net/pcap: fix infinite Rx with large files
[dpdk.git] / drivers / net / pcap / rte_eth_pcap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright(c) 2014 6WIND S.A.
4  * All rights reserved.
5  */
6
7 #include <time.h>
8
9 #include <net/if.h>
10 #include <sys/socket.h>
11 #include <sys/ioctl.h>
12 #include <unistd.h>
13
14 #if defined(RTE_EXEC_ENV_FREEBSD)
15 #include <sys/sysctl.h>
16 #include <net/if_dl.h>
17 #endif
18
19 #include <pcap.h>
20
21 #include <rte_cycles.h>
22 #include <ethdev_driver.h>
23 #include <ethdev_vdev.h>
24 #include <rte_kvargs.h>
25 #include <rte_malloc.h>
26 #include <rte_mbuf.h>
27 #include <rte_bus_vdev.h>
28 #include <rte_string_fns.h>
29
30 #define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
31 #define RTE_ETH_PCAP_SNAPLEN RTE_ETHER_MAX_JUMBO_FRAME_LEN
32 #define RTE_ETH_PCAP_PROMISC 1
33 #define RTE_ETH_PCAP_TIMEOUT -1
34
35 #define ETH_PCAP_RX_PCAP_ARG  "rx_pcap"
36 #define ETH_PCAP_TX_PCAP_ARG  "tx_pcap"
37 #define ETH_PCAP_RX_IFACE_ARG "rx_iface"
38 #define ETH_PCAP_RX_IFACE_IN_ARG "rx_iface_in"
39 #define ETH_PCAP_TX_IFACE_ARG "tx_iface"
40 #define ETH_PCAP_IFACE_ARG    "iface"
41 #define ETH_PCAP_PHY_MAC_ARG  "phy_mac"
42 #define ETH_PCAP_INFINITE_RX_ARG  "infinite_rx"
43
44 #define ETH_PCAP_ARG_MAXLEN     64
45
46 #define RTE_PMD_PCAP_MAX_QUEUES 16
47
48 static char errbuf[PCAP_ERRBUF_SIZE];
49 static struct timeval start_time;
50 static uint64_t start_cycles;
51 static uint64_t hz;
52 static uint8_t iface_idx;
53
54 static uint64_t timestamp_rx_dynflag;
55 static int timestamp_dynfield_offset = -1;
56
57 struct queue_stat {
58         volatile unsigned long pkts;
59         volatile unsigned long bytes;
60         volatile unsigned long err_pkts;
61 };
62
63 struct pcap_rx_queue {
64         uint16_t port_id;
65         uint16_t queue_id;
66         struct rte_mempool *mb_pool;
67         struct queue_stat rx_stat;
68         char name[PATH_MAX];
69         char type[ETH_PCAP_ARG_MAXLEN];
70
71         /* Contains pre-generated packets to be looped through */
72         struct rte_ring *pkts;
73 };
74
75 struct pcap_tx_queue {
76         uint16_t port_id;
77         uint16_t queue_id;
78         struct queue_stat tx_stat;
79         char name[PATH_MAX];
80         char type[ETH_PCAP_ARG_MAXLEN];
81 };
82
83 struct pmd_internals {
84         struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES];
85         struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES];
86         char devargs[ETH_PCAP_ARG_MAXLEN];
87         struct rte_ether_addr eth_addr;
88         int if_index;
89         int single_iface;
90         int phy_mac;
91         unsigned int infinite_rx;
92 };
93
94 struct pmd_process_private {
95         pcap_t *rx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
96         pcap_t *tx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
97         pcap_dumper_t *tx_dumper[RTE_PMD_PCAP_MAX_QUEUES];
98 };
99
100 struct pmd_devargs {
101         unsigned int num_of_queue;
102         struct devargs_queue {
103                 pcap_dumper_t *dumper;
104                 pcap_t *pcap;
105                 const char *name;
106                 const char *type;
107         } queue[RTE_PMD_PCAP_MAX_QUEUES];
108         int phy_mac;
109 };
110
111 struct pmd_devargs_all {
112         struct pmd_devargs rx_queues;
113         struct pmd_devargs tx_queues;
114         int single_iface;
115         unsigned int is_tx_pcap;
116         unsigned int is_tx_iface;
117         unsigned int is_rx_pcap;
118         unsigned int is_rx_iface;
119         unsigned int infinite_rx;
120 };
121
122 static const char *valid_arguments[] = {
123         ETH_PCAP_RX_PCAP_ARG,
124         ETH_PCAP_TX_PCAP_ARG,
125         ETH_PCAP_RX_IFACE_ARG,
126         ETH_PCAP_RX_IFACE_IN_ARG,
127         ETH_PCAP_TX_IFACE_ARG,
128         ETH_PCAP_IFACE_ARG,
129         ETH_PCAP_PHY_MAC_ARG,
130         ETH_PCAP_INFINITE_RX_ARG,
131         NULL
132 };
133
134 static struct rte_eth_link pmd_link = {
135                 .link_speed = ETH_SPEED_NUM_10G,
136                 .link_duplex = ETH_LINK_FULL_DUPLEX,
137                 .link_status = ETH_LINK_DOWN,
138                 .link_autoneg = ETH_LINK_FIXED,
139 };
140
141 RTE_LOG_REGISTER(eth_pcap_logtype, pmd.net.pcap, NOTICE);
142
143 #define PMD_LOG(level, fmt, args...) \
144         rte_log(RTE_LOG_ ## level, eth_pcap_logtype, \
145                 "%s(): " fmt "\n", __func__, ##args)
146
147 static int
148 eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf,
149                 const u_char *data, uint16_t data_len)
150 {
151         /* Copy the first segment. */
152         uint16_t len = rte_pktmbuf_tailroom(mbuf);
153         struct rte_mbuf *m = mbuf;
154
155         rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len);
156         data_len -= len;
157         data += len;
158
159         while (data_len > 0) {
160                 /* Allocate next mbuf and point to that. */
161                 m->next = rte_pktmbuf_alloc(mb_pool);
162
163                 if (unlikely(!m->next))
164                         return -1;
165
166                 m = m->next;
167
168                 /* Headroom is not needed in chained mbufs. */
169                 rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m));
170                 m->pkt_len = 0;
171                 m->data_len = 0;
172
173                 /* Copy next segment. */
174                 len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len);
175                 rte_memcpy(rte_pktmbuf_append(m, len), data, len);
176
177                 mbuf->nb_segs++;
178                 data_len -= len;
179                 data += len;
180         }
181
182         return mbuf->nb_segs;
183 }
184
185 static uint16_t
186 eth_pcap_rx_infinite(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
187 {
188         int i;
189         struct pcap_rx_queue *pcap_q = queue;
190         uint32_t rx_bytes = 0;
191
192         if (unlikely(nb_pkts == 0))
193                 return 0;
194
195         if (rte_pktmbuf_alloc_bulk(pcap_q->mb_pool, bufs, nb_pkts) != 0)
196                 return 0;
197
198         for (i = 0; i < nb_pkts; i++) {
199                 struct rte_mbuf *pcap_buf;
200                 int err = rte_ring_dequeue(pcap_q->pkts, (void **)&pcap_buf);
201                 if (err)
202                         return i;
203
204                 rte_memcpy(rte_pktmbuf_mtod(bufs[i], void *),
205                                 rte_pktmbuf_mtod(pcap_buf, void *),
206                                 pcap_buf->data_len);
207                 bufs[i]->data_len = pcap_buf->data_len;
208                 bufs[i]->pkt_len = pcap_buf->pkt_len;
209                 bufs[i]->port = pcap_q->port_id;
210                 rx_bytes += pcap_buf->data_len;
211
212                 /* Enqueue packet back on ring to allow infinite rx. */
213                 rte_ring_enqueue(pcap_q->pkts, pcap_buf);
214         }
215
216         pcap_q->rx_stat.pkts += i;
217         pcap_q->rx_stat.bytes += rx_bytes;
218
219         return i;
220 }
221
222 static uint16_t
223 eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
224 {
225         unsigned int i;
226         struct pcap_pkthdr header;
227         struct pmd_process_private *pp;
228         const u_char *packet;
229         struct rte_mbuf *mbuf;
230         struct pcap_rx_queue *pcap_q = queue;
231         uint16_t num_rx = 0;
232         uint32_t rx_bytes = 0;
233         pcap_t *pcap;
234
235         pp = rte_eth_devices[pcap_q->port_id].process_private;
236         pcap = pp->rx_pcap[pcap_q->queue_id];
237
238         if (unlikely(pcap == NULL || nb_pkts == 0))
239                 return 0;
240
241         /* Reads the given number of packets from the pcap file one by one
242          * and copies the packet data into a newly allocated mbuf to return.
243          */
244         for (i = 0; i < nb_pkts; i++) {
245                 /* Get the next PCAP packet */
246                 packet = pcap_next(pcap, &header);
247                 if (unlikely(packet == NULL))
248                         break;
249
250                 mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
251                 if (unlikely(mbuf == NULL))
252                         break;
253
254                 if (header.caplen <= rte_pktmbuf_tailroom(mbuf)) {
255                         /* pcap packet will fit in the mbuf, can copy it */
256                         rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
257                                         header.caplen);
258                         mbuf->data_len = (uint16_t)header.caplen;
259                 } else {
260                         /* Try read jumbo frame into multi mbufs. */
261                         if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool,
262                                                        mbuf,
263                                                        packet,
264                                                        header.caplen) == -1)) {
265                                 rte_pktmbuf_free(mbuf);
266                                 break;
267                         }
268                 }
269
270                 mbuf->pkt_len = (uint16_t)header.caplen;
271                 *RTE_MBUF_DYNFIELD(mbuf, timestamp_dynfield_offset,
272                         rte_mbuf_timestamp_t *) =
273                                 (uint64_t)header.ts.tv_sec * 1000000 +
274                                 header.ts.tv_usec;
275                 mbuf->ol_flags |= timestamp_rx_dynflag;
276                 mbuf->port = pcap_q->port_id;
277                 bufs[num_rx] = mbuf;
278                 num_rx++;
279                 rx_bytes += header.caplen;
280         }
281         pcap_q->rx_stat.pkts += num_rx;
282         pcap_q->rx_stat.bytes += rx_bytes;
283
284         return num_rx;
285 }
286
287 static uint16_t
288 eth_null_rx(void *queue __rte_unused,
289                 struct rte_mbuf **bufs __rte_unused,
290                 uint16_t nb_pkts __rte_unused)
291 {
292         return 0;
293 }
294
295 #define NSEC_PER_SEC    1000000000L
296
297 static inline void
298 calculate_timestamp(struct timeval *ts) {
299         uint64_t cycles;
300         struct timeval cur_time;
301
302         cycles = rte_get_timer_cycles() - start_cycles;
303         cur_time.tv_sec = cycles / hz;
304         cur_time.tv_usec = (cycles % hz) * NSEC_PER_SEC / hz;
305
306         ts->tv_sec = start_time.tv_sec + cur_time.tv_sec;
307         ts->tv_usec = start_time.tv_usec + cur_time.tv_usec;
308         if (ts->tv_usec >= NSEC_PER_SEC) {
309                 ts->tv_usec -= NSEC_PER_SEC;
310                 ts->tv_sec += 1;
311         }
312 }
313
314 /*
315  * Callback to handle writing packets to a pcap file.
316  */
317 static uint16_t
318 eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
319 {
320         unsigned int i;
321         struct rte_mbuf *mbuf;
322         struct pmd_process_private *pp;
323         struct pcap_tx_queue *dumper_q = queue;
324         uint16_t num_tx = 0;
325         uint32_t tx_bytes = 0;
326         struct pcap_pkthdr header;
327         pcap_dumper_t *dumper;
328         unsigned char temp_data[RTE_ETH_PCAP_SNAPLEN];
329         size_t len, caplen;
330
331         pp = rte_eth_devices[dumper_q->port_id].process_private;
332         dumper = pp->tx_dumper[dumper_q->queue_id];
333
334         if (dumper == NULL || nb_pkts == 0)
335                 return 0;
336
337         /* writes the nb_pkts packets to the previously opened pcap file
338          * dumper */
339         for (i = 0; i < nb_pkts; i++) {
340                 mbuf = bufs[i];
341                 len = caplen = rte_pktmbuf_pkt_len(mbuf);
342                 if (unlikely(!rte_pktmbuf_is_contiguous(mbuf) &&
343                                 len > sizeof(temp_data))) {
344                         caplen = sizeof(temp_data);
345                 }
346
347                 calculate_timestamp(&header.ts);
348                 header.len = len;
349                 header.caplen = caplen;
350                 /* rte_pktmbuf_read() returns a pointer to the data directly
351                  * in the mbuf (when the mbuf is contiguous) or, otherwise,
352                  * a pointer to temp_data after copying into it.
353                  */
354                 pcap_dump((u_char *)dumper, &header,
355                         rte_pktmbuf_read(mbuf, 0, caplen, temp_data));
356
357                 num_tx++;
358                 tx_bytes += caplen;
359                 rte_pktmbuf_free(mbuf);
360         }
361
362         /*
363          * Since there's no place to hook a callback when the forwarding
364          * process stops and to make sure the pcap file is actually written,
365          * we flush the pcap dumper within each burst.
366          */
367         pcap_dump_flush(dumper);
368         dumper_q->tx_stat.pkts += num_tx;
369         dumper_q->tx_stat.bytes += tx_bytes;
370         dumper_q->tx_stat.err_pkts += nb_pkts - num_tx;
371
372         return nb_pkts;
373 }
374
375 /*
376  * Callback to handle dropping packets in the infinite rx case.
377  */
378 static uint16_t
379 eth_tx_drop(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
380 {
381         unsigned int i;
382         uint32_t tx_bytes = 0;
383         struct pcap_tx_queue *tx_queue = queue;
384
385         if (unlikely(nb_pkts == 0))
386                 return 0;
387
388         for (i = 0; i < nb_pkts; i++) {
389                 tx_bytes += bufs[i]->pkt_len;
390                 rte_pktmbuf_free(bufs[i]);
391         }
392
393         tx_queue->tx_stat.pkts += nb_pkts;
394         tx_queue->tx_stat.bytes += tx_bytes;
395
396         return i;
397 }
398
399 /*
400  * Callback to handle sending packets through a real NIC.
401  */
402 static uint16_t
403 eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
404 {
405         unsigned int i;
406         int ret;
407         struct rte_mbuf *mbuf;
408         struct pmd_process_private *pp;
409         struct pcap_tx_queue *tx_queue = queue;
410         uint16_t num_tx = 0;
411         uint32_t tx_bytes = 0;
412         pcap_t *pcap;
413         unsigned char temp_data[RTE_ETH_PCAP_SNAPLEN];
414         size_t len;
415
416         pp = rte_eth_devices[tx_queue->port_id].process_private;
417         pcap = pp->tx_pcap[tx_queue->queue_id];
418
419         if (unlikely(nb_pkts == 0 || pcap == NULL))
420                 return 0;
421
422         for (i = 0; i < nb_pkts; i++) {
423                 mbuf = bufs[i];
424                 len = rte_pktmbuf_pkt_len(mbuf);
425                 if (unlikely(!rte_pktmbuf_is_contiguous(mbuf) &&
426                                 len > sizeof(temp_data))) {
427                         PMD_LOG(ERR,
428                                 "Dropping multi segment PCAP packet. Size (%zd) > max size (%zd).",
429                                 len, sizeof(temp_data));
430                         rte_pktmbuf_free(mbuf);
431                         continue;
432                 }
433
434                 /* rte_pktmbuf_read() returns a pointer to the data directly
435                  * in the mbuf (when the mbuf is contiguous) or, otherwise,
436                  * a pointer to temp_data after copying into it.
437                  */
438                 ret = pcap_sendpacket(pcap,
439                         rte_pktmbuf_read(mbuf, 0, len, temp_data), len);
440                 if (unlikely(ret != 0))
441                         break;
442                 num_tx++;
443                 tx_bytes += len;
444                 rte_pktmbuf_free(mbuf);
445         }
446
447         tx_queue->tx_stat.pkts += num_tx;
448         tx_queue->tx_stat.bytes += tx_bytes;
449         tx_queue->tx_stat.err_pkts += i - num_tx;
450
451         return i;
452 }
453
454 /*
455  * pcap_open_live wrapper function
456  */
457 static inline int
458 open_iface_live(const char *iface, pcap_t **pcap) {
459         *pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
460                         RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
461
462         if (*pcap == NULL) {
463                 PMD_LOG(ERR, "Couldn't open %s: %s", iface, errbuf);
464                 return -1;
465         }
466
467         return 0;
468 }
469
470 static int
471 open_single_iface(const char *iface, pcap_t **pcap)
472 {
473         if (open_iface_live(iface, pcap) < 0) {
474                 PMD_LOG(ERR, "Couldn't open interface %s", iface);
475                 return -1;
476         }
477
478         return 0;
479 }
480
481 static int
482 open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper)
483 {
484         pcap_t *tx_pcap;
485
486         /*
487          * We need to create a dummy empty pcap_t to use it
488          * with pcap_dump_open(). We create big enough an Ethernet
489          * pcap holder.
490          */
491         tx_pcap = pcap_open_dead_with_tstamp_precision(DLT_EN10MB,
492                         RTE_ETH_PCAP_SNAPSHOT_LEN, PCAP_TSTAMP_PRECISION_NANO);
493         if (tx_pcap == NULL) {
494                 PMD_LOG(ERR, "Couldn't create dead pcap");
495                 return -1;
496         }
497
498         /* The dumper is created using the previous pcap_t reference */
499         *dumper = pcap_dump_open(tx_pcap, pcap_filename);
500         if (*dumper == NULL) {
501                 pcap_close(tx_pcap);
502                 PMD_LOG(ERR, "Couldn't open %s for writing.",
503                         pcap_filename);
504                 return -1;
505         }
506
507         pcap_close(tx_pcap);
508         return 0;
509 }
510
511 static int
512 open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap)
513 {
514         *pcap = pcap_open_offline(pcap_filename, errbuf);
515         if (*pcap == NULL) {
516                 PMD_LOG(ERR, "Couldn't open %s: %s", pcap_filename,
517                         errbuf);
518                 return -1;
519         }
520
521         return 0;
522 }
523
524 static uint64_t
525 count_packets_in_pcap(pcap_t **pcap, struct pcap_rx_queue *pcap_q)
526 {
527         const u_char *packet;
528         struct pcap_pkthdr header;
529         uint64_t pcap_pkt_count = 0;
530
531         while ((packet = pcap_next(*pcap, &header)))
532                 pcap_pkt_count++;
533
534         /* The pcap is reopened so it can be used as normal later. */
535         pcap_close(*pcap);
536         *pcap = NULL;
537         open_single_rx_pcap(pcap_q->name, pcap);
538
539         return pcap_pkt_count;
540 }
541
542 static int
543 eth_dev_start(struct rte_eth_dev *dev)
544 {
545         unsigned int i;
546         struct pmd_internals *internals = dev->data->dev_private;
547         struct pmd_process_private *pp = dev->process_private;
548         struct pcap_tx_queue *tx;
549         struct pcap_rx_queue *rx;
550
551         /* Special iface case. Single pcap is open and shared between tx/rx. */
552         if (internals->single_iface) {
553                 tx = &internals->tx_queue[0];
554                 rx = &internals->rx_queue[0];
555
556                 if (!pp->tx_pcap[0] &&
557                         strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) {
558                         if (open_single_iface(tx->name, &pp->tx_pcap[0]) < 0)
559                                 return -1;
560                         pp->rx_pcap[0] = pp->tx_pcap[0];
561                 }
562
563                 goto status_up;
564         }
565
566         /* If not open already, open tx pcaps/dumpers */
567         for (i = 0; i < dev->data->nb_tx_queues; i++) {
568                 tx = &internals->tx_queue[i];
569
570                 if (!pp->tx_dumper[i] &&
571                                 strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) {
572                         if (open_single_tx_pcap(tx->name,
573                                 &pp->tx_dumper[i]) < 0)
574                                 return -1;
575                 } else if (!pp->tx_pcap[i] &&
576                                 strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) {
577                         if (open_single_iface(tx->name, &pp->tx_pcap[i]) < 0)
578                                 return -1;
579                 }
580         }
581
582         /* If not open already, open rx pcaps */
583         for (i = 0; i < dev->data->nb_rx_queues; i++) {
584                 rx = &internals->rx_queue[i];
585
586                 if (pp->rx_pcap[i] != NULL)
587                         continue;
588
589                 if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) {
590                         if (open_single_rx_pcap(rx->name, &pp->rx_pcap[i]) < 0)
591                                 return -1;
592                 } else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) {
593                         if (open_single_iface(rx->name, &pp->rx_pcap[i]) < 0)
594                                 return -1;
595                 }
596         }
597
598 status_up:
599         for (i = 0; i < dev->data->nb_rx_queues; i++)
600                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
601
602         for (i = 0; i < dev->data->nb_tx_queues; i++)
603                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
604
605         dev->data->dev_link.link_status = ETH_LINK_UP;
606
607         return 0;
608 }
609
610 /*
611  * This function gets called when the current port gets stopped.
612  * Is the only place for us to close all the tx streams dumpers.
613  * If not called the dumpers will be flushed within each tx burst.
614  */
615 static int
616 eth_dev_stop(struct rte_eth_dev *dev)
617 {
618         unsigned int i;
619         struct pmd_internals *internals = dev->data->dev_private;
620         struct pmd_process_private *pp = dev->process_private;
621
622         /* Special iface case. Single pcap is open and shared between tx/rx. */
623         if (internals->single_iface) {
624                 pcap_close(pp->tx_pcap[0]);
625                 pp->tx_pcap[0] = NULL;
626                 pp->rx_pcap[0] = NULL;
627                 goto status_down;
628         }
629
630         for (i = 0; i < dev->data->nb_tx_queues; i++) {
631                 if (pp->tx_dumper[i] != NULL) {
632                         pcap_dump_close(pp->tx_dumper[i]);
633                         pp->tx_dumper[i] = NULL;
634                 }
635
636                 if (pp->tx_pcap[i] != NULL) {
637                         pcap_close(pp->tx_pcap[i]);
638                         pp->tx_pcap[i] = NULL;
639                 }
640         }
641
642         for (i = 0; i < dev->data->nb_rx_queues; i++) {
643                 if (pp->rx_pcap[i] != NULL) {
644                         pcap_close(pp->rx_pcap[i]);
645                         pp->rx_pcap[i] = NULL;
646                 }
647         }
648
649 status_down:
650         for (i = 0; i < dev->data->nb_rx_queues; i++)
651                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
652
653         for (i = 0; i < dev->data->nb_tx_queues; i++)
654                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
655
656         dev->data->dev_link.link_status = ETH_LINK_DOWN;
657
658         return 0;
659 }
660
661 static int
662 eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
663 {
664         return 0;
665 }
666
667 static int
668 eth_dev_info(struct rte_eth_dev *dev,
669                 struct rte_eth_dev_info *dev_info)
670 {
671         struct pmd_internals *internals = dev->data->dev_private;
672
673         dev_info->if_index = internals->if_index;
674         dev_info->max_mac_addrs = 1;
675         dev_info->max_rx_pktlen = (uint32_t) -1;
676         dev_info->max_rx_queues = dev->data->nb_rx_queues;
677         dev_info->max_tx_queues = dev->data->nb_tx_queues;
678         dev_info->min_rx_bufsize = 0;
679
680         return 0;
681 }
682
683 static int
684 eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
685 {
686         unsigned int i;
687         unsigned long rx_packets_total = 0, rx_bytes_total = 0;
688         unsigned long tx_packets_total = 0, tx_bytes_total = 0;
689         unsigned long tx_packets_err_total = 0;
690         const struct pmd_internals *internal = dev->data->dev_private;
691
692         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
693                         i < dev->data->nb_rx_queues; i++) {
694                 stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts;
695                 stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes;
696                 rx_packets_total += stats->q_ipackets[i];
697                 rx_bytes_total += stats->q_ibytes[i];
698         }
699
700         for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
701                         i < dev->data->nb_tx_queues; i++) {
702                 stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts;
703                 stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes;
704                 tx_packets_total += stats->q_opackets[i];
705                 tx_bytes_total += stats->q_obytes[i];
706                 tx_packets_err_total += internal->tx_queue[i].tx_stat.err_pkts;
707         }
708
709         stats->ipackets = rx_packets_total;
710         stats->ibytes = rx_bytes_total;
711         stats->opackets = tx_packets_total;
712         stats->obytes = tx_bytes_total;
713         stats->oerrors = tx_packets_err_total;
714
715         return 0;
716 }
717
718 static int
719 eth_stats_reset(struct rte_eth_dev *dev)
720 {
721         unsigned int i;
722         struct pmd_internals *internal = dev->data->dev_private;
723
724         for (i = 0; i < dev->data->nb_rx_queues; i++) {
725                 internal->rx_queue[i].rx_stat.pkts = 0;
726                 internal->rx_queue[i].rx_stat.bytes = 0;
727         }
728
729         for (i = 0; i < dev->data->nb_tx_queues; i++) {
730                 internal->tx_queue[i].tx_stat.pkts = 0;
731                 internal->tx_queue[i].tx_stat.bytes = 0;
732                 internal->tx_queue[i].tx_stat.err_pkts = 0;
733         }
734
735         return 0;
736 }
737
738 static inline void
739 infinite_rx_ring_free(struct rte_ring *pkts)
740 {
741         struct rte_mbuf *bufs;
742
743         while (!rte_ring_dequeue(pkts, (void **)&bufs))
744                 rte_pktmbuf_free(bufs);
745
746         rte_ring_free(pkts);
747 }
748
749 static int
750 eth_dev_close(struct rte_eth_dev *dev)
751 {
752         unsigned int i;
753         struct pmd_internals *internals = dev->data->dev_private;
754
755         PMD_LOG(INFO, "Closing pcap ethdev on NUMA socket %d",
756                         rte_socket_id());
757
758         rte_free(dev->process_private);
759
760         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
761                 return 0;
762
763         /* Device wide flag, but cleanup must be performed per queue. */
764         if (internals->infinite_rx) {
765                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
766                         struct pcap_rx_queue *pcap_q = &internals->rx_queue[i];
767
768                         /*
769                          * 'pcap_q->pkts' can be NULL if 'eth_dev_close()'
770                          * called before 'eth_rx_queue_setup()' has been called
771                          */
772                         if (pcap_q->pkts == NULL)
773                                 continue;
774
775                         infinite_rx_ring_free(pcap_q->pkts);
776                 }
777         }
778
779         if (internals->phy_mac == 0)
780                 /* not dynamically allocated, must not be freed */
781                 dev->data->mac_addrs = NULL;
782
783         return 0;
784 }
785
786 static void
787 eth_queue_release(void *q __rte_unused)
788 {
789 }
790
791 static int
792 eth_link_update(struct rte_eth_dev *dev __rte_unused,
793                 int wait_to_complete __rte_unused)
794 {
795         return 0;
796 }
797
798 static int
799 eth_rx_queue_setup(struct rte_eth_dev *dev,
800                 uint16_t rx_queue_id,
801                 uint16_t nb_rx_desc __rte_unused,
802                 unsigned int socket_id __rte_unused,
803                 const struct rte_eth_rxconf *rx_conf __rte_unused,
804                 struct rte_mempool *mb_pool)
805 {
806         struct pmd_internals *internals = dev->data->dev_private;
807         struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
808
809         pcap_q->mb_pool = mb_pool;
810         pcap_q->port_id = dev->data->port_id;
811         pcap_q->queue_id = rx_queue_id;
812         dev->data->rx_queues[rx_queue_id] = pcap_q;
813
814         if (internals->infinite_rx) {
815                 struct pmd_process_private *pp;
816                 char ring_name[NAME_MAX];
817                 static uint32_t ring_number;
818                 uint64_t pcap_pkt_count = 0;
819                 struct rte_mbuf *bufs[1];
820                 pcap_t **pcap;
821
822                 pp = rte_eth_devices[pcap_q->port_id].process_private;
823                 pcap = &pp->rx_pcap[pcap_q->queue_id];
824
825                 if (unlikely(*pcap == NULL))
826                         return -ENOENT;
827
828                 pcap_pkt_count = count_packets_in_pcap(pcap, pcap_q);
829
830                 snprintf(ring_name, sizeof(ring_name), "PCAP_RING%" PRIu16,
831                                 ring_number);
832
833                 pcap_q->pkts = rte_ring_create(ring_name,
834                                 rte_align64pow2(pcap_pkt_count + 1), 0,
835                                 RING_F_SP_ENQ | RING_F_SC_DEQ);
836                 ring_number++;
837                 if (!pcap_q->pkts)
838                         return -ENOENT;
839
840                 /* Fill ring with packets from PCAP file one by one. */
841                 while (eth_pcap_rx(pcap_q, bufs, 1)) {
842                         /* Check for multiseg mbufs. */
843                         if (bufs[0]->nb_segs != 1) {
844                                 infinite_rx_ring_free(pcap_q->pkts);
845                                 PMD_LOG(ERR,
846                                         "Multiseg mbufs are not supported in infinite_rx mode.");
847                                 return -EINVAL;
848                         }
849
850                         rte_ring_enqueue_bulk(pcap_q->pkts,
851                                         (void * const *)bufs, 1, NULL);
852                 }
853
854                 if (rte_ring_count(pcap_q->pkts) < pcap_pkt_count) {
855                         infinite_rx_ring_free(pcap_q->pkts);
856                         PMD_LOG(ERR,
857                                 "Not enough mbufs to accommodate packets in pcap file. "
858                                 "At least %" PRIu64 " mbufs per queue is required.",
859                                 pcap_pkt_count);
860                         return -EINVAL;
861                 }
862
863                 /*
864                  * Reset the stats for this queue since eth_pcap_rx calls above
865                  * didn't result in the application receiving packets.
866                  */
867                 pcap_q->rx_stat.pkts = 0;
868                 pcap_q->rx_stat.bytes = 0;
869         }
870
871         return 0;
872 }
873
874 static int
875 eth_tx_queue_setup(struct rte_eth_dev *dev,
876                 uint16_t tx_queue_id,
877                 uint16_t nb_tx_desc __rte_unused,
878                 unsigned int socket_id __rte_unused,
879                 const struct rte_eth_txconf *tx_conf __rte_unused)
880 {
881         struct pmd_internals *internals = dev->data->dev_private;
882         struct pcap_tx_queue *pcap_q = &internals->tx_queue[tx_queue_id];
883
884         pcap_q->port_id = dev->data->port_id;
885         pcap_q->queue_id = tx_queue_id;
886         dev->data->tx_queues[tx_queue_id] = pcap_q;
887
888         return 0;
889 }
890
891 static int
892 eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
893 {
894         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
895
896         return 0;
897 }
898
899 static int
900 eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
901 {
902         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
903
904         return 0;
905 }
906
907 static int
908 eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
909 {
910         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
911
912         return 0;
913 }
914
915 static int
916 eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
917 {
918         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
919
920         return 0;
921 }
922
923 static const struct eth_dev_ops ops = {
924         .dev_start = eth_dev_start,
925         .dev_stop = eth_dev_stop,
926         .dev_close = eth_dev_close,
927         .dev_configure = eth_dev_configure,
928         .dev_infos_get = eth_dev_info,
929         .rx_queue_setup = eth_rx_queue_setup,
930         .tx_queue_setup = eth_tx_queue_setup,
931         .rx_queue_start = eth_rx_queue_start,
932         .tx_queue_start = eth_tx_queue_start,
933         .rx_queue_stop = eth_rx_queue_stop,
934         .tx_queue_stop = eth_tx_queue_stop,
935         .rx_queue_release = eth_queue_release,
936         .tx_queue_release = eth_queue_release,
937         .link_update = eth_link_update,
938         .stats_get = eth_stats_get,
939         .stats_reset = eth_stats_reset,
940 };
941
942 static int
943 add_queue(struct pmd_devargs *pmd, const char *name, const char *type,
944                 pcap_t *pcap, pcap_dumper_t *dumper)
945 {
946         if (pmd->num_of_queue >= RTE_PMD_PCAP_MAX_QUEUES)
947                 return -1;
948         if (pcap)
949                 pmd->queue[pmd->num_of_queue].pcap = pcap;
950         if (dumper)
951                 pmd->queue[pmd->num_of_queue].dumper = dumper;
952         pmd->queue[pmd->num_of_queue].name = name;
953         pmd->queue[pmd->num_of_queue].type = type;
954         pmd->num_of_queue++;
955         return 0;
956 }
957
958 /*
959  * Function handler that opens the pcap file for reading a stores a
960  * reference of it for use it later on.
961  */
962 static int
963 open_rx_pcap(const char *key, const char *value, void *extra_args)
964 {
965         const char *pcap_filename = value;
966         struct pmd_devargs *rx = extra_args;
967         pcap_t *pcap = NULL;
968
969         if (open_single_rx_pcap(pcap_filename, &pcap) < 0)
970                 return -1;
971
972         if (add_queue(rx, pcap_filename, key, pcap, NULL) < 0) {
973                 pcap_close(pcap);
974                 return -1;
975         }
976
977         return 0;
978 }
979
980 /*
981  * Opens a pcap file for writing and stores a reference to it
982  * for use it later on.
983  */
984 static int
985 open_tx_pcap(const char *key, const char *value, void *extra_args)
986 {
987         const char *pcap_filename = value;
988         struct pmd_devargs *dumpers = extra_args;
989         pcap_dumper_t *dumper;
990
991         if (open_single_tx_pcap(pcap_filename, &dumper) < 0)
992                 return -1;
993
994         if (add_queue(dumpers, pcap_filename, key, NULL, dumper) < 0) {
995                 pcap_dump_close(dumper);
996                 return -1;
997         }
998
999         return 0;
1000 }
1001
1002 /*
1003  * Opens an interface for reading and writing
1004  */
1005 static inline int
1006 open_rx_tx_iface(const char *key, const char *value, void *extra_args)
1007 {
1008         const char *iface = value;
1009         struct pmd_devargs *tx = extra_args;
1010         pcap_t *pcap = NULL;
1011
1012         if (open_single_iface(iface, &pcap) < 0)
1013                 return -1;
1014
1015         tx->queue[0].pcap = pcap;
1016         tx->queue[0].name = iface;
1017         tx->queue[0].type = key;
1018
1019         return 0;
1020 }
1021
1022 static inline int
1023 set_iface_direction(const char *iface, pcap_t *pcap,
1024                 pcap_direction_t direction)
1025 {
1026         const char *direction_str = (direction == PCAP_D_IN) ? "IN" : "OUT";
1027         if (pcap_setdirection(pcap, direction) < 0) {
1028                 PMD_LOG(ERR, "Setting %s pcap direction %s failed - %s\n",
1029                                 iface, direction_str, pcap_geterr(pcap));
1030                 return -1;
1031         }
1032         PMD_LOG(INFO, "Setting %s pcap direction %s\n",
1033                         iface, direction_str);
1034         return 0;
1035 }
1036
1037 static inline int
1038 open_iface(const char *key, const char *value, void *extra_args)
1039 {
1040         const char *iface = value;
1041         struct pmd_devargs *pmd = extra_args;
1042         pcap_t *pcap = NULL;
1043
1044         if (open_single_iface(iface, &pcap) < 0)
1045                 return -1;
1046         if (add_queue(pmd, iface, key, pcap, NULL) < 0) {
1047                 pcap_close(pcap);
1048                 return -1;
1049         }
1050
1051         return 0;
1052 }
1053
1054 /*
1055  * Opens a NIC for reading packets from it
1056  */
1057 static inline int
1058 open_rx_iface(const char *key, const char *value, void *extra_args)
1059 {
1060         int ret = open_iface(key, value, extra_args);
1061         if (ret < 0)
1062                 return ret;
1063         if (strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0) {
1064                 struct pmd_devargs *pmd = extra_args;
1065                 unsigned int qid = pmd->num_of_queue - 1;
1066
1067                 set_iface_direction(pmd->queue[qid].name,
1068                                 pmd->queue[qid].pcap,
1069                                 PCAP_D_IN);
1070         }
1071
1072         return 0;
1073 }
1074
1075 static inline int
1076 rx_iface_args_process(const char *key, const char *value, void *extra_args)
1077 {
1078         if (strcmp(key, ETH_PCAP_RX_IFACE_ARG) == 0 ||
1079                         strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0)
1080                 return open_rx_iface(key, value, extra_args);
1081
1082         return 0;
1083 }
1084
1085 /*
1086  * Opens a NIC for writing packets to it
1087  */
1088 static int
1089 open_tx_iface(const char *key, const char *value, void *extra_args)
1090 {
1091         return open_iface(key, value, extra_args);
1092 }
1093
1094 static int
1095 select_phy_mac(const char *key __rte_unused, const char *value,
1096                 void *extra_args)
1097 {
1098         if (extra_args) {
1099                 const int phy_mac = atoi(value);
1100                 int *enable_phy_mac = extra_args;
1101
1102                 if (phy_mac)
1103                         *enable_phy_mac = 1;
1104         }
1105         return 0;
1106 }
1107
1108 static int
1109 get_infinite_rx_arg(const char *key __rte_unused,
1110                 const char *value, void *extra_args)
1111 {
1112         if (extra_args) {
1113                 const int infinite_rx = atoi(value);
1114                 int *enable_infinite_rx = extra_args;
1115
1116                 if (infinite_rx > 0)
1117                         *enable_infinite_rx = 1;
1118         }
1119         return 0;
1120 }
1121
1122 static int
1123 pmd_init_internals(struct rte_vdev_device *vdev,
1124                 const unsigned int nb_rx_queues,
1125                 const unsigned int nb_tx_queues,
1126                 struct pmd_internals **internals,
1127                 struct rte_eth_dev **eth_dev)
1128 {
1129         struct rte_eth_dev_data *data;
1130         struct pmd_process_private *pp;
1131         unsigned int numa_node = vdev->device.numa_node;
1132
1133         PMD_LOG(INFO, "Creating pcap-backed ethdev on numa socket %d",
1134                 numa_node);
1135
1136         pp = (struct pmd_process_private *)
1137                 rte_zmalloc(NULL, sizeof(struct pmd_process_private),
1138                                 RTE_CACHE_LINE_SIZE);
1139
1140         if (pp == NULL) {
1141                 PMD_LOG(ERR,
1142                         "Failed to allocate memory for process private");
1143                 return -1;
1144         }
1145
1146         /* reserve an ethdev entry */
1147         *eth_dev = rte_eth_vdev_allocate(vdev, sizeof(**internals));
1148         if (!(*eth_dev)) {
1149                 rte_free(pp);
1150                 return -1;
1151         }
1152         (*eth_dev)->process_private = pp;
1153         /* now put it all together
1154          * - store queue data in internals,
1155          * - store numa_node info in eth_dev
1156          * - point eth_dev_data to internals
1157          * - and point eth_dev structure to new eth_dev_data structure
1158          */
1159         *internals = (*eth_dev)->data->dev_private;
1160         /*
1161          * Interface MAC = 02:70:63:61:70:<iface_idx>
1162          * derived from: 'locally administered':'p':'c':'a':'p':'iface_idx'
1163          * where the middle 4 characters are converted to hex.
1164          */
1165         (*internals)->eth_addr = (struct rte_ether_addr) {
1166                 .addr_bytes = { 0x02, 0x70, 0x63, 0x61, 0x70, iface_idx++ }
1167         };
1168         (*internals)->phy_mac = 0;
1169         data = (*eth_dev)->data;
1170         data->nb_rx_queues = (uint16_t)nb_rx_queues;
1171         data->nb_tx_queues = (uint16_t)nb_tx_queues;
1172         data->dev_link = pmd_link;
1173         data->mac_addrs = &(*internals)->eth_addr;
1174         data->promiscuous = 1;
1175         data->all_multicast = 1;
1176         data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1177
1178         /*
1179          * NOTE: we'll replace the data element, of originally allocated
1180          * eth_dev so the rings are local per-process
1181          */
1182         (*eth_dev)->dev_ops = &ops;
1183
1184         strlcpy((*internals)->devargs, rte_vdev_device_args(vdev),
1185                         ETH_PCAP_ARG_MAXLEN);
1186
1187         return 0;
1188 }
1189
1190 static int
1191 eth_pcap_update_mac(const char *if_name, struct rte_eth_dev *eth_dev,
1192                 const unsigned int numa_node)
1193 {
1194 #if defined(RTE_EXEC_ENV_LINUX)
1195         void *mac_addrs;
1196         struct ifreq ifr;
1197         int if_fd = socket(AF_INET, SOCK_DGRAM, 0);
1198
1199         if (if_fd == -1)
1200                 return -1;
1201
1202         rte_strscpy(ifr.ifr_name, if_name, sizeof(ifr.ifr_name));
1203         if (ioctl(if_fd, SIOCGIFHWADDR, &ifr)) {
1204                 close(if_fd);
1205                 return -1;
1206         }
1207
1208         mac_addrs = rte_zmalloc_socket(NULL, RTE_ETHER_ADDR_LEN, 0, numa_node);
1209         if (!mac_addrs) {
1210                 close(if_fd);
1211                 return -1;
1212         }
1213
1214         PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
1215         eth_dev->data->mac_addrs = mac_addrs;
1216         rte_memcpy(eth_dev->data->mac_addrs[0].addr_bytes,
1217                         ifr.ifr_hwaddr.sa_data, RTE_ETHER_ADDR_LEN);
1218
1219         close(if_fd);
1220
1221         return 0;
1222
1223 #elif defined(RTE_EXEC_ENV_FREEBSD)
1224         void *mac_addrs;
1225         struct if_msghdr *ifm;
1226         struct sockaddr_dl *sdl;
1227         int mib[6];
1228         size_t len = 0;
1229         char *buf;
1230
1231         mib[0] = CTL_NET;
1232         mib[1] = AF_ROUTE;
1233         mib[2] = 0;
1234         mib[3] = AF_LINK;
1235         mib[4] = NET_RT_IFLIST;
1236         mib[5] = if_nametoindex(if_name);
1237
1238         if (sysctl(mib, 6, NULL, &len, NULL, 0) < 0)
1239                 return -1;
1240
1241         if (len == 0)
1242                 return -1;
1243
1244         buf = rte_malloc(NULL, len, 0);
1245         if (!buf)
1246                 return -1;
1247
1248         if (sysctl(mib, 6, buf, &len, NULL, 0) < 0) {
1249                 rte_free(buf);
1250                 return -1;
1251         }
1252         ifm = (struct if_msghdr *)buf;
1253         sdl = (struct sockaddr_dl *)(ifm + 1);
1254
1255         mac_addrs = rte_zmalloc_socket(NULL, RTE_ETHER_ADDR_LEN, 0, numa_node);
1256         if (!mac_addrs) {
1257                 rte_free(buf);
1258                 return -1;
1259         }
1260
1261         PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
1262         eth_dev->data->mac_addrs = mac_addrs;
1263         rte_memcpy(eth_dev->data->mac_addrs[0].addr_bytes,
1264                         LLADDR(sdl), RTE_ETHER_ADDR_LEN);
1265
1266         rte_free(buf);
1267
1268         return 0;
1269 #else
1270         return -1;
1271 #endif
1272 }
1273
1274 static int
1275 eth_from_pcaps_common(struct rte_vdev_device *vdev,
1276                 struct pmd_devargs_all *devargs_all,
1277                 struct pmd_internals **internals, struct rte_eth_dev **eth_dev)
1278 {
1279         struct pmd_process_private *pp;
1280         struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1281         struct pmd_devargs *tx_queues = &devargs_all->tx_queues;
1282         const unsigned int nb_rx_queues = rx_queues->num_of_queue;
1283         const unsigned int nb_tx_queues = tx_queues->num_of_queue;
1284         unsigned int i;
1285
1286         if (pmd_init_internals(vdev, nb_rx_queues, nb_tx_queues, internals,
1287                         eth_dev) < 0)
1288                 return -1;
1289
1290         pp = (*eth_dev)->process_private;
1291         for (i = 0; i < nb_rx_queues; i++) {
1292                 struct pcap_rx_queue *rx = &(*internals)->rx_queue[i];
1293                 struct devargs_queue *queue = &rx_queues->queue[i];
1294
1295                 pp->rx_pcap[i] = queue->pcap;
1296                 strlcpy(rx->name, queue->name, sizeof(rx->name));
1297                 strlcpy(rx->type, queue->type, sizeof(rx->type));
1298         }
1299
1300         for (i = 0; i < nb_tx_queues; i++) {
1301                 struct pcap_tx_queue *tx = &(*internals)->tx_queue[i];
1302                 struct devargs_queue *queue = &tx_queues->queue[i];
1303
1304                 pp->tx_dumper[i] = queue->dumper;
1305                 pp->tx_pcap[i] = queue->pcap;
1306                 strlcpy(tx->name, queue->name, sizeof(tx->name));
1307                 strlcpy(tx->type, queue->type, sizeof(tx->type));
1308         }
1309
1310         return 0;
1311 }
1312
1313 static int
1314 eth_from_pcaps(struct rte_vdev_device *vdev,
1315                 struct pmd_devargs_all *devargs_all)
1316 {
1317         struct pmd_internals *internals = NULL;
1318         struct rte_eth_dev *eth_dev = NULL;
1319         struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1320         int single_iface = devargs_all->single_iface;
1321         unsigned int infinite_rx = devargs_all->infinite_rx;
1322         int ret;
1323
1324         ret = eth_from_pcaps_common(vdev, devargs_all, &internals, &eth_dev);
1325
1326         if (ret < 0)
1327                 return ret;
1328
1329         /* store weather we are using a single interface for rx/tx or not */
1330         internals->single_iface = single_iface;
1331
1332         if (single_iface) {
1333                 internals->if_index = if_nametoindex(rx_queues->queue[0].name);
1334
1335                 /* phy_mac arg is applied only only if "iface" devarg is provided */
1336                 if (rx_queues->phy_mac) {
1337                         if (eth_pcap_update_mac(rx_queues->queue[0].name,
1338                                         eth_dev, vdev->device.numa_node) == 0)
1339                                 internals->phy_mac = 1;
1340                 }
1341         }
1342
1343         internals->infinite_rx = infinite_rx;
1344         /* Assign rx ops. */
1345         if (infinite_rx)
1346                 eth_dev->rx_pkt_burst = eth_pcap_rx_infinite;
1347         else if (devargs_all->is_rx_pcap || devargs_all->is_rx_iface ||
1348                         single_iface)
1349                 eth_dev->rx_pkt_burst = eth_pcap_rx;
1350         else
1351                 eth_dev->rx_pkt_burst = eth_null_rx;
1352
1353         /* Assign tx ops. */
1354         if (devargs_all->is_tx_pcap)
1355                 eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1356         else if (devargs_all->is_tx_iface || single_iface)
1357                 eth_dev->tx_pkt_burst = eth_pcap_tx;
1358         else
1359                 eth_dev->tx_pkt_burst = eth_tx_drop;
1360
1361         rte_eth_dev_probing_finish(eth_dev);
1362         return 0;
1363 }
1364
1365 static int
1366 pmd_pcap_probe(struct rte_vdev_device *dev)
1367 {
1368         const char *name;
1369         struct rte_kvargs *kvlist;
1370         struct pmd_devargs pcaps = {0};
1371         struct pmd_devargs dumpers = {0};
1372         struct rte_eth_dev *eth_dev =  NULL;
1373         struct pmd_internals *internal;
1374         int ret = 0;
1375
1376         struct pmd_devargs_all devargs_all = {
1377                 .single_iface = 0,
1378                 .is_tx_pcap = 0,
1379                 .is_tx_iface = 0,
1380                 .infinite_rx = 0,
1381         };
1382
1383         name = rte_vdev_device_name(dev);
1384         PMD_LOG(INFO, "Initializing pmd_pcap for %s", name);
1385
1386         gettimeofday(&start_time, NULL);
1387         start_cycles = rte_get_timer_cycles();
1388         hz = rte_get_timer_hz();
1389
1390         ret = rte_mbuf_dyn_rx_timestamp_register(&timestamp_dynfield_offset,
1391                         &timestamp_rx_dynflag);
1392         if (ret != 0) {
1393                 PMD_LOG(ERR, "Failed to register Rx timestamp field/flag");
1394                 return -1;
1395         }
1396
1397         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1398                 eth_dev = rte_eth_dev_attach_secondary(name);
1399                 if (!eth_dev) {
1400                         PMD_LOG(ERR, "Failed to probe %s", name);
1401                         return -1;
1402                 }
1403
1404                 internal = eth_dev->data->dev_private;
1405
1406                 kvlist = rte_kvargs_parse(internal->devargs, valid_arguments);
1407                 if (kvlist == NULL)
1408                         return -1;
1409         } else {
1410                 kvlist = rte_kvargs_parse(rte_vdev_device_args(dev),
1411                                 valid_arguments);
1412                 if (kvlist == NULL)
1413                         return -1;
1414         }
1415
1416         /*
1417          * If iface argument is passed we open the NICs and use them for
1418          * reading / writing
1419          */
1420         if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
1421
1422                 ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
1423                                 &open_rx_tx_iface, &pcaps);
1424                 if (ret < 0)
1425                         goto free_kvlist;
1426
1427                 dumpers.queue[0] = pcaps.queue[0];
1428
1429                 ret = rte_kvargs_process(kvlist, ETH_PCAP_PHY_MAC_ARG,
1430                                 &select_phy_mac, &pcaps.phy_mac);
1431                 if (ret < 0)
1432                         goto free_kvlist;
1433
1434                 dumpers.phy_mac = pcaps.phy_mac;
1435
1436                 devargs_all.single_iface = 1;
1437                 pcaps.num_of_queue = 1;
1438                 dumpers.num_of_queue = 1;
1439
1440                 goto create_eth;
1441         }
1442
1443         /*
1444          * We check whether we want to open a RX stream from a real NIC, a
1445          * pcap file or open a dummy RX stream
1446          */
1447         devargs_all.is_rx_pcap =
1448                 rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG) ? 1 : 0;
1449         devargs_all.is_rx_iface =
1450                 (rte_kvargs_count(kvlist, ETH_PCAP_RX_IFACE_ARG) +
1451                  rte_kvargs_count(kvlist, ETH_PCAP_RX_IFACE_IN_ARG)) ? 1 : 0;
1452         pcaps.num_of_queue = 0;
1453
1454         devargs_all.is_tx_pcap =
1455                 rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) ? 1 : 0;
1456         devargs_all.is_tx_iface =
1457                 rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG) ? 1 : 0;
1458         dumpers.num_of_queue = 0;
1459
1460         if (devargs_all.is_rx_pcap) {
1461                 /*
1462                  * We check whether we want to infinitely rx the pcap file.
1463                  */
1464                 unsigned int infinite_rx_arg_cnt = rte_kvargs_count(kvlist,
1465                                 ETH_PCAP_INFINITE_RX_ARG);
1466
1467                 if (infinite_rx_arg_cnt == 1) {
1468                         ret = rte_kvargs_process(kvlist,
1469                                         ETH_PCAP_INFINITE_RX_ARG,
1470                                         &get_infinite_rx_arg,
1471                                         &devargs_all.infinite_rx);
1472                         if (ret < 0)
1473                                 goto free_kvlist;
1474                         PMD_LOG(INFO, "infinite_rx has been %s for %s",
1475                                         devargs_all.infinite_rx ? "enabled" : "disabled",
1476                                         name);
1477
1478                 } else if (infinite_rx_arg_cnt > 1) {
1479                         PMD_LOG(WARNING, "infinite_rx has not been enabled since the "
1480                                         "argument has been provided more than once "
1481                                         "for %s", name);
1482                 }
1483
1484                 ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
1485                                 &open_rx_pcap, &pcaps);
1486         } else if (devargs_all.is_rx_iface) {
1487                 ret = rte_kvargs_process(kvlist, NULL,
1488                                 &rx_iface_args_process, &pcaps);
1489         } else if (devargs_all.is_tx_iface || devargs_all.is_tx_pcap) {
1490                 unsigned int i;
1491
1492                 /* Count number of tx queue args passed before dummy rx queue
1493                  * creation so a dummy rx queue can be created for each tx queue
1494                  */
1495                 unsigned int num_tx_queues =
1496                         (rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) +
1497                         rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG));
1498
1499                 PMD_LOG(INFO, "Creating null rx queue since no rx queues were provided.");
1500
1501                 /* Creating a dummy rx queue for each tx queue passed */
1502                 for (i = 0; i < num_tx_queues; i++)
1503                         ret = add_queue(&pcaps, "dummy_rx", "rx_null", NULL,
1504                                         NULL);
1505         } else {
1506                 PMD_LOG(ERR, "Error - No rx or tx queues provided");
1507                 ret = -ENOENT;
1508         }
1509         if (ret < 0)
1510                 goto free_kvlist;
1511
1512         /*
1513          * We check whether we want to open a TX stream to a real NIC,
1514          * a pcap file, or drop packets on tx
1515          */
1516         if (devargs_all.is_tx_pcap) {
1517                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
1518                                 &open_tx_pcap, &dumpers);
1519         } else if (devargs_all.is_tx_iface) {
1520                 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
1521                                 &open_tx_iface, &dumpers);
1522         } else {
1523                 unsigned int i;
1524
1525                 PMD_LOG(INFO, "Dropping packets on tx since no tx queues were provided.");
1526
1527                 /* Add 1 dummy queue per rxq which counts and drops packets. */
1528                 for (i = 0; i < pcaps.num_of_queue; i++)
1529                         ret = add_queue(&dumpers, "dummy_tx", "tx_drop", NULL,
1530                                         NULL);
1531         }
1532
1533         if (ret < 0)
1534                 goto free_kvlist;
1535
1536 create_eth:
1537         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1538                 struct pmd_process_private *pp;
1539                 unsigned int i;
1540
1541                 internal = eth_dev->data->dev_private;
1542                         pp = (struct pmd_process_private *)
1543                                 rte_zmalloc(NULL,
1544                                         sizeof(struct pmd_process_private),
1545                                         RTE_CACHE_LINE_SIZE);
1546
1547                 if (pp == NULL) {
1548                         PMD_LOG(ERR,
1549                                 "Failed to allocate memory for process private");
1550                         ret = -1;
1551                         goto free_kvlist;
1552                 }
1553
1554                 eth_dev->dev_ops = &ops;
1555                 eth_dev->device = &dev->device;
1556
1557                 /* setup process private */
1558                 for (i = 0; i < pcaps.num_of_queue; i++)
1559                         pp->rx_pcap[i] = pcaps.queue[i].pcap;
1560
1561                 for (i = 0; i < dumpers.num_of_queue; i++) {
1562                         pp->tx_dumper[i] = dumpers.queue[i].dumper;
1563                         pp->tx_pcap[i] = dumpers.queue[i].pcap;
1564                 }
1565
1566                 eth_dev->process_private = pp;
1567                 eth_dev->rx_pkt_burst = eth_pcap_rx;
1568                 if (devargs_all.is_tx_pcap)
1569                         eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1570                 else
1571                         eth_dev->tx_pkt_burst = eth_pcap_tx;
1572
1573                 rte_eth_dev_probing_finish(eth_dev);
1574                 goto free_kvlist;
1575         }
1576
1577         devargs_all.rx_queues = pcaps;
1578         devargs_all.tx_queues = dumpers;
1579
1580         ret = eth_from_pcaps(dev, &devargs_all);
1581
1582 free_kvlist:
1583         rte_kvargs_free(kvlist);
1584
1585         return ret;
1586 }
1587
1588 static int
1589 pmd_pcap_remove(struct rte_vdev_device *dev)
1590 {
1591         struct rte_eth_dev *eth_dev = NULL;
1592
1593         if (!dev)
1594                 return -1;
1595
1596         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
1597         if (eth_dev == NULL)
1598                 return 0; /* port already released */
1599
1600         eth_dev_close(eth_dev);
1601         rte_eth_dev_release_port(eth_dev);
1602
1603         return 0;
1604 }
1605
1606 static struct rte_vdev_driver pmd_pcap_drv = {
1607         .probe = pmd_pcap_probe,
1608         .remove = pmd_pcap_remove,
1609 };
1610
1611 RTE_PMD_REGISTER_VDEV(net_pcap, pmd_pcap_drv);
1612 RTE_PMD_REGISTER_ALIAS(net_pcap, eth_pcap);
1613 RTE_PMD_REGISTER_PARAM_STRING(net_pcap,
1614         ETH_PCAP_RX_PCAP_ARG "=<string> "
1615         ETH_PCAP_TX_PCAP_ARG "=<string> "
1616         ETH_PCAP_RX_IFACE_ARG "=<ifc> "
1617         ETH_PCAP_RX_IFACE_IN_ARG "=<ifc> "
1618         ETH_PCAP_TX_IFACE_ARG "=<ifc> "
1619         ETH_PCAP_IFACE_ARG "=<ifc> "
1620         ETH_PCAP_PHY_MAC_ARG "=<int>"
1621         ETH_PCAP_INFINITE_RX_ARG "=<0|1>");