net/pcap: fix possible mbuf double freeing
[dpdk.git] / drivers / net / pcap / rte_eth_pcap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright(c) 2014 6WIND S.A.
4  * All rights reserved.
5  */
6
7 #include <time.h>
8
9 #include <net/if.h>
10 #include <sys/socket.h>
11 #include <sys/ioctl.h>
12 #include <unistd.h>
13
14 #if defined(RTE_EXEC_ENV_FREEBSD)
15 #include <sys/sysctl.h>
16 #include <net/if_dl.h>
17 #endif
18
19 #include <pcap.h>
20
21 #include <rte_cycles.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_vdev.h>
24 #include <rte_kvargs.h>
25 #include <rte_malloc.h>
26 #include <rte_mbuf.h>
27 #include <rte_bus_vdev.h>
28 #include <rte_string_fns.h>
29
30 #define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
31 #define RTE_ETH_PCAP_SNAPLEN RTE_ETHER_MAX_JUMBO_FRAME_LEN
32 #define RTE_ETH_PCAP_PROMISC 1
33 #define RTE_ETH_PCAP_TIMEOUT -1
34
35 #define ETH_PCAP_RX_PCAP_ARG  "rx_pcap"
36 #define ETH_PCAP_TX_PCAP_ARG  "tx_pcap"
37 #define ETH_PCAP_RX_IFACE_ARG "rx_iface"
38 #define ETH_PCAP_RX_IFACE_IN_ARG "rx_iface_in"
39 #define ETH_PCAP_TX_IFACE_ARG "tx_iface"
40 #define ETH_PCAP_IFACE_ARG    "iface"
41 #define ETH_PCAP_PHY_MAC_ARG  "phy_mac"
42 #define ETH_PCAP_INFINITE_RX_ARG  "infinite_rx"
43
44 #define ETH_PCAP_ARG_MAXLEN     64
45
46 #define RTE_PMD_PCAP_MAX_QUEUES 16
47
48 static char errbuf[PCAP_ERRBUF_SIZE];
49 static unsigned char tx_pcap_data[RTE_ETH_PCAP_SNAPLEN];
50 static struct timeval start_time;
51 static uint64_t start_cycles;
52 static uint64_t hz;
53 static uint8_t iface_idx;
54
55 struct queue_stat {
56         volatile unsigned long pkts;
57         volatile unsigned long bytes;
58         volatile unsigned long err_pkts;
59 };
60
61 struct pcap_rx_queue {
62         uint16_t port_id;
63         uint16_t queue_id;
64         struct rte_mempool *mb_pool;
65         struct queue_stat rx_stat;
66         char name[PATH_MAX];
67         char type[ETH_PCAP_ARG_MAXLEN];
68
69         /* Contains pre-generated packets to be looped through */
70         struct rte_ring *pkts;
71 };
72
73 struct pcap_tx_queue {
74         uint16_t port_id;
75         uint16_t queue_id;
76         struct queue_stat tx_stat;
77         char name[PATH_MAX];
78         char type[ETH_PCAP_ARG_MAXLEN];
79 };
80
81 struct pmd_internals {
82         struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES];
83         struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES];
84         char devargs[ETH_PCAP_ARG_MAXLEN];
85         struct rte_ether_addr eth_addr;
86         int if_index;
87         int single_iface;
88         int phy_mac;
89         unsigned int infinite_rx;
90 };
91
92 struct pmd_process_private {
93         pcap_t *rx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
94         pcap_t *tx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
95         pcap_dumper_t *tx_dumper[RTE_PMD_PCAP_MAX_QUEUES];
96 };
97
98 struct pmd_devargs {
99         unsigned int num_of_queue;
100         struct devargs_queue {
101                 pcap_dumper_t *dumper;
102                 pcap_t *pcap;
103                 const char *name;
104                 const char *type;
105         } queue[RTE_PMD_PCAP_MAX_QUEUES];
106         int phy_mac;
107 };
108
109 struct pmd_devargs_all {
110         struct pmd_devargs rx_queues;
111         struct pmd_devargs tx_queues;
112         int single_iface;
113         unsigned int is_tx_pcap;
114         unsigned int is_tx_iface;
115         unsigned int infinite_rx;
116 };
117
118 static const char *valid_arguments[] = {
119         ETH_PCAP_RX_PCAP_ARG,
120         ETH_PCAP_TX_PCAP_ARG,
121         ETH_PCAP_RX_IFACE_ARG,
122         ETH_PCAP_RX_IFACE_IN_ARG,
123         ETH_PCAP_TX_IFACE_ARG,
124         ETH_PCAP_IFACE_ARG,
125         ETH_PCAP_PHY_MAC_ARG,
126         ETH_PCAP_INFINITE_RX_ARG,
127         NULL
128 };
129
130 static struct rte_eth_link pmd_link = {
131                 .link_speed = ETH_SPEED_NUM_10G,
132                 .link_duplex = ETH_LINK_FULL_DUPLEX,
133                 .link_status = ETH_LINK_DOWN,
134                 .link_autoneg = ETH_LINK_FIXED,
135 };
136
137 static int eth_pcap_logtype;
138
139 #define PMD_LOG(level, fmt, args...) \
140         rte_log(RTE_LOG_ ## level, eth_pcap_logtype, \
141                 "%s(): " fmt "\n", __func__, ##args)
142
143 static int
144 eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf,
145                 const u_char *data, uint16_t data_len)
146 {
147         /* Copy the first segment. */
148         uint16_t len = rte_pktmbuf_tailroom(mbuf);
149         struct rte_mbuf *m = mbuf;
150
151         rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len);
152         data_len -= len;
153         data += len;
154
155         while (data_len > 0) {
156                 /* Allocate next mbuf and point to that. */
157                 m->next = rte_pktmbuf_alloc(mb_pool);
158
159                 if (unlikely(!m->next))
160                         return -1;
161
162                 m = m->next;
163
164                 /* Headroom is not needed in chained mbufs. */
165                 rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m));
166                 m->pkt_len = 0;
167                 m->data_len = 0;
168
169                 /* Copy next segment. */
170                 len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len);
171                 rte_memcpy(rte_pktmbuf_append(m, len), data, len);
172
173                 mbuf->nb_segs++;
174                 data_len -= len;
175                 data += len;
176         }
177
178         return mbuf->nb_segs;
179 }
180
181 /* Copy data from mbuf chain to a buffer suitable for writing to a PCAP file. */
182 static void
183 eth_pcap_gather_data(unsigned char *data, struct rte_mbuf *mbuf)
184 {
185         uint16_t data_len = 0;
186
187         while (mbuf) {
188                 rte_memcpy(data + data_len, rte_pktmbuf_mtod(mbuf, void *),
189                         mbuf->data_len);
190
191                 data_len += mbuf->data_len;
192                 mbuf = mbuf->next;
193         }
194 }
195
196 static uint16_t
197 eth_pcap_rx_infinite(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
198 {
199         int i;
200         struct pcap_rx_queue *pcap_q = queue;
201         uint32_t rx_bytes = 0;
202
203         if (unlikely(nb_pkts == 0))
204                 return 0;
205
206         if (rte_pktmbuf_alloc_bulk(pcap_q->mb_pool, bufs, nb_pkts) != 0)
207                 return 0;
208
209         for (i = 0; i < nb_pkts; i++) {
210                 struct rte_mbuf *pcap_buf;
211                 int err = rte_ring_dequeue(pcap_q->pkts, (void **)&pcap_buf);
212                 if (err)
213                         return i;
214
215                 rte_memcpy(rte_pktmbuf_mtod(bufs[i], void *),
216                                 rte_pktmbuf_mtod(pcap_buf, void *),
217                                 pcap_buf->data_len);
218                 bufs[i]->data_len = pcap_buf->data_len;
219                 bufs[i]->pkt_len = pcap_buf->pkt_len;
220                 bufs[i]->port = pcap_q->port_id;
221                 rx_bytes += pcap_buf->data_len;
222
223                 /* Enqueue packet back on ring to allow infinite rx. */
224                 rte_ring_enqueue(pcap_q->pkts, pcap_buf);
225         }
226
227         pcap_q->rx_stat.pkts += i;
228         pcap_q->rx_stat.bytes += rx_bytes;
229
230         return i;
231 }
232
233 static uint16_t
234 eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
235 {
236         unsigned int i;
237         struct pcap_pkthdr header;
238         struct pmd_process_private *pp;
239         const u_char *packet;
240         struct rte_mbuf *mbuf;
241         struct pcap_rx_queue *pcap_q = queue;
242         uint16_t num_rx = 0;
243         uint16_t buf_size;
244         uint32_t rx_bytes = 0;
245         pcap_t *pcap;
246
247         pp = rte_eth_devices[pcap_q->port_id].process_private;
248         pcap = pp->rx_pcap[pcap_q->queue_id];
249
250         if (unlikely(pcap == NULL || nb_pkts == 0))
251                 return 0;
252
253         /* Reads the given number of packets from the pcap file one by one
254          * and copies the packet data into a newly allocated mbuf to return.
255          */
256         for (i = 0; i < nb_pkts; i++) {
257                 /* Get the next PCAP packet */
258                 packet = pcap_next(pcap, &header);
259                 if (unlikely(packet == NULL))
260                         break;
261
262                 mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
263                 if (unlikely(mbuf == NULL))
264                         break;
265
266                 /* Now get the space available for data in the mbuf */
267                 buf_size = rte_pktmbuf_data_room_size(pcap_q->mb_pool) -
268                                 RTE_PKTMBUF_HEADROOM;
269
270                 if (header.caplen <= buf_size) {
271                         /* pcap packet will fit in the mbuf, can copy it */
272                         rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
273                                         header.caplen);
274                         mbuf->data_len = (uint16_t)header.caplen;
275                 } else {
276                         /* Try read jumbo frame into multi mbufs. */
277                         if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool,
278                                                        mbuf,
279                                                        packet,
280                                                        header.caplen) == -1)) {
281                                 rte_pktmbuf_free(mbuf);
282                                 break;
283                         }
284                 }
285
286                 mbuf->pkt_len = (uint16_t)header.caplen;
287                 mbuf->port = pcap_q->port_id;
288                 bufs[num_rx] = mbuf;
289                 num_rx++;
290                 rx_bytes += header.caplen;
291         }
292         pcap_q->rx_stat.pkts += num_rx;
293         pcap_q->rx_stat.bytes += rx_bytes;
294
295         return num_rx;
296 }
297
298 static inline void
299 calculate_timestamp(struct timeval *ts) {
300         uint64_t cycles;
301         struct timeval cur_time;
302
303         cycles = rte_get_timer_cycles() - start_cycles;
304         cur_time.tv_sec = cycles / hz;
305         cur_time.tv_usec = (cycles % hz) * 1e6 / hz;
306         timeradd(&start_time, &cur_time, ts);
307 }
308
309 /*
310  * Callback to handle writing packets to a pcap file.
311  */
312 static uint16_t
313 eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
314 {
315         unsigned int i;
316         struct rte_mbuf *mbuf;
317         struct pmd_process_private *pp;
318         struct pcap_tx_queue *dumper_q = queue;
319         uint16_t num_tx = 0;
320         uint32_t tx_bytes = 0;
321         struct pcap_pkthdr header;
322         pcap_dumper_t *dumper;
323
324         pp = rte_eth_devices[dumper_q->port_id].process_private;
325         dumper = pp->tx_dumper[dumper_q->queue_id];
326
327         if (dumper == NULL || nb_pkts == 0)
328                 return 0;
329
330         /* writes the nb_pkts packets to the previously opened pcap file
331          * dumper */
332         for (i = 0; i < nb_pkts; i++) {
333                 mbuf = bufs[i];
334                 calculate_timestamp(&header.ts);
335                 header.len = mbuf->pkt_len;
336                 header.caplen = header.len;
337
338                 if (likely(mbuf->nb_segs == 1)) {
339                         pcap_dump((u_char *)dumper, &header,
340                                   rte_pktmbuf_mtod(mbuf, void*));
341                 } else {
342                         if (mbuf->pkt_len <= RTE_ETHER_MAX_JUMBO_FRAME_LEN) {
343                                 eth_pcap_gather_data(tx_pcap_data, mbuf);
344                                 pcap_dump((u_char *)dumper, &header,
345                                           tx_pcap_data);
346                         } else {
347                                 PMD_LOG(ERR,
348                                         "Dropping PCAP packet. Size (%d) > max jumbo size (%d).",
349                                         mbuf->pkt_len,
350                                         RTE_ETHER_MAX_JUMBO_FRAME_LEN);
351
352                                 break;
353                         }
354                 }
355
356                 num_tx++;
357                 tx_bytes += mbuf->pkt_len;
358                 rte_pktmbuf_free(mbuf);
359         }
360
361         /*
362          * Since there's no place to hook a callback when the forwarding
363          * process stops and to make sure the pcap file is actually written,
364          * we flush the pcap dumper within each burst.
365          */
366         pcap_dump_flush(dumper);
367         dumper_q->tx_stat.pkts += num_tx;
368         dumper_q->tx_stat.bytes += tx_bytes;
369         dumper_q->tx_stat.err_pkts += nb_pkts - num_tx;
370
371         return num_tx;
372 }
373
374 /*
375  * Callback to handle dropping packets in the infinite rx case.
376  */
377 static uint16_t
378 eth_tx_drop(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
379 {
380         unsigned int i;
381         uint32_t tx_bytes = 0;
382         struct pcap_tx_queue *tx_queue = queue;
383
384         if (unlikely(nb_pkts == 0))
385                 return 0;
386
387         for (i = 0; i < nb_pkts; i++) {
388                 tx_bytes += bufs[i]->data_len;
389                 rte_pktmbuf_free(bufs[i]);
390         }
391
392         tx_queue->tx_stat.pkts += nb_pkts;
393         tx_queue->tx_stat.bytes += tx_bytes;
394
395         return i;
396 }
397
398 /*
399  * Callback to handle sending packets through a real NIC.
400  */
401 static uint16_t
402 eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
403 {
404         unsigned int i;
405         int ret;
406         struct rte_mbuf *mbuf;
407         struct pmd_process_private *pp;
408         struct pcap_tx_queue *tx_queue = queue;
409         uint16_t num_tx = 0;
410         uint32_t tx_bytes = 0;
411         pcap_t *pcap;
412
413         pp = rte_eth_devices[tx_queue->port_id].process_private;
414         pcap = pp->tx_pcap[tx_queue->queue_id];
415
416         if (unlikely(nb_pkts == 0 || pcap == NULL))
417                 return 0;
418
419         for (i = 0; i < nb_pkts; i++) {
420                 mbuf = bufs[i];
421
422                 if (likely(mbuf->nb_segs == 1)) {
423                         ret = pcap_sendpacket(pcap,
424                                         rte_pktmbuf_mtod(mbuf, u_char *),
425                                         mbuf->pkt_len);
426                 } else {
427                         if (mbuf->pkt_len <= RTE_ETHER_MAX_JUMBO_FRAME_LEN) {
428                                 eth_pcap_gather_data(tx_pcap_data, mbuf);
429                                 ret = pcap_sendpacket(pcap,
430                                                 tx_pcap_data, mbuf->pkt_len);
431                         } else {
432                                 PMD_LOG(ERR,
433                                         "Dropping PCAP packet. Size (%d) > max jumbo size (%d).",
434                                         mbuf->pkt_len,
435                                         RTE_ETHER_MAX_JUMBO_FRAME_LEN);
436
437                                 break;
438                         }
439                 }
440
441                 if (unlikely(ret != 0))
442                         break;
443                 num_tx++;
444                 tx_bytes += mbuf->pkt_len;
445                 rte_pktmbuf_free(mbuf);
446         }
447
448         tx_queue->tx_stat.pkts += num_tx;
449         tx_queue->tx_stat.bytes += tx_bytes;
450         tx_queue->tx_stat.err_pkts += nb_pkts - num_tx;
451
452         return num_tx;
453 }
454
455 /*
456  * pcap_open_live wrapper function
457  */
458 static inline int
459 open_iface_live(const char *iface, pcap_t **pcap) {
460         *pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
461                         RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
462
463         if (*pcap == NULL) {
464                 PMD_LOG(ERR, "Couldn't open %s: %s", iface, errbuf);
465                 return -1;
466         }
467
468         return 0;
469 }
470
471 static int
472 open_single_iface(const char *iface, pcap_t **pcap)
473 {
474         if (open_iface_live(iface, pcap) < 0) {
475                 PMD_LOG(ERR, "Couldn't open interface %s", iface);
476                 return -1;
477         }
478
479         return 0;
480 }
481
482 static int
483 open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper)
484 {
485         pcap_t *tx_pcap;
486
487         /*
488          * We need to create a dummy empty pcap_t to use it
489          * with pcap_dump_open(). We create big enough an Ethernet
490          * pcap holder.
491          */
492         tx_pcap = pcap_open_dead(DLT_EN10MB, RTE_ETH_PCAP_SNAPSHOT_LEN);
493         if (tx_pcap == NULL) {
494                 PMD_LOG(ERR, "Couldn't create dead pcap");
495                 return -1;
496         }
497
498         /* The dumper is created using the previous pcap_t reference */
499         *dumper = pcap_dump_open(tx_pcap, pcap_filename);
500         if (*dumper == NULL) {
501                 pcap_close(tx_pcap);
502                 PMD_LOG(ERR, "Couldn't open %s for writing.",
503                         pcap_filename);
504                 return -1;
505         }
506
507         pcap_close(tx_pcap);
508         return 0;
509 }
510
511 static int
512 open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap)
513 {
514         *pcap = pcap_open_offline(pcap_filename, errbuf);
515         if (*pcap == NULL) {
516                 PMD_LOG(ERR, "Couldn't open %s: %s", pcap_filename,
517                         errbuf);
518                 return -1;
519         }
520
521         return 0;
522 }
523
524 static uint64_t
525 count_packets_in_pcap(pcap_t **pcap, struct pcap_rx_queue *pcap_q)
526 {
527         const u_char *packet;
528         struct pcap_pkthdr header;
529         uint64_t pcap_pkt_count = 0;
530
531         while ((packet = pcap_next(*pcap, &header)))
532                 pcap_pkt_count++;
533
534         /* The pcap is reopened so it can be used as normal later. */
535         pcap_close(*pcap);
536         *pcap = NULL;
537         open_single_rx_pcap(pcap_q->name, pcap);
538
539         return pcap_pkt_count;
540 }
541
542 static int
543 eth_dev_start(struct rte_eth_dev *dev)
544 {
545         unsigned int i;
546         struct pmd_internals *internals = dev->data->dev_private;
547         struct pmd_process_private *pp = dev->process_private;
548         struct pcap_tx_queue *tx;
549         struct pcap_rx_queue *rx;
550
551         /* Special iface case. Single pcap is open and shared between tx/rx. */
552         if (internals->single_iface) {
553                 tx = &internals->tx_queue[0];
554                 rx = &internals->rx_queue[0];
555
556                 if (!pp->tx_pcap[0] &&
557                         strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) {
558                         if (open_single_iface(tx->name, &pp->tx_pcap[0]) < 0)
559                                 return -1;
560                         pp->rx_pcap[0] = pp->tx_pcap[0];
561                 }
562
563                 goto status_up;
564         }
565
566         /* If not open already, open tx pcaps/dumpers */
567         for (i = 0; i < dev->data->nb_tx_queues; i++) {
568                 tx = &internals->tx_queue[i];
569
570                 if (!pp->tx_dumper[i] &&
571                                 strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) {
572                         if (open_single_tx_pcap(tx->name,
573                                 &pp->tx_dumper[i]) < 0)
574                                 return -1;
575                 } else if (!pp->tx_pcap[i] &&
576                                 strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) {
577                         if (open_single_iface(tx->name, &pp->tx_pcap[i]) < 0)
578                                 return -1;
579                 }
580         }
581
582         /* If not open already, open rx pcaps */
583         for (i = 0; i < dev->data->nb_rx_queues; i++) {
584                 rx = &internals->rx_queue[i];
585
586                 if (pp->rx_pcap[i] != NULL)
587                         continue;
588
589                 if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) {
590                         if (open_single_rx_pcap(rx->name, &pp->rx_pcap[i]) < 0)
591                                 return -1;
592                 } else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) {
593                         if (open_single_iface(rx->name, &pp->rx_pcap[i]) < 0)
594                                 return -1;
595                 }
596         }
597
598 status_up:
599         for (i = 0; i < dev->data->nb_rx_queues; i++)
600                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
601
602         for (i = 0; i < dev->data->nb_tx_queues; i++)
603                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
604
605         dev->data->dev_link.link_status = ETH_LINK_UP;
606
607         return 0;
608 }
609
610 /*
611  * This function gets called when the current port gets stopped.
612  * Is the only place for us to close all the tx streams dumpers.
613  * If not called the dumpers will be flushed within each tx burst.
614  */
615 static void
616 eth_dev_stop(struct rte_eth_dev *dev)
617 {
618         unsigned int i;
619         struct pmd_internals *internals = dev->data->dev_private;
620         struct pmd_process_private *pp = dev->process_private;
621
622         /* Special iface case. Single pcap is open and shared between tx/rx. */
623         if (internals->single_iface) {
624                 pcap_close(pp->tx_pcap[0]);
625                 pp->tx_pcap[0] = NULL;
626                 pp->rx_pcap[0] = NULL;
627                 goto status_down;
628         }
629
630         for (i = 0; i < dev->data->nb_tx_queues; i++) {
631                 if (pp->tx_dumper[i] != NULL) {
632                         pcap_dump_close(pp->tx_dumper[i]);
633                         pp->tx_dumper[i] = NULL;
634                 }
635
636                 if (pp->tx_pcap[i] != NULL) {
637                         pcap_close(pp->tx_pcap[i]);
638                         pp->tx_pcap[i] = NULL;
639                 }
640         }
641
642         for (i = 0; i < dev->data->nb_rx_queues; i++) {
643                 if (pp->rx_pcap[i] != NULL) {
644                         pcap_close(pp->rx_pcap[i]);
645                         pp->rx_pcap[i] = NULL;
646                 }
647         }
648
649 status_down:
650         for (i = 0; i < dev->data->nb_rx_queues; i++)
651                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
652
653         for (i = 0; i < dev->data->nb_tx_queues; i++)
654                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
655
656         dev->data->dev_link.link_status = ETH_LINK_DOWN;
657 }
658
659 static int
660 eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
661 {
662         return 0;
663 }
664
665 static void
666 eth_dev_info(struct rte_eth_dev *dev,
667                 struct rte_eth_dev_info *dev_info)
668 {
669         struct pmd_internals *internals = dev->data->dev_private;
670
671         dev_info->if_index = internals->if_index;
672         dev_info->max_mac_addrs = 1;
673         dev_info->max_rx_pktlen = (uint32_t) -1;
674         dev_info->max_rx_queues = dev->data->nb_rx_queues;
675         dev_info->max_tx_queues = dev->data->nb_tx_queues;
676         dev_info->min_rx_bufsize = 0;
677 }
678
679 static int
680 eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
681 {
682         unsigned int i;
683         unsigned long rx_packets_total = 0, rx_bytes_total = 0;
684         unsigned long tx_packets_total = 0, tx_bytes_total = 0;
685         unsigned long tx_packets_err_total = 0;
686         const struct pmd_internals *internal = dev->data->dev_private;
687
688         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
689                         i < dev->data->nb_rx_queues; i++) {
690                 stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts;
691                 stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes;
692                 rx_packets_total += stats->q_ipackets[i];
693                 rx_bytes_total += stats->q_ibytes[i];
694         }
695
696         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
697                         i < dev->data->nb_tx_queues; i++) {
698                 stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts;
699                 stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes;
700                 tx_packets_total += stats->q_opackets[i];
701                 tx_bytes_total += stats->q_obytes[i];
702                 tx_packets_err_total += internal->tx_queue[i].tx_stat.err_pkts;
703         }
704
705         stats->ipackets = rx_packets_total;
706         stats->ibytes = rx_bytes_total;
707         stats->opackets = tx_packets_total;
708         stats->obytes = tx_bytes_total;
709         stats->oerrors = tx_packets_err_total;
710
711         return 0;
712 }
713
714 static void
715 eth_stats_reset(struct rte_eth_dev *dev)
716 {
717         unsigned int i;
718         struct pmd_internals *internal = dev->data->dev_private;
719
720         for (i = 0; i < dev->data->nb_rx_queues; i++) {
721                 internal->rx_queue[i].rx_stat.pkts = 0;
722                 internal->rx_queue[i].rx_stat.bytes = 0;
723         }
724
725         for (i = 0; i < dev->data->nb_tx_queues; i++) {
726                 internal->tx_queue[i].tx_stat.pkts = 0;
727                 internal->tx_queue[i].tx_stat.bytes = 0;
728                 internal->tx_queue[i].tx_stat.err_pkts = 0;
729         }
730 }
731
732 static void
733 eth_dev_close(struct rte_eth_dev *dev)
734 {
735         unsigned int i;
736         struct pmd_internals *internals = dev->data->dev_private;
737
738         /* Device wide flag, but cleanup must be performed per queue. */
739         if (internals->infinite_rx) {
740                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
741                         struct pcap_rx_queue *pcap_q = &internals->rx_queue[i];
742                         struct rte_mbuf *pcap_buf;
743
744                         while (!rte_ring_dequeue(pcap_q->pkts,
745                                         (void **)&pcap_buf))
746                                 rte_pktmbuf_free(pcap_buf);
747
748                         rte_ring_free(pcap_q->pkts);
749                 }
750         }
751
752 }
753
754 static void
755 eth_queue_release(void *q __rte_unused)
756 {
757 }
758
759 static int
760 eth_link_update(struct rte_eth_dev *dev __rte_unused,
761                 int wait_to_complete __rte_unused)
762 {
763         return 0;
764 }
765
766 static int
767 eth_rx_queue_setup(struct rte_eth_dev *dev,
768                 uint16_t rx_queue_id,
769                 uint16_t nb_rx_desc __rte_unused,
770                 unsigned int socket_id __rte_unused,
771                 const struct rte_eth_rxconf *rx_conf __rte_unused,
772                 struct rte_mempool *mb_pool)
773 {
774         struct pmd_internals *internals = dev->data->dev_private;
775         struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
776
777         pcap_q->mb_pool = mb_pool;
778         pcap_q->port_id = dev->data->port_id;
779         pcap_q->queue_id = rx_queue_id;
780         dev->data->rx_queues[rx_queue_id] = pcap_q;
781
782         if (internals->infinite_rx) {
783                 struct pmd_process_private *pp;
784                 char ring_name[NAME_MAX];
785                 static uint32_t ring_number;
786                 uint64_t pcap_pkt_count = 0;
787                 struct rte_mbuf *bufs[1];
788                 pcap_t **pcap;
789
790                 pp = rte_eth_devices[pcap_q->port_id].process_private;
791                 pcap = &pp->rx_pcap[pcap_q->queue_id];
792
793                 if (unlikely(*pcap == NULL))
794                         return -ENOENT;
795
796                 pcap_pkt_count = count_packets_in_pcap(pcap, pcap_q);
797
798                 snprintf(ring_name, sizeof(ring_name), "PCAP_RING%" PRIu16,
799                                 ring_number);
800
801                 pcap_q->pkts = rte_ring_create(ring_name,
802                                 rte_align64pow2(pcap_pkt_count + 1), 0,
803                                 RING_F_SP_ENQ | RING_F_SC_DEQ);
804                 ring_number++;
805                 if (!pcap_q->pkts)
806                         return -ENOENT;
807
808                 /* Fill ring with packets from PCAP file one by one. */
809                 while (eth_pcap_rx(pcap_q, bufs, 1)) {
810                         /* Check for multiseg mbufs. */
811                         if (bufs[0]->nb_segs != 1) {
812                                 rte_pktmbuf_free(*bufs);
813
814                                 while (!rte_ring_dequeue(pcap_q->pkts,
815                                                 (void **)bufs))
816                                         rte_pktmbuf_free(*bufs);
817
818                                 rte_ring_free(pcap_q->pkts);
819                                 PMD_LOG(ERR, "Multiseg mbufs are not supported in infinite_rx "
820                                                 "mode.");
821                                 return -EINVAL;
822                         }
823
824                         rte_ring_enqueue_bulk(pcap_q->pkts,
825                                         (void * const *)bufs, 1, NULL);
826                 }
827                 /*
828                  * Reset the stats for this queue since eth_pcap_rx calls above
829                  * didn't result in the application receiving packets.
830                  */
831                 pcap_q->rx_stat.pkts = 0;
832                 pcap_q->rx_stat.bytes = 0;
833         }
834
835         return 0;
836 }
837
838 static int
839 eth_tx_queue_setup(struct rte_eth_dev *dev,
840                 uint16_t tx_queue_id,
841                 uint16_t nb_tx_desc __rte_unused,
842                 unsigned int socket_id __rte_unused,
843                 const struct rte_eth_txconf *tx_conf __rte_unused)
844 {
845         struct pmd_internals *internals = dev->data->dev_private;
846         struct pcap_tx_queue *pcap_q = &internals->tx_queue[tx_queue_id];
847
848         pcap_q->port_id = dev->data->port_id;
849         pcap_q->queue_id = tx_queue_id;
850         dev->data->tx_queues[tx_queue_id] = pcap_q;
851
852         return 0;
853 }
854
855 static int
856 eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
857 {
858         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
859
860         return 0;
861 }
862
863 static int
864 eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
865 {
866         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
867
868         return 0;
869 }
870
871 static int
872 eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
873 {
874         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
875
876         return 0;
877 }
878
879 static int
880 eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
881 {
882         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
883
884         return 0;
885 }
886
887 static const struct eth_dev_ops ops = {
888         .dev_start = eth_dev_start,
889         .dev_stop = eth_dev_stop,
890         .dev_close = eth_dev_close,
891         .dev_configure = eth_dev_configure,
892         .dev_infos_get = eth_dev_info,
893         .rx_queue_setup = eth_rx_queue_setup,
894         .tx_queue_setup = eth_tx_queue_setup,
895         .rx_queue_start = eth_rx_queue_start,
896         .tx_queue_start = eth_tx_queue_start,
897         .rx_queue_stop = eth_rx_queue_stop,
898         .tx_queue_stop = eth_tx_queue_stop,
899         .rx_queue_release = eth_queue_release,
900         .tx_queue_release = eth_queue_release,
901         .link_update = eth_link_update,
902         .stats_get = eth_stats_get,
903         .stats_reset = eth_stats_reset,
904 };
905
906 static int
907 add_queue(struct pmd_devargs *pmd, const char *name, const char *type,
908                 pcap_t *pcap, pcap_dumper_t *dumper)
909 {
910         if (pmd->num_of_queue >= RTE_PMD_PCAP_MAX_QUEUES)
911                 return -1;
912         if (pcap)
913                 pmd->queue[pmd->num_of_queue].pcap = pcap;
914         if (dumper)
915                 pmd->queue[pmd->num_of_queue].dumper = dumper;
916         pmd->queue[pmd->num_of_queue].name = name;
917         pmd->queue[pmd->num_of_queue].type = type;
918         pmd->num_of_queue++;
919         return 0;
920 }
921
922 /*
923  * Function handler that opens the pcap file for reading a stores a
924  * reference of it for use it later on.
925  */
926 static int
927 open_rx_pcap(const char *key, const char *value, void *extra_args)
928 {
929         const char *pcap_filename = value;
930         struct pmd_devargs *rx = extra_args;
931         pcap_t *pcap = NULL;
932
933         if (open_single_rx_pcap(pcap_filename, &pcap) < 0)
934                 return -1;
935
936         if (add_queue(rx, pcap_filename, key, pcap, NULL) < 0) {
937                 pcap_close(pcap);
938                 return -1;
939         }
940
941         return 0;
942 }
943
944 /*
945  * Opens a pcap file for writing and stores a reference to it
946  * for use it later on.
947  */
948 static int
949 open_tx_pcap(const char *key, const char *value, void *extra_args)
950 {
951         const char *pcap_filename = value;
952         struct pmd_devargs *dumpers = extra_args;
953         pcap_dumper_t *dumper;
954
955         if (open_single_tx_pcap(pcap_filename, &dumper) < 0)
956                 return -1;
957
958         if (add_queue(dumpers, pcap_filename, key, NULL, dumper) < 0) {
959                 pcap_dump_close(dumper);
960                 return -1;
961         }
962
963         return 0;
964 }
965
966 /*
967  * Opens an interface for reading and writing
968  */
969 static inline int
970 open_rx_tx_iface(const char *key, const char *value, void *extra_args)
971 {
972         const char *iface = value;
973         struct pmd_devargs *tx = extra_args;
974         pcap_t *pcap = NULL;
975
976         if (open_single_iface(iface, &pcap) < 0)
977                 return -1;
978
979         tx->queue[0].pcap = pcap;
980         tx->queue[0].name = iface;
981         tx->queue[0].type = key;
982
983         return 0;
984 }
985
986 static inline int
987 set_iface_direction(const char *iface, pcap_t *pcap,
988                 pcap_direction_t direction)
989 {
990         const char *direction_str = (direction == PCAP_D_IN) ? "IN" : "OUT";
991         if (pcap_setdirection(pcap, direction) < 0) {
992                 PMD_LOG(ERR, "Setting %s pcap direction %s failed - %s\n",
993                                 iface, direction_str, pcap_geterr(pcap));
994                 return -1;
995         }
996         PMD_LOG(INFO, "Setting %s pcap direction %s\n",
997                         iface, direction_str);
998         return 0;
999 }
1000
1001 static inline int
1002 open_iface(const char *key, const char *value, void *extra_args)
1003 {
1004         const char *iface = value;
1005         struct pmd_devargs *pmd = extra_args;
1006         pcap_t *pcap = NULL;
1007
1008         if (open_single_iface(iface, &pcap) < 0)
1009                 return -1;
1010         if (add_queue(pmd, iface, key, pcap, NULL) < 0) {
1011                 pcap_close(pcap);
1012                 return -1;
1013         }
1014
1015         return 0;
1016 }
1017
1018 /*
1019  * Opens a NIC for reading packets from it
1020  */
1021 static inline int
1022 open_rx_iface(const char *key, const char *value, void *extra_args)
1023 {
1024         int ret = open_iface(key, value, extra_args);
1025         if (ret < 0)
1026                 return ret;
1027         if (strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0) {
1028                 struct pmd_devargs *pmd = extra_args;
1029                 unsigned int qid = pmd->num_of_queue - 1;
1030
1031                 set_iface_direction(pmd->queue[qid].name,
1032                                 pmd->queue[qid].pcap,
1033                                 PCAP_D_IN);
1034         }
1035
1036         return 0;
1037 }
1038
1039 static inline int
1040 rx_iface_args_process(const char *key, const char *value, void *extra_args)
1041 {
1042         if (strcmp(key, ETH_PCAP_RX_IFACE_ARG) == 0 ||
1043                         strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0)
1044                 return open_rx_iface(key, value, extra_args);
1045
1046         return 0;
1047 }
1048
1049 /*
1050  * Opens a NIC for writing packets to it
1051  */
1052 static int
1053 open_tx_iface(const char *key, const char *value, void *extra_args)
1054 {
1055         return open_iface(key, value, extra_args);
1056 }
1057
1058 static int
1059 select_phy_mac(const char *key __rte_unused, const char *value,
1060                 void *extra_args)
1061 {
1062         if (extra_args) {
1063                 const int phy_mac = atoi(value);
1064                 int *enable_phy_mac = extra_args;
1065
1066                 if (phy_mac)
1067                         *enable_phy_mac = 1;
1068         }
1069         return 0;
1070 }
1071
1072 static int
1073 get_infinite_rx_arg(const char *key __rte_unused,
1074                 const char *value, void *extra_args)
1075 {
1076         if (extra_args) {
1077                 const int infinite_rx = atoi(value);
1078                 int *enable_infinite_rx = extra_args;
1079
1080                 if (infinite_rx > 0)
1081                         *enable_infinite_rx = 1;
1082         }
1083         return 0;
1084 }
1085
1086 static int
1087 pmd_init_internals(struct rte_vdev_device *vdev,
1088                 const unsigned int nb_rx_queues,
1089                 const unsigned int nb_tx_queues,
1090                 struct pmd_internals **internals,
1091                 struct rte_eth_dev **eth_dev)
1092 {
1093         struct rte_eth_dev_data *data;
1094         struct pmd_process_private *pp;
1095         unsigned int numa_node = vdev->device.numa_node;
1096
1097         PMD_LOG(INFO, "Creating pcap-backed ethdev on numa socket %d",
1098                 numa_node);
1099
1100         pp = (struct pmd_process_private *)
1101                 rte_zmalloc(NULL, sizeof(struct pmd_process_private),
1102                                 RTE_CACHE_LINE_SIZE);
1103
1104         if (pp == NULL) {
1105                 PMD_LOG(ERR,
1106                         "Failed to allocate memory for process private");
1107                 return -1;
1108         }
1109
1110         /* reserve an ethdev entry */
1111         *eth_dev = rte_eth_vdev_allocate(vdev, sizeof(**internals));
1112         if (!(*eth_dev)) {
1113                 rte_free(pp);
1114                 return -1;
1115         }
1116         (*eth_dev)->process_private = pp;
1117         /* now put it all together
1118          * - store queue data in internals,
1119          * - store numa_node info in eth_dev
1120          * - point eth_dev_data to internals
1121          * - and point eth_dev structure to new eth_dev_data structure
1122          */
1123         *internals = (*eth_dev)->data->dev_private;
1124         /*
1125          * Interface MAC = 02:70:63:61:70:<iface_idx>
1126          * derived from: 'locally administered':'p':'c':'a':'p':'iface_idx'
1127          * where the middle 4 characters are converted to hex.
1128          */
1129         (*internals)->eth_addr = (struct rte_ether_addr) {
1130                 .addr_bytes = { 0x02, 0x70, 0x63, 0x61, 0x70, iface_idx++ }
1131         };
1132         (*internals)->phy_mac = 0;
1133         data = (*eth_dev)->data;
1134         data->nb_rx_queues = (uint16_t)nb_rx_queues;
1135         data->nb_tx_queues = (uint16_t)nb_tx_queues;
1136         data->dev_link = pmd_link;
1137         data->mac_addrs = &(*internals)->eth_addr;
1138
1139         /*
1140          * NOTE: we'll replace the data element, of originally allocated
1141          * eth_dev so the rings are local per-process
1142          */
1143         (*eth_dev)->dev_ops = &ops;
1144
1145         strlcpy((*internals)->devargs, rte_vdev_device_args(vdev),
1146                         ETH_PCAP_ARG_MAXLEN);
1147
1148         return 0;
1149 }
1150
1151 static int
1152 eth_pcap_update_mac(const char *if_name, struct rte_eth_dev *eth_dev,
1153                 const unsigned int numa_node)
1154 {
1155 #if defined(RTE_EXEC_ENV_LINUX)
1156         void *mac_addrs;
1157         struct ifreq ifr;
1158         int if_fd = socket(AF_INET, SOCK_DGRAM, 0);
1159
1160         if (if_fd == -1)
1161                 return -1;
1162
1163         rte_strscpy(ifr.ifr_name, if_name, sizeof(ifr.ifr_name));
1164         if (ioctl(if_fd, SIOCGIFHWADDR, &ifr)) {
1165                 close(if_fd);
1166                 return -1;
1167         }
1168
1169         mac_addrs = rte_zmalloc_socket(NULL, RTE_ETHER_ADDR_LEN, 0, numa_node);
1170         if (!mac_addrs) {
1171                 close(if_fd);
1172                 return -1;
1173         }
1174
1175         PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
1176         eth_dev->data->mac_addrs = mac_addrs;
1177         rte_memcpy(eth_dev->data->mac_addrs[0].addr_bytes,
1178                         ifr.ifr_hwaddr.sa_data, RTE_ETHER_ADDR_LEN);
1179
1180         close(if_fd);
1181
1182         return 0;
1183
1184 #elif defined(RTE_EXEC_ENV_FREEBSD)
1185         void *mac_addrs;
1186         struct if_msghdr *ifm;
1187         struct sockaddr_dl *sdl;
1188         int mib[6];
1189         size_t len = 0;
1190         char *buf;
1191
1192         mib[0] = CTL_NET;
1193         mib[1] = AF_ROUTE;
1194         mib[2] = 0;
1195         mib[3] = AF_LINK;
1196         mib[4] = NET_RT_IFLIST;
1197         mib[5] = if_nametoindex(if_name);
1198
1199         if (sysctl(mib, 6, NULL, &len, NULL, 0) < 0)
1200                 return -1;
1201
1202         if (len == 0)
1203                 return -1;
1204
1205         buf = rte_malloc(NULL, len, 0);
1206         if (!buf)
1207                 return -1;
1208
1209         if (sysctl(mib, 6, buf, &len, NULL, 0) < 0) {
1210                 rte_free(buf);
1211                 return -1;
1212         }
1213         ifm = (struct if_msghdr *)buf;
1214         sdl = (struct sockaddr_dl *)(ifm + 1);
1215
1216         mac_addrs = rte_zmalloc_socket(NULL, RTE_ETHER_ADDR_LEN, 0, numa_node);
1217         if (!mac_addrs) {
1218                 rte_free(buf);
1219                 return -1;
1220         }
1221
1222         PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
1223         eth_dev->data->mac_addrs = mac_addrs;
1224         rte_memcpy(eth_dev->data->mac_addrs[0].addr_bytes,
1225                         LLADDR(sdl), RTE_ETHER_ADDR_LEN);
1226
1227         rte_free(buf);
1228
1229         return 0;
1230 #else
1231         return -1;
1232 #endif
1233 }
1234
1235 static int
1236 eth_from_pcaps_common(struct rte_vdev_device *vdev,
1237                 struct pmd_devargs_all *devargs_all,
1238                 struct pmd_internals **internals, struct rte_eth_dev **eth_dev)
1239 {
1240         struct pmd_process_private *pp;
1241         struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1242         struct pmd_devargs *tx_queues = &devargs_all->tx_queues;
1243         const unsigned int nb_rx_queues = rx_queues->num_of_queue;
1244         const unsigned int nb_tx_queues = tx_queues->num_of_queue;
1245         unsigned int i;
1246
1247         /* do some parameter checking */
1248         if (rx_queues == NULL && nb_rx_queues > 0)
1249                 return -1;
1250         if (tx_queues == NULL && nb_tx_queues > 0)
1251                 return -1;
1252
1253         if (pmd_init_internals(vdev, nb_rx_queues, nb_tx_queues, internals,
1254                         eth_dev) < 0)
1255                 return -1;
1256
1257         pp = (*eth_dev)->process_private;
1258         for (i = 0; i < nb_rx_queues; i++) {
1259                 struct pcap_rx_queue *rx = &(*internals)->rx_queue[i];
1260                 struct devargs_queue *queue = &rx_queues->queue[i];
1261
1262                 pp->rx_pcap[i] = queue->pcap;
1263                 strlcpy(rx->name, queue->name, sizeof(rx->name));
1264                 strlcpy(rx->type, queue->type, sizeof(rx->type));
1265         }
1266
1267         for (i = 0; i < nb_tx_queues; i++) {
1268                 struct pcap_tx_queue *tx = &(*internals)->tx_queue[i];
1269                 struct devargs_queue *queue = &tx_queues->queue[i];
1270
1271                 pp->tx_dumper[i] = queue->dumper;
1272                 pp->tx_pcap[i] = queue->pcap;
1273                 strlcpy(tx->name, queue->name, sizeof(tx->name));
1274                 strlcpy(tx->type, queue->type, sizeof(tx->type));
1275         }
1276
1277         return 0;
1278 }
1279
1280 static int
1281 eth_from_pcaps(struct rte_vdev_device *vdev,
1282                 struct pmd_devargs_all *devargs_all)
1283 {
1284         struct pmd_internals *internals = NULL;
1285         struct rte_eth_dev *eth_dev = NULL;
1286         struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1287         int single_iface = devargs_all->single_iface;
1288         unsigned int infinite_rx = devargs_all->infinite_rx;
1289         int ret;
1290
1291         ret = eth_from_pcaps_common(vdev, devargs_all, &internals, &eth_dev);
1292
1293         if (ret < 0)
1294                 return ret;
1295
1296         /* store weather we are using a single interface for rx/tx or not */
1297         internals->single_iface = single_iface;
1298
1299         if (single_iface) {
1300                 internals->if_index = if_nametoindex(rx_queues->queue[0].name);
1301
1302                 /* phy_mac arg is applied only only if "iface" devarg is provided */
1303                 if (rx_queues->phy_mac) {
1304                         int ret = eth_pcap_update_mac(rx_queues->queue[0].name,
1305                                         eth_dev, vdev->device.numa_node);
1306                         if (ret == 0)
1307                                 internals->phy_mac = 1;
1308                 }
1309         }
1310
1311         internals->infinite_rx = infinite_rx;
1312         /* Assign rx ops. */
1313         if (infinite_rx)
1314                 eth_dev->rx_pkt_burst = eth_pcap_rx_infinite;
1315         else
1316                 eth_dev->rx_pkt_burst = eth_pcap_rx;
1317
1318         /* Assign tx ops. */
1319         if (devargs_all->is_tx_pcap)
1320                 eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1321         else if (devargs_all->is_tx_iface)
1322                 eth_dev->tx_pkt_burst = eth_pcap_tx;
1323         else
1324                 eth_dev->tx_pkt_burst = eth_tx_drop;
1325
1326         rte_eth_dev_probing_finish(eth_dev);
1327         return 0;
1328 }
1329
1330 static int
1331 pmd_pcap_probe(struct rte_vdev_device *dev)
1332 {
1333         const char *name;
1334         unsigned int is_rx_pcap = 0;
1335         struct rte_kvargs *kvlist;
1336         struct pmd_devargs pcaps = {0};
1337         struct pmd_devargs dumpers = {0};
1338         struct rte_eth_dev *eth_dev =  NULL;
1339         struct pmd_internals *internal;
1340         int ret;
1341
1342         struct pmd_devargs_all devargs_all = {
1343                 .single_iface = 0,
1344                 .is_tx_pcap = 0,
1345                 .is_tx_iface = 0,
1346                 .infinite_rx = 0,
1347         };
1348
1349         name = rte_vdev_device_name(dev);
1350         PMD_LOG(INFO, "Initializing pmd_pcap for %s", name);
1351
1352         gettimeofday(&start_time, NULL);
1353         start_cycles = rte_get_timer_cycles();
1354         hz = rte_get_timer_hz();
1355
1356         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1357                 eth_dev = rte_eth_dev_attach_secondary(name);
1358                 if (!eth_dev) {
1359                         PMD_LOG(ERR, "Failed to probe %s", name);
1360                         return -1;
1361                 }
1362
1363                 internal = eth_dev->data->dev_private;
1364
1365                 kvlist = rte_kvargs_parse(internal->devargs, valid_arguments);
1366                 if (kvlist == NULL)
1367                         return -1;
1368         } else {
1369                 kvlist = rte_kvargs_parse(rte_vdev_device_args(dev),
1370                                 valid_arguments);
1371                 if (kvlist == NULL)
1372                         return -1;
1373         }
1374
1375         /*
1376          * If iface argument is passed we open the NICs and use them for
1377          * reading / writing
1378          */
1379         if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
1380
1381                 ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
1382                                 &open_rx_tx_iface, &pcaps);
1383                 if (ret < 0)
1384                         goto free_kvlist;
1385
1386                 dumpers.queue[0] = pcaps.queue[0];
1387
1388                 ret = rte_kvargs_process(kvlist, ETH_PCAP_PHY_MAC_ARG,
1389                                 &select_phy_mac, &pcaps.phy_mac);
1390                 if (ret < 0)
1391                         goto free_kvlist;
1392
1393                 dumpers.phy_mac = pcaps.phy_mac;
1394
1395                 devargs_all.single_iface = 1;
1396                 pcaps.num_of_queue = 1;
1397                 dumpers.num_of_queue = 1;
1398
1399                 goto create_eth;
1400         }
1401
1402         /*
1403          * We check whether we want to open a RX stream from a real NIC or a
1404          * pcap file
1405          */
1406         is_rx_pcap = rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG) ? 1 : 0;
1407         pcaps.num_of_queue = 0;
1408
1409         if (is_rx_pcap) {
1410                 /*
1411                  * We check whether we want to infinitely rx the pcap file.
1412                  */
1413                 unsigned int infinite_rx_arg_cnt = rte_kvargs_count(kvlist,
1414                                 ETH_PCAP_INFINITE_RX_ARG);
1415
1416                 if (infinite_rx_arg_cnt == 1) {
1417                         ret = rte_kvargs_process(kvlist,
1418                                         ETH_PCAP_INFINITE_RX_ARG,
1419                                         &get_infinite_rx_arg,
1420                                         &devargs_all.infinite_rx);
1421                         if (ret < 0)
1422                                 goto free_kvlist;
1423                         PMD_LOG(INFO, "infinite_rx has been %s for %s",
1424                                         devargs_all.infinite_rx ? "enabled" : "disabled",
1425                                         name);
1426
1427                 } else if (infinite_rx_arg_cnt > 1) {
1428                         PMD_LOG(WARNING, "infinite_rx has not been enabled since the "
1429                                         "argument has been provided more than once "
1430                                         "for %s", name);
1431                 }
1432
1433                 ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
1434                                 &open_rx_pcap, &pcaps);
1435         } else {
1436                 ret = rte_kvargs_process(kvlist, NULL,
1437                                 &rx_iface_args_process, &pcaps);
1438         }
1439
1440         if (ret < 0)
1441                 goto free_kvlist;
1442
1443         /*
1444          * We check whether we want to open a TX stream to a real NIC,
1445          * a pcap file, or drop packets on tx
1446          */
1447         devargs_all.is_tx_pcap =
1448                 rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) ? 1 : 0;
1449         devargs_all.is_tx_iface =
1450                 rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG) ? 1 : 0;
1451         dumpers.num_of_queue = 0;
1452
1453         if (devargs_all.is_tx_pcap) {
1454                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
1455                                 &open_tx_pcap, &dumpers);
1456         } else if (devargs_all.is_tx_iface) {
1457                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
1458                                 &open_tx_iface, &dumpers);
1459         } else {
1460                 unsigned int i;
1461
1462                 PMD_LOG(INFO, "Dropping packets on tx since no tx queues were provided.");
1463
1464                 /* Add 1 dummy queue per rxq which counts and drops packets. */
1465                 for (i = 0; i < pcaps.num_of_queue; i++)
1466                         ret = add_queue(&dumpers, "dummy", "tx_drop", NULL,
1467                                         NULL);
1468         }
1469
1470         if (ret < 0)
1471                 goto free_kvlist;
1472
1473 create_eth:
1474         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1475                 struct pmd_process_private *pp;
1476                 unsigned int i;
1477
1478                 internal = eth_dev->data->dev_private;
1479                         pp = (struct pmd_process_private *)
1480                                 rte_zmalloc(NULL,
1481                                         sizeof(struct pmd_process_private),
1482                                         RTE_CACHE_LINE_SIZE);
1483
1484                 if (pp == NULL) {
1485                         PMD_LOG(ERR,
1486                                 "Failed to allocate memory for process private");
1487                         ret = -1;
1488                         goto free_kvlist;
1489                 }
1490
1491                 eth_dev->dev_ops = &ops;
1492                 eth_dev->device = &dev->device;
1493
1494                 /* setup process private */
1495                 for (i = 0; i < pcaps.num_of_queue; i++)
1496                         pp->rx_pcap[i] = pcaps.queue[i].pcap;
1497
1498                 for (i = 0; i < dumpers.num_of_queue; i++) {
1499                         pp->tx_dumper[i] = dumpers.queue[i].dumper;
1500                         pp->tx_pcap[i] = dumpers.queue[i].pcap;
1501                 }
1502
1503                 eth_dev->process_private = pp;
1504                 eth_dev->rx_pkt_burst = eth_pcap_rx;
1505                 if (devargs_all.is_tx_pcap)
1506                         eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1507                 else
1508                         eth_dev->tx_pkt_burst = eth_pcap_tx;
1509
1510                 rte_eth_dev_probing_finish(eth_dev);
1511                 goto free_kvlist;
1512         }
1513
1514         devargs_all.rx_queues = pcaps;
1515         devargs_all.tx_queues = dumpers;
1516
1517         ret = eth_from_pcaps(dev, &devargs_all);
1518
1519 free_kvlist:
1520         rte_kvargs_free(kvlist);
1521
1522         return ret;
1523 }
1524
1525 static int
1526 pmd_pcap_remove(struct rte_vdev_device *dev)
1527 {
1528         struct pmd_internals *internals = NULL;
1529         struct rte_eth_dev *eth_dev = NULL;
1530
1531         PMD_LOG(INFO, "Closing pcap ethdev on numa socket %d",
1532                         rte_socket_id());
1533
1534         if (!dev)
1535                 return -1;
1536
1537         /* reserve an ethdev entry */
1538         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
1539         if (eth_dev == NULL)
1540                 return -1;
1541
1542         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
1543                 internals = eth_dev->data->dev_private;
1544                 if (internals != NULL && internals->phy_mac == 0)
1545                         /* not dynamically allocated, must not be freed */
1546                         eth_dev->data->mac_addrs = NULL;
1547         }
1548
1549         eth_dev_close(eth_dev);
1550
1551         rte_free(eth_dev->process_private);
1552         rte_eth_dev_release_port(eth_dev);
1553
1554         return 0;
1555 }
1556
1557 static struct rte_vdev_driver pmd_pcap_drv = {
1558         .probe = pmd_pcap_probe,
1559         .remove = pmd_pcap_remove,
1560 };
1561
1562 RTE_PMD_REGISTER_VDEV(net_pcap, pmd_pcap_drv);
1563 RTE_PMD_REGISTER_ALIAS(net_pcap, eth_pcap);
1564 RTE_PMD_REGISTER_PARAM_STRING(net_pcap,
1565         ETH_PCAP_RX_PCAP_ARG "=<string> "
1566         ETH_PCAP_TX_PCAP_ARG "=<string> "
1567         ETH_PCAP_RX_IFACE_ARG "=<ifc> "
1568         ETH_PCAP_RX_IFACE_IN_ARG "=<ifc> "
1569         ETH_PCAP_TX_IFACE_ARG "=<ifc> "
1570         ETH_PCAP_IFACE_ARG "=<ifc> "
1571         ETH_PCAP_PHY_MAC_ARG "=<int>"
1572         ETH_PCAP_INFINITE_RX_ARG "=<0|1>");
1573
1574 RTE_INIT(eth_pcap_init_log)
1575 {
1576         eth_pcap_logtype = rte_log_register("pmd.net.pcap");
1577         if (eth_pcap_logtype >= 0)
1578                 rte_log_set_level(eth_pcap_logtype, RTE_LOG_NOTICE);
1579 }