw *hw = rxq->hw;
1858
1859         if (!(hw->ctrl & NFP_NET_CFG_CTRL_RXCSUM))
1860                 return;
1861
1862         /* If IPv4 and IP checksum error, fail */
1863         if (unlikely((rxd->rxd.flags & PCIE_DESC_RX_IP4_CSUM) &&
1864             !(rxd->rxd.flags & PCIE_DESC_RX_IP4_CSUM_OK)))
1865                 mb->ol_flags |= PKT_RX_IP_CKSUM_BAD;
1866         else
1867                 mb->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1868
1869         /* If neither UDP nor TCP return */
1870         if (!(rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM) &&
1871             !(rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM))
1872                 return;
1873
1874         if (likely(rxd->rxd.flags & PCIE_DESC_RX_L4_CSUM_OK))
1875                 mb->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1876         else
1877                 mb->ol_flags |= PKT_RX_L4_CKSUM_BAD;
1878 }
1879
1880 #define NFP_HASH_OFFSET      ((uint8_t *)mbuf->buf_addr + mbuf->data_off - 4)
1881 #define NFP_HASH_TYPE_OFFSET ((uint8_t *)mbuf->buf_addr + mbuf->data_off - 8)
1882
1883 #define NFP_DESC_META_LEN(d) (d->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK)
1884
1885 /*
1886  * nfp_net_set_hash - Set mbuf hash data
1887  *
1888  * The RSS hash and hash-type are pre-pended to the packet data.
1889  * Extract and decode it and set the mbuf fields.
1890  */
1891 static inline void
1892 nfp_net_set_hash(struct nfp_net_rxq *rxq, struct nfp_net_rx_desc *rxd,
1893                  struct rte_mbuf *mbuf)
1894 {
1895         struct nfp_net_hw *hw = rxq->hw;
1896         uint8_t *meta_offset;
1897         uint32_t meta_info;
1898         uint32_t hash = 0;
1899         uint32_t hash_type = 0;
1900
1901         if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
1902                 return;
1903
1904         /* this is true for new firmwares */
1905         if (likely(((hw->cap & NFP_NET_CFG_CTRL_RSS2) ||
1906             (NFD_CFG_MAJOR_VERSION_of(hw->ver) == 4)) &&
1907              NFP_DESC_META_LEN(rxd))) {
1908                 /*
1909                  * new metadata api:
1910                  * <----  32 bit  ----->
1911                  * m    field type word
1912                  * e     data field #2
1913                  * t     data field #1
1914                  * a     data field #0
1915                  * ====================
1916                  *    packet data
1917                  *
1918                  * Field type word contains up to 8 4bit field types
1919                  * A 4bit field type refers to a data field word
1920                  * A data field word can have several 4bit field types
1921                  */
1922                 meta_offset = rte_pktmbuf_mtod(mbuf, uint8_t *);
1923                 meta_offset -= NFP_DESC_META_LEN(rxd);
1924                 meta_info = rte_be_to_cpu_32(*(uint32_t *)meta_offset);
1925                 meta_offset += 4;
1926                 /* NFP PMD just supports metadata for hashing */
1927                 switch (meta_info & NFP_NET_META_FIELD_MASK) {
1928                 case NFP_NET_META_HASH:
1929                         /* next field type is about the hash type */
1930                         meta_info >>= NFP_NET_META_FIELD_SIZE;
1931                         /* hash value is in the data field */
1932                         hash = rte_be_to_cpu_32(*(uint32_t *)meta_offset);
1933                         hash_type = meta_info & NFP_NET_META_FIELD_MASK;
1934                         break;
1935                 default:
1936                         /* Unsupported metadata can be a performance issue */
1937                         return;
1938                 }
1939         } else {
1940                 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1941                         return;
1942
1943                 hash = rte_be_to_cpu_32(*(uint32_t *)NFP_HASH_OFFSET);
1944                 hash_type = rte_be_to_cpu_32(*(uint32_t *)NFP_HASH_TYPE_OFFSET);
1945         }
1946
1947         mbuf->hash.rss = hash;
1948         mbuf->ol_flags |= PKT_RX_RSS_HASH;
1949
1950         switch (hash_type) {
1951         case NFP_NET_RSS_IPV4:
1952                 mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV4;
1953                 break;
1954         case NFP_NET_RSS_IPV6:
1955                 mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6;
1956                 break;
1957         case NFP_NET_RSS_IPV6_EX:
1958                 mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
1959                 break;
1960         case NFP_NET_RSS_IPV4_TCP:
1961                 mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
1962                 break;
1963         case NFP_NET_RSS_IPV6_TCP:
1964                 mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
1965                 break;
1966         case NFP_NET_RSS_IPV4_UDP:
1967                 mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
1968                 break;
1969         case NFP_NET_RSS_IPV6_UDP:
1970                 mbuf->packet_type |= RTE_PTYPE_INNER_L3_IPV6_EXT;
1971                 break;
1972         default:
1973                 mbuf->packet_type |= RTE_PTYPE_INNER_L4_MASK;
1974         }
1975 }
1976
1977 static inline void
1978 nfp_net_mbuf_alloc_failed(struct nfp_net_rxq *rxq)
1979 {
1980         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1981 }
1982
1983 #define NFP_DESC_META_LEN(d) (d->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK)
1984
1985 /*
1986  * RX path design:
1987  *
1988  * There are some decisions to take:
1989  * 1) How to check DD RX descriptors bit
1990  * 2) How and when to allocate new mbufs
1991  *
1992  * Current implementation checks just one single DD bit each loop. As each
1993  * descriptor is 8 bytes, it is likely a good idea to check descriptors in
1994  * a single cache line instead. Tests with this change have not shown any
1995  * performance improvement but it requires further investigation. For example,
1996  * depending on which descriptor is next, the number of descriptors could be
1997  * less than 8 for just checking those in the same cache line. This implies
1998  * extra work which could be counterproductive by itself. Indeed, last firmware
1999  * changes are just doing this: writing several descriptors with the DD bit
2000  * for saving PCIe bandwidth and DMA operations from the NFP.
2001  *
2002  * Mbuf allocation is done when a new packet is received. Then the descriptor
2003  * is automatically linked with the new mbuf and the old one is given to the
2004  * user. The main drawback with this design is mbuf allocation is heavier than
2005  * using bulk allocations allowed by DPDK with rte_mempool_get_bulk. From the
2006  * cache point of view it does not seem allocating the mbuf early on as we are
2007  * doing now have any benefit at all. Again, tests with this change have not
2008  * shown any improvement. Also, rte_mempool_get_bulk returns all or nothing
2009  * so looking at the implications of this type of allocation should be studied
2010  * deeply
2011  */
2012
2013 static uint16_t
2014 nfp_net_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
2015 {
2016         struct nfp_net_rxq *rxq;
2017         struct nfp_net_rx_desc *rxds;
2018         struct nfp_net_rx_buff *rxb;
2019         struct nfp_net_hw *hw;
2020         struct rte_mbuf *mb;
2021         struct rte_mbuf *new_mb;
2022         uint16_t nb_hold;
2023         uint64_t dma_addr;
2024         int avail;
2025
2026         rxq = rx_queue;
2027         if (unlikely(rxq == NULL)) {
2028                 /*
2029                  * DPDK just checks the queue is lower than max queues
2030                  * enabled. But the queue needs to be configured
2031                  */
2032                 RTE_LOG_DP(ERR, PMD, "RX Bad queue\n");
2033                 return -EINVAL;
2034         }
2035
2036         hw = rxq->hw;
2037         avail = 0;
2038         nb_hold = 0;
2039
2040         while (avail < nb_pkts) {
2041                 rxb = &rxq->rxbufs[rxq->rd_p];
2042                 if (unlikely(rxb == NULL)) {
2043                         RTE_LOG_DP(ERR, PMD, "rxb does not exist!\n");
2044                         break;
2045                 }
2046
2047                 rxds = &rxq->rxds[rxq->rd_p];
2048                 if ((rxds->rxd.meta_len_dd & PCIE_DESC_RX_DD) == 0)
2049                         break;
2050
2051                 /*
2052                  * Memory barrier to ensure that we won't do other
2053                  * reads before the DD bit.
2054                  */
2055                 rte_rmb();
2056
2057                 /*
2058                  * We got a packet. Let's alloc a new mbuf for refilling the
2059                  * free descriptor ring as soon as possible
2060                  */
2061                 new_mb = rte_pktmbuf_alloc(rxq->mem_pool);
2062                 if (unlikely(new_mb == NULL)) {
2063                         RTE_LOG_DP(DEBUG, PMD,
2064                         "RX mbuf alloc failed port_id=%u queue_id=%u\n",
2065                                 rxq->port_id, (unsigned int)rxq->qidx);
2066                         nfp_net_mbuf_alloc_failed(rxq);
2067                         break;
2068                 }
2069
2070                 nb_hold++;
2071
2072                 /*
2073                  * Grab the mbuf and refill the descriptor with the
2074                  * previously allocated mbuf
2075                  */
2076                 mb = rxb->mbuf;
2077                 rxb->mbuf = new_mb;
2078
2079                 PMD_RX_LOG(DEBUG, "Packet len: %u, mbuf_size: %u",
2080                            rxds->rxd.data_len, rxq->mbuf_size);
2081
2082                 /* Size of this segment */
2083                 mb->data_len = rxds->rxd.data_len - NFP_DESC_META_LEN(rxds);
2084                 /* Size of the whole packet. We just support 1 segment */
2085                 mb->pkt_len = rxds->rxd.data_len - NFP_DESC_META_LEN(rxds);
2086
2087                 if (unlikely((mb->data_len + hw->rx_offset) >
2088                              rxq->mbuf_size)) {
2089                         /*
2090                          * This should not happen and the user has the
2091                          * responsibility of avoiding it. But we have
2092                          * to give some info about the error
2093                          */
2094                         RTE_LOG_DP(ERR, PMD,
2095                                 "mbuf overflow likely due to the RX offset.\n"
2096                                 "\t\tYour mbuf size should have extra space for"
2097                                 " RX offset=%u bytes.\n"
2098                                 "\t\tCurrently you just have %u bytes available"
2099                                 " but the received packet is %u bytes long",
2100                                 hw->rx_offset,
2101                                 rxq->mbuf_size - hw->rx_offset,
2102                                 mb->data_len);
2103                         return -EINVAL;
2104                 }
2105
2106                 /* Filling the received mbuf with packet info */
2107                 if (hw->rx_offset)
2108                         mb->data_off = RTE_PKTMBUF_HEADROOM + hw->rx_offset;
2109                 else
2110                         mb->data_off = RTE_PKTMBUF_HEADROOM +
2111                                        NFP_DESC_META_LEN(rxds);
2112
2113                 /* No scatter mode supported */
2114                 mb->nb_segs = 1;
2115                 mb->next = NULL;
2116
2117                 mb->port = rxq->port_id;
2118
2119                 /* Checking the RSS flag */
2120                 nfp_net_set_hash(rxq, rxds, mb);
2121
2122                 /* Checking the checksum flag */
2123                 nfp_net_rx_cksum(rxq, rxds, mb);
2124
2125                 if ((rxds->rxd.flags & PCIE_DESC_RX_VLAN) &&
2126                     (hw->ctrl & NFP_NET_CFG_CTRL_RXVLAN)) {
2127                         mb->vlan_tci = rte_cpu_to_le_32(rxds->rxd.vlan);
2128                         mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
2129                 }
2130
2131                 /* Adding the mbuf to the mbuf array passed by the app */
2132                 rx_pkts[avail++] = mb;
2133
2134                 /* Now resetting and updating the descriptor */
2135                 rxds->vals[0] = 0;
2136                 rxds->vals[1] = 0;
2137                 dma_addr = rte_cpu_to_le_64(RTE_MBUF_DMA_ADDR_DEFAULT(new_mb));
2138                 rxds->fld.dd = 0;
2139                 rxds->fld.dma_addr_hi = (dma_addr >> 32) & 0xff;
2140                 rxds->fld.dma_addr_lo = dma_addr & 0xffffffff;
2141
2142                 rxq->rd_p++;
2143                 if (unlikely(rxq->rd_p == rxq->rx_count)) /* wrapping?*/
2144                         rxq->rd_p = 0;
2145         }
2146
2147         if (nb_hold == 0)
2148                 return nb_hold;
2149
2150         PMD_RX_LOG(DEBUG, "RX  port_id=%u queue_id=%u, %d packets received",
2151                    rxq->port_id, (unsigned int)rxq->qidx, nb_hold);
2152
2153         nb_hold += rxq->nb_rx_hold;
2154
2155         /*
2156          * FL descriptors needs to be written before incrementing the
2157          * FL queue WR pointer
2158          */
2159         rte_wmb();
2160         if (nb_hold > rxq->rx_free_thresh) {
2161                 PMD_RX_LOG(DEBUG, "port=%u queue=%u nb_hold=%u avail=%u",
2162                            rxq->port_id, (unsigned int)rxq->qidx,
2163                            (unsigned)nb_hold, (unsigned)avail);
2164                 nfp_qcp_ptr_add(rxq->qcp_fl, NFP_QCP_WRITE_PTR, nb_hold);
2165                 nb_hold = 0;
2166         }
2167         rxq->nb_rx_hold = nb_hold;
2168
2169         return avail;
2170 }
2171
2172 /*
2173  * nfp_net_tx_free_bufs - Check for descriptors with a complete
2174  * status
2175  * @txq: TX queue to work with
2176  * Returns number of descriptors freed
2177  */
2178 int
2179 nfp_net_tx_free_bufs(struct nfp_net_txq *txq)
2180 {
2181         uint32_t qcp_rd_p;
2182         int todo;
2183
2184         PMD_TX_LOG(DEBUG, "queue %u. Check for descriptor with a complete"
2185                    " status", txq->qidx);
2186
2187         /* Work out how many packets have been sent */
2188         qcp_rd_p = nfp_qcp_read(txq->qcp_q, NFP_QCP_READ_PTR);
2189
2190         if (qcp_rd_p == txq->rd_p) {
2191                 PMD_TX_LOG(DEBUG, "queue %u: It seems harrier is not sending "
2192                            "packets (%u, %u)", txq->qidx,
2193                            qcp_rd_p, txq->rd_p);
2194                 return 0;
2195         }
2196
2197         if (qcp_rd_p > txq->rd_p)
2198                 todo = qcp_rd_p - txq->rd_p;
2199         else
2200                 todo = qcp_rd_p + txq->tx_count - txq->rd_p;
2201
2202         PMD_TX_LOG(DEBUG, "qcp_rd_p %u, txq->rd_p: %u, qcp->rd_p: %u",
2203                    qcp_rd_p, txq->rd_p, txq->rd_p);
2204
2205         if (todo == 0)
2206                 return todo;
2207
2208         txq->rd_p += todo;
2209         if (unlikely(txq->rd_p >= txq->tx_count))
2210                 txq->rd_p -= txq->tx_count;
2211
2212         return todo;
2213 }
2214
2215 /* Leaving always free descriptors for avoiding wrapping confusion */
2216 static inline
2217 uint32_t nfp_free_tx_desc(struct nfp_net_txq *txq)
2218 {
2219         if (txq->wr_p >= txq->rd_p)
2220                 return txq->tx_count - (txq->wr_p - txq->rd_p) - 8;
2221         else
2222                 return txq->rd_p - txq->wr_p - 8;
2223 }
2224
2225 /*
2226  * nfp_net_txq_full - Check if the TX queue free descriptors
2227  * is below tx_free_threshold
2228  *
2229  * @txq: TX queue to check
2230  *
2231  * This function uses the host copy* of read/write pointers
2232  */
2233 static inline
2234 uint32_t nfp_net_txq_full(struct nfp_net_txq *txq)
2235 {
2236         return (nfp_free_tx_desc(txq) < txq->tx_free_thresh);
2237 }
2238
2239 static uint16_t
2240 nfp_net_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2241 {
2242         struct nfp_net_txq *txq;
2243         struct nfp_net_hw *hw;
2244         struct nfp_net_tx_desc *txds, txd;
2245         struct rte_mbuf *pkt;
2246         uint64_t dma_addr;
2247         int pkt_size, dma_size;
2248         uint16_t free_descs, issued_descs;
2249         struct rte_mbuf **lmbuf;
2250         int i;
2251
2252         txq = tx_queue;
2253         hw = txq->hw;
2254         txds = &txq->txds[txq->wr_p];
2255
2256         PMD_TX_LOG(DEBUG, "working for queue %u at pos %d and %u packets",
2257                    txq->qidx, txq->wr_p, nb_pkts);
2258
2259         if ((nfp_free_tx_desc(txq) < nb_pkts) || (nfp_net_txq_full(txq)))
2260                 nfp_net_tx_free_bufs(txq);
2261
2262         free_descs = (uint16_t)nfp_free_tx_desc(txq);
2263         if (unlikely(free_descs == 0))
2264                 return 0;
2265
2266         pkt = *tx_pkts;
2267
2268         i = 0;
2269         issued_descs = 0;
2270         PMD_TX_LOG(DEBUG, "queue: %u. Sending %u packets",
2271                    txq->qidx, nb_pkts);
2272         /* Sending packets */
2273         while ((i < nb_pkts) && free_descs) {
2274                 /* Grabbing the mbuf linked to the current descriptor */
2275                 lmbuf = &txq->txbufs[txq->wr_p].mbuf;
2276                 /* Warming the cache for releasing the mbuf later on */
2277                 RTE_MBUF_PREFETCH_TO_FREE(*lmbuf);
2278
2279                 pkt = *(tx_pkts + i);
2280
2281                 if (unlikely((pkt->nb_segs > 1) &&
2282                              !(hw->cap & NFP_NET_CFG_CTRL_GATHER))) {
2283                         PMD_INIT_LOG(INFO, "NFP_NET_CFG_CTRL_GATHER not set");
2284                         rte_panic("Multisegment packet unsupported\n");
2285                 }
2286
2287                 /* Checking if we have enough descriptors */
2288                 if (unlikely(pkt->nb_segs > free_descs))
2289                         goto xmit_end;
2290
2291                 /*
2292                  * Checksum and VLAN flags just in the first descriptor for a
2293                  * multisegment packet, but TSO info needs to be in all of them.
2294                  */
2295                 txd.data_len = pkt->pkt_len;
2296                 nfp_net_tx_tso(txq, &txd, pkt);
2297                 nfp_net_tx_cksum(txq, &txd, pkt);
2298
2299                 if ((pkt->ol_flags & PKT_TX_VLAN_PKT) &&
2300                     (hw->cap & NFP_NET_CFG_CTRL_TXVLAN)) {
2301                         txd.flags |= PCIE_DESC_TX_VLAN;
2302                         txd.vlan = pkt->vlan_tci;
2303                 }
2304
2305                 /*
2306                  * mbuf data_len is the data in one segment and pkt_len data
2307                  * in the whole packet. When the packet is just one segment,
2308                  * then data_len = pkt_len
2309                  */
2310                 pkt_size = pkt->pkt_len;
2311
2312                 while (pkt) {
2313                         /* Copying TSO, VLAN and cksum info */
2314                         *txds = txd;
2315
2316                         /* Releasing mbuf used by this descriptor previously*/
2317                         if (*lmbuf)
2318                                 rte_pktmbuf_free_seg(*lmbuf);
2319
2320                         /*
2321                          * Linking mbuf with descriptor for being released
2322                          * next time descriptor is used
2323                          */
2324                         *lmbuf = pkt;
2325
2326                         dma_size = pkt->data_len;
2327                         dma_addr = rte_mbuf_data_iova(pkt);
2328                         PMD_TX_LOG(DEBUG, "Working with mbuf at dma address:"
2329                                    "%" PRIx64 "", dma_addr);
2330
2331                         /* Filling descriptors fields */
2332                         txds->dma_len = dma_size;
2333                         txds->data_len = txd.data_len;
2334                         txds->dma_addr_hi = (dma_addr >> 32) & 0xff;
2335                         txds->dma_addr_lo = (dma_addr & 0xffffffff);
2336                         ASSERT(free_descs > 0);
2337                         free_descs--;
2338
2339                         txq->wr_p++;
2340                         if (unlikely(txq->wr_p == txq->tx_count)) /* wrapping?*/
2341                                 txq->wr_p = 0;
2342
2343                         pkt_size -= dma_size;
2344
2345                         /*
2346                          * Making the EOP, packets with just one segment
2347                          * the priority
2348                          */
2349                         if (likely(!pkt_size))
2350                                 txds->offset_eop = PCIE_DESC_TX_EOP;
2351                         else
2352                                 txds->offset_eop = 0;
2353
2354                         pkt = pkt->next;
2355                         /* Referencing next free TX descriptor */
2356                         txds = &txq->txds[txq->wr_p];
2357                         lmbuf = &txq->txbufs[txq->wr_p].mbuf;
2358                         issued_descs++;
2359                 }
2360                 i++;
2361         }
2362
2363 xmit_end:
2364         /* Increment write pointers. Force memory write before we let HW know */
2365         rte_wmb();
2366         nfp_qcp_ptr_add(txq->qcp_q, NFP_QCP_WRITE_PTR, issued_descs);
2367
2368         return i;
2369 }
2370
2371 static int
2372 nfp_net_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2373 {
2374         uint32_t new_ctrl, update;
2375         struct nfp_net_hw *hw;
2376         int ret;
2377
2378         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2379         new_ctrl = 0;
2380
2381         if ((mask & ETH_VLAN_FILTER_OFFLOAD) ||
2382             (mask & ETH_VLAN_EXTEND_OFFLOAD))
2383                 PMD_DRV_LOG(INFO, "No support for ETH_VLAN_FILTER_OFFLOAD or"
2384                         " ETH_VLAN_EXTEND_OFFLOAD");
2385
2386         /* Enable vlan strip if it is not configured yet */
2387         if ((mask & ETH_VLAN_STRIP_OFFLOAD) &&
2388             !(hw->ctrl & NFP_NET_CFG_CTRL_RXVLAN))
2389                 new_ctrl = hw->ctrl | NFP_NET_CFG_CTRL_RXVLAN;
2390
2391         /* Disable vlan strip just if it is configured */
2392         if (!(mask & ETH_VLAN_STRIP_OFFLOAD) &&
2393             (hw->ctrl & NFP_NET_CFG_CTRL_RXVLAN))
2394                 new_ctrl = hw->ctrl & ~NFP_NET_CFG_CTRL_RXVLAN;
2395
2396         if (new_ctrl == 0)
2397                 return 0;
2398
2399         update = NFP_NET_CFG_UPDATE_GEN;
2400
2401         ret = nfp_net_reconfig(hw, new_ctrl, update);
2402         if (!ret)
2403                 hw->ctrl = new_ctrl;
2404
2405         return ret;
2406 }
2407
2408 static int
2409 nfp_net_rss_reta_write(struct rte_eth_dev *dev,
2410                     struct rte_eth_rss_reta_entry64 *reta_conf,
2411                     uint16_t reta_size)
2412 {
2413         uint32_t reta, mask;
2414         int i, j;
2415         int idx, shift;
2416         struct nfp_net_hw *hw =
2417                 NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2418
2419         if (reta_size != NFP_NET_CFG_RSS_ITBL_SZ) {
2420                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
2421                         "(%d) doesn't match the number hardware can supported "
2422                         "(%d)", reta_size, NFP_NET_CFG_RSS_ITBL_SZ);
2423                 return -EINVAL;
2424         }
2425
2426         /*
2427          * Update Redirection Table. There are 128 8bit-entries which can be
2428          * manage as 32 32bit-entries
2429          */
2430         for (i = 0; i < reta_size; i += 4) {
2431                 /* Handling 4 RSS entries per loop */
2432                 idx = i / RTE_RETA_GROUP_SIZE;
2433                 shift = i % RTE_RETA_GROUP_SIZE;
2434                 mask = (uint8_t)((reta_conf[idx].mask >> shift) & 0xF);
2435
2436                 if (!mask)
2437                         continue;
2438
2439                 reta = 0;
2440                 /* If all 4 entries were set, don't need read RETA register */
2441                 if (mask != 0xF)
2442                         reta = nn_cfg_readl(hw, NFP_NET_CFG_RSS_ITBL + i);
2443
2444                 for (j = 0; j < 4; j++) {
2445                         if (!(mask & (0x1 << j)))
2446                                 continue;
2447                         if (mask != 0xF)
2448                                 /* Clearing the entry bits */
2449                                 reta &= ~(0xFF << (8 * j));
2450                         reta |= reta_conf[idx].reta[shift + j] << (8 * j);
2451                 }
2452                 nn_cfg_writel(hw, NFP_NET_CFG_RSS_ITBL + (idx * 64) + shift,
2453                               reta);
2454         }
2455         return 0;
2456 }
2457
2458 /* Update Redirection Table(RETA) of Receive Side Scaling of Ethernet device */
2459 static int
2460 nfp_net_reta_update(struct rte_eth_dev *dev,
2461                     struct rte_eth_rss_reta_entry64 *reta_conf,
2462                     uint16_t reta_size)
2463 {
2464         struct nfp_net_hw *hw =
2465                 NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2466         uint32_t update;
2467         int ret;
2468
2469         if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
2470                 return -EINVAL;
2471
2472         ret = nfp_net_rss_reta_write(dev, reta_conf, reta_size);
2473         if (ret != 0)
2474                 return ret;
2475
2476         update = NFP_NET_CFG_UPDATE_RSS;
2477
2478         if (nfp_net_reconfig(hw, hw->ctrl, update) < 0)
2479                 return -EIO;
2480
2481         return 0;
2482 }
2483
2484  /* Query Redirection Table(RETA) of Receive Side Scaling of Ethernet device. */
2485 static int
2486 nfp_net_reta_query(struct rte_eth_dev *dev,
2487                    struct rte_eth_rss_reta_entry64 *reta_conf,
2488                    uint16_t reta_size)
2489 {
2490         uint8_t i, j, mask;
2491         int idx, shift;
2492         uint32_t reta;
2493         struct nfp_net_hw *hw;
2494
2495         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2496
2497         if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
2498                 return -EINVAL;
2499
2500         if (reta_size != NFP_NET_CFG_RSS_ITBL_SZ) {
2501                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
2502                         "(%d) doesn't match the number hardware can supported "
2503                         "(%d)", reta_size, NFP_NET_CFG_RSS_ITBL_SZ);
2504                 return -EINVAL;
2505         }
2506
2507         /*
2508          * Reading Redirection Table. There are 128 8bit-entries which can be
2509          * manage as 32 32bit-entries
2510          */
2511         for (i = 0; i < reta_size; i += 4) {
2512                 /* Handling 4 RSS entries per loop */
2513                 idx = i / RTE_RETA_GROUP_SIZE;
2514                 shift = i % RTE_RETA_GROUP_SIZE;
2515                 mask = (uint8_t)((reta_conf[idx].mask >> shift) & 0xF);
2516
2517                 if (!mask)
2518                         continue;
2519
2520                 reta = nn_cfg_readl(hw, NFP_NET_CFG_RSS_ITBL + (idx * 64) +
2521                                     shift);
2522                 for (j = 0; j < 4; j++) {
2523                         if (!(mask & (0x1 << j)))
2524                                 continue;
2525                         reta_conf[idx].reta[shift + j] =
2526                                 (uint8_t)((reta >> (8 * j)) & 0xF);
2527                 }
2528         }
2529         return 0;
2530 }
2531
2532 static int
2533 nfp_net_rss_hash_write(struct rte_eth_dev *dev,
2534                         struct rte_eth_rss_conf *rss_conf)
2535 {
2536         struct nfp_net_hw *hw;
2537         uint64_t rss_hf;
2538         uint32_t cfg_rss_ctrl = 0;
2539         uint8_t key;
2540         int i;
2541
2542         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2543
2544         /* Writing the key byte a byte */
2545         for (i = 0; i < rss_conf->rss_key_len; i++) {
2546                 memcpy(&key, &rss_conf->rss_key[i], 1);
2547                 nn_cfg_writeb(hw, NFP_NET_CFG_RSS_KEY + i, key);
2548         }
2549
2550         rss_hf = rss_conf->rss_hf;
2551
2552         if (rss_hf & ETH_RSS_IPV4)
2553                 cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV4;
2554
2555         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
2556                 cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV4_TCP;
2557
2558         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
2559                 cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV4_UDP;
2560
2561         if (rss_hf & ETH_RSS_IPV6)
2562                 cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV6;
2563
2564         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
2565                 cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV6_TCP;
2566
2567         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
2568                 cfg_rss_ctrl |= NFP_NET_CFG_RSS_IPV6_UDP;
2569
2570         cfg_rss_ctrl |= NFP_NET_CFG_RSS_MASK;
2571         cfg_rss_ctrl |= NFP_NET_CFG_RSS_TOEPLITZ;
2572
2573         /* configuring where to apply the RSS hash */
2574         nn_cfg_writel(hw, NFP_NET_CFG_RSS_CTRL, cfg_rss_ctrl);
2575
2576         /* Writing the key size */
2577         nn_cfg_writeb(hw, NFP_NET_CFG_RSS_KEY_SZ, rss_conf->rss_key_len);
2578
2579         return 0;
2580 }
2581
2582 static int
2583 nfp_net_rss_hash_update(struct rte_eth_dev *dev,
2584                         struct rte_eth_rss_conf *rss_conf)
2585 {
2586         uint32_t update;
2587         uint64_t rss_hf;
2588         struct nfp_net_hw *hw;
2589
2590         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2591
2592         rss_hf = rss_conf->rss_hf;
2593
2594         /* Checking if RSS is enabled */
2595         if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS)) {
2596                 if (rss_hf != 0) { /* Enable RSS? */
2597                         PMD_DRV_LOG(ERR, "RSS unsupported");
2598                         return -EINVAL;
2599                 }
2600                 return 0; /* Nothing to do */
2601         }
2602
2603         if (rss_conf->rss_key_len > NFP_NET_CFG_RSS_KEY_SZ) {
2604                 PMD_DRV_LOG(ERR, "hash key too long");
2605                 return -EINVAL;
2606         }
2607
2608         nfp_net_rss_hash_write(dev, rss_conf);
2609
2610         update = NFP_NET_CFG_UPDATE_RSS;
2611
2612         if (nfp_net_reconfig(hw, hw->ctrl, update) < 0)
2613                 return -EIO;
2614
2615         return 0;
2616 }
2617
2618 static int
2619 nfp_net_rss_hash_conf_get(struct rte_eth_dev *dev,
2620                           struct rte_eth_rss_conf *rss_conf)
2621 {
2622         uint64_t rss_hf;
2623         uint32_t cfg_rss_ctrl;
2624         uint8_t key;
2625         int i;
2626         struct nfp_net_hw *hw;
2627
2628         hw = NFP_NET_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2629
2630         if (!(hw->ctrl & NFP_NET_CFG_CTRL_RSS))
2631                 return -EINVAL;
2632
2633         rss_hf = rss_conf->rss_hf;
2634         cfg_rss_ctrl = nn_cfg_readl(hw, NFP_NET_CFG_RSS_CTRL);
2635
2636         if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV4)
2637                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP | ETH_RSS_NONFRAG_IPV4_UDP;
2638
2639         if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV4_TCP)
2640                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
2641
2642         if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV6_TCP)
2643                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
2644
2645         if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV4_UDP)
2646                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
2647
2648         if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV6_UDP)
2649                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
2650
2651         if (cfg_rss_ctrl & NFP_NET_CFG_RSS_IPV6)
2652                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP | ETH_RSS_NONFRAG_IPV6_UDP;
2653
2654         /* Reading the key size */
2655         rss_conf->rss_key_len = nn_cfg_readl(hw, NFP_NET_CFG_RSS_KEY_SZ);
2656
2657         /* Reading the key byte a byte */
2658         for (i = 0; i < rss_conf->rss_key_len; i++) {
2659                 key = nn_cfg_readb(hw, NFP_NET_CFG_RSS_KEY + i);
2660                 memcpy(&rss_conf->rss_key[i], &key, 1);
2661         }
2662
2663         return 0;
2664 }
2665
2666 static int
2667 nfp_net_rss_config_default(struct rte_eth_dev *dev)
2668 {
2669         struct rte_eth_conf *dev_conf;
2670         struct rte_eth_rss_conf rss_conf;
2671         struct rte_eth_rss_reta_entry64 nfp_reta_conf[2];
2672         uint16_t rx_queues = dev->data->nb_rx_queues;
2673         uint16_t queue;
2674         int i, j, ret;
2675
2676         PMD_DRV_LOG(INFO, "setting default RSS conf for %u queues",
2677                 rx_queues);
2678
2679         nfp_reta_conf[0].mask = ~0x0;
2680         nfp_reta_conf[1].mask = ~0x0;
2681
2682         queue = 0;
2683         for (i = 0; i < 0x40; i += 8) {
2684                 for (j = i; j < (i + 8); j++) {
2685                         nfp_reta_conf[0].reta[j] = queue;
2686                         nfp_reta_conf[1].reta[j] = queue++;
2687                         queue %= rx_queues;
2688                 }
2689         }
2690         ret = nfp_net_rss_reta_write(dev, nfp_reta_conf, 0x80);
2691         if (ret != 0)
2692                 return ret;
2693
2694         dev_conf = &dev->data->dev_conf;
2695         if (!dev_conf) {
2696                 PMD_DRV_LOG(INFO, "wrong rss conf");
2697                 return -EINVAL;
2698         }
2699         rss_conf = dev_conf->rx_adv_conf.rss_conf;
2700
2701         ret = nfp_net_rss_hash_write(dev, &rss_conf);
2702
2703         return ret;
2704 }
2705
2706
2707 /* Initialise and register driver with DPDK Application */
2708 static const struct eth_dev_ops nfp_net_eth_dev_ops = {
2709         .dev_configure          = nfp_net_configure,
2710         .dev_start              = nfp_net_start,
2711         .dev_stop               = nfp_net_stop,
2712         .dev_set_link_up        = nfp_net_set_link_up,
2713         .dev_set_link_down      = nfp_net_set_link_down,
2714         .dev_close              = nfp_net_close,
2715         .promiscuous_enable     = nfp_net_promisc_enable,
2716         .promiscuous_disable    = nfp_net_promisc_disable,
2717         .link_update            = nfp_net_link_update,
2718         .stats_get              = nfp_net_stats_get,
2719         .stats_reset            = nfp_net_stats_reset,
2720         .dev_infos_get          = nfp_net_infos_get,
2721         .dev_supported_ptypes_get = nfp_net_supported_ptypes_get,
2722         .mtu_set                = nfp_net_dev_mtu_set,
2723         .mac_addr_set           = nfp_set_mac_addr,
2724         .vlan_offload_set       = nfp_net_vlan_offload_set,
2725         .reta_update            = nfp_net_reta_update,
2726         .reta_query             = nfp_net_reta_query,
2727         .rss_hash_update        = nfp_net_rss_hash_update,
2728         .rss_hash_conf_get      = nfp_net_rss_hash_conf_get,
2729         .rx_queue_setup         = nfp_net_rx_queue_setup,
2730         .rx_queue_release       = nfp_net_rx_queue_release,
2731         .rx_queue_count         = nfp_net_rx_queue_count,
2732         .tx_queue_setup         = nfp_net_tx_queue_setup,
2733         .tx_queue_release       = nfp_net_tx_queue_release,
2734         .rx_queue_intr_enable   = nfp_rx_queue_intr_enable,
2735         .rx_queue_intr_disable  = nfp_rx_queue_intr_disable,
2736 };
2737
2738 /*
2739  * All eth_dev created got its private data, but before nfp_net_init, that
2740  * private data is referencing private data for all the PF ports. This is due
2741  * to how the vNIC bars are mapped based on first port, so all ports need info
2742  * about port 0 private data. Inside nfp_net_init the private data pointer is
2743  * changed to the right address for each port once the bars have been mapped.
2744  *
2745  * This functions helps to find out which port and therefore which offset
2746  * inside the private data array to use.
2747  */
2748 static int
2749 get_pf_port_number(char *name)
2750 {
2751         char *pf_str = name;
2752         int size = 0;
2753
2754         while ((*pf_str != '_') && (*pf_str != '\0') && (size++ < 30))
2755                 pf_str++;
2756
2757         if (size == 30)
2758                 /*
2759                  * This should not happen at all and it would mean major
2760                  * implementation fault.
2761                  */
2762                 rte_panic("nfp_net: problem with pf device name\n");
2763
2764         /* Expecting _portX with X within [0,7] */
2765         pf_str += 5;
2766
2767         return (int)strtol(pf_str, NULL, 10);
2768 }
2769
2770 static int
2771 nfp_net_init(struct rte_eth_dev *eth_dev)
2772 {
2773         struct rte_pci_device *pci_dev;
2774         struct nfp_net_hw *hw, *hwport0;
2775
2776         uint64_t tx_bar_off = 0, rx_bar_off = 0;
2777         uint32_t start_q;
2778         int stride = 4;
2779         int port = 0;
2780         int err;
2781
2782         PMD_INIT_FUNC_TRACE();
2783
2784         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2785
2786         /* NFP can not handle DMA addresses requiring more than 40 bits */
2787         if (rte_mem_check_dma_mask(40)) {
2788                 RTE_LOG(ERR, PMD, "device %s can not be used:",
2789                                    pci_dev->device.name);
2790                 RTE_LOG(ERR, PMD, "\trestricted dma mask to 40 bits!\n");
2791                 return -ENODEV;
2792         };
2793
2794         if ((pci_dev->id.device_id == PCI_DEVICE_ID_NFP4000_PF_NIC) ||
2795             (pci_dev->id.device_id == PCI_DEVICE_ID_NFP6000_PF_NIC)) {
2796                 port = get_pf_port_number(eth_dev->data->name);
2797                 if (port < 0 || port > 7) {
2798                         PMD_DRV_LOG(ERR, "Port value is wrong");
2799                         return -ENODEV;
2800                 }
2801
2802                 PMD_INIT_LOG(DEBUG, "Working with PF port value %d", port);
2803
2804                 /* This points to port 0 private data */
2805                 hwport0 = NFP_NET_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2806
2807                 /* This points to the specific port private data */
2808                 hw = &hwport0[port];
2809         } else {
2810                 hw = NFP_NET_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2811                 hwport0 = 0;
2812         }
2813
2814         eth_dev->dev_ops = &nfp_net_eth_dev_ops;
2815         eth_dev->rx_pkt_burst = &nfp_net_recv_pkts;
2816         eth_dev->tx_pkt_burst = &nfp_net_xmit_pkts;
2817
2818         /* For secondary processes, the primary has done all the work */
2819         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2820                 return 0;
2821
2822         rte_eth_copy_pci_info(eth_dev, pci_dev);
2823
2824         hw->device_id = pci_dev->id.device_id;
2825         hw->vendor_id = pci_dev->id.vendor_id;
2826         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
2827         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
2828
2829         PMD_INIT_LOG(DEBUG, "nfp_net: device (%u:%u) %u:%u:%u:%u",
2830                      pci_dev->id.vendor_id, pci_dev->id.device_id,
2831                      pci_dev->addr.domain, pci_dev->addr.bus,
2832                      pci_dev->addr.devid, pci_dev->addr.function);
2833
2834         hw->ctrl_bar = (uint8_t *)pci_dev->mem_resource[0].addr;
2835         if (hw->ctrl_bar == NULL) {
2836                 PMD_DRV_LOG(ERR,
2837                         "hw->ctrl_bar is NULL. BAR0 not configured");
2838                 return -ENODEV;
2839         }
2840
2841         if (hw->is_pf && port == 0) {
2842                 hw->ctrl_bar = nfp_rtsym_map(hw->sym_tbl, "_pf0_net_bar0",
2843                                              hw->total_ports * 32768,
2844                                              &hw->ctrl_area);
2845                 if (!hw->ctrl_bar) {
2846                         printf("nfp_rtsym_map fails for _pf0_net_ctrl_bar");
2847                         return -EIO;
2848                 }
2849
2850                 PMD_INIT_LOG(DEBUG, "ctrl bar: %p", hw->ctrl_bar);
2851         }
2852
2853         if (port > 0) {
2854                 if (!hwport0->ctrl_bar)
2855                         return -ENODEV;
2856
2857                 /* address based on port0 offset */
2858                 hw->ctrl_bar = hwport0->ctrl_bar +
2859                                (port * NFP_PF_CSR_SLICE_SIZE);
2860         }
2861
2862         PMD_INIT_LOG(DEBUG, "ctrl bar: %p", hw->ctrl_bar);
2863
2864         hw->max_rx_queues = nn_cfg_readl(hw, NFP_NET_CFG_MAX_RXRINGS);
2865         hw->max_tx_queues = nn_cfg_readl(hw, NFP_NET_CFG_MAX_TXRINGS);
2866
2867         /* Work out where in the BAR the queues start. */
2868         switch (pci_dev->id.device_id) {
2869         case PCI_DEVICE_ID_NFP4000_PF_NIC:
2870         case PCI_DEVICE_ID_NFP6000_PF_NIC:
2871         case PCI_DEVICE_ID_NFP6000_VF_NIC:
2872                 start_q = nn_cfg_readl(hw, NFP_NET_CFG_START_TXQ);
2873                 tx_bar_off = (uint64_t)start_q * NFP_QCP_QUEUE_ADDR_SZ;
2874                 start_q = nn_cfg_readl(hw, NFP_NET_CFG_START_RXQ);
2875                 rx_bar_off = (uint64_t)start_q * NFP_QCP_QUEUE_ADDR_SZ;
2876                 break;
2877         default:
2878                 PMD_DRV_LOG(ERR, "nfp_net: no device ID matching");
2879                 err = -ENODEV;
2880                 goto dev_err_ctrl_map;
2881         }
2882
2883         PMD_INIT_LOG(DEBUG, "tx_bar_off: 0x%" PRIx64 "", tx_bar_off);
2884         PMD_INIT_LOG(DEBUG, "rx_bar_off: 0x%" PRIx64 "", rx_bar_off);
2885
2886         if (hw->is_pf && port == 0) {
2887                 /* configure access to tx/rx vNIC BARs */
2888                 hwport0->hw_queues = nfp_cpp_map_area(hw->cpp, 0, 0,
2889                                                       NFP_PCIE_QUEUE(0),
2890                                                       NFP_QCP_QUEUE_AREA_SZ,
2891                                                       &hw->hwqueues_area);
2892
2893                 if (!hwport0->hw_queues) {
2894                         printf("nfp_rtsym_map fails for net.qc");
2895                         err = -EIO;
2896                         goto dev_err_ctrl_map;
2897                 }
2898
2899                 PMD_INIT_LOG(DEBUG, "tx/rx bar address: 0x%p",
2900                                     hwport0->hw_queues);
2901         }
2902
2903         if (hw->is_pf) {
2904                 hw->tx_bar = hwport0->hw_queues + tx_bar_off;
2905                 hw->rx_bar = hwport0->hw_queues + rx_bar_off;
2906                 eth_dev->data->dev_private = hw;
2907         } else {
2908                 hw->tx_bar = (uint8_t *)pci_dev->mem_resource[2].addr +
2909                              tx_bar_off;
2910                 hw->rx_bar = (uint8_t *)pci_dev->mem_resource[2].addr +
2911                              rx_bar_off;
2912         }
2913
2914         PMD_INIT_LOG(DEBUG, "ctrl_bar: %p, tx_bar: %p, rx_bar: %p",
2915                      hw->ctrl_bar, hw->tx_bar, hw->rx_bar);
2916
2917         nfp_net_cfg_queue_setup(hw);
2918
2919         /* Get some of the read-only fields from the config BAR */
2920         hw->ver = nn_cfg_readl(hw, NFP_NET_CFG_VERSION);
2921         hw->cap = nn_cfg_readl(hw, NFP_NET_CFG_CAP);
2922         hw->max_mtu = nn_cfg_readl(hw, NFP_NET_CFG_MAX_MTU);
2923         hw->mtu = RTE_ETHER_MTU;
2924
2925         /* VLAN insertion is incompatible with LSOv2 */
2926         if (hw->cap & NFP_NET_CFG_CTRL_LSO2)
2927                 hw->cap &= ~NFP_NET_CFG_CTRL_TXVLAN;
2928
2929         if (NFD_CFG_MAJOR_VERSION_of(hw->ver) < 2)
2930                 hw->rx_offset = NFP_NET_RX_OFFSET;
2931         else
2932                 hw->rx_offset = nn_cfg_readl(hw, NFP_NET_CFG_RX_OFFSET_ADDR);
2933
2934         PMD_INIT_LOG(INFO, "VER: %u.%u, Maximum supported MTU: %d",
2935                            NFD_CFG_MAJOR_VERSION_of(hw->ver),
2936                            NFD_CFG_MINOR_VERSION_of(hw->ver), hw->max_mtu);
2937
2938         PMD_INIT_LOG(INFO, "CAP: %#x, %s%s%s%s%s%s%s%s%s%s%s%s%s%s", hw->cap,
2939                      hw->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
2940                      hw->cap & NFP_NET_CFG_CTRL_L2BC    ? "L2BCFILT " : "",
2941                      hw->cap & NFP_NET_CFG_CTRL_L2MC    ? "L2MCFILT " : "",
2942                      hw->cap & NFP_NET_CFG_CTRL_RXCSUM  ? "RXCSUM "  : "",
2943                      hw->cap & NFP_NET_CFG_CTRL_TXCSUM  ? "TXCSUM "  : "",
2944                      hw->cap & NFP_NET_CFG_CTRL_RXVLAN  ? "RXVLAN "  : "",
2945                      hw->cap & NFP_NET_CFG_CTRL_TXVLAN  ? "TXVLAN "  : "",
2946                      hw->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
2947                      hw->cap & NFP_NET_CFG_CTRL_GATHER  ? "GATHER "  : "",
2948                      hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR "  : "",
2949                      hw->cap & NFP_NET_CFG_CTRL_LSO     ? "TSO "     : "",
2950                      hw->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSOv2 "     : "",
2951                      hw->cap & NFP_NET_CFG_CTRL_RSS     ? "RSS "     : "",
2952                      hw->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSSv2 "     : "");
2953
2954         hw->ctrl = 0;
2955
2956         hw->stride_rx = stride;
2957         hw->stride_tx = stride;
2958
2959         PMD_INIT_LOG(INFO, "max_rx_queues: %u, max_tx_queues: %u",
2960                      hw->max_rx_queues, hw->max_tx_queues);
2961
2962         /* Initializing spinlock for reconfigs */
2963         rte_spinlock_init(&hw->reconfig_lock);
2964
2965         /* Allocating memory for mac addr */
2966         eth_dev->data->mac_addrs = rte_zmalloc("mac_addr",
2967                                                RTE_ETHER_ADDR_LEN, 0);
2968         if (eth_dev->data->mac_addrs == NULL) {
2969                 PMD_INIT_LOG(ERR, "Failed to space for MAC address");
2970                 err = -ENOMEM;
2971                 goto dev_err_queues_map;
2972         }
2973
2974         if (hw->is_pf) {
2975                 nfp_net_pf_read_mac(hwport0, port);
2976                 nfp_net_write_mac(hw, (uint8_t *)&hw->mac_addr);
2977         } else {
2978                 nfp_net_vf_read_mac(hw);
2979         }
2980
2981         if (!rte_is_valid_assigned_ether_addr(
2982                     (struct rte_ether_addr *)&hw->mac_addr)) {
2983                 PMD_INIT_LOG(INFO, "Using random mac address for port %d",
2984                                    port);
2985                 /* Using random mac addresses for VFs */
2986                 rte_eth_random_addr(&hw->mac_addr[0]);
2987                 nfp_net_write_mac(hw, (uint8_t *)&hw->mac_addr);
2988         }
2989
2990         /* Copying mac address to DPDK eth_dev struct */
2991         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac_addr,
2992                         &eth_dev->data->mac_addrs[0]);
2993
2994         if (!(hw->cap & NFP_NET_CFG_CTRL_LIVE_ADDR))
2995                 eth_dev->data->dev_flags |= RTE_ETH_DEV_NOLIVE_MAC_ADDR;
2996
2997         PMD_INIT_LOG(INFO, "port %d VendorID=0x%x DeviceID=0x%x "
2998                      "mac=%02x:%02x:%02x:%02x:%02x:%02x",
2999                      eth_dev->data->port_id, pci_dev->id.vendor_id,
3000                      pci_dev->id.device_id,
3001                      hw->mac_addr[0], hw->mac_addr[1], hw->mac_addr[2],
3002                      hw->mac_addr[3], hw->mac_addr[4], hw->mac_addr[5]);
3003
3004         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3005                 /* Registering LSC interrupt handler */
3006                 rte_intr_callback_register(&pci_dev->intr_handle,
3007                                            nfp_net_dev_interrupt_handler,
3008                                            (void *)eth_dev);
3009                 /* Telling the firmware about the LSC interrupt entry */
3010                 nn_cfg_writeb(hw, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
3011                 /* Recording current stats counters values */
3012                 nfp_net_stats_reset(eth_dev);
3013         }
3014
3015         return 0;
3016
3017 dev_err_queues_map:
3018                 nfp_cpp_area_free(hw->hwqueues_area);
3019 dev_err_ctrl_map:
3020                 nfp_cpp_area_free(hw->ctrl_area);
3021
3022         return err;
3023 }
3024
3025 #define NFP_CPP_MEMIO_BOUNDARY          (1 << 20)
3026
3027 /*
3028  * Serving a write request to NFP from host programs. The request
3029  * sends the write size and the CPP target. The bridge makes use
3030  * of CPP interface handler configured by the PMD setup.
3031  */
3032 static int
3033 nfp_cpp_bridge_serve_write(int sockfd, struct nfp_cpp *cpp)
3034 {
3035         struct nfp_cpp_area *area;
3036         off_t offset, nfp_offset;
3037         uint32_t cpp_id, pos, len;
3038         uint32_t tmpbuf[16];
3039         size_t count, curlen, totlen = 0;
3040         int err = 0;
3041
3042         PMD_CPP_LOG(DEBUG, "%s: offset size %lu, count_size: %lu\n", __func__,
3043                 sizeof(off_t), sizeof(size_t));
3044
3045         /* Reading the count param */
3046         err = recv(sockfd, &count, sizeof(off_t), 0);
3047         if (err != sizeof(off_t))
3048                 return -EINVAL;
3049
3050         curlen = count;
3051
3052         /* Reading the offset param */
3053         err = recv(sockfd, &offset, sizeof(off_t), 0);
3054         if (err != sizeof(off_t))
3055                 return -EINVAL;
3056
3057         /* Obtain target's CPP ID and offset in target */
3058         cpp_id = (offset >> 40) << 8;
3059         nfp_offset = offset & ((1ull << 40) - 1);
3060
3061         PMD_CPP_LOG(DEBUG, "%s: count %lu and offset %ld\n", __func__, count,
3062                 offset);
3063         PMD_CPP_LOG(DEBUG, "%s: cpp_id %08x and nfp_offset %ld\n", __func__,
3064                 cpp_id, nfp_offset);
3065
3066         /* Adjust length if not aligned */
3067         if (((nfp_offset + (off_t)count - 1) & ~(NFP_CPP_MEMIO_BOUNDARY - 1)) !=
3068             (nfp_offset & ~(NFP_CPP_MEMIO_BOUNDARY - 1))) {
3069                 curlen = NFP_CPP_MEMIO_BOUNDARY -
3070                         (nfp_offset & (NFP_CPP_MEMIO_BOUNDARY - 1));
3071         }
3072
3073         while (count > 0) {
3074                 /* configure a CPP PCIe2CPP BAR for mapping the CPP target */
3075                 area = nfp_cpp_area_alloc_with_name(cpp, cpp_id, "nfp.cdev",
3076                                                     nfp_offset, curlen);
3077                 if (!area) {
3078                         RTE_LOG(ERR, PMD, "%s: area alloc fail\n", __func__);
3079                         return -EIO;
3080                 }
3081
3082                 /* mapping the target */
3083                 err = nfp_cpp_area_acquire(area);
3084                 if (err < 0) {
3085                         RTE_LOG(ERR, PMD, "area acquire failed\n");
3086                         nfp_cpp_area_free(area);
3087                         return -EIO;
3088                 }
3089
3090                 for (pos = 0; pos < curlen; pos += len) {
3091                         len = curlen - pos;
3092                         if (len > sizeof(tmpbuf))
3093                                 len = sizeof(tmpbuf);
3094
3095                         PMD_CPP_LOG(DEBUG, "%s: Receive %u of %lu\n", __func__,
3096                                            len, count);
3097                         err = recv(sockfd, tmpbuf, len, MSG_WAITALL);
3098                         if (err != (int)len) {
3099                                 RTE_LOG(ERR, PMD,
3100                                         "%s: error when receiving, %d of %lu\n",
3101                                         __func__, err, count);
3102                                 nfp_cpp_area_release(area);
3103                                 nfp_cpp_area_free(area);
3104                                 return -EIO;
3105                         }
3106                         err = nfp_cpp_area_write(area, pos, tmpbuf, len);
3107                         if (err < 0) {
3108                                 RTE_LOG(ERR, PMD, "nfp_cpp_area_write error\n");
3109                                 nfp_cpp_area_release(area);
3110                                 nfp_cpp_area_free(area);
3111                                 return -EIO;
3112                         }
3113                 }
3114
3115                 nfp_offset += pos;
3116                 totlen += pos;
3117                 nfp_cpp_area_release(area);
3118                 nfp_cpp_area_free(area);
3119
3120                 count -= pos;
3121                 curlen = (count > NFP_CPP_MEMIO_BOUNDARY) ?
3122                          NFP_CPP_MEMIO_BOUNDARY : count;
3123         }
3124
3125         return 0;
3126 }
3127
3128 /*
3129  * Serving a read request to NFP from host programs. The request
3130  * sends the read size and the CPP target. The bridge makes use
3131  * of CPP interface handler configured by the PMD setup. The read
3132  * data is sent to the requester using the same socket.
3133  */
3134 static int
3135 nfp_cpp_bridge_serve_read(int sockfd, struct nfp_cpp *cpp)
3136 {
3137         struct nfp_cpp_area *area;
3138         off_t offset, nfp_offset;
3139         uint32_t cpp_id, pos, len;
3140         uint32_t tmpbuf[16];
3141         size_t count, curlen, totlen = 0;
3142         int err = 0;
3143
3144         PMD_CPP_LOG(DEBUG, "%s: offset size %lu, count_size: %lu\n", __func__,
3145                 sizeof(off_t), sizeof(size_t));
3146
3147         /* Reading the count param */
3148         err = recv(sockfd, &count, sizeof(off_t), 0);
3149         if (err != sizeof(off_t))
3150                 return -EINVAL;
3151
3152         curlen = count;
3153
3154         /* Reading the offset param */
3155         err = recv(sockfd, &offset, sizeof(off_t), 0);
3156         if (err != sizeof(off_t))
3157                 return -EINVAL;
3158
3159         /* Obtain target's CPP ID and offset in target */
3160         cpp_id = (offset >> 40) << 8;
3161         nfp_offset = offset & ((1ull << 40) - 1);
3162
3163         PMD_CPP_LOG(DEBUG, "%s: count %lu and offset %ld\n", __func__, count,
3164                            offset);
3165         PMD_CPP_LOG(DEBUG, "%s: cpp_id %08x and nfp_offset %ld\n", __func__,
3166                            cpp_id, nfp_offset);
3167
3168         /* Adjust length if not aligned */
3169         if (((nfp_offset + (off_t)count - 1) & ~(NFP_CPP_MEMIO_BOUNDARY - 1)) !=
3170             (nfp_offset & ~(NFP_CPP_MEMIO_BOUNDARY - 1))) {
3171                 curlen = NFP_CPP_MEMIO_BOUNDARY -
3172                         (nfp_offset & (NFP_CPP_MEMIO_BOUNDARY - 1));
3173         }
3174
3175         while (count > 0) {
3176                 area = nfp_cpp_area_alloc_with_name(cpp, cpp_id, "nfp.cdev",
3177                                                     nfp_offset, curlen);
3178                 if (!area) {
3179                         RTE_LOG(ERR, PMD, "%s: area alloc failed\n", __func__);
3180                         return -EIO;
3181                 }
3182
3183                 err = nfp_cpp_area_acquire(area);
3184                 if (err < 0) {
3185                         RTE_LOG(ERR, PMD, "area acquire failed\n");
3186                         nfp_cpp_area_free(area);
3187                         return -EIO;
3188                 }
3189
3190                 for (pos = 0; pos < curlen; pos += len) {
3191                         len = curlen - pos;
3192                         if (len > sizeof(tmpbuf))
3193                                 len = sizeof(tmpbuf);
3194
3195                         err = nfp_cpp_area_read(area, pos, tmpbuf, len);
3196                         if (err < 0) {
3197                                 RTE_LOG(ERR, PMD, "nfp_cpp_area_read error\n");
3198                                 nfp_cpp_area_release(area);
3199                                 nfp_cpp_area_free(area);
3200                                 return -EIO;
3201                         }
3202                         PMD_CPP_LOG(DEBUG, "%s: sending %u of %lu\n", __func__,
3203                                            len, count);
3204
3205                         err = send(sockfd, tmpbuf, len, 0);
3206                         if (err != (int)len) {
3207                                 RTE_LOG(ERR, PMD,
3208                                         "%s: error when sending: %d of %lu\n",
3209                                         __func__, err, count);
3210                                 nfp_cpp_area_release(area);
3211                                 nfp_cpp_area_free(area);
3212                                 return -EIO;
3213                         }
3214                 }
3215
3216                 nfp_offset += pos;
3217                 totlen += pos;
3218                 nfp_cpp_area_release(area);
3219                 nfp_cpp_area_free(area);
3220
3221                 count -= pos;
3222                 curlen = (count > NFP_CPP_MEMIO_BOUNDARY) ?
3223                         NFP_CPP_MEMIO_BOUNDARY : count;
3224         }
3225         return 0;
3226 }
3227
3228 #define NFP_IOCTL 'n'
3229 #define NFP_IOCTL_CPP_IDENTIFICATION _IOW(NFP_IOCTL, 0x8f, uint32_t)
3230 /*
3231  * Serving a ioctl command from host NFP tools. This usually goes to
3232  * a kernel driver char driver but it is not available when the PF is
3233  * bound to the PMD. Currently just one ioctl command is served and it
3234  * does not require any CPP access at all.
3235  */
3236 static int
3237 nfp_cpp_bridge_serve_ioctl(int sockfd, struct nfp_cpp *cpp)
3238 {
3239         uint32_t cmd, ident_size, tmp;
3240         int err;
3241
3242         /* Reading now the IOCTL command */
3243         err = recv(sockfd, &cmd, 4, 0);
3244         if (err != 4) {
3245                 RTE_LOG(ERR, PMD, "%s: read error from socket\n", __func__);
3246                 return -EIO;
3247         }
3248
3249         /* Only supporting NFP_IOCTL_CPP_IDENTIFICATION */
3250         if (cmd != NFP_IOCTL_CPP_IDENTIFICATION) {
3251                 RTE_LOG(ERR, PMD, "%s: unknown cmd %d\n", __func__, cmd);
3252                 return -EINVAL;
3253         }
3254
3255         err = recv(sockfd, &ident_size, 4, 0);
3256         if (err != 4) {
3257                 RTE_LOG(ERR, PMD, "%s: read error from socket\n", __func__);
3258                 return -EIO;
3259         }
3260
3261         tmp = nfp_cpp_model(cpp);
3262
3263         PMD_CPP_LOG(DEBUG, "%s: sending NFP model %08x\n", __func__, tmp);
3264
3265         err = send(sockfd, &tmp, 4, 0);
3266         if (err != 4) {
3267                 RTE_LOG(ERR, PMD, "%s: error writing to socket\n", __func__);
3268                 return -EIO;
3269         }
3270
3271         tmp = cpp->interface;
3272
3273         PMD_CPP_LOG(DEBUG, "%s: sending NFP interface %08x\n", __func__, tmp);
3274
3275         err = send(sockfd, &tmp, 4, 0);
3276         if (err != 4) {
3277                 RTE_LOG(ERR, PMD, "%s: error writing to socket\n", __func__);
3278                 return -EIO;
3279         }
3280
3281         return 0;
3282 }
3283
3284 #define NFP_BRIDGE_OP_READ      20
3285 #define NFP_BRIDGE_OP_WRITE     30
3286 #define NFP_BRIDGE_OP_IOCTL     40
3287
3288 /*
3289  * This is the code to be executed by a service core. The CPP bridge interface
3290  * is based on a unix socket and requests usually received by a kernel char
3291  * driver, read, write and ioctl, are handled by the CPP bridge. NFP host tools
3292  * can be executed with a wrapper library and LD_LIBRARY being completely
3293  * unaware of the CPP bridge performing the NFP kernel char driver for CPP
3294  * accesses.
3295  */
3296 static int32_t
3297 nfp_cpp_bridge_service_func(void *args)
3298 {
3299         struct sockaddr address;
3300         struct nfp_cpp *cpp = args;
3301         int sockfd, datafd, op, ret;
3302
3303         unlink("/tmp/nfp_cpp");
3304         sockfd = socket(AF_UNIX, SOCK_STREAM, 0);
3305         if (sockfd < 0) {
3306                 RTE_LOG(ERR, PMD, "%s: socket creation error. Service failed\n",
3307                         __func__);
3308                 return -EIO;
3309         }
3310
3311         memset(&address, 0, sizeof(struct sockaddr));
3312
3313         address.sa_family = AF_UNIX;
3314         strcpy(address.sa_data, "/tmp/nfp_cpp");
3315
3316         ret = bind(sockfd, (const struct sockaddr *)&address,
3317                    sizeof(struct sockaddr));
3318         if (ret < 0) {
3319                 RTE_LOG(ERR, PMD, "%s: bind error (%d). Service failed\n",
3320                                   __func__, errno);
3321                 close(sockfd);
3322                 return ret;
3323         }
3324
3325         ret = listen(sockfd, 20);
3326         if (ret < 0) {
3327                 RTE_LOG(ERR, PMD, "%s: listen error(%d). Service failed\n",
3328                                   __func__, errno);
3329                 close(sockfd);
3330                 return ret;
3331         }
3332
3333         for (;;) {
3334                 datafd = accept(sockfd, NULL, NULL);
3335                 if (datafd < 0) {
3336                         RTE_LOG(ERR, PMD, "%s: accept call error (%d)\n",
3337                                           __func__, errno);
3338                         RTE_LOG(ERR, PMD, "%s: service failed\n", __func__);
3339                         close(sockfd);
3340                         return -EIO;
3341                 }
3342
3343                 while (1) {
3344                         ret = recv(datafd, &op, 4, 0);
3345                         if (ret <= 0) {
3346                                 PMD_CPP_LOG(DEBUG, "%s: socket close\n",
3347                                                    __func__);
3348                                 break;
3349                         }
3350
3351                         PMD_CPP_LOG(DEBUG, "%s: getting op %u\n", __func__, op);
3352
3353                         if (op == NFP_BRIDGE_OP_READ)
3354                                 nfp_cpp_bridge_serve_read(datafd, cpp);
3355
3356                         if (op == NFP_BRIDGE_OP_WRITE)
3357                                 nfp_cpp_bridge_serve_write(datafd, cpp);
3358
3359                         if (op == NFP_BRIDGE_OP_IOCTL)
3360                                 nfp_cpp_bridge_serve_ioctl(datafd, cpp);
3361
3362                         if (op == 0)
3363                                 break;
3364                 }
3365                 close(datafd);
3366         }
3367         close(sockfd);
3368
3369         return 0;
3370 }
3371
3372 static int
3373 nfp_pf_create_dev(struct rte_pci_device *dev, int port, int ports,
3374                   struct nfp_cpp *cpp, struct nfp_hwinfo *hwinfo,
3375                   int phys_port, struct nfp_rtsym_table *sym_tbl, void **priv)
3376 {
3377         struct rte_eth_dev *eth_dev;
3378         struct nfp_net_hw *hw = NULL;
3379         char *port_name;
3380         struct rte_service_spec service;
3381         int retval;
3382
3383         port_name = rte_zmalloc("nfp_pf_port_name", 100, 0);
3384         if (!port_name)
3385                 return -ENOMEM;
3386
3387         if (ports > 1)
3388                 snprintf(port_name, 100, "%s_port%d", dev->device.name, port);
3389         else
3390                 strlcat(port_name, dev->device.name, 100);
3391
3392
3393         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3394                 eth_dev = rte_eth_dev_allocate(port_name);
3395                 if (!eth_dev) {
3396                         rte_free(port_name);
3397                         return -ENODEV;
3398                 }
3399                 if (port == 0) {
3400                         *priv = rte_zmalloc(port_name,
3401                                             sizeof(struct nfp_net_adapter) *
3402                                             ports, RTE_CACHE_LINE_SIZE);
3403                         if (!*priv) {
3404                                 rte_free(port_name);
3405                                 rte_eth_dev_release_port(eth_dev);
3406                                 return -ENOMEM;
3407                         }
3408                 }
3409                 eth_dev->data->dev_private = *priv;
3410
3411                 /*
3412                  * dev_private pointing to port0 dev_private because we need
3413                  * to configure vNIC bars based on port0 at nfp_net_init.
3414                  * Then dev_private is adjusted per port.
3415                  */
3416                 hw = (struct nfp_net_hw *)(eth_dev->data->dev_private) + port;
3417                 hw->cpp = cpp;
3418                 hw->hwinfo = hwinfo;
3419                 hw->sym_tbl = sym_tbl;
3420                 hw->pf_port_idx = phys_port;
3421                 hw->is_pf = 1;
3422                 if (ports > 1)
3423                         hw->pf_multiport_enabled = 1;
3424
3425                 hw->total_ports = ports;
3426         } else {
3427                 eth_dev = rte_eth_dev_attach_secondary(port_name);
3428                 if (!eth_dev) {
3429                         RTE_LOG(ERR, EAL, "secondary process attach failed, "
3430                                 "ethdev doesn't exist");
3431                         rte_free(port_name);
3432                         return -ENODEV;
3433                 }
3434                 eth_dev->process_private = cpp;
3435         }
3436
3437         eth_dev->device = &dev->device;
3438         rte_eth_copy_pci_info(eth_dev, dev);
3439
3440         retval = nfp_net_init(eth_dev);
3441
3442         if (retval) {
3443                 retval = -ENODEV;
3444                 goto probe_failed;
3445         } else {
3446                 rte_eth_dev_probing_finish(eth_dev);
3447         }
3448
3449         rte_free(port_name);
3450
3451         if (port == 0) {
3452                 /*
3453                  * The rte_service needs to be created just once per PMD.
3454                  * And the cpp handler needs to be linked to the service.
3455                  * Secondary processes will be used for debugging DPDK apps
3456                  * when requiring to use the CPP interface for accessing NFP
3457                  * components. And the cpp handler for secondary processes is
3458                  * available at this point.
3459                  */
3460                 memset(&service, 0, sizeof(struct rte_service_spec));
3461                 snprintf(service.name, sizeof(service.name), "nfp_cpp_service");
3462                 service.callback = nfp_cpp_bridge_service_func;
3463                 service.callback_userdata = (void *)cpp;
3464
3465                 hw = (struct nfp_net_hw *)(eth_dev->data->dev_private);
3466
3467                 if (rte_service_component_register(&service,
3468                                                    &hw->nfp_cpp_service_id))
3469                         RTE_LOG(ERR, PMD, "NFP CPP bridge service register() failed");
3470                 else
3471                         RTE_LOG(DEBUG, PMD, "NFP CPP bridge service registered");
3472         }
3473
3474         return retval;
3475
3476 probe_failed:
3477         rte_free(port_name);
3478         /* free ports private data if primary process */
3479         if (rte_eal_process_type() == RTE_PROC_PRIMARY)
3480                 rte_free(eth_dev->data->dev_private);
3481
3482         rte_eth_dev_release_port(eth_dev);
3483
3484         return retval;
3485 }
3486
3487 #define DEFAULT_FW_PATH       "/lib/firmware/netronome"
3488
3489 static int
3490 nfp_fw_upload(struct rte_pci_device *dev, struct nfp_nsp *nsp, char *card)
3491 {
3492         struct nfp_cpp *cpp = nsp->cpp;
3493         int fw_f;
3494         char *fw_buf;
3495         char fw_name[125];
3496         char serial[40];
3497         struct stat file_stat;
3498         off_t fsize, bytes;
3499
3500         /* Looking for firmware file in order of priority */
3501
3502         /* First try to find a firmware image specific for this device */
3503         snprintf(serial, sizeof(serial),
3504                         "serial-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x",
3505                 cpp->serial[0], cpp->serial[1], cpp->serial[2], cpp->serial[3],
3506                 cpp->serial[4], cpp->serial[5], cpp->interface >> 8,
3507                 cpp->interface & 0xff);
3508
3509         snprintf(fw_name, sizeof(fw_name), "%s/%s.nffw", DEFAULT_FW_PATH,
3510                         serial);
3511
3512         PMD_DRV_LOG(DEBUG, "Trying with fw file: %s", fw_name);
3513         fw_f = open(fw_name, O_RDONLY);
3514         if (fw_f >= 0)
3515                 goto read_fw;
3516
3517         /* Then try the PCI name */
3518         snprintf(fw_name, sizeof(fw_name), "%s/pci-%s.nffw", DEFAULT_FW_PATH,
3519                         dev->device.name);
3520
3521         PMD_DRV_LOG(DEBUG, "Trying with fw file: %s", fw_name);
3522         fw_f = open(fw_name, O_RDONLY);
3523         if (fw_f >= 0)
3524                 goto read_fw;
3525
3526         /* Finally try the card type and media */
3527         snprintf(fw_name, sizeof(fw_name), "%s/%s", DEFAULT_FW_PATH, card);
3528         PMD_DRV_LOG(DEBUG, "Trying with fw file: %s", fw_name);
3529         fw_f = open(fw_name, O_RDONLY);
3530         if (fw_f < 0) {
3531                 PMD_DRV_LOG(INFO, "Firmware file %s not found.", fw_name);
3532                 return -ENOENT;
3533         }
3534
3535 read_fw:
3536         if (fstat(fw_f, &file_stat) < 0) {
3537                 PMD_DRV_LOG(INFO, "Firmware file %s size is unknown", fw_name);
3538                 close(fw_f);
3539                 return -ENOENT;
3540         }
3541
3542         fsize = file_stat.st_size;
3543         PMD_DRV_LOG(INFO, "Firmware file found at %s with size: %" PRIu64 "",
3544                             fw_name, (uint64_t)fsize);
3545
3546         fw_buf = malloc((size_t)fsize);
3547         if (!fw_buf) {
3548                 PMD_DRV_LOG(INFO, "malloc failed for fw buffer");
3549                 close(fw_f);
3550                 return -ENOMEM;
3551         }
3552         memset(fw_buf, 0, fsize);
3553
3554         bytes = read(fw_f, fw_buf, fsize);
3555         if (bytes != fsize) {
3556                 PMD_DRV_LOG(INFO, "Reading fw to buffer failed."
3557                                    "Just %" PRIu64 " of %" PRIu64 " bytes read",
3558                                    (uint64_t)bytes, (uint64_t)fsize);
3559                 free(fw_buf);
3560                 close(fw_f);
3561                 return -EIO;
3562         }
3563
3564         PMD_DRV_LOG(INFO, "Uploading the firmware ...");
3565         nfp_nsp_load_fw(nsp, fw_buf, bytes);
3566         PMD_DRV_LOG(INFO, "Done");
3567
3568         free(fw_buf);
3569         close(fw_f);
3570
3571         return 0;
3572 }
3573
3574 static int
3575 nfp_fw_setup(struct rte_pci_device *dev, struct nfp_cpp *cpp,
3576              struct nfp_eth_table *nfp_eth_table, struct nfp_hwinfo *hwinfo)
3577 {
3578         struct nfp_nsp *nsp;
3579         const char *nfp_fw_model;
3580         char card_desc[100];
3581         int err = 0;
3582
3583         nfp_fw_model = nfp_hwinfo_lookup(hwinfo, "assembly.partno");
3584
3585         if (nfp_fw_model) {
3586                 PMD_DRV_LOG(INFO, "firmware model found: %s", nfp_fw_model);
3587         } else {
3588                 PMD_DRV_LOG(ERR, "firmware model NOT found");
3589                 return -EIO;
3590         }
3591
3592         if (nfp_eth_table->count == 0 || nfp_eth_table->count > 8) {
3593                 PMD_DRV_LOG(ERR, "NFP ethernet table reports wrong ports: %u",
3594                        nfp_eth_table->count);
3595                 return -EIO;
3596         }
3597
3598         PMD_DRV_LOG(INFO, "NFP ethernet port table reports %u ports",
3599                            nfp_eth_table->count);
3600
3601         PMD_DRV_LOG(INFO, "Port speed: %u", nfp_eth_table->ports[0].speed);
3602
3603         snprintf(card_desc, sizeof(card_desc), "nic_%s_%dx%d.nffw",
3604                         nfp_fw_model, nfp_eth_table->count,
3605                         nfp_eth_table->ports[0].speed / 1000);
3606
3607         nsp = nfp_nsp_open(cpp);
3608         if (!nsp) {
3609                 PMD_DRV_LOG(ERR, "NFP error when obtaining NSP handle");
3610                 return -EIO;
3611         }
3612
3613         nfp_nsp_device_soft_reset(nsp);
3614         err = nfp_fw_upload(dev, nsp, card_desc);
3615
3616         nfp_nsp_close(nsp);
3617         return err;
3618 }
3619
3620 static int nfp_pf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3621                             struct rte_pci_device *dev)
3622 {
3623         struct nfp_cpp *cpp;
3624         struct nfp_hwinfo *hwinfo;
3625         struct nfp_rtsym_table *sym_tbl;
3626         struct nfp_eth_table *nfp_eth_table = NULL;
3627         int total_ports;
3628         void *priv = 0;
3629         int ret = -ENODEV;
3630         int err;
3631         int i;
3632
3633         if (!dev)
3634                 return ret;
3635
3636         /*
3637          * When device bound to UIO, the device could be used, by mistake,
3638          * by two DPDK apps, and the UIO driver does not avoid it. This
3639          * could lead to a serious problem when configuring the NFP CPP
3640          * interface. Here we avoid this telling to the CPP init code to
3641          * use a lock file if UIO is being used.
3642          */
3643         if (dev->kdrv == RTE_KDRV_VFIO)
3644                 cpp = nfp_cpp_from_device_name(dev, 0);
3645         else
3646                 cpp = nfp_cpp_from_device_name(dev, 1);
3647
3648         if (!cpp) {
3649                 PMD_DRV_LOG(ERR, "A CPP handle can not be obtained");
3650                 ret = -EIO;
3651                 goto error;
3652         }
3653
3654         hwinfo = nfp_hwinfo_read(cpp);
3655         if (!hwinfo) {
3656                 PMD_DRV_LOG(ERR, "Error reading hwinfo table");
3657                 return -EIO;
3658         }
3659
3660         nfp_eth_table = nfp_eth_read_ports(cpp);
3661         if (!nfp_eth_table) {
3662                 PMD_DRV_LOG(ERR, "Error reading NFP ethernet table");
3663                 return -EIO;
3664         }
3665
3666         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3667                 if (nfp_fw_setup(dev, cpp, nfp_eth_table, hwinfo)) {
3668                         PMD_DRV_LOG(INFO, "Error when uploading firmware");
3669                         ret = -EIO;
3670                         goto error;
3671                 }
3672         }
3673
3674         /* Now the symbol table should be there */
3675         sym_tbl = nfp_rtsym_table_read(cpp);
3676         if (!sym_tbl) {
3677                 PMD_DRV_LOG(ERR, "Something is wrong with the firmware"
3678                                 " symbol table");
3679                 ret = -EIO;
3680                 goto error;
3681         }
3682
3683         total_ports = nfp_rtsym_read_le(sym_tbl, "nfd_cfg_pf0_num_ports", &err);
3684         if (total_ports != (int)nfp_eth_table->count) {
3685                 PMD_DRV_LOG(ERR, "Inconsistent number of ports");
3686                 ret = -EIO;
3687                 goto error;
3688         }
3689         PMD_INIT_LOG(INFO, "Total pf ports: %d", total_ports);
3690
3691         if (total_ports <= 0 || total_ports > 8) {
3692                 PMD_DRV_LOG(ERR, "nfd_cfg_pf0_num_ports symbol with wrong value");
3693                 ret = -ENODEV;
3694                 goto error;
3695         }
3696
3697         for (i = 0; i < total_ports; i++) {
3698                 ret = nfp_pf_create_dev(dev, i, total_ports, cpp, hwinfo,
3699                                         nfp_eth_table->ports[i].index,
3700                                         sym_tbl, &priv);
3701                 if (ret)
3702                         break;
3703         }
3704
3705 error:
3706         free(nfp_eth_table);
3707         return ret;
3708 }
3709
3710 int nfp_logtype_init;
3711 int nfp_logtype_driver;
3712
3713 static const struct rte_pci_id pci_id_nfp_pf_net_map[] = {
3714         {
3715                 RTE_PCI_DEVICE(PCI_VENDOR_ID_NETRONOME,
3716                                PCI_DEVICE_ID_NFP4000_PF_NIC)
3717         },
3718         {
3719                 RTE_PCI_DEVICE(PCI_VENDOR_ID_NETRONOME,
3720                                PCI_DEVICE_ID_NFP6000_PF_NIC)
3721         },
3722         {
3723                 .vendor_id = 0,
3724         },
3725 };
3726
3727 static const struct rte_pci_id pci_id_nfp_vf_net_map[] = {
3728         {
3729                 RTE_PCI_DEVICE(PCI_VENDOR_ID_NETRONOME,
3730                                PCI_DEVICE_ID_NFP6000_VF_NIC)
3731         },
3732         {
3733                 .vendor_id = 0,
3734         },
3735 };
3736
3737 static int eth_nfp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3738         struct rte_pci_device *pci_dev)
3739 {
3740         return rte_eth_dev_pci_generic_probe(pci_dev,
3741                 sizeof(struct nfp_net_adapter), nfp_net_init);
3742 }
3743
3744 static int eth_nfp_pci_remove(struct rte_pci_device *pci_dev)
3745 {
3746         struct rte_eth_dev *eth_dev;
3747         struct nfp_net_hw *hw, *hwport0;
3748         int port = 0;
3749
3750         eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
3751         if ((pci_dev->id.device_id == PCI_DEVICE_ID_NFP4000_PF_NIC) ||
3752             (pci_dev->id.device_id == PCI_DEVICE_ID_NFP6000_PF_NIC)) {
3753                 port = get_pf_port_number(eth_dev->data->name);
3754                 /*
3755                  * hotplug is not possible with multiport PF although freeing
3756                  * data structures can be done for first port.
3757                  */
3758                 if (port != 0)
3759                         return -ENOTSUP;
3760                 hwport0 = NFP_NET_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
3761                 hw = &hwport0[port];
3762                 nfp_cpp_area_free(hw->ctrl_area);
3763                 nfp_cpp_area_free(hw->hwqueues_area);
3764                 free(hw->hwinfo);
3765                 free(hw->sym_tbl);
3766                 nfp_cpp_free(hw->cpp);
3767         } else {
3768                 hw = NFP_NET_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
3769         }
3770         /* hotplug is not possible with multiport PF */
3771         if (hw->pf_multiport_enabled)
3772                 return -ENOTSUP;
3773         return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
3774 }
3775
3776 static struct rte_pci_driver rte_nfp_net_pf_pmd = {
3777         .id_table = pci_id_nfp_pf_net_map,
3778         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
3779         .probe = nfp_pf_pci_probe,
3780         .remove = eth_nfp_pci_remove,
3781 };
3782
3783 static struct rte_pci_driver rte_nfp_net_vf_pmd = {
3784         .id_table = pci_id_nfp_vf_net_map,
3785         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
3786         .probe = eth_nfp_pci_probe,
3787         .remove = eth_nfp_pci_remove,
3788 };
3789
3790 RTE_PMD_REGISTER_PCI(net_nfp_pf, rte_nfp_net_pf_pmd);
3791 RTE_PMD_REGISTER_PCI(net_nfp_vf, rte_nfp_net_vf_pmd);
3792 RTE_PMD_REGISTER_PCI_TABLE(net_nfp_pf, pci_id_nfp_pf_net_map);
3793 RTE_PMD_REGISTER_PCI_TABLE(net_nfp_vf, pci_id_nfp_vf_net_map);
3794 RTE_PMD_REGISTER_KMOD_DEP(net_nfp_pf, "* igb_uio | uio_pci_generic | vfio");
3795 RTE_PMD_REGISTER_KMOD_DEP(net_nfp_vf, "* igb_uio | uio_pci_generic | vfio");
3796
3797 RTE_INIT(nfp_init_log)
3798 {
3799         nfp_logtype_init = rte_log_register("pmd.net.nfp.init");
3800         if (nfp_logtype_init >= 0)
3801                 rte_log_set_level(nfp_logtype_init, RTE_LOG_NOTICE);
3802         nfp_logtype_driver = rte_log_register("pmd.net.nfp.driver");
3803         if (nfp_logtype_driver >= 0)
3804                 rte_log_set_level(nfp_logtype_driver, RTE_LOG_NOTICE);
3805 }
3806 /*
3807  * Local variables:
3808  * c-file-style: "Linux"
3809  * indent-tabs-mode: t
3810  * End:
3811  */