ethdev: make default behavior CRC strip on Rx
[dpdk.git] / drivers / net / pcap / rte_eth_pcap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright(c) 2014 6WIND S.A.
4  * All rights reserved.
5  */
6
7 #include <time.h>
8
9 #include <net/if.h>
10
11 #include <pcap.h>
12
13 #include <rte_cycles.h>
14 #include <rte_ethdev_driver.h>
15 #include <rte_ethdev_vdev.h>
16 #include <rte_kvargs.h>
17 #include <rte_malloc.h>
18 #include <rte_mbuf.h>
19 #include <rte_bus_vdev.h>
20
21 #define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
22 #define RTE_ETH_PCAP_SNAPLEN ETHER_MAX_JUMBO_FRAME_LEN
23 #define RTE_ETH_PCAP_PROMISC 1
24 #define RTE_ETH_PCAP_TIMEOUT -1
25
26 #define ETH_PCAP_RX_PCAP_ARG  "rx_pcap"
27 #define ETH_PCAP_TX_PCAP_ARG  "tx_pcap"
28 #define ETH_PCAP_RX_IFACE_ARG "rx_iface"
29 #define ETH_PCAP_RX_IFACE_IN_ARG "rx_iface_in"
30 #define ETH_PCAP_TX_IFACE_ARG "tx_iface"
31 #define ETH_PCAP_IFACE_ARG    "iface"
32
33 #define ETH_PCAP_ARG_MAXLEN     64
34
35 #define RTE_PMD_PCAP_MAX_QUEUES 16
36
37 static char errbuf[PCAP_ERRBUF_SIZE];
38 static unsigned char tx_pcap_data[RTE_ETH_PCAP_SNAPLEN];
39 static struct timeval start_time;
40 static uint64_t start_cycles;
41 static uint64_t hz;
42
43 struct queue_stat {
44         volatile unsigned long pkts;
45         volatile unsigned long bytes;
46         volatile unsigned long err_pkts;
47 };
48
49 struct pcap_rx_queue {
50         pcap_t *pcap;
51         uint16_t in_port;
52         struct rte_mempool *mb_pool;
53         struct queue_stat rx_stat;
54         char name[PATH_MAX];
55         char type[ETH_PCAP_ARG_MAXLEN];
56 };
57
58 struct pcap_tx_queue {
59         pcap_dumper_t *dumper;
60         pcap_t *pcap;
61         struct queue_stat tx_stat;
62         char name[PATH_MAX];
63         char type[ETH_PCAP_ARG_MAXLEN];
64 };
65
66 struct pmd_internals {
67         struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES];
68         struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES];
69         int if_index;
70         int single_iface;
71 };
72
73 struct pmd_devargs {
74         unsigned int num_of_queue;
75         struct devargs_queue {
76                 pcap_dumper_t *dumper;
77                 pcap_t *pcap;
78                 const char *name;
79                 const char *type;
80         } queue[RTE_PMD_PCAP_MAX_QUEUES];
81 };
82
83 static const char *valid_arguments[] = {
84         ETH_PCAP_RX_PCAP_ARG,
85         ETH_PCAP_TX_PCAP_ARG,
86         ETH_PCAP_RX_IFACE_ARG,
87         ETH_PCAP_RX_IFACE_IN_ARG,
88         ETH_PCAP_TX_IFACE_ARG,
89         ETH_PCAP_IFACE_ARG,
90         NULL
91 };
92
93 static struct ether_addr eth_addr = {
94         .addr_bytes = { 0, 0, 0, 0x1, 0x2, 0x3 }
95 };
96
97 static struct rte_eth_link pmd_link = {
98                 .link_speed = ETH_SPEED_NUM_10G,
99                 .link_duplex = ETH_LINK_FULL_DUPLEX,
100                 .link_status = ETH_LINK_DOWN,
101                 .link_autoneg = ETH_LINK_FIXED,
102 };
103
104 static int eth_pcap_logtype;
105
106 #define PMD_LOG(level, fmt, args...) \
107         rte_log(RTE_LOG_ ## level, eth_pcap_logtype, \
108                 "%s(): " fmt "\n", __func__, ##args)
109
110 static int
111 eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf,
112                 const u_char *data, uint16_t data_len)
113 {
114         /* Copy the first segment. */
115         uint16_t len = rte_pktmbuf_tailroom(mbuf);
116         struct rte_mbuf *m = mbuf;
117
118         rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len);
119         data_len -= len;
120         data += len;
121
122         while (data_len > 0) {
123                 /* Allocate next mbuf and point to that. */
124                 m->next = rte_pktmbuf_alloc(mb_pool);
125
126                 if (unlikely(!m->next))
127                         return -1;
128
129                 m = m->next;
130
131                 /* Headroom is not needed in chained mbufs. */
132                 rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m));
133                 m->pkt_len = 0;
134                 m->data_len = 0;
135
136                 /* Copy next segment. */
137                 len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len);
138                 rte_memcpy(rte_pktmbuf_append(m, len), data, len);
139
140                 mbuf->nb_segs++;
141                 data_len -= len;
142                 data += len;
143         }
144
145         return mbuf->nb_segs;
146 }
147
148 /* Copy data from mbuf chain to a buffer suitable for writing to a PCAP file. */
149 static void
150 eth_pcap_gather_data(unsigned char *data, struct rte_mbuf *mbuf)
151 {
152         uint16_t data_len = 0;
153
154         while (mbuf) {
155                 rte_memcpy(data + data_len, rte_pktmbuf_mtod(mbuf, void *),
156                         mbuf->data_len);
157
158                 data_len += mbuf->data_len;
159                 mbuf = mbuf->next;
160         }
161 }
162
163 static uint16_t
164 eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
165 {
166         unsigned int i;
167         struct pcap_pkthdr header;
168         const u_char *packet;
169         struct rte_mbuf *mbuf;
170         struct pcap_rx_queue *pcap_q = queue;
171         uint16_t num_rx = 0;
172         uint16_t buf_size;
173         uint32_t rx_bytes = 0;
174
175         if (unlikely(pcap_q->pcap == NULL || nb_pkts == 0))
176                 return 0;
177
178         /* Reads the given number of packets from the pcap file one by one
179          * and copies the packet data into a newly allocated mbuf to return.
180          */
181         for (i = 0; i < nb_pkts; i++) {
182                 /* Get the next PCAP packet */
183                 packet = pcap_next(pcap_q->pcap, &header);
184                 if (unlikely(packet == NULL))
185                         break;
186
187                 mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
188                 if (unlikely(mbuf == NULL))
189                         break;
190
191                 /* Now get the space available for data in the mbuf */
192                 buf_size = rte_pktmbuf_data_room_size(pcap_q->mb_pool) -
193                                 RTE_PKTMBUF_HEADROOM;
194
195                 if (header.caplen <= buf_size) {
196                         /* pcap packet will fit in the mbuf, can copy it */
197                         rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
198                                         header.caplen);
199                         mbuf->data_len = (uint16_t)header.caplen;
200                 } else {
201                         /* Try read jumbo frame into multi mbufs. */
202                         if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool,
203                                                        mbuf,
204                                                        packet,
205                                                        header.caplen) == -1)) {
206                                 rte_pktmbuf_free(mbuf);
207                                 break;
208                         }
209                 }
210
211                 mbuf->pkt_len = (uint16_t)header.caplen;
212                 mbuf->port = pcap_q->in_port;
213                 bufs[num_rx] = mbuf;
214                 num_rx++;
215                 rx_bytes += header.caplen;
216         }
217         pcap_q->rx_stat.pkts += num_rx;
218         pcap_q->rx_stat.bytes += rx_bytes;
219
220         return num_rx;
221 }
222
223 static inline void
224 calculate_timestamp(struct timeval *ts) {
225         uint64_t cycles;
226         struct timeval cur_time;
227
228         cycles = rte_get_timer_cycles() - start_cycles;
229         cur_time.tv_sec = cycles / hz;
230         cur_time.tv_usec = (cycles % hz) * 1e6 / hz;
231         timeradd(&start_time, &cur_time, ts);
232 }
233
234 /*
235  * Callback to handle writing packets to a pcap file.
236  */
237 static uint16_t
238 eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
239 {
240         unsigned int i;
241         struct rte_mbuf *mbuf;
242         struct pcap_tx_queue *dumper_q = queue;
243         uint16_t num_tx = 0;
244         uint32_t tx_bytes = 0;
245         struct pcap_pkthdr header;
246
247         if (dumper_q->dumper == NULL || nb_pkts == 0)
248                 return 0;
249
250         /* writes the nb_pkts packets to the previously opened pcap file
251          * dumper */
252         for (i = 0; i < nb_pkts; i++) {
253                 mbuf = bufs[i];
254                 calculate_timestamp(&header.ts);
255                 header.len = mbuf->pkt_len;
256                 header.caplen = header.len;
257
258                 if (likely(mbuf->nb_segs == 1)) {
259                         pcap_dump((u_char *)dumper_q->dumper, &header,
260                                   rte_pktmbuf_mtod(mbuf, void*));
261                 } else {
262                         if (mbuf->pkt_len <= ETHER_MAX_JUMBO_FRAME_LEN) {
263                                 eth_pcap_gather_data(tx_pcap_data, mbuf);
264                                 pcap_dump((u_char *)dumper_q->dumper, &header,
265                                           tx_pcap_data);
266                         } else {
267                                 PMD_LOG(ERR,
268                                         "Dropping PCAP packet. Size (%d) > max jumbo size (%d).",
269                                         mbuf->pkt_len,
270                                         ETHER_MAX_JUMBO_FRAME_LEN);
271
272                                 rte_pktmbuf_free(mbuf);
273                                 break;
274                         }
275                 }
276
277                 num_tx++;
278                 tx_bytes += mbuf->pkt_len;
279                 rte_pktmbuf_free(mbuf);
280         }
281
282         /*
283          * Since there's no place to hook a callback when the forwarding
284          * process stops and to make sure the pcap file is actually written,
285          * we flush the pcap dumper within each burst.
286          */
287         pcap_dump_flush(dumper_q->dumper);
288         dumper_q->tx_stat.pkts += num_tx;
289         dumper_q->tx_stat.bytes += tx_bytes;
290         dumper_q->tx_stat.err_pkts += nb_pkts - num_tx;
291
292         return num_tx;
293 }
294
295 /*
296  * Callback to handle sending packets through a real NIC.
297  */
298 static uint16_t
299 eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
300 {
301         unsigned int i;
302         int ret;
303         struct rte_mbuf *mbuf;
304         struct pcap_tx_queue *tx_queue = queue;
305         uint16_t num_tx = 0;
306         uint32_t tx_bytes = 0;
307
308         if (unlikely(nb_pkts == 0 || tx_queue->pcap == NULL))
309                 return 0;
310
311         for (i = 0; i < nb_pkts; i++) {
312                 mbuf = bufs[i];
313
314                 if (likely(mbuf->nb_segs == 1)) {
315                         ret = pcap_sendpacket(tx_queue->pcap,
316                                         rte_pktmbuf_mtod(mbuf, u_char *),
317                                         mbuf->pkt_len);
318                 } else {
319                         if (mbuf->pkt_len <= ETHER_MAX_JUMBO_FRAME_LEN) {
320                                 eth_pcap_gather_data(tx_pcap_data, mbuf);
321                                 ret = pcap_sendpacket(tx_queue->pcap,
322                                                 tx_pcap_data, mbuf->pkt_len);
323                         } else {
324                                 PMD_LOG(ERR,
325                                         "Dropping PCAP packet. Size (%d) > max jumbo size (%d).",
326                                         mbuf->pkt_len,
327                                         ETHER_MAX_JUMBO_FRAME_LEN);
328
329                                 rte_pktmbuf_free(mbuf);
330                                 break;
331                         }
332                 }
333
334                 if (unlikely(ret != 0))
335                         break;
336                 num_tx++;
337                 tx_bytes += mbuf->pkt_len;
338                 rte_pktmbuf_free(mbuf);
339         }
340
341         tx_queue->tx_stat.pkts += num_tx;
342         tx_queue->tx_stat.bytes += tx_bytes;
343         tx_queue->tx_stat.err_pkts += nb_pkts - num_tx;
344
345         return num_tx;
346 }
347
348 /*
349  * pcap_open_live wrapper function
350  */
351 static inline int
352 open_iface_live(const char *iface, pcap_t **pcap) {
353         *pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
354                         RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
355
356         if (*pcap == NULL) {
357                 PMD_LOG(ERR, "Couldn't open %s: %s", iface, errbuf);
358                 return -1;
359         }
360
361         return 0;
362 }
363
364 static int
365 open_single_iface(const char *iface, pcap_t **pcap)
366 {
367         if (open_iface_live(iface, pcap) < 0) {
368                 PMD_LOG(ERR, "Couldn't open interface %s", iface);
369                 return -1;
370         }
371
372         return 0;
373 }
374
375 static int
376 open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper)
377 {
378         pcap_t *tx_pcap;
379
380         /*
381          * We need to create a dummy empty pcap_t to use it
382          * with pcap_dump_open(). We create big enough an Ethernet
383          * pcap holder.
384          */
385         tx_pcap = pcap_open_dead(DLT_EN10MB, RTE_ETH_PCAP_SNAPSHOT_LEN);
386         if (tx_pcap == NULL) {
387                 PMD_LOG(ERR, "Couldn't create dead pcap");
388                 return -1;
389         }
390
391         /* The dumper is created using the previous pcap_t reference */
392         *dumper = pcap_dump_open(tx_pcap, pcap_filename);
393         if (*dumper == NULL) {
394                 pcap_close(tx_pcap);
395                 PMD_LOG(ERR, "Couldn't open %s for writing.",
396                         pcap_filename);
397                 return -1;
398         }
399
400         pcap_close(tx_pcap);
401         return 0;
402 }
403
404 static int
405 open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap)
406 {
407         *pcap = pcap_open_offline(pcap_filename, errbuf);
408         if (*pcap == NULL) {
409                 PMD_LOG(ERR, "Couldn't open %s: %s", pcap_filename,
410                         errbuf);
411                 return -1;
412         }
413
414         return 0;
415 }
416
417 static int
418 eth_dev_start(struct rte_eth_dev *dev)
419 {
420         unsigned int i;
421         struct pmd_internals *internals = dev->data->dev_private;
422         struct pcap_tx_queue *tx;
423         struct pcap_rx_queue *rx;
424
425         /* Special iface case. Single pcap is open and shared between tx/rx. */
426         if (internals->single_iface) {
427                 tx = &internals->tx_queue[0];
428                 rx = &internals->rx_queue[0];
429
430                 if (!tx->pcap && strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) {
431                         if (open_single_iface(tx->name, &tx->pcap) < 0)
432                                 return -1;
433                         rx->pcap = tx->pcap;
434                 }
435
436                 goto status_up;
437         }
438
439         /* If not open already, open tx pcaps/dumpers */
440         for (i = 0; i < dev->data->nb_tx_queues; i++) {
441                 tx = &internals->tx_queue[i];
442
443                 if (!tx->dumper &&
444                                 strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) {
445                         if (open_single_tx_pcap(tx->name, &tx->dumper) < 0)
446                                 return -1;
447                 } else if (!tx->pcap &&
448                                 strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) {
449                         if (open_single_iface(tx->name, &tx->pcap) < 0)
450                                 return -1;
451                 }
452         }
453
454         /* If not open already, open rx pcaps */
455         for (i = 0; i < dev->data->nb_rx_queues; i++) {
456                 rx = &internals->rx_queue[i];
457
458                 if (rx->pcap != NULL)
459                         continue;
460
461                 if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) {
462                         if (open_single_rx_pcap(rx->name, &rx->pcap) < 0)
463                                 return -1;
464                 } else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) {
465                         if (open_single_iface(rx->name, &rx->pcap) < 0)
466                                 return -1;
467                 }
468         }
469
470 status_up:
471         for (i = 0; i < dev->data->nb_rx_queues; i++)
472                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
473
474         for (i = 0; i < dev->data->nb_tx_queues; i++)
475                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
476
477         dev->data->dev_link.link_status = ETH_LINK_UP;
478
479         return 0;
480 }
481
482 /*
483  * This function gets called when the current port gets stopped.
484  * Is the only place for us to close all the tx streams dumpers.
485  * If not called the dumpers will be flushed within each tx burst.
486  */
487 static void
488 eth_dev_stop(struct rte_eth_dev *dev)
489 {
490         unsigned int i;
491         struct pmd_internals *internals = dev->data->dev_private;
492         struct pcap_tx_queue *tx;
493         struct pcap_rx_queue *rx;
494
495         /* Special iface case. Single pcap is open and shared between tx/rx. */
496         if (internals->single_iface) {
497                 tx = &internals->tx_queue[0];
498                 rx = &internals->rx_queue[0];
499                 pcap_close(tx->pcap);
500                 tx->pcap = NULL;
501                 rx->pcap = NULL;
502                 goto status_down;
503         }
504
505         for (i = 0; i < dev->data->nb_tx_queues; i++) {
506                 tx = &internals->tx_queue[i];
507
508                 if (tx->dumper != NULL) {
509                         pcap_dump_close(tx->dumper);
510                         tx->dumper = NULL;
511                 }
512
513                 if (tx->pcap != NULL) {
514                         pcap_close(tx->pcap);
515                         tx->pcap = NULL;
516                 }
517         }
518
519         for (i = 0; i < dev->data->nb_rx_queues; i++) {
520                 rx = &internals->rx_queue[i];
521
522                 if (rx->pcap != NULL) {
523                         pcap_close(rx->pcap);
524                         rx->pcap = NULL;
525                 }
526         }
527
528 status_down:
529         for (i = 0; i < dev->data->nb_rx_queues; i++)
530                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
531
532         for (i = 0; i < dev->data->nb_tx_queues; i++)
533                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
534
535         dev->data->dev_link.link_status = ETH_LINK_DOWN;
536 }
537
538 static int
539 eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
540 {
541         return 0;
542 }
543
544 static void
545 eth_dev_info(struct rte_eth_dev *dev,
546                 struct rte_eth_dev_info *dev_info)
547 {
548         struct pmd_internals *internals = dev->data->dev_private;
549
550         dev_info->if_index = internals->if_index;
551         dev_info->max_mac_addrs = 1;
552         dev_info->max_rx_pktlen = (uint32_t) -1;
553         dev_info->max_rx_queues = dev->data->nb_rx_queues;
554         dev_info->max_tx_queues = dev->data->nb_tx_queues;
555         dev_info->min_rx_bufsize = 0;
556 }
557
558 static int
559 eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
560 {
561         unsigned int i;
562         unsigned long rx_packets_total = 0, rx_bytes_total = 0;
563         unsigned long tx_packets_total = 0, tx_bytes_total = 0;
564         unsigned long tx_packets_err_total = 0;
565         const struct pmd_internals *internal = dev->data->dev_private;
566
567         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
568                         i < dev->data->nb_rx_queues; i++) {
569                 stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts;
570                 stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes;
571                 rx_packets_total += stats->q_ipackets[i];
572                 rx_bytes_total += stats->q_ibytes[i];
573         }
574
575         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
576                         i < dev->data->nb_tx_queues; i++) {
577                 stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts;
578                 stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes;
579                 stats->q_errors[i] = internal->tx_queue[i].tx_stat.err_pkts;
580                 tx_packets_total += stats->q_opackets[i];
581                 tx_bytes_total += stats->q_obytes[i];
582                 tx_packets_err_total += stats->q_errors[i];
583         }
584
585         stats->ipackets = rx_packets_total;
586         stats->ibytes = rx_bytes_total;
587         stats->opackets = tx_packets_total;
588         stats->obytes = tx_bytes_total;
589         stats->oerrors = tx_packets_err_total;
590
591         return 0;
592 }
593
594 static void
595 eth_stats_reset(struct rte_eth_dev *dev)
596 {
597         unsigned int i;
598         struct pmd_internals *internal = dev->data->dev_private;
599
600         for (i = 0; i < dev->data->nb_rx_queues; i++) {
601                 internal->rx_queue[i].rx_stat.pkts = 0;
602                 internal->rx_queue[i].rx_stat.bytes = 0;
603         }
604
605         for (i = 0; i < dev->data->nb_tx_queues; i++) {
606                 internal->tx_queue[i].tx_stat.pkts = 0;
607                 internal->tx_queue[i].tx_stat.bytes = 0;
608                 internal->tx_queue[i].tx_stat.err_pkts = 0;
609         }
610 }
611
612 static void
613 eth_dev_close(struct rte_eth_dev *dev __rte_unused)
614 {
615 }
616
617 static void
618 eth_queue_release(void *q __rte_unused)
619 {
620 }
621
622 static int
623 eth_link_update(struct rte_eth_dev *dev __rte_unused,
624                 int wait_to_complete __rte_unused)
625 {
626         return 0;
627 }
628
629 static int
630 eth_rx_queue_setup(struct rte_eth_dev *dev,
631                 uint16_t rx_queue_id,
632                 uint16_t nb_rx_desc __rte_unused,
633                 unsigned int socket_id __rte_unused,
634                 const struct rte_eth_rxconf *rx_conf __rte_unused,
635                 struct rte_mempool *mb_pool)
636 {
637         struct pmd_internals *internals = dev->data->dev_private;
638         struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
639
640         pcap_q->mb_pool = mb_pool;
641         dev->data->rx_queues[rx_queue_id] = pcap_q;
642         pcap_q->in_port = dev->data->port_id;
643
644         return 0;
645 }
646
647 static int
648 eth_tx_queue_setup(struct rte_eth_dev *dev,
649                 uint16_t tx_queue_id,
650                 uint16_t nb_tx_desc __rte_unused,
651                 unsigned int socket_id __rte_unused,
652                 const struct rte_eth_txconf *tx_conf __rte_unused)
653 {
654         struct pmd_internals *internals = dev->data->dev_private;
655
656         dev->data->tx_queues[tx_queue_id] = &internals->tx_queue[tx_queue_id];
657
658         return 0;
659 }
660
661 static int
662 eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
663 {
664         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
665
666         return 0;
667 }
668
669 static int
670 eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
671 {
672         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
673
674         return 0;
675 }
676
677 static int
678 eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
679 {
680         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
681
682         return 0;
683 }
684
685 static int
686 eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
687 {
688         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
689
690         return 0;
691 }
692
693 static const struct eth_dev_ops ops = {
694         .dev_start = eth_dev_start,
695         .dev_stop = eth_dev_stop,
696         .dev_close = eth_dev_close,
697         .dev_configure = eth_dev_configure,
698         .dev_infos_get = eth_dev_info,
699         .rx_queue_setup = eth_rx_queue_setup,
700         .tx_queue_setup = eth_tx_queue_setup,
701         .rx_queue_start = eth_rx_queue_start,
702         .tx_queue_start = eth_tx_queue_start,
703         .rx_queue_stop = eth_rx_queue_stop,
704         .tx_queue_stop = eth_tx_queue_stop,
705         .rx_queue_release = eth_queue_release,
706         .tx_queue_release = eth_queue_release,
707         .link_update = eth_link_update,
708         .stats_get = eth_stats_get,
709         .stats_reset = eth_stats_reset,
710 };
711
712 static int
713 add_queue(struct pmd_devargs *pmd, const char *name, const char *type,
714                 pcap_t *pcap, pcap_dumper_t *dumper)
715 {
716         if (pmd->num_of_queue >= RTE_PMD_PCAP_MAX_QUEUES)
717                 return -1;
718         if (pcap)
719                 pmd->queue[pmd->num_of_queue].pcap = pcap;
720         if (dumper)
721                 pmd->queue[pmd->num_of_queue].dumper = dumper;
722         pmd->queue[pmd->num_of_queue].name = name;
723         pmd->queue[pmd->num_of_queue].type = type;
724         pmd->num_of_queue++;
725         return 0;
726 }
727
728 /*
729  * Function handler that opens the pcap file for reading a stores a
730  * reference of it for use it later on.
731  */
732 static int
733 open_rx_pcap(const char *key, const char *value, void *extra_args)
734 {
735         const char *pcap_filename = value;
736         struct pmd_devargs *rx = extra_args;
737         pcap_t *pcap = NULL;
738
739         if (open_single_rx_pcap(pcap_filename, &pcap) < 0)
740                 return -1;
741
742         if (add_queue(rx, pcap_filename, key, pcap, NULL) < 0) {
743                 pcap_close(pcap);
744                 return -1;
745         }
746
747         return 0;
748 }
749
750 /*
751  * Opens a pcap file for writing and stores a reference to it
752  * for use it later on.
753  */
754 static int
755 open_tx_pcap(const char *key, const char *value, void *extra_args)
756 {
757         const char *pcap_filename = value;
758         struct pmd_devargs *dumpers = extra_args;
759         pcap_dumper_t *dumper;
760
761         if (open_single_tx_pcap(pcap_filename, &dumper) < 0)
762                 return -1;
763
764         if (add_queue(dumpers, pcap_filename, key, NULL, dumper) < 0) {
765                 pcap_dump_close(dumper);
766                 return -1;
767         }
768
769         return 0;
770 }
771
772 /*
773  * Opens an interface for reading and writing
774  */
775 static inline int
776 open_rx_tx_iface(const char *key, const char *value, void *extra_args)
777 {
778         const char *iface = value;
779         struct pmd_devargs *tx = extra_args;
780         pcap_t *pcap = NULL;
781
782         if (open_single_iface(iface, &pcap) < 0)
783                 return -1;
784
785         tx->queue[0].pcap = pcap;
786         tx->queue[0].name = iface;
787         tx->queue[0].type = key;
788
789         return 0;
790 }
791
792 static inline int
793 set_iface_direction(const char *iface, pcap_t *pcap,
794                 pcap_direction_t direction)
795 {
796         const char *direction_str = (direction == PCAP_D_IN) ? "IN" : "OUT";
797         if (pcap_setdirection(pcap, direction) < 0) {
798                 PMD_LOG(ERR, "Setting %s pcap direction %s failed - %s\n",
799                                 iface, direction_str, pcap_geterr(pcap));
800                 return -1;
801         }
802         PMD_LOG(INFO, "Setting %s pcap direction %s\n",
803                         iface, direction_str);
804         return 0;
805 }
806
807 static inline int
808 open_iface(const char *key, const char *value, void *extra_args)
809 {
810         const char *iface = value;
811         struct pmd_devargs *pmd = extra_args;
812         pcap_t *pcap = NULL;
813
814         if (open_single_iface(iface, &pcap) < 0)
815                 return -1;
816         if (add_queue(pmd, iface, key, pcap, NULL) < 0) {
817                 pcap_close(pcap);
818                 return -1;
819         }
820
821         return 0;
822 }
823
824 /*
825  * Opens a NIC for reading packets from it
826  */
827 static inline int
828 open_rx_iface(const char *key, const char *value, void *extra_args)
829 {
830         int ret = open_iface(key, value, extra_args);
831         if (ret < 0)
832                 return ret;
833         if (strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0) {
834                 struct pmd_devargs *pmd = extra_args;
835                 unsigned int qid = pmd->num_of_queue - 1;
836
837                 set_iface_direction(pmd->queue[qid].name,
838                                 pmd->queue[qid].pcap,
839                                 PCAP_D_IN);
840         }
841
842         return 0;
843 }
844
845 static inline int
846 rx_iface_args_process(const char *key, const char *value, void *extra_args)
847 {
848         if (strcmp(key, ETH_PCAP_RX_IFACE_ARG) == 0 ||
849                         strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0)
850                 return open_rx_iface(key, value, extra_args);
851
852         return 0;
853 }
854
855 /*
856  * Opens a NIC for writing packets to it
857  */
858 static int
859 open_tx_iface(const char *key, const char *value, void *extra_args)
860 {
861         return open_iface(key, value, extra_args);
862 }
863
864 static struct rte_vdev_driver pmd_pcap_drv;
865
866 static int
867 pmd_init_internals(struct rte_vdev_device *vdev,
868                 const unsigned int nb_rx_queues,
869                 const unsigned int nb_tx_queues,
870                 struct pmd_internals **internals,
871                 struct rte_eth_dev **eth_dev)
872 {
873         struct rte_eth_dev_data *data;
874         unsigned int numa_node = vdev->device.numa_node;
875
876         PMD_LOG(INFO, "Creating pcap-backed ethdev on numa socket %d",
877                 numa_node);
878
879         /* reserve an ethdev entry */
880         *eth_dev = rte_eth_vdev_allocate(vdev, sizeof(**internals));
881         if (!(*eth_dev))
882                 return -1;
883
884         /* now put it all together
885          * - store queue data in internals,
886          * - store numa_node info in eth_dev
887          * - point eth_dev_data to internals
888          * - and point eth_dev structure to new eth_dev_data structure
889          */
890         *internals = (*eth_dev)->data->dev_private;
891         data = (*eth_dev)->data;
892         data->nb_rx_queues = (uint16_t)nb_rx_queues;
893         data->nb_tx_queues = (uint16_t)nb_tx_queues;
894         data->dev_link = pmd_link;
895         data->mac_addrs = &eth_addr;
896
897         /*
898          * NOTE: we'll replace the data element, of originally allocated
899          * eth_dev so the rings are local per-process
900          */
901         (*eth_dev)->dev_ops = &ops;
902
903         return 0;
904 }
905
906 static int
907 eth_from_pcaps_common(struct rte_vdev_device *vdev,
908                 struct pmd_devargs *rx_queues, const unsigned int nb_rx_queues,
909                 struct pmd_devargs *tx_queues, const unsigned int nb_tx_queues,
910                 struct rte_kvargs *kvlist, struct pmd_internals **internals,
911                 struct rte_eth_dev **eth_dev)
912 {
913         struct rte_kvargs_pair *pair = NULL;
914         unsigned int k_idx;
915         unsigned int i;
916
917         /* do some parameter checking */
918         if (rx_queues == NULL && nb_rx_queues > 0)
919                 return -1;
920         if (tx_queues == NULL && nb_tx_queues > 0)
921                 return -1;
922
923         if (pmd_init_internals(vdev, nb_rx_queues, nb_tx_queues, internals,
924                         eth_dev) < 0)
925                 return -1;
926
927         for (i = 0; i < nb_rx_queues; i++) {
928                 struct pcap_rx_queue *rx = &(*internals)->rx_queue[i];
929                 struct devargs_queue *queue = &rx_queues->queue[i];
930
931                 rx->pcap = queue->pcap;
932                 snprintf(rx->name, sizeof(rx->name), "%s", queue->name);
933                 snprintf(rx->type, sizeof(rx->type), "%s", queue->type);
934         }
935
936         for (i = 0; i < nb_tx_queues; i++) {
937                 struct pcap_tx_queue *tx = &(*internals)->tx_queue[i];
938                 struct devargs_queue *queue = &tx_queues->queue[i];
939
940                 tx->dumper = queue->dumper;
941                 tx->pcap = queue->pcap;
942                 snprintf(tx->name, sizeof(tx->name), "%s", queue->name);
943                 snprintf(tx->type, sizeof(tx->type), "%s", queue->type);
944         }
945
946         for (k_idx = 0; k_idx < kvlist->count; k_idx++) {
947                 pair = &kvlist->pairs[k_idx];
948                 if (strstr(pair->key, ETH_PCAP_IFACE_ARG) != NULL)
949                         break;
950         }
951
952         if (pair == NULL)
953                 (*internals)->if_index = 0;
954         else
955                 (*internals)->if_index = if_nametoindex(pair->value);
956
957         return 0;
958 }
959
960 static int
961 eth_from_pcaps(struct rte_vdev_device *vdev,
962                 struct pmd_devargs *rx_queues, const unsigned int nb_rx_queues,
963                 struct pmd_devargs *tx_queues, const unsigned int nb_tx_queues,
964                 struct rte_kvargs *kvlist, int single_iface,
965                 unsigned int using_dumpers)
966 {
967         struct pmd_internals *internals = NULL;
968         struct rte_eth_dev *eth_dev = NULL;
969         int ret;
970
971         ret = eth_from_pcaps_common(vdev, rx_queues, nb_rx_queues,
972                 tx_queues, nb_tx_queues, kvlist, &internals, &eth_dev);
973
974         if (ret < 0)
975                 return ret;
976
977         /* store weather we are using a single interface for rx/tx or not */
978         internals->single_iface = single_iface;
979
980         eth_dev->rx_pkt_burst = eth_pcap_rx;
981
982         if (using_dumpers)
983                 eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
984         else
985                 eth_dev->tx_pkt_burst = eth_pcap_tx;
986
987         rte_eth_dev_probing_finish(eth_dev);
988         return 0;
989 }
990
991 static int
992 pmd_pcap_probe(struct rte_vdev_device *dev)
993 {
994         const char *name;
995         unsigned int is_rx_pcap = 0, is_tx_pcap = 0;
996         struct rte_kvargs *kvlist;
997         struct pmd_devargs pcaps = {0};
998         struct pmd_devargs dumpers = {0};
999         struct rte_eth_dev *eth_dev;
1000         int single_iface = 0;
1001         int ret;
1002
1003         name = rte_vdev_device_name(dev);
1004         PMD_LOG(INFO, "Initializing pmd_pcap for %s", name);
1005
1006         gettimeofday(&start_time, NULL);
1007         start_cycles = rte_get_timer_cycles();
1008         hz = rte_get_timer_hz();
1009
1010         if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
1011             strlen(rte_vdev_device_args(dev)) == 0) {
1012                 eth_dev = rte_eth_dev_attach_secondary(name);
1013                 if (!eth_dev) {
1014                         PMD_LOG(ERR, "Failed to probe %s", name);
1015                         return -1;
1016                 }
1017                 /* TODO: request info from primary to set up Rx and Tx */
1018                 eth_dev->dev_ops = &ops;
1019                 eth_dev->device = &dev->device;
1020                 rte_eth_dev_probing_finish(eth_dev);
1021                 return 0;
1022         }
1023
1024         kvlist = rte_kvargs_parse(rte_vdev_device_args(dev), valid_arguments);
1025         if (kvlist == NULL)
1026                 return -1;
1027
1028         /*
1029          * If iface argument is passed we open the NICs and use them for
1030          * reading / writing
1031          */
1032         if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
1033
1034                 ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
1035                                 &open_rx_tx_iface, &pcaps);
1036
1037                 if (ret < 0)
1038                         goto free_kvlist;
1039
1040                 dumpers.queue[0] = pcaps.queue[0];
1041
1042                 single_iface = 1;
1043                 pcaps.num_of_queue = 1;
1044                 dumpers.num_of_queue = 1;
1045
1046                 goto create_eth;
1047         }
1048
1049         /*
1050          * We check whether we want to open a RX stream from a real NIC or a
1051          * pcap file
1052          */
1053         is_rx_pcap = rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG) ? 1 : 0;
1054         pcaps.num_of_queue = 0;
1055
1056         if (is_rx_pcap) {
1057                 ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
1058                                 &open_rx_pcap, &pcaps);
1059         } else {
1060                 ret = rte_kvargs_process(kvlist, NULL,
1061                                 &rx_iface_args_process, &pcaps);
1062         }
1063
1064         if (ret < 0)
1065                 goto free_kvlist;
1066
1067         /*
1068          * We check whether we want to open a TX stream to a real NIC or a
1069          * pcap file
1070          */
1071         is_tx_pcap = rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) ? 1 : 0;
1072         dumpers.num_of_queue = 0;
1073
1074         if (is_tx_pcap)
1075                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
1076                                 &open_tx_pcap, &dumpers);
1077         else
1078                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
1079                                 &open_tx_iface, &dumpers);
1080
1081         if (ret < 0)
1082                 goto free_kvlist;
1083
1084 create_eth:
1085         ret = eth_from_pcaps(dev, &pcaps, pcaps.num_of_queue, &dumpers,
1086                 dumpers.num_of_queue, kvlist, single_iface, is_tx_pcap);
1087
1088 free_kvlist:
1089         rte_kvargs_free(kvlist);
1090
1091         return ret;
1092 }
1093
1094 static int
1095 pmd_pcap_remove(struct rte_vdev_device *dev)
1096 {
1097         struct rte_eth_dev *eth_dev = NULL;
1098
1099         PMD_LOG(INFO, "Closing pcap ethdev on numa socket %d",
1100                         rte_socket_id());
1101
1102         if (!dev)
1103                 return -1;
1104
1105         /* reserve an ethdev entry */
1106         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
1107         if (eth_dev == NULL)
1108                 return -1;
1109
1110         rte_free(eth_dev->data->dev_private);
1111
1112         rte_eth_dev_release_port(eth_dev);
1113
1114         return 0;
1115 }
1116
1117 static struct rte_vdev_driver pmd_pcap_drv = {
1118         .probe = pmd_pcap_probe,
1119         .remove = pmd_pcap_remove,
1120 };
1121
1122 RTE_PMD_REGISTER_VDEV(net_pcap, pmd_pcap_drv);
1123 RTE_PMD_REGISTER_ALIAS(net_pcap, eth_pcap);
1124 RTE_PMD_REGISTER_PARAM_STRING(net_pcap,
1125         ETH_PCAP_RX_PCAP_ARG "=<string> "
1126         ETH_PCAP_TX_PCAP_ARG "=<string> "
1127         ETH_PCAP_RX_IFACE_ARG "=<ifc> "
1128         ETH_PCAP_RX_IFACE_IN_ARG "=<ifc> "
1129         ETH_PCAP_TX_IFACE_ARG "=<ifc> "
1130         ETH_PCAP_IFACE_ARG "=<ifc>");
1131
1132 RTE_INIT(eth_pcap_init_log)
1133 {
1134         eth_pcap_logtype = rte_log_register("pmd.net.pcap");
1135         if (eth_pcap_logtype >= 0)
1136                 rte_log_set_level(eth_pcap_logtype, RTE_LOG_NOTICE);
1137 }