ethdev: change device info get callback to return int
[dpdk.git] / drivers / net / pcap / rte_eth_pcap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright(c) 2014 6WIND S.A.
4  * All rights reserved.
5  */
6
7 #include <time.h>
8
9 #include <net/if.h>
10 #include <sys/socket.h>
11 #include <sys/ioctl.h>
12 #include <unistd.h>
13
14 #if defined(RTE_EXEC_ENV_FREEBSD)
15 #include <sys/sysctl.h>
16 #include <net/if_dl.h>
17 #endif
18
19 #include <pcap.h>
20
21 #include <rte_cycles.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_vdev.h>
24 #include <rte_kvargs.h>
25 #include <rte_malloc.h>
26 #include <rte_mbuf.h>
27 #include <rte_bus_vdev.h>
28 #include <rte_string_fns.h>
29
30 #define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
31 #define RTE_ETH_PCAP_SNAPLEN RTE_ETHER_MAX_JUMBO_FRAME_LEN
32 #define RTE_ETH_PCAP_PROMISC 1
33 #define RTE_ETH_PCAP_TIMEOUT -1
34
35 #define ETH_PCAP_RX_PCAP_ARG  "rx_pcap"
36 #define ETH_PCAP_TX_PCAP_ARG  "tx_pcap"
37 #define ETH_PCAP_RX_IFACE_ARG "rx_iface"
38 #define ETH_PCAP_RX_IFACE_IN_ARG "rx_iface_in"
39 #define ETH_PCAP_TX_IFACE_ARG "tx_iface"
40 #define ETH_PCAP_IFACE_ARG    "iface"
41 #define ETH_PCAP_PHY_MAC_ARG  "phy_mac"
42 #define ETH_PCAP_INFINITE_RX_ARG  "infinite_rx"
43
44 #define ETH_PCAP_ARG_MAXLEN     64
45
46 #define RTE_PMD_PCAP_MAX_QUEUES 16
47
48 static char errbuf[PCAP_ERRBUF_SIZE];
49 static struct timeval start_time;
50 static uint64_t start_cycles;
51 static uint64_t hz;
52 static uint8_t iface_idx;
53
54 struct queue_stat {
55         volatile unsigned long pkts;
56         volatile unsigned long bytes;
57         volatile unsigned long err_pkts;
58 };
59
60 struct pcap_rx_queue {
61         uint16_t port_id;
62         uint16_t queue_id;
63         struct rte_mempool *mb_pool;
64         struct queue_stat rx_stat;
65         char name[PATH_MAX];
66         char type[ETH_PCAP_ARG_MAXLEN];
67
68         /* Contains pre-generated packets to be looped through */
69         struct rte_ring *pkts;
70 };
71
72 struct pcap_tx_queue {
73         uint16_t port_id;
74         uint16_t queue_id;
75         struct queue_stat tx_stat;
76         char name[PATH_MAX];
77         char type[ETH_PCAP_ARG_MAXLEN];
78 };
79
80 struct pmd_internals {
81         struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES];
82         struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES];
83         char devargs[ETH_PCAP_ARG_MAXLEN];
84         struct rte_ether_addr eth_addr;
85         int if_index;
86         int single_iface;
87         int phy_mac;
88         unsigned int infinite_rx;
89 };
90
91 struct pmd_process_private {
92         pcap_t *rx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
93         pcap_t *tx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
94         pcap_dumper_t *tx_dumper[RTE_PMD_PCAP_MAX_QUEUES];
95 };
96
97 struct pmd_devargs {
98         unsigned int num_of_queue;
99         struct devargs_queue {
100                 pcap_dumper_t *dumper;
101                 pcap_t *pcap;
102                 const char *name;
103                 const char *type;
104         } queue[RTE_PMD_PCAP_MAX_QUEUES];
105         int phy_mac;
106 };
107
108 struct pmd_devargs_all {
109         struct pmd_devargs rx_queues;
110         struct pmd_devargs tx_queues;
111         int single_iface;
112         unsigned int is_tx_pcap;
113         unsigned int is_tx_iface;
114         unsigned int is_rx_pcap;
115         unsigned int is_rx_iface;
116         unsigned int infinite_rx;
117 };
118
119 static const char *valid_arguments[] = {
120         ETH_PCAP_RX_PCAP_ARG,
121         ETH_PCAP_TX_PCAP_ARG,
122         ETH_PCAP_RX_IFACE_ARG,
123         ETH_PCAP_RX_IFACE_IN_ARG,
124         ETH_PCAP_TX_IFACE_ARG,
125         ETH_PCAP_IFACE_ARG,
126         ETH_PCAP_PHY_MAC_ARG,
127         ETH_PCAP_INFINITE_RX_ARG,
128         NULL
129 };
130
131 static struct rte_eth_link pmd_link = {
132                 .link_speed = ETH_SPEED_NUM_10G,
133                 .link_duplex = ETH_LINK_FULL_DUPLEX,
134                 .link_status = ETH_LINK_DOWN,
135                 .link_autoneg = ETH_LINK_FIXED,
136 };
137
138 static int eth_pcap_logtype;
139
140 #define PMD_LOG(level, fmt, args...) \
141         rte_log(RTE_LOG_ ## level, eth_pcap_logtype, \
142                 "%s(): " fmt "\n", __func__, ##args)
143
144 static int
145 eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf,
146                 const u_char *data, uint16_t data_len)
147 {
148         /* Copy the first segment. */
149         uint16_t len = rte_pktmbuf_tailroom(mbuf);
150         struct rte_mbuf *m = mbuf;
151
152         rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len);
153         data_len -= len;
154         data += len;
155
156         while (data_len > 0) {
157                 /* Allocate next mbuf and point to that. */
158                 m->next = rte_pktmbuf_alloc(mb_pool);
159
160                 if (unlikely(!m->next))
161                         return -1;
162
163                 m = m->next;
164
165                 /* Headroom is not needed in chained mbufs. */
166                 rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m));
167                 m->pkt_len = 0;
168                 m->data_len = 0;
169
170                 /* Copy next segment. */
171                 len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len);
172                 rte_memcpy(rte_pktmbuf_append(m, len), data, len);
173
174                 mbuf->nb_segs++;
175                 data_len -= len;
176                 data += len;
177         }
178
179         return mbuf->nb_segs;
180 }
181
182 static uint16_t
183 eth_pcap_rx_infinite(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
184 {
185         int i;
186         struct pcap_rx_queue *pcap_q = queue;
187         uint32_t rx_bytes = 0;
188
189         if (unlikely(nb_pkts == 0))
190                 return 0;
191
192         if (rte_pktmbuf_alloc_bulk(pcap_q->mb_pool, bufs, nb_pkts) != 0)
193                 return 0;
194
195         for (i = 0; i < nb_pkts; i++) {
196                 struct rte_mbuf *pcap_buf;
197                 int err = rte_ring_dequeue(pcap_q->pkts, (void **)&pcap_buf);
198                 if (err)
199                         return i;
200
201                 rte_memcpy(rte_pktmbuf_mtod(bufs[i], void *),
202                                 rte_pktmbuf_mtod(pcap_buf, void *),
203                                 pcap_buf->data_len);
204                 bufs[i]->data_len = pcap_buf->data_len;
205                 bufs[i]->pkt_len = pcap_buf->pkt_len;
206                 bufs[i]->port = pcap_q->port_id;
207                 rx_bytes += pcap_buf->data_len;
208
209                 /* Enqueue packet back on ring to allow infinite rx. */
210                 rte_ring_enqueue(pcap_q->pkts, pcap_buf);
211         }
212
213         pcap_q->rx_stat.pkts += i;
214         pcap_q->rx_stat.bytes += rx_bytes;
215
216         return i;
217 }
218
219 static uint16_t
220 eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
221 {
222         unsigned int i;
223         struct pcap_pkthdr header;
224         struct pmd_process_private *pp;
225         const u_char *packet;
226         struct rte_mbuf *mbuf;
227         struct pcap_rx_queue *pcap_q = queue;
228         uint16_t num_rx = 0;
229         uint32_t rx_bytes = 0;
230         pcap_t *pcap;
231
232         pp = rte_eth_devices[pcap_q->port_id].process_private;
233         pcap = pp->rx_pcap[pcap_q->queue_id];
234
235         if (unlikely(pcap == NULL || nb_pkts == 0))
236                 return 0;
237
238         /* Reads the given number of packets from the pcap file one by one
239          * and copies the packet data into a newly allocated mbuf to return.
240          */
241         for (i = 0; i < nb_pkts; i++) {
242                 /* Get the next PCAP packet */
243                 packet = pcap_next(pcap, &header);
244                 if (unlikely(packet == NULL))
245                         break;
246
247                 mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
248                 if (unlikely(mbuf == NULL))
249                         break;
250
251                 if (header.caplen <= rte_pktmbuf_tailroom(mbuf)) {
252                         /* pcap packet will fit in the mbuf, can copy it */
253                         rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
254                                         header.caplen);
255                         mbuf->data_len = (uint16_t)header.caplen;
256                 } else {
257                         /* Try read jumbo frame into multi mbufs. */
258                         if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool,
259                                                        mbuf,
260                                                        packet,
261                                                        header.caplen) == -1)) {
262                                 rte_pktmbuf_free(mbuf);
263                                 break;
264                         }
265                 }
266
267                 mbuf->pkt_len = (uint16_t)header.caplen;
268                 mbuf->timestamp = (uint64_t)header.ts.tv_sec * 1000000
269                                                         + header.ts.tv_usec;
270                 mbuf->ol_flags |= PKT_RX_TIMESTAMP;
271                 mbuf->port = pcap_q->port_id;
272                 bufs[num_rx] = mbuf;
273                 num_rx++;
274                 rx_bytes += header.caplen;
275         }
276         pcap_q->rx_stat.pkts += num_rx;
277         pcap_q->rx_stat.bytes += rx_bytes;
278
279         return num_rx;
280 }
281
282 static uint16_t
283 eth_null_rx(void *queue __rte_unused,
284                 struct rte_mbuf **bufs __rte_unused,
285                 uint16_t nb_pkts __rte_unused)
286 {
287         return 0;
288 }
289
290 static inline void
291 calculate_timestamp(struct timeval *ts) {
292         uint64_t cycles;
293         struct timeval cur_time;
294
295         cycles = rte_get_timer_cycles() - start_cycles;
296         cur_time.tv_sec = cycles / hz;
297         cur_time.tv_usec = (cycles % hz) * 1e6 / hz;
298         timeradd(&start_time, &cur_time, ts);
299 }
300
301 /*
302  * Callback to handle writing packets to a pcap file.
303  */
304 static uint16_t
305 eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
306 {
307         unsigned int i;
308         struct rte_mbuf *mbuf;
309         struct pmd_process_private *pp;
310         struct pcap_tx_queue *dumper_q = queue;
311         uint16_t num_tx = 0;
312         uint32_t tx_bytes = 0;
313         struct pcap_pkthdr header;
314         pcap_dumper_t *dumper;
315         unsigned char temp_data[RTE_ETH_PCAP_SNAPLEN];
316         size_t len;
317
318         pp = rte_eth_devices[dumper_q->port_id].process_private;
319         dumper = pp->tx_dumper[dumper_q->queue_id];
320
321         if (dumper == NULL || nb_pkts == 0)
322                 return 0;
323
324         /* writes the nb_pkts packets to the previously opened pcap file
325          * dumper */
326         for (i = 0; i < nb_pkts; i++) {
327                 mbuf = bufs[i];
328                 len = rte_pktmbuf_pkt_len(mbuf);
329                 if (unlikely(!rte_pktmbuf_is_contiguous(mbuf) &&
330                                 len > sizeof(temp_data))) {
331                         PMD_LOG(ERR,
332                                 "Dropping multi segment PCAP packet. Size (%zd) > max size (%zd).",
333                                 len, sizeof(temp_data));
334                         rte_pktmbuf_free(mbuf);
335                         continue;
336                 }
337
338                 calculate_timestamp(&header.ts);
339                 header.len = len;
340                 header.caplen = header.len;
341                 /* rte_pktmbuf_read() returns a pointer to the data directly
342                  * in the mbuf (when the mbuf is contiguous) or, otherwise,
343                  * a pointer to temp_data after copying into it.
344                  */
345                 pcap_dump((u_char *)dumper, &header,
346                         rte_pktmbuf_read(mbuf, 0, len, temp_data));
347
348                 num_tx++;
349                 tx_bytes += len;
350                 rte_pktmbuf_free(mbuf);
351         }
352
353         /*
354          * Since there's no place to hook a callback when the forwarding
355          * process stops and to make sure the pcap file is actually written,
356          * we flush the pcap dumper within each burst.
357          */
358         pcap_dump_flush(dumper);
359         dumper_q->tx_stat.pkts += num_tx;
360         dumper_q->tx_stat.bytes += tx_bytes;
361         dumper_q->tx_stat.err_pkts += nb_pkts - num_tx;
362
363         return nb_pkts;
364 }
365
366 /*
367  * Callback to handle dropping packets in the infinite rx case.
368  */
369 static uint16_t
370 eth_tx_drop(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
371 {
372         unsigned int i;
373         uint32_t tx_bytes = 0;
374         struct pcap_tx_queue *tx_queue = queue;
375
376         if (unlikely(nb_pkts == 0))
377                 return 0;
378
379         for (i = 0; i < nb_pkts; i++) {
380                 tx_bytes += bufs[i]->data_len;
381                 rte_pktmbuf_free(bufs[i]);
382         }
383
384         tx_queue->tx_stat.pkts += nb_pkts;
385         tx_queue->tx_stat.bytes += tx_bytes;
386
387         return i;
388 }
389
390 /*
391  * Callback to handle sending packets through a real NIC.
392  */
393 static uint16_t
394 eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
395 {
396         unsigned int i;
397         int ret;
398         struct rte_mbuf *mbuf;
399         struct pmd_process_private *pp;
400         struct pcap_tx_queue *tx_queue = queue;
401         uint16_t num_tx = 0;
402         uint32_t tx_bytes = 0;
403         pcap_t *pcap;
404         unsigned char temp_data[RTE_ETH_PCAP_SNAPLEN];
405         size_t len;
406
407         pp = rte_eth_devices[tx_queue->port_id].process_private;
408         pcap = pp->tx_pcap[tx_queue->queue_id];
409
410         if (unlikely(nb_pkts == 0 || pcap == NULL))
411                 return 0;
412
413         for (i = 0; i < nb_pkts; i++) {
414                 mbuf = bufs[i];
415                 len = rte_pktmbuf_pkt_len(mbuf);
416                 if (unlikely(!rte_pktmbuf_is_contiguous(mbuf) &&
417                                 len > sizeof(temp_data))) {
418                         PMD_LOG(ERR,
419                                 "Dropping multi segment PCAP packet. Size (%zd) > max size (%zd).",
420                                 len, sizeof(temp_data));
421                         rte_pktmbuf_free(mbuf);
422                         continue;
423                 }
424
425                 /* rte_pktmbuf_read() returns a pointer to the data directly
426                  * in the mbuf (when the mbuf is contiguous) or, otherwise,
427                  * a pointer to temp_data after copying into it.
428                  */
429                 ret = pcap_sendpacket(pcap,
430                         rte_pktmbuf_read(mbuf, 0, len, temp_data), len);
431                 if (unlikely(ret != 0))
432                         break;
433                 num_tx++;
434                 tx_bytes += len;
435                 rte_pktmbuf_free(mbuf);
436         }
437
438         tx_queue->tx_stat.pkts += num_tx;
439         tx_queue->tx_stat.bytes += tx_bytes;
440         tx_queue->tx_stat.err_pkts += i - num_tx;
441
442         return i;
443 }
444
445 /*
446  * pcap_open_live wrapper function
447  */
448 static inline int
449 open_iface_live(const char *iface, pcap_t **pcap) {
450         *pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
451                         RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
452
453         if (*pcap == NULL) {
454                 PMD_LOG(ERR, "Couldn't open %s: %s", iface, errbuf);
455                 return -1;
456         }
457
458         return 0;
459 }
460
461 static int
462 open_single_iface(const char *iface, pcap_t **pcap)
463 {
464         if (open_iface_live(iface, pcap) < 0) {
465                 PMD_LOG(ERR, "Couldn't open interface %s", iface);
466                 return -1;
467         }
468
469         return 0;
470 }
471
472 static int
473 open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper)
474 {
475         pcap_t *tx_pcap;
476
477         /*
478          * We need to create a dummy empty pcap_t to use it
479          * with pcap_dump_open(). We create big enough an Ethernet
480          * pcap holder.
481          */
482         tx_pcap = pcap_open_dead(DLT_EN10MB, RTE_ETH_PCAP_SNAPSHOT_LEN);
483         if (tx_pcap == NULL) {
484                 PMD_LOG(ERR, "Couldn't create dead pcap");
485                 return -1;
486         }
487
488         /* The dumper is created using the previous pcap_t reference */
489         *dumper = pcap_dump_open(tx_pcap, pcap_filename);
490         if (*dumper == NULL) {
491                 pcap_close(tx_pcap);
492                 PMD_LOG(ERR, "Couldn't open %s for writing.",
493                         pcap_filename);
494                 return -1;
495         }
496
497         pcap_close(tx_pcap);
498         return 0;
499 }
500
501 static int
502 open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap)
503 {
504         *pcap = pcap_open_offline(pcap_filename, errbuf);
505         if (*pcap == NULL) {
506                 PMD_LOG(ERR, "Couldn't open %s: %s", pcap_filename,
507                         errbuf);
508                 return -1;
509         }
510
511         return 0;
512 }
513
514 static uint64_t
515 count_packets_in_pcap(pcap_t **pcap, struct pcap_rx_queue *pcap_q)
516 {
517         const u_char *packet;
518         struct pcap_pkthdr header;
519         uint64_t pcap_pkt_count = 0;
520
521         while ((packet = pcap_next(*pcap, &header)))
522                 pcap_pkt_count++;
523
524         /* The pcap is reopened so it can be used as normal later. */
525         pcap_close(*pcap);
526         *pcap = NULL;
527         open_single_rx_pcap(pcap_q->name, pcap);
528
529         return pcap_pkt_count;
530 }
531
532 static int
533 eth_dev_start(struct rte_eth_dev *dev)
534 {
535         unsigned int i;
536         struct pmd_internals *internals = dev->data->dev_private;
537         struct pmd_process_private *pp = dev->process_private;
538         struct pcap_tx_queue *tx;
539         struct pcap_rx_queue *rx;
540
541         /* Special iface case. Single pcap is open and shared between tx/rx. */
542         if (internals->single_iface) {
543                 tx = &internals->tx_queue[0];
544                 rx = &internals->rx_queue[0];
545
546                 if (!pp->tx_pcap[0] &&
547                         strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) {
548                         if (open_single_iface(tx->name, &pp->tx_pcap[0]) < 0)
549                                 return -1;
550                         pp->rx_pcap[0] = pp->tx_pcap[0];
551                 }
552
553                 goto status_up;
554         }
555
556         /* If not open already, open tx pcaps/dumpers */
557         for (i = 0; i < dev->data->nb_tx_queues; i++) {
558                 tx = &internals->tx_queue[i];
559
560                 if (!pp->tx_dumper[i] &&
561                                 strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) {
562                         if (open_single_tx_pcap(tx->name,
563                                 &pp->tx_dumper[i]) < 0)
564                                 return -1;
565                 } else if (!pp->tx_pcap[i] &&
566                                 strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) {
567                         if (open_single_iface(tx->name, &pp->tx_pcap[i]) < 0)
568                                 return -1;
569                 }
570         }
571
572         /* If not open already, open rx pcaps */
573         for (i = 0; i < dev->data->nb_rx_queues; i++) {
574                 rx = &internals->rx_queue[i];
575
576                 if (pp->rx_pcap[i] != NULL)
577                         continue;
578
579                 if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) {
580                         if (open_single_rx_pcap(rx->name, &pp->rx_pcap[i]) < 0)
581                                 return -1;
582                 } else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) {
583                         if (open_single_iface(rx->name, &pp->rx_pcap[i]) < 0)
584                                 return -1;
585                 }
586         }
587
588 status_up:
589         for (i = 0; i < dev->data->nb_rx_queues; i++)
590                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
591
592         for (i = 0; i < dev->data->nb_tx_queues; i++)
593                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
594
595         dev->data->dev_link.link_status = ETH_LINK_UP;
596
597         return 0;
598 }
599
600 /*
601  * This function gets called when the current port gets stopped.
602  * Is the only place for us to close all the tx streams dumpers.
603  * If not called the dumpers will be flushed within each tx burst.
604  */
605 static void
606 eth_dev_stop(struct rte_eth_dev *dev)
607 {
608         unsigned int i;
609         struct pmd_internals *internals = dev->data->dev_private;
610         struct pmd_process_private *pp = dev->process_private;
611
612         /* Special iface case. Single pcap is open and shared between tx/rx. */
613         if (internals->single_iface) {
614                 pcap_close(pp->tx_pcap[0]);
615                 pp->tx_pcap[0] = NULL;
616                 pp->rx_pcap[0] = NULL;
617                 goto status_down;
618         }
619
620         for (i = 0; i < dev->data->nb_tx_queues; i++) {
621                 if (pp->tx_dumper[i] != NULL) {
622                         pcap_dump_close(pp->tx_dumper[i]);
623                         pp->tx_dumper[i] = NULL;
624                 }
625
626                 if (pp->tx_pcap[i] != NULL) {
627                         pcap_close(pp->tx_pcap[i]);
628                         pp->tx_pcap[i] = NULL;
629                 }
630         }
631
632         for (i = 0; i < dev->data->nb_rx_queues; i++) {
633                 if (pp->rx_pcap[i] != NULL) {
634                         pcap_close(pp->rx_pcap[i]);
635                         pp->rx_pcap[i] = NULL;
636                 }
637         }
638
639 status_down:
640         for (i = 0; i < dev->data->nb_rx_queues; i++)
641                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
642
643         for (i = 0; i < dev->data->nb_tx_queues; i++)
644                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
645
646         dev->data->dev_link.link_status = ETH_LINK_DOWN;
647 }
648
649 static int
650 eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
651 {
652         return 0;
653 }
654
655 static int
656 eth_dev_info(struct rte_eth_dev *dev,
657                 struct rte_eth_dev_info *dev_info)
658 {
659         struct pmd_internals *internals = dev->data->dev_private;
660
661         dev_info->if_index = internals->if_index;
662         dev_info->max_mac_addrs = 1;
663         dev_info->max_rx_pktlen = (uint32_t) -1;
664         dev_info->max_rx_queues = dev->data->nb_rx_queues;
665         dev_info->max_tx_queues = dev->data->nb_tx_queues;
666         dev_info->min_rx_bufsize = 0;
667
668         return 0;
669 }
670
671 static int
672 eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
673 {
674         unsigned int i;
675         unsigned long rx_packets_total = 0, rx_bytes_total = 0;
676         unsigned long tx_packets_total = 0, tx_bytes_total = 0;
677         unsigned long tx_packets_err_total = 0;
678         const struct pmd_internals *internal = dev->data->dev_private;
679
680         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
681                         i < dev->data->nb_rx_queues; i++) {
682                 stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts;
683                 stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes;
684                 rx_packets_total += stats->q_ipackets[i];
685                 rx_bytes_total += stats->q_ibytes[i];
686         }
687
688         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
689                         i < dev->data->nb_tx_queues; i++) {
690                 stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts;
691                 stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes;
692                 tx_packets_total += stats->q_opackets[i];
693                 tx_bytes_total += stats->q_obytes[i];
694                 tx_packets_err_total += internal->tx_queue[i].tx_stat.err_pkts;
695         }
696
697         stats->ipackets = rx_packets_total;
698         stats->ibytes = rx_bytes_total;
699         stats->opackets = tx_packets_total;
700         stats->obytes = tx_bytes_total;
701         stats->oerrors = tx_packets_err_total;
702
703         return 0;
704 }
705
706 static void
707 eth_stats_reset(struct rte_eth_dev *dev)
708 {
709         unsigned int i;
710         struct pmd_internals *internal = dev->data->dev_private;
711
712         for (i = 0; i < dev->data->nb_rx_queues; i++) {
713                 internal->rx_queue[i].rx_stat.pkts = 0;
714                 internal->rx_queue[i].rx_stat.bytes = 0;
715         }
716
717         for (i = 0; i < dev->data->nb_tx_queues; i++) {
718                 internal->tx_queue[i].tx_stat.pkts = 0;
719                 internal->tx_queue[i].tx_stat.bytes = 0;
720                 internal->tx_queue[i].tx_stat.err_pkts = 0;
721         }
722 }
723
724 static void
725 eth_dev_close(struct rte_eth_dev *dev)
726 {
727         unsigned int i;
728         struct pmd_internals *internals = dev->data->dev_private;
729
730         /* Device wide flag, but cleanup must be performed per queue. */
731         if (internals->infinite_rx) {
732                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
733                         struct pcap_rx_queue *pcap_q = &internals->rx_queue[i];
734                         struct rte_mbuf *pcap_buf;
735
736                         while (!rte_ring_dequeue(pcap_q->pkts,
737                                         (void **)&pcap_buf))
738                                 rte_pktmbuf_free(pcap_buf);
739
740                         rte_ring_free(pcap_q->pkts);
741                 }
742         }
743
744 }
745
746 static void
747 eth_queue_release(void *q __rte_unused)
748 {
749 }
750
751 static int
752 eth_link_update(struct rte_eth_dev *dev __rte_unused,
753                 int wait_to_complete __rte_unused)
754 {
755         return 0;
756 }
757
758 static int
759 eth_rx_queue_setup(struct rte_eth_dev *dev,
760                 uint16_t rx_queue_id,
761                 uint16_t nb_rx_desc __rte_unused,
762                 unsigned int socket_id __rte_unused,
763                 const struct rte_eth_rxconf *rx_conf __rte_unused,
764                 struct rte_mempool *mb_pool)
765 {
766         struct pmd_internals *internals = dev->data->dev_private;
767         struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
768
769         pcap_q->mb_pool = mb_pool;
770         pcap_q->port_id = dev->data->port_id;
771         pcap_q->queue_id = rx_queue_id;
772         dev->data->rx_queues[rx_queue_id] = pcap_q;
773
774         if (internals->infinite_rx) {
775                 struct pmd_process_private *pp;
776                 char ring_name[NAME_MAX];
777                 static uint32_t ring_number;
778                 uint64_t pcap_pkt_count = 0;
779                 struct rte_mbuf *bufs[1];
780                 pcap_t **pcap;
781
782                 pp = rte_eth_devices[pcap_q->port_id].process_private;
783                 pcap = &pp->rx_pcap[pcap_q->queue_id];
784
785                 if (unlikely(*pcap == NULL))
786                         return -ENOENT;
787
788                 pcap_pkt_count = count_packets_in_pcap(pcap, pcap_q);
789
790                 snprintf(ring_name, sizeof(ring_name), "PCAP_RING%" PRIu16,
791                                 ring_number);
792
793                 pcap_q->pkts = rte_ring_create(ring_name,
794                                 rte_align64pow2(pcap_pkt_count + 1), 0,
795                                 RING_F_SP_ENQ | RING_F_SC_DEQ);
796                 ring_number++;
797                 if (!pcap_q->pkts)
798                         return -ENOENT;
799
800                 /* Fill ring with packets from PCAP file one by one. */
801                 while (eth_pcap_rx(pcap_q, bufs, 1)) {
802                         /* Check for multiseg mbufs. */
803                         if (bufs[0]->nb_segs != 1) {
804                                 rte_pktmbuf_free(*bufs);
805
806                                 while (!rte_ring_dequeue(pcap_q->pkts,
807                                                 (void **)bufs))
808                                         rte_pktmbuf_free(*bufs);
809
810                                 rte_ring_free(pcap_q->pkts);
811                                 PMD_LOG(ERR, "Multiseg mbufs are not supported in infinite_rx "
812                                                 "mode.");
813                                 return -EINVAL;
814                         }
815
816                         rte_ring_enqueue_bulk(pcap_q->pkts,
817                                         (void * const *)bufs, 1, NULL);
818                 }
819                 /*
820                  * Reset the stats for this queue since eth_pcap_rx calls above
821                  * didn't result in the application receiving packets.
822                  */
823                 pcap_q->rx_stat.pkts = 0;
824                 pcap_q->rx_stat.bytes = 0;
825         }
826
827         return 0;
828 }
829
830 static int
831 eth_tx_queue_setup(struct rte_eth_dev *dev,
832                 uint16_t tx_queue_id,
833                 uint16_t nb_tx_desc __rte_unused,
834                 unsigned int socket_id __rte_unused,
835                 const struct rte_eth_txconf *tx_conf __rte_unused)
836 {
837         struct pmd_internals *internals = dev->data->dev_private;
838         struct pcap_tx_queue *pcap_q = &internals->tx_queue[tx_queue_id];
839
840         pcap_q->port_id = dev->data->port_id;
841         pcap_q->queue_id = tx_queue_id;
842         dev->data->tx_queues[tx_queue_id] = pcap_q;
843
844         return 0;
845 }
846
847 static int
848 eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
849 {
850         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
851
852         return 0;
853 }
854
855 static int
856 eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
857 {
858         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
859
860         return 0;
861 }
862
863 static int
864 eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
865 {
866         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
867
868         return 0;
869 }
870
871 static int
872 eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
873 {
874         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
875
876         return 0;
877 }
878
879 static const struct eth_dev_ops ops = {
880         .dev_start = eth_dev_start,
881         .dev_stop = eth_dev_stop,
882         .dev_close = eth_dev_close,
883         .dev_configure = eth_dev_configure,
884         .dev_infos_get = eth_dev_info,
885         .rx_queue_setup = eth_rx_queue_setup,
886         .tx_queue_setup = eth_tx_queue_setup,
887         .rx_queue_start = eth_rx_queue_start,
888         .tx_queue_start = eth_tx_queue_start,
889         .rx_queue_stop = eth_rx_queue_stop,
890         .tx_queue_stop = eth_tx_queue_stop,
891         .rx_queue_release = eth_queue_release,
892         .tx_queue_release = eth_queue_release,
893         .link_update = eth_link_update,
894         .stats_get = eth_stats_get,
895         .stats_reset = eth_stats_reset,
896 };
897
898 static int
899 add_queue(struct pmd_devargs *pmd, const char *name, const char *type,
900                 pcap_t *pcap, pcap_dumper_t *dumper)
901 {
902         if (pmd->num_of_queue >= RTE_PMD_PCAP_MAX_QUEUES)
903                 return -1;
904         if (pcap)
905                 pmd->queue[pmd->num_of_queue].pcap = pcap;
906         if (dumper)
907                 pmd->queue[pmd->num_of_queue].dumper = dumper;
908         pmd->queue[pmd->num_of_queue].name = name;
909         pmd->queue[pmd->num_of_queue].type = type;
910         pmd->num_of_queue++;
911         return 0;
912 }
913
914 /*
915  * Function handler that opens the pcap file for reading a stores a
916  * reference of it for use it later on.
917  */
918 static int
919 open_rx_pcap(const char *key, const char *value, void *extra_args)
920 {
921         const char *pcap_filename = value;
922         struct pmd_devargs *rx = extra_args;
923         pcap_t *pcap = NULL;
924
925         if (open_single_rx_pcap(pcap_filename, &pcap) < 0)
926                 return -1;
927
928         if (add_queue(rx, pcap_filename, key, pcap, NULL) < 0) {
929                 pcap_close(pcap);
930                 return -1;
931         }
932
933         return 0;
934 }
935
936 /*
937  * Opens a pcap file for writing and stores a reference to it
938  * for use it later on.
939  */
940 static int
941 open_tx_pcap(const char *key, const char *value, void *extra_args)
942 {
943         const char *pcap_filename = value;
944         struct pmd_devargs *dumpers = extra_args;
945         pcap_dumper_t *dumper;
946
947         if (open_single_tx_pcap(pcap_filename, &dumper) < 0)
948                 return -1;
949
950         if (add_queue(dumpers, pcap_filename, key, NULL, dumper) < 0) {
951                 pcap_dump_close(dumper);
952                 return -1;
953         }
954
955         return 0;
956 }
957
958 /*
959  * Opens an interface for reading and writing
960  */
961 static inline int
962 open_rx_tx_iface(const char *key, const char *value, void *extra_args)
963 {
964         const char *iface = value;
965         struct pmd_devargs *tx = extra_args;
966         pcap_t *pcap = NULL;
967
968         if (open_single_iface(iface, &pcap) < 0)
969                 return -1;
970
971         tx->queue[0].pcap = pcap;
972         tx->queue[0].name = iface;
973         tx->queue[0].type = key;
974
975         return 0;
976 }
977
978 static inline int
979 set_iface_direction(const char *iface, pcap_t *pcap,
980                 pcap_direction_t direction)
981 {
982         const char *direction_str = (direction == PCAP_D_IN) ? "IN" : "OUT";
983         if (pcap_setdirection(pcap, direction) < 0) {
984                 PMD_LOG(ERR, "Setting %s pcap direction %s failed - %s\n",
985                                 iface, direction_str, pcap_geterr(pcap));
986                 return -1;
987         }
988         PMD_LOG(INFO, "Setting %s pcap direction %s\n",
989                         iface, direction_str);
990         return 0;
991 }
992
993 static inline int
994 open_iface(const char *key, const char *value, void *extra_args)
995 {
996         const char *iface = value;
997         struct pmd_devargs *pmd = extra_args;
998         pcap_t *pcap = NULL;
999
1000         if (open_single_iface(iface, &pcap) < 0)
1001                 return -1;
1002         if (add_queue(pmd, iface, key, pcap, NULL) < 0) {
1003                 pcap_close(pcap);
1004                 return -1;
1005         }
1006
1007         return 0;
1008 }
1009
1010 /*
1011  * Opens a NIC for reading packets from it
1012  */
1013 static inline int
1014 open_rx_iface(const char *key, const char *value, void *extra_args)
1015 {
1016         int ret = open_iface(key, value, extra_args);
1017         if (ret < 0)
1018                 return ret;
1019         if (strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0) {
1020                 struct pmd_devargs *pmd = extra_args;
1021                 unsigned int qid = pmd->num_of_queue - 1;
1022
1023                 set_iface_direction(pmd->queue[qid].name,
1024                                 pmd->queue[qid].pcap,
1025                                 PCAP_D_IN);
1026         }
1027
1028         return 0;
1029 }
1030
1031 static inline int
1032 rx_iface_args_process(const char *key, const char *value, void *extra_args)
1033 {
1034         if (strcmp(key, ETH_PCAP_RX_IFACE_ARG) == 0 ||
1035                         strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0)
1036                 return open_rx_iface(key, value, extra_args);
1037
1038         return 0;
1039 }
1040
1041 /*
1042  * Opens a NIC for writing packets to it
1043  */
1044 static int
1045 open_tx_iface(const char *key, const char *value, void *extra_args)
1046 {
1047         return open_iface(key, value, extra_args);
1048 }
1049
1050 static int
1051 select_phy_mac(const char *key __rte_unused, const char *value,
1052                 void *extra_args)
1053 {
1054         if (extra_args) {
1055                 const int phy_mac = atoi(value);
1056                 int *enable_phy_mac = extra_args;
1057
1058                 if (phy_mac)
1059                         *enable_phy_mac = 1;
1060         }
1061         return 0;
1062 }
1063
1064 static int
1065 get_infinite_rx_arg(const char *key __rte_unused,
1066                 const char *value, void *extra_args)
1067 {
1068         if (extra_args) {
1069                 const int infinite_rx = atoi(value);
1070                 int *enable_infinite_rx = extra_args;
1071
1072                 if (infinite_rx > 0)
1073                         *enable_infinite_rx = 1;
1074         }
1075         return 0;
1076 }
1077
1078 static int
1079 pmd_init_internals(struct rte_vdev_device *vdev,
1080                 const unsigned int nb_rx_queues,
1081                 const unsigned int nb_tx_queues,
1082                 struct pmd_internals **internals,
1083                 struct rte_eth_dev **eth_dev)
1084 {
1085         struct rte_eth_dev_data *data;
1086         struct pmd_process_private *pp;
1087         unsigned int numa_node = vdev->device.numa_node;
1088
1089         PMD_LOG(INFO, "Creating pcap-backed ethdev on numa socket %d",
1090                 numa_node);
1091
1092         pp = (struct pmd_process_private *)
1093                 rte_zmalloc(NULL, sizeof(struct pmd_process_private),
1094                                 RTE_CACHE_LINE_SIZE);
1095
1096         if (pp == NULL) {
1097                 PMD_LOG(ERR,
1098                         "Failed to allocate memory for process private");
1099                 return -1;
1100         }
1101
1102         /* reserve an ethdev entry */
1103         *eth_dev = rte_eth_vdev_allocate(vdev, sizeof(**internals));
1104         if (!(*eth_dev)) {
1105                 rte_free(pp);
1106                 return -1;
1107         }
1108         (*eth_dev)->process_private = pp;
1109         /* now put it all together
1110          * - store queue data in internals,
1111          * - store numa_node info in eth_dev
1112          * - point eth_dev_data to internals
1113          * - and point eth_dev structure to new eth_dev_data structure
1114          */
1115         *internals = (*eth_dev)->data->dev_private;
1116         /*
1117          * Interface MAC = 02:70:63:61:70:<iface_idx>
1118          * derived from: 'locally administered':'p':'c':'a':'p':'iface_idx'
1119          * where the middle 4 characters are converted to hex.
1120          */
1121         (*internals)->eth_addr = (struct rte_ether_addr) {
1122                 .addr_bytes = { 0x02, 0x70, 0x63, 0x61, 0x70, iface_idx++ }
1123         };
1124         (*internals)->phy_mac = 0;
1125         data = (*eth_dev)->data;
1126         data->nb_rx_queues = (uint16_t)nb_rx_queues;
1127         data->nb_tx_queues = (uint16_t)nb_tx_queues;
1128         data->dev_link = pmd_link;
1129         data->mac_addrs = &(*internals)->eth_addr;
1130
1131         /*
1132          * NOTE: we'll replace the data element, of originally allocated
1133          * eth_dev so the rings are local per-process
1134          */
1135         (*eth_dev)->dev_ops = &ops;
1136
1137         strlcpy((*internals)->devargs, rte_vdev_device_args(vdev),
1138                         ETH_PCAP_ARG_MAXLEN);
1139
1140         return 0;
1141 }
1142
1143 static int
1144 eth_pcap_update_mac(const char *if_name, struct rte_eth_dev *eth_dev,
1145                 const unsigned int numa_node)
1146 {
1147 #if defined(RTE_EXEC_ENV_LINUX)
1148         void *mac_addrs;
1149         struct ifreq ifr;
1150         int if_fd = socket(AF_INET, SOCK_DGRAM, 0);
1151
1152         if (if_fd == -1)
1153                 return -1;
1154
1155         rte_strscpy(ifr.ifr_name, if_name, sizeof(ifr.ifr_name));
1156         if (ioctl(if_fd, SIOCGIFHWADDR, &ifr)) {
1157                 close(if_fd);
1158                 return -1;
1159         }
1160
1161         mac_addrs = rte_zmalloc_socket(NULL, RTE_ETHER_ADDR_LEN, 0, numa_node);
1162         if (!mac_addrs) {
1163                 close(if_fd);
1164                 return -1;
1165         }
1166
1167         PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
1168         eth_dev->data->mac_addrs = mac_addrs;
1169         rte_memcpy(eth_dev->data->mac_addrs[0].addr_bytes,
1170                         ifr.ifr_hwaddr.sa_data, RTE_ETHER_ADDR_LEN);
1171
1172         close(if_fd);
1173
1174         return 0;
1175
1176 #elif defined(RTE_EXEC_ENV_FREEBSD)
1177         void *mac_addrs;
1178         struct if_msghdr *ifm;
1179         struct sockaddr_dl *sdl;
1180         int mib[6];
1181         size_t len = 0;
1182         char *buf;
1183
1184         mib[0] = CTL_NET;
1185         mib[1] = AF_ROUTE;
1186         mib[2] = 0;
1187         mib[3] = AF_LINK;
1188         mib[4] = NET_RT_IFLIST;
1189         mib[5] = if_nametoindex(if_name);
1190
1191         if (sysctl(mib, 6, NULL, &len, NULL, 0) < 0)
1192                 return -1;
1193
1194         if (len == 0)
1195                 return -1;
1196
1197         buf = rte_malloc(NULL, len, 0);
1198         if (!buf)
1199                 return -1;
1200
1201         if (sysctl(mib, 6, buf, &len, NULL, 0) < 0) {
1202                 rte_free(buf);
1203                 return -1;
1204         }
1205         ifm = (struct if_msghdr *)buf;
1206         sdl = (struct sockaddr_dl *)(ifm + 1);
1207
1208         mac_addrs = rte_zmalloc_socket(NULL, RTE_ETHER_ADDR_LEN, 0, numa_node);
1209         if (!mac_addrs) {
1210                 rte_free(buf);
1211                 return -1;
1212         }
1213
1214         PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
1215         eth_dev->data->mac_addrs = mac_addrs;
1216         rte_memcpy(eth_dev->data->mac_addrs[0].addr_bytes,
1217                         LLADDR(sdl), RTE_ETHER_ADDR_LEN);
1218
1219         rte_free(buf);
1220
1221         return 0;
1222 #else
1223         return -1;
1224 #endif
1225 }
1226
1227 static int
1228 eth_from_pcaps_common(struct rte_vdev_device *vdev,
1229                 struct pmd_devargs_all *devargs_all,
1230                 struct pmd_internals **internals, struct rte_eth_dev **eth_dev)
1231 {
1232         struct pmd_process_private *pp;
1233         struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1234         struct pmd_devargs *tx_queues = &devargs_all->tx_queues;
1235         const unsigned int nb_rx_queues = rx_queues->num_of_queue;
1236         const unsigned int nb_tx_queues = tx_queues->num_of_queue;
1237         unsigned int i;
1238
1239         /* do some parameter checking */
1240         if (rx_queues == NULL && nb_rx_queues > 0)
1241                 return -1;
1242         if (tx_queues == NULL && nb_tx_queues > 0)
1243                 return -1;
1244
1245         if (pmd_init_internals(vdev, nb_rx_queues, nb_tx_queues, internals,
1246                         eth_dev) < 0)
1247                 return -1;
1248
1249         pp = (*eth_dev)->process_private;
1250         for (i = 0; i < nb_rx_queues; i++) {
1251                 struct pcap_rx_queue *rx = &(*internals)->rx_queue[i];
1252                 struct devargs_queue *queue = &rx_queues->queue[i];
1253
1254                 pp->rx_pcap[i] = queue->pcap;
1255                 strlcpy(rx->name, queue->name, sizeof(rx->name));
1256                 strlcpy(rx->type, queue->type, sizeof(rx->type));
1257         }
1258
1259         for (i = 0; i < nb_tx_queues; i++) {
1260                 struct pcap_tx_queue *tx = &(*internals)->tx_queue[i];
1261                 struct devargs_queue *queue = &tx_queues->queue[i];
1262
1263                 pp->tx_dumper[i] = queue->dumper;
1264                 pp->tx_pcap[i] = queue->pcap;
1265                 strlcpy(tx->name, queue->name, sizeof(tx->name));
1266                 strlcpy(tx->type, queue->type, sizeof(tx->type));
1267         }
1268
1269         return 0;
1270 }
1271
1272 static int
1273 eth_from_pcaps(struct rte_vdev_device *vdev,
1274                 struct pmd_devargs_all *devargs_all)
1275 {
1276         struct pmd_internals *internals = NULL;
1277         struct rte_eth_dev *eth_dev = NULL;
1278         struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1279         int single_iface = devargs_all->single_iface;
1280         unsigned int infinite_rx = devargs_all->infinite_rx;
1281         int ret;
1282
1283         ret = eth_from_pcaps_common(vdev, devargs_all, &internals, &eth_dev);
1284
1285         if (ret < 0)
1286                 return ret;
1287
1288         /* store weather we are using a single interface for rx/tx or not */
1289         internals->single_iface = single_iface;
1290
1291         if (single_iface) {
1292                 internals->if_index = if_nametoindex(rx_queues->queue[0].name);
1293
1294                 /* phy_mac arg is applied only only if "iface" devarg is provided */
1295                 if (rx_queues->phy_mac) {
1296                         int ret = eth_pcap_update_mac(rx_queues->queue[0].name,
1297                                         eth_dev, vdev->device.numa_node);
1298                         if (ret == 0)
1299                                 internals->phy_mac = 1;
1300                 }
1301         }
1302
1303         internals->infinite_rx = infinite_rx;
1304         /* Assign rx ops. */
1305         if (infinite_rx)
1306                 eth_dev->rx_pkt_burst = eth_pcap_rx_infinite;
1307         else if (devargs_all->is_rx_pcap || devargs_all->is_rx_iface ||
1308                         single_iface)
1309                 eth_dev->rx_pkt_burst = eth_pcap_rx;
1310         else
1311                 eth_dev->rx_pkt_burst = eth_null_rx;
1312
1313         /* Assign tx ops. */
1314         if (devargs_all->is_tx_pcap)
1315                 eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1316         else if (devargs_all->is_tx_iface || single_iface)
1317                 eth_dev->tx_pkt_burst = eth_pcap_tx;
1318         else
1319                 eth_dev->tx_pkt_burst = eth_tx_drop;
1320
1321         rte_eth_dev_probing_finish(eth_dev);
1322         return 0;
1323 }
1324
1325 static int
1326 pmd_pcap_probe(struct rte_vdev_device *dev)
1327 {
1328         const char *name;
1329         struct rte_kvargs *kvlist;
1330         struct pmd_devargs pcaps = {0};
1331         struct pmd_devargs dumpers = {0};
1332         struct rte_eth_dev *eth_dev =  NULL;
1333         struct pmd_internals *internal;
1334         int ret = 0;
1335
1336         struct pmd_devargs_all devargs_all = {
1337                 .single_iface = 0,
1338                 .is_tx_pcap = 0,
1339                 .is_tx_iface = 0,
1340                 .infinite_rx = 0,
1341         };
1342
1343         name = rte_vdev_device_name(dev);
1344         PMD_LOG(INFO, "Initializing pmd_pcap for %s", name);
1345
1346         gettimeofday(&start_time, NULL);
1347         start_cycles = rte_get_timer_cycles();
1348         hz = rte_get_timer_hz();
1349
1350         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1351                 eth_dev = rte_eth_dev_attach_secondary(name);
1352                 if (!eth_dev) {
1353                         PMD_LOG(ERR, "Failed to probe %s", name);
1354                         return -1;
1355                 }
1356
1357                 internal = eth_dev->data->dev_private;
1358
1359                 kvlist = rte_kvargs_parse(internal->devargs, valid_arguments);
1360                 if (kvlist == NULL)
1361                         return -1;
1362         } else {
1363                 kvlist = rte_kvargs_parse(rte_vdev_device_args(dev),
1364                                 valid_arguments);
1365                 if (kvlist == NULL)
1366                         return -1;
1367         }
1368
1369         /*
1370          * If iface argument is passed we open the NICs and use them for
1371          * reading / writing
1372          */
1373         if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
1374
1375                 ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
1376                                 &open_rx_tx_iface, &pcaps);
1377                 if (ret < 0)
1378                         goto free_kvlist;
1379
1380                 dumpers.queue[0] = pcaps.queue[0];
1381
1382                 ret = rte_kvargs_process(kvlist, ETH_PCAP_PHY_MAC_ARG,
1383                                 &select_phy_mac, &pcaps.phy_mac);
1384                 if (ret < 0)
1385                         goto free_kvlist;
1386
1387                 dumpers.phy_mac = pcaps.phy_mac;
1388
1389                 devargs_all.single_iface = 1;
1390                 pcaps.num_of_queue = 1;
1391                 dumpers.num_of_queue = 1;
1392
1393                 goto create_eth;
1394         }
1395
1396         /*
1397          * We check whether we want to open a RX stream from a real NIC, a
1398          * pcap file or open a dummy RX stream
1399          */
1400         devargs_all.is_rx_pcap =
1401                 rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG) ? 1 : 0;
1402         devargs_all.is_rx_iface =
1403                 rte_kvargs_count(kvlist, ETH_PCAP_RX_IFACE_ARG) ? 1 : 0;
1404         pcaps.num_of_queue = 0;
1405
1406         devargs_all.is_tx_pcap =
1407                 rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) ? 1 : 0;
1408         devargs_all.is_tx_iface =
1409                 rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG) ? 1 : 0;
1410         dumpers.num_of_queue = 0;
1411
1412         if (devargs_all.is_rx_pcap) {
1413                 /*
1414                  * We check whether we want to infinitely rx the pcap file.
1415                  */
1416                 unsigned int infinite_rx_arg_cnt = rte_kvargs_count(kvlist,
1417                                 ETH_PCAP_INFINITE_RX_ARG);
1418
1419                 if (infinite_rx_arg_cnt == 1) {
1420                         ret = rte_kvargs_process(kvlist,
1421                                         ETH_PCAP_INFINITE_RX_ARG,
1422                                         &get_infinite_rx_arg,
1423                                         &devargs_all.infinite_rx);
1424                         if (ret < 0)
1425                                 goto free_kvlist;
1426                         PMD_LOG(INFO, "infinite_rx has been %s for %s",
1427                                         devargs_all.infinite_rx ? "enabled" : "disabled",
1428                                         name);
1429
1430                 } else if (infinite_rx_arg_cnt > 1) {
1431                         PMD_LOG(WARNING, "infinite_rx has not been enabled since the "
1432                                         "argument has been provided more than once "
1433                                         "for %s", name);
1434                 }
1435
1436                 ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
1437                                 &open_rx_pcap, &pcaps);
1438         } else if (devargs_all.is_rx_iface) {
1439                 ret = rte_kvargs_process(kvlist, NULL,
1440                                 &rx_iface_args_process, &pcaps);
1441         } else if (devargs_all.is_tx_iface || devargs_all.is_tx_pcap) {
1442                 unsigned int i;
1443
1444                 /* Count number of tx queue args passed before dummy rx queue
1445                  * creation so a dummy rx queue can be created for each tx queue
1446                  */
1447                 unsigned int num_tx_queues =
1448                         (rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) +
1449                         rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG));
1450
1451                 PMD_LOG(INFO, "Creating null rx queue since no rx queues were provided.");
1452
1453                 /* Creating a dummy rx queue for each tx queue passed */
1454                 for (i = 0; i < num_tx_queues; i++)
1455                         ret = add_queue(&pcaps, "dummy_rx", "rx_null", NULL,
1456                                         NULL);
1457         } else {
1458                 PMD_LOG(ERR, "Error - No rx or tx queues provided");
1459                 ret = -ENOENT;
1460         }
1461         if (ret < 0)
1462                 goto free_kvlist;
1463
1464         /*
1465          * We check whether we want to open a TX stream to a real NIC,
1466          * a pcap file, or drop packets on tx
1467          */
1468         if (devargs_all.is_tx_pcap) {
1469                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
1470                                 &open_tx_pcap, &dumpers);
1471         } else if (devargs_all.is_tx_iface) {
1472                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
1473                                 &open_tx_iface, &dumpers);
1474         } else {
1475                 unsigned int i;
1476
1477                 PMD_LOG(INFO, "Dropping packets on tx since no tx queues were provided.");
1478
1479                 /* Add 1 dummy queue per rxq which counts and drops packets. */
1480                 for (i = 0; i < pcaps.num_of_queue; i++)
1481                         ret = add_queue(&dumpers, "dummy_tx", "tx_drop", NULL,
1482                                         NULL);
1483         }
1484
1485         if (ret < 0)
1486                 goto free_kvlist;
1487
1488 create_eth:
1489         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1490                 struct pmd_process_private *pp;
1491                 unsigned int i;
1492
1493                 internal = eth_dev->data->dev_private;
1494                         pp = (struct pmd_process_private *)
1495                                 rte_zmalloc(NULL,
1496                                         sizeof(struct pmd_process_private),
1497                                         RTE_CACHE_LINE_SIZE);
1498
1499                 if (pp == NULL) {
1500                         PMD_LOG(ERR,
1501                                 "Failed to allocate memory for process private");
1502                         ret = -1;
1503                         goto free_kvlist;
1504                 }
1505
1506                 eth_dev->dev_ops = &ops;
1507                 eth_dev->device = &dev->device;
1508
1509                 /* setup process private */
1510                 for (i = 0; i < pcaps.num_of_queue; i++)
1511                         pp->rx_pcap[i] = pcaps.queue[i].pcap;
1512
1513                 for (i = 0; i < dumpers.num_of_queue; i++) {
1514                         pp->tx_dumper[i] = dumpers.queue[i].dumper;
1515                         pp->tx_pcap[i] = dumpers.queue[i].pcap;
1516                 }
1517
1518                 eth_dev->process_private = pp;
1519                 eth_dev->rx_pkt_burst = eth_pcap_rx;
1520                 if (devargs_all.is_tx_pcap)
1521                         eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1522                 else
1523                         eth_dev->tx_pkt_burst = eth_pcap_tx;
1524
1525                 rte_eth_dev_probing_finish(eth_dev);
1526                 goto free_kvlist;
1527         }
1528
1529         devargs_all.rx_queues = pcaps;
1530         devargs_all.tx_queues = dumpers;
1531
1532         ret = eth_from_pcaps(dev, &devargs_all);
1533
1534 free_kvlist:
1535         rte_kvargs_free(kvlist);
1536
1537         return ret;
1538 }
1539
1540 static int
1541 pmd_pcap_remove(struct rte_vdev_device *dev)
1542 {
1543         struct pmd_internals *internals = NULL;
1544         struct rte_eth_dev *eth_dev = NULL;
1545
1546         PMD_LOG(INFO, "Closing pcap ethdev on numa socket %d",
1547                         rte_socket_id());
1548
1549         if (!dev)
1550                 return -1;
1551
1552         /* reserve an ethdev entry */
1553         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
1554         if (eth_dev == NULL)
1555                 return -1;
1556
1557         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
1558                 internals = eth_dev->data->dev_private;
1559                 if (internals != NULL && internals->phy_mac == 0)
1560                         /* not dynamically allocated, must not be freed */
1561                         eth_dev->data->mac_addrs = NULL;
1562         }
1563
1564         eth_dev_close(eth_dev);
1565
1566         rte_free(eth_dev->process_private);
1567         rte_eth_dev_release_port(eth_dev);
1568
1569         return 0;
1570 }
1571
1572 static struct rte_vdev_driver pmd_pcap_drv = {
1573         .probe = pmd_pcap_probe,
1574         .remove = pmd_pcap_remove,
1575 };
1576
1577 RTE_PMD_REGISTER_VDEV(net_pcap, pmd_pcap_drv);
1578 RTE_PMD_REGISTER_ALIAS(net_pcap, eth_pcap);
1579 RTE_PMD_REGISTER_PARAM_STRING(net_pcap,
1580         ETH_PCAP_RX_PCAP_ARG "=<string> "
1581         ETH_PCAP_TX_PCAP_ARG "=<string> "
1582         ETH_PCAP_RX_IFACE_ARG "=<ifc> "
1583         ETH_PCAP_RX_IFACE_IN_ARG "=<ifc> "
1584         ETH_PCAP_TX_IFACE_ARG "=<ifc> "
1585         ETH_PCAP_IFACE_ARG "=<ifc> "
1586         ETH_PCAP_PHY_MAC_ARG "=<int>"
1587         ETH_PCAP_INFINITE_RX_ARG "=<0|1>");
1588
1589 RTE_INIT(eth_pcap_init_log)
1590 {
1591         eth_pcap_logtype = rte_log_register("pmd.net.pcap");
1592         if (eth_pcap_logtype >= 0)
1593                 rte_log_set_level(eth_pcap_logtype, RTE_LOG_NOTICE);
1594 }