e48a7bc0d2eee0b8a6c432f092d8f65ce3da91c7
[dpdk.git] / drivers / net / qede / base / ecore_int.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6
7 #include <rte_string_fns.h>
8
9 #include "bcm_osal.h"
10 #include "ecore.h"
11 #include "ecore_spq.h"
12 #include "ecore_gtt_reg_addr.h"
13 #include "ecore_init_ops.h"
14 #include "ecore_rt_defs.h"
15 #include "ecore_int.h"
16 #include "reg_addr.h"
17 #include "ecore_hw.h"
18 #include "ecore_sriov.h"
19 #include "ecore_vf.h"
20 #include "ecore_hw_defs.h"
21 #include "ecore_hsi_common.h"
22 #include "ecore_mcp.h"
23
24 struct ecore_pi_info {
25         ecore_int_comp_cb_t comp_cb;
26         void *cookie;           /* Will be sent to the compl cb function */
27 };
28
29 struct ecore_sb_sp_info {
30         struct ecore_sb_info sb_info;
31         /* per protocol index data */
32         struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
33 };
34
35 enum ecore_attention_type {
36         ECORE_ATTN_TYPE_ATTN,
37         ECORE_ATTN_TYPE_PARITY,
38 };
39
40 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
41         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
42
43 struct aeu_invert_reg_bit {
44         char bit_name[30];
45
46 #define ATTENTION_PARITY                (1 << 0)
47
48 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
49 #define ATTENTION_LENGTH_SHIFT          (4)
50 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
51                                          ATTENTION_LENGTH_SHIFT)
52 #define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
53 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
54 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
55                                          ATTENTION_PARITY)
56
57 /* Multiple bits start with this offset */
58 #define ATTENTION_OFFSET_MASK           (0x000ff000)
59 #define ATTENTION_OFFSET_SHIFT          (12)
60
61 #define ATTENTION_BB_MASK               (0x00700000)
62 #define ATTENTION_BB_SHIFT              (20)
63 #define ATTENTION_BB(value)             ((value) << ATTENTION_BB_SHIFT)
64 #define ATTENTION_BB_DIFFERENT          (1 << 23)
65
66 #define ATTENTION_CLEAR_ENABLE          (1 << 28)
67         unsigned int flags;
68
69         /* Callback to call if attention will be triggered */
70         enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
71
72         enum block_id block_index;
73 };
74
75 struct aeu_invert_reg {
76         struct aeu_invert_reg_bit bits[32];
77 };
78
79 #define MAX_ATTN_GRPS           (8)
80 #define NUM_ATTN_REGS           (9)
81
82 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
83 {
84         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
85
86         DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
87         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
88
89         return ECORE_SUCCESS;
90 }
91
92 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK         (0x3c000)
93 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT        (14)
94 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK         (0x03fc0)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT        (6)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK      (0x00020)
97 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT     (5)
98 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK     (0x0001e)
99 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT    (1)
100 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK      (0x1)
101 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT     (0)
102 #define ECORE_PSWHST_ATTENTION_VF_DISABLED              (0x1)
103 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS         (0x1)
104 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK         (0x1)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT        (0)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK     (0x1e)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT    (1)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK   (0x20)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT  (5)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK      (0x3fc0)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT     (6)
112 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK      (0x3c000)
113 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT     (14)
114 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK    (0x3fc0000)
115 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT   (18)
116 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
117 {
118         u32 tmp =
119             ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
120                      PSWHST_REG_VF_DISABLED_ERROR_VALID);
121
122         /* Disabled VF access */
123         if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
124                 u32 addr, data;
125
126                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
127                                 PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
128                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129                                 PSWHST_REG_VF_DISABLED_ERROR_DATA);
130                 DP_INFO(p_hwfn->p_dev,
131                         "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
132                         " Write [0x%02x] Addr [0x%08x]\n",
133                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
134                              >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
135                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
136                              >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
137                         (u8)((data &
138                               ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
139                               ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
140                         (u8)((data &
141                               ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
142                               ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
143                         (u8)((data &
144                               ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
145                               ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
146                         addr);
147         }
148
149         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150                        PSWHST_REG_INCORRECT_ACCESS_VALID);
151         if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
152                 u32 addr, data, length;
153
154                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
155                                 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
156                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
157                                 PSWHST_REG_INCORRECT_ACCESS_DATA);
158                 length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
159                                   PSWHST_REG_INCORRECT_ACCESS_LENGTH);
160
161                 DP_INFO(p_hwfn->p_dev,
162                         "Incorrect access to %08x of length %08x - PF [%02x]"
163                         " VF [%04x] [valid %02x] client [%02x] write [%02x]"
164                         " Byte-Enable [%04x] [%08x]\n",
165                         addr, length,
166                         (u8)((data &
167                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
168                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
169                         (u8)((data &
170                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
171                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
172                         (u8)((data &
173                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
174                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
175                         (u8)((data &
176                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
177                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
178                         (u8)((data &
179                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
180                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
181                         (u8)((data &
182                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
183                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
184                         data);
185         }
186
187         /* TODO - We know 'some' of these are legal due to virtualization,
188          * but is it true for all of them?
189          */
190         return ECORE_SUCCESS;
191 }
192
193 #define ECORE_GRC_ATTENTION_VALID_BIT           (1 << 0)
194 #define ECORE_GRC_ATTENTION_ADDRESS_MASK        (0x7fffff << 0)
195 #define ECORE_GRC_ATTENTION_RDWR_BIT            (1 << 23)
196 #define ECORE_GRC_ATTENTION_MASTER_MASK         (0xf << 24)
197 #define ECORE_GRC_ATTENTION_MASTER_SHIFT        (24)
198 #define ECORE_GRC_ATTENTION_PF_MASK             (0xf)
199 #define ECORE_GRC_ATTENTION_VF_MASK             (0xff << 4)
200 #define ECORE_GRC_ATTENTION_VF_SHIFT            (4)
201 #define ECORE_GRC_ATTENTION_PRIV_MASK           (0x3 << 14)
202 #define ECORE_GRC_ATTENTION_PRIV_SHIFT          (14)
203 #define ECORE_GRC_ATTENTION_PRIV_VF             (0)
204 static const char *grc_timeout_attn_master_to_str(u8 master)
205 {
206         switch (master) {
207         case 1:
208                 return "PXP";
209         case 2:
210                 return "MCP";
211         case 3:
212                 return "MSDM";
213         case 4:
214                 return "PSDM";
215         case 5:
216                 return "YSDM";
217         case 6:
218                 return "USDM";
219         case 7:
220                 return "TSDM";
221         case 8:
222                 return "XSDM";
223         case 9:
224                 return "DBU";
225         case 10:
226                 return "DMAE";
227         default:
228                 return "Unknown";
229         }
230 }
231
232 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
233 {
234         enum _ecore_status_t rc = ECORE_SUCCESS;
235         u32 tmp, tmp2;
236
237         /* We've already cleared the timeout interrupt register, so we learn
238          * of interrupts via the validity register.
239          * Any attention which is not for a timeout event is treated as fatal.
240          */
241         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
242                        GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
243         if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT)) {
244                 rc = ECORE_INVAL;
245                 goto out;
246         }
247
248         /* Read the GRC timeout information */
249         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
250                        GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
251         tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
252                         GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
253
254         DP_NOTICE(p_hwfn->p_dev, false,
255                   "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
256                   tmp2, tmp,
257                   (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
258                                                        : "Read from",
259                   (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
260                   grc_timeout_attn_master_to_str(
261                         (tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
262                          ECORE_GRC_ATTENTION_MASTER_SHIFT),
263                   (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
264                   (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
265                   ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
266                   ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
267                   (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
268                   ECORE_GRC_ATTENTION_VF_SHIFT);
269
270         /* Clean the validity bit */
271         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
272                  GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
273 out:
274         return rc;
275 }
276
277 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
278 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
279 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
280 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
281 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
282 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
283 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
284 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
285 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME      (1 << 22)
286 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
287 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
288 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
289 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
290
291 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
292                                                    struct ecore_ptt *p_ptt,
293                                                    bool is_hw_init)
294 {
295         u32 tmp;
296         char str[512] = {0};
297
298         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
299         if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
300                 u32 addr_lo, addr_hi, details;
301
302                 addr_lo = ecore_rd(p_hwfn, p_ptt,
303                                    PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
304                 addr_hi = ecore_rd(p_hwfn, p_ptt,
305                                    PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
306                 details = ecore_rd(p_hwfn, p_ptt,
307                                    PGLUE_B_REG_TX_ERR_WR_DETAILS);
308                 OSAL_SNPRINTF(str, 512,
309                          "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
310                           addr_hi, addr_lo, details,
311                           (u8)((details &
312                                 ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
313                                ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
314                           (u8)((details &
315                                 ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
316                                ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
317                           (u8)((details &
318                                ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
319                           tmp,
320                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
321                                 1 : 0),
322                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
323                                 1 : 0),
324                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
325                                 1 : 0));
326                 if (is_hw_init)
327                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "%s", str);
328                 else
329                         DP_NOTICE(p_hwfn, false, "%s", str);
330         }
331
332         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
333         if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
334                 u32 addr_lo, addr_hi, details;
335
336                 addr_lo = ecore_rd(p_hwfn, p_ptt,
337                                    PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
338                 addr_hi = ecore_rd(p_hwfn, p_ptt,
339                                    PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
340                 details = ecore_rd(p_hwfn, p_ptt,
341                                    PGLUE_B_REG_TX_ERR_RD_DETAILS);
342
343                 DP_NOTICE(p_hwfn, false,
344                           "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
345                           addr_hi, addr_lo, details,
346                           (u8)((details &
347                                 ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
348                                ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
349                           (u8)((details &
350                                 ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
351                                ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
352                           (u8)((details &
353                                ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
354                           tmp,
355                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
356                                 1 : 0),
357                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
358                                 1 : 0),
359                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
360                                 1 : 0));
361         }
362
363         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
364         if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
365                 DP_NOTICE(p_hwfn, false, "ICPL erorr - %08x\n", tmp);
366
367         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
368         if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
369                 u32 addr_hi, addr_lo;
370
371                 addr_lo = ecore_rd(p_hwfn, p_ptt,
372                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
373                 addr_hi = ecore_rd(p_hwfn, p_ptt,
374                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
375
376                 DP_NOTICE(p_hwfn, false,
377                           "ICPL erorr - %08x [Address %08x:%08x]\n",
378                           tmp, addr_hi, addr_lo);
379         }
380
381         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
382         if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
383                 u32 addr_hi, addr_lo, details;
384
385                 addr_lo = ecore_rd(p_hwfn, p_ptt,
386                                    PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
387                 addr_hi = ecore_rd(p_hwfn, p_ptt,
388                                    PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
389                 details = ecore_rd(p_hwfn, p_ptt,
390                                    PGLUE_B_REG_VF_ILT_ERR_DETAILS);
391
392                 DP_NOTICE(p_hwfn, false,
393                           "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
394                           details, tmp, addr_hi, addr_lo);
395         }
396
397         /* Clear the indications */
398         ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
399
400         return ECORE_SUCCESS;
401 }
402
403 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
404 {
405         return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
406 }
407
408 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
409 {
410         DP_NOTICE(p_hwfn, false, "FW assertion!\n");
411
412         ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
413
414         return ECORE_INVAL;
415 }
416
417 static enum _ecore_status_t
418 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
419 {
420         DP_INFO(p_hwfn, "General attention 35!\n");
421
422         return ECORE_SUCCESS;
423 }
424
425 #define ECORE_DORQ_ATTENTION_REASON_MASK        (0xfffff)
426 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK        (0xffff)
427 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT       (0x0)
428 #define ECORE_DORQ_ATTENTION_SIZE_MASK          (0x7f)
429 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT         (16)
430
431 #define ECORE_DB_REC_COUNT                      1000
432 #define ECORE_DB_REC_INTERVAL                   100
433
434 static enum _ecore_status_t ecore_db_rec_flush_queue(struct ecore_hwfn *p_hwfn,
435                                                      struct ecore_ptt *p_ptt)
436 {
437         u32 count = ECORE_DB_REC_COUNT;
438         u32 usage = 1;
439
440         /* wait for usage to zero or count to run out. This is necessary since
441          * EDPM doorbell transactions can take multiple 64b cycles, and as such
442          * can "split" over the pci. Possibly, the doorbell drop can happen with
443          * half an EDPM in the queue and other half dropped. Another EDPM
444          * doorbell to the same address (from doorbell recovery mechanism or
445          * from the doorbelling entity) could have first half dropped and second
446          * half interperted as continuation of the first. To prevent such
447          * malformed doorbells from reaching the device, flush the queue before
448          * releaseing the overflow sticky indication.
449          */
450         while (count-- && usage) {
451                 usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
452                 OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
453         }
454
455         /* should have been depleted by now */
456         if (usage) {
457                 DP_NOTICE(p_hwfn->p_dev, false,
458                           "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
459                           ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
460                 return ECORE_TIMEOUT;
461         }
462
463         return ECORE_SUCCESS;
464 }
465
466 enum _ecore_status_t ecore_db_rec_handler(struct ecore_hwfn *p_hwfn,
467                                           struct ecore_ptt *p_ptt)
468 {
469         u32 overflow;
470         enum _ecore_status_t rc;
471
472         overflow = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
473         DP_NOTICE(p_hwfn, false, "PF Overflow sticky 0x%x\n", overflow);
474         if (!overflow) {
475                 ecore_db_recovery_execute(p_hwfn, DB_REC_ONCE);
476                 return ECORE_SUCCESS;
477         }
478
479         if (ecore_edpm_enabled(p_hwfn)) {
480                 rc = ecore_db_rec_flush_queue(p_hwfn, p_ptt);
481                 if (rc != ECORE_SUCCESS)
482                         return rc;
483         }
484
485         /* flush any pedning (e)dpm as they may never arrive */
486         ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
487
488         /* release overflow sticky indication (stop silently dropping
489          * everything)
490          */
491         ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
492
493         /* repeat all last doorbells (doorbell drop recovery) */
494         ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
495
496         return ECORE_SUCCESS;
497 }
498
499 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
500 {
501         u32 int_sts, first_drop_reason, details, address, all_drops_reason;
502         struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
503         enum _ecore_status_t rc;
504
505         int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
506         DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
507                   int_sts);
508
509         /* int_sts may be zero since all PFs were interrupted for doorbell
510          * overflow but another one already handled it. Can abort here. If
511          * This PF also requires overflow recovery we will be interrupted again
512          */
513         if (!int_sts)
514                 return ECORE_SUCCESS;
515
516         /* check if db_drop or overflow happened */
517         if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
518                        DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
519                 /* obtain data about db drop/overflow */
520                 first_drop_reason = ecore_rd(p_hwfn, p_ptt,
521                                   DORQ_REG_DB_DROP_REASON) &
522                                   ECORE_DORQ_ATTENTION_REASON_MASK;
523                 details = ecore_rd(p_hwfn, p_ptt,
524                                    DORQ_REG_DB_DROP_DETAILS);
525                 address = ecore_rd(p_hwfn, p_ptt,
526                                    DORQ_REG_DB_DROP_DETAILS_ADDRESS);
527                 all_drops_reason = ecore_rd(p_hwfn, p_ptt,
528                                             DORQ_REG_DB_DROP_DETAILS_REASON);
529
530                 /* log info */
531                 DP_NOTICE(p_hwfn->p_dev, false,
532                           "Doorbell drop occurred\n"
533                           "Address\t\t0x%08x\t(second BAR address)\n"
534                           "FID\t\t0x%04x\t\t(Opaque FID)\n"
535                           "Size\t\t0x%04x\t\t(in bytes)\n"
536                           "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
537                           "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
538                           address,
539                           GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
540                           GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
541                           first_drop_reason, all_drops_reason);
542
543                 rc = ecore_db_rec_handler(p_hwfn, p_ptt);
544                 OSAL_DB_REC_OCCURRED(p_hwfn);
545                 if (rc != ECORE_SUCCESS)
546                         return rc;
547
548                 /* clear the doorbell drop details and prepare for next drop */
549                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
550
551                 /* mark interrupt as handeld (note: even if drop was due to a
552                  * different reason than overflow we mark as handled)
553                  */
554                 ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
555                          DORQ_REG_INT_STS_DB_DROP |
556                          DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
557
558                 /* if there are no indications otherthan drop indications,
559                  * success
560                  */
561                 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
562                                  DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
563                                  DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
564                         return ECORE_SUCCESS;
565         }
566
567         /* some other indication was present - non recoverable */
568         DP_INFO(p_hwfn, "DORQ fatal attention\n");
569
570         return ECORE_INVAL;
571 }
572
573 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
574 {
575 #ifndef ASIC_ONLY
576         if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
577                 u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
578                                    TM_REG_INT_STS_1);
579
580                 if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
581                             TM_REG_INT_STS_1_PEND_CONN_SCAN))
582                         return ECORE_INVAL;
583
584                 if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
585                            TM_REG_INT_STS_1_PEND_CONN_SCAN))
586                         DP_INFO(p_hwfn,
587                                 "TM attention on emulation - most likely"
588                                 " results of clock-ratios\n");
589                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
590                 val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
591                     TM_REG_INT_MASK_1_PEND_TASK_SCAN;
592                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
593
594                 return ECORE_SUCCESS;
595         }
596 #endif
597
598         return ECORE_INVAL;
599 }
600
601 /* Instead of major changes to the data-structure, we have a some 'special'
602  * identifiers for sources that changed meaning between adapters.
603  */
604 enum aeu_invert_reg_special_type {
605         AEU_INVERT_REG_SPECIAL_CNIG_0,
606         AEU_INVERT_REG_SPECIAL_CNIG_1,
607         AEU_INVERT_REG_SPECIAL_CNIG_2,
608         AEU_INVERT_REG_SPECIAL_CNIG_3,
609         AEU_INVERT_REG_SPECIAL_MAX,
610 };
611
612 static struct aeu_invert_reg_bit
613 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
614         {"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
615         {"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
616         {"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
617         {"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
618 };
619
620 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
621 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
622         {
623          {                      /* After Invert 1 */
624           {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
625            MAX_BLOCK_ID},
626           }
627          },
628
629         {
630          {                      /* After Invert 2 */
631           {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
632           {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
633           {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb,
634            BLOCK_PGLUE_B},
635           {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
636           {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
637           {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
638           {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
639           {"SW timers #%d",
640            (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
641            OSAL_NULL, MAX_BLOCK_ID},
642           {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
643            BLOCK_PGLCS},
644           }
645          },
646
647         {
648          {                      /* After Invert 3 */
649           {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
650            MAX_BLOCK_ID},
651           }
652          },
653
654         {
655          {                      /* After Invert 4 */
656           {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
657            ecore_fw_assertion, MAX_BLOCK_ID},
658           {"General Attention %d",
659            (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
660            OSAL_NULL, MAX_BLOCK_ID},
661           {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
662            ecore_general_attention_35, MAX_BLOCK_ID},
663           {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
664                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
665                          OSAL_NULL, BLOCK_NWS},
666           {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
667                             ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
668                             OSAL_NULL, BLOCK_NWS},
669           {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
670                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
671                          OSAL_NULL, BLOCK_NWM},
672           {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
673                             ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
674                             OSAL_NULL, BLOCK_NWM},
675           {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
676           {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
677           {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
678           {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
679           {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
680           {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
681           {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
682            MAX_BLOCK_ID},
683           {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
684           {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
685           {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
686           {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
687           {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
688           }
689          },
690
691         {
692          {                      /* After Invert 5 */
693           {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
694           {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
695           {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
696           {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
697           {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
698           {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
699           {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
700           {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
701           {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
702           {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
703           {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
704           {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
705           {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
706           {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
707           {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
708           {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
709           }
710          },
711
712         {
713          {                      /* After Invert 6 */
714           {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
715           {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
716           {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
717           {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
718           {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
719           {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
720           {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
721           {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
722           {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
723           {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
724           {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
725           {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
726           {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
727           {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
728           {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
729           {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
730           }
731          },
732
733         {
734          {                      /* After Invert 7 */
735           {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
736           {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
737           {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
738           {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
739           {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
740           {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
741           {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
742           {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
743           {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
744           {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
745           {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
746           {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
747           {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
748           {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
749           {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
750           {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
751           {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
752           }
753          },
754
755         {
756          {                      /* After Invert 8 */
757           {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
758           {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
759           {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
760           {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
761           {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
762           {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
763           {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
764           {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
765           {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
766           {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
767           {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
768           {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
769           {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
770           {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
771           {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
772           {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
773           {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
774           {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
775           {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
776           {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
777           {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
778            MAX_BLOCK_ID},
779           }
780          },
781
782         {
783          {                      /* After Invert 9 */
784           {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
785           {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
786            MAX_BLOCK_ID},
787           {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
788           {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
789           {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
790            MAX_BLOCK_ID},
791           }
792          },
793
794 };
795
796 static struct aeu_invert_reg_bit *
797 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
798                         struct aeu_invert_reg_bit *p_bit)
799 {
800         if (!ECORE_IS_BB(p_hwfn->p_dev))
801                 return p_bit;
802
803         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
804                 return p_bit;
805
806         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
807                                   ATTENTION_BB_SHIFT];
808 }
809
810 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
811                                      struct aeu_invert_reg_bit *p_bit)
812 {
813         return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
814                   ATTENTION_PARITY);
815 }
816
817 #define ATTN_STATE_BITS         (0xfff)
818 #define ATTN_BITS_MASKABLE      (0x3ff)
819 struct ecore_sb_attn_info {
820         /* Virtual & Physical address of the SB */
821         struct atten_status_block *sb_attn;
822         dma_addr_t sb_phys;
823
824         /* Last seen running index */
825         u16 index;
826
827         /* A mask of the AEU bits resulting in a parity error */
828         u32 parity_mask[NUM_ATTN_REGS];
829
830         /* A pointer to the attention description structure */
831         struct aeu_invert_reg *p_aeu_desc;
832
833         /* Previously asserted attentions, which are still unasserted */
834         u16 known_attn;
835
836         /* Cleanup address for the link's general hw attention */
837         u32 mfw_attn_addr;
838 };
839
840 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
841                                  struct ecore_sb_attn_info *p_sb_desc)
842 {
843         u16 rc = 0, index;
844
845         OSAL_MMIOWB(p_hwfn->p_dev);
846
847         index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
848         if (p_sb_desc->index != index) {
849                 p_sb_desc->index = index;
850                 rc = ECORE_SB_ATT_IDX;
851         }
852
853         OSAL_MMIOWB(p_hwfn->p_dev);
854
855         return rc;
856 }
857
858 /**
859  * @brief ecore_int_assertion - handles asserted attention bits
860  *
861  * @param p_hwfn
862  * @param asserted_bits newly asserted bits
863  * @return enum _ecore_status_t
864  */
865 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
866                                                 u16 asserted_bits)
867 {
868         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
869         u32 igu_mask;
870
871         /* Mask the source of the attention in the IGU */
872         igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
873                             IGU_REG_ATTENTION_ENABLE);
874         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
875                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
876         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
877         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
878
879         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
880                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
881                    sb_attn_sw->known_attn,
882                    sb_attn_sw->known_attn | asserted_bits);
883         sb_attn_sw->known_attn |= asserted_bits;
884
885         /* Handle MCP events */
886         if (asserted_bits & 0x100) {
887                 ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
888                 /* Clean the MCP attention */
889                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
890                          sb_attn_sw->mfw_attn_addr, 0);
891         }
892
893         /* FIXME - this will change once we'll have GOOD gtt definitions */
894         DIRECT_REG_WR(p_hwfn,
895                       (u8 OSAL_IOMEM *) p_hwfn->regview +
896                       GTT_BAR0_MAP_REG_IGU_CMD +
897                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
898                         IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
899
900         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
901                    asserted_bits);
902
903         return ECORE_SUCCESS;
904 }
905
906 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
907                                  enum block_id id, enum dbg_attn_type type,
908                                  bool b_clear)
909 {
910         /* @DPDK */
911         DP_NOTICE(p_hwfn->p_dev, false, "[block_id %d type %d]\n", id, type);
912 }
913
914 /**
915  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
916  * cause of the attention
917  *
918  * @param p_hwfn
919  * @param p_aeu - descriptor of an AEU bit which caused the attention
920  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
921  *  this bit to this group.
922  * @param bit_index - index of this bit in the aeu_en_reg
923  *
924  * @return enum _ecore_status_t
925  */
926 static enum _ecore_status_t
927 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
928                               struct aeu_invert_reg_bit *p_aeu,
929                               u32 aeu_en_reg,
930                               const char *p_bit_name,
931                               u32 bitmask)
932 {
933         enum _ecore_status_t rc = ECORE_INVAL;
934         bool b_fatal = false;
935
936         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
937                 p_bit_name, bitmask);
938
939         /* Call callback before clearing the interrupt status */
940         if (p_aeu->cb) {
941                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
942                         p_bit_name);
943                 rc = p_aeu->cb(p_hwfn);
944         }
945
946         if (rc != ECORE_SUCCESS)
947                 b_fatal = true;
948
949         /* Print HW block interrupt registers */
950         if (p_aeu->block_index != MAX_BLOCK_ID) {
951                 ecore_int_attn_print(p_hwfn, p_aeu->block_index,
952                                      ATTN_TYPE_INTERRUPT, !b_fatal);
953 }
954
955         /* @DPDK */
956         /* Reach assertion if attention is fatal */
957         if (b_fatal || (strcmp(p_bit_name, "PGLUE B RBC") == 0)) {
958                 DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
959                           p_bit_name);
960
961                 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
962         }
963
964         /* Prevent this Attention from being asserted in the future */
965         if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
966             p_hwfn->p_dev->attn_clr_en) {
967                 u32 val;
968                 u32 mask = ~bitmask;
969                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
970                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
971                 DP_ERR(p_hwfn, "`%s' - Disabled future attentions\n",
972                         p_bit_name);
973         }
974
975         return rc;
976 }
977
978 /**
979  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
980  *
981  * @param p_hwfn
982  * @param p_aeu - descriptor of an AEU bit which caused the parity
983  * @param aeu_en_reg - address of the AEU enable register
984  * @param bit_index
985  */
986 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
987                                          struct aeu_invert_reg_bit *p_aeu,
988                                          u32 aeu_en_reg, u8 bit_index)
989 {
990         u32 block_id = p_aeu->block_index, mask, val;
991
992         DP_NOTICE(p_hwfn->p_dev, false,
993                   "%s parity attention is set [address 0x%08x, bit %d]\n",
994                   p_aeu->bit_name, aeu_en_reg, bit_index);
995
996         if (block_id != MAX_BLOCK_ID) {
997                 ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
998
999                 /* In A0, there's a single parity bit for several blocks */
1000                 if (block_id == BLOCK_BTB) {
1001                         ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
1002                                              ATTN_TYPE_PARITY, false);
1003                         ecore_int_attn_print(p_hwfn, BLOCK_MCP,
1004                                              ATTN_TYPE_PARITY, false);
1005                 }
1006         }
1007
1008         /* Prevent this parity error from being re-asserted */
1009         mask = ~(0x1 << bit_index);
1010         val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
1011         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
1012         DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
1013                 p_aeu->bit_name);
1014 }
1015
1016 /**
1017  * @brief - handles deassertion of previously asserted attentions.
1018  *
1019  * @param p_hwfn
1020  * @param deasserted_bits - newly deasserted bits
1021  * @return enum _ecore_status_t
1022  *
1023  */
1024 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1025                                                   u16 deasserted_bits)
1026 {
1027         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1028         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1029         u8 i, j, k, bit_idx;
1030         enum _ecore_status_t rc = ECORE_SUCCESS;
1031
1032         /* Read the attention registers in the AEU */
1033         for (i = 0; i < NUM_ATTN_REGS; i++) {
1034                 aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1035                                           MISC_REG_AEU_AFTER_INVERT_1_IGU +
1036                                           i * 0x4);
1037                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1038                            "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
1039         }
1040
1041         /* Handle parity attentions first */
1042         for (i = 0; i < NUM_ATTN_REGS; i++) {
1043                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1044                 u32 parities;
1045
1046                 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1047                 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1048                 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1049
1050                 /* Skip register in which no parity bit is currently set */
1051                 if (!parities)
1052                         continue;
1053
1054                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1055                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1056
1057                         if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1058                             !!(parities & (1 << bit_idx)))
1059                                 ecore_int_deassertion_parity(p_hwfn, p_bit,
1060                                                              aeu_en, bit_idx);
1061
1062                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
1063                 }
1064         }
1065
1066         /* Find non-parity cause for attention and act */
1067         for (k = 0; k < MAX_ATTN_GRPS; k++) {
1068                 struct aeu_invert_reg_bit *p_aeu;
1069
1070                 /* Handle only groups whose attention is currently deasserted */
1071                 if (!(deasserted_bits & (1 << k)))
1072                         continue;
1073
1074                 for (i = 0; i < NUM_ATTN_REGS; i++) {
1075                         u32 bits;
1076
1077                         aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1078                                  i * sizeof(u32) +
1079                                  k * sizeof(u32) * NUM_ATTN_REGS;
1080                         en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1081                         bits = aeu_inv_arr[i] & en;
1082
1083                         /* Skip if no bit from this group is currently set */
1084                         if (!bits)
1085                                 continue;
1086
1087                         /* Find all set bits from current register which belong
1088                          * to current group, making them responsible for the
1089                          * previous assertion.
1090                          */
1091                         for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1092                                 unsigned long int bitmask;
1093                                 u8 bit, bit_len;
1094
1095                                 /* Need to account bits with changed meaning */
1096                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1097
1098                                 bit = bit_idx;
1099                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
1100                                 if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1101                                         /* Skip Parity */
1102                                         bit++;
1103                                         bit_len--;
1104                                 }
1105
1106                                 /* Find the bits relating to HW-block, then
1107                                  * shift so they'll become LSB.
1108                                  */
1109                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
1110                                 bitmask >>= bit;
1111
1112                                 if (bitmask) {
1113                                         u32 flags = p_aeu->flags;
1114                                         char bit_name[30];
1115                                         u8 num;
1116
1117                                         num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1118                                                                 bit_len);
1119
1120                                         /* Some bits represent more than a
1121                                          * a single interrupt. Correctly print
1122                                          * their name.
1123                                          */
1124                                         if (ATTENTION_LENGTH(flags) > 2 ||
1125                                             ((flags & ATTENTION_PAR_INT) &&
1126                                             ATTENTION_LENGTH(flags) > 1))
1127                                                 OSAL_SNPRINTF(bit_name, 30,
1128                                                               p_aeu->bit_name,
1129                                                               num);
1130                                         else
1131                                                 strlcpy(bit_name,
1132                                                         p_aeu->bit_name,
1133                                                         sizeof(bit_name));
1134
1135                                         /* We now need to pass bitmask in its
1136                                          * correct position.
1137                                          */
1138                                         bitmask <<= bit;
1139
1140                                         /* Handle source of the attention */
1141                                         ecore_int_deassertion_aeu_bit(p_hwfn,
1142                                                                       p_aeu,
1143                                                                       aeu_en,
1144                                                                       bit_name,
1145                                                                       bitmask);
1146                                 }
1147
1148                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1149                         }
1150                 }
1151         }
1152
1153         /* Clear IGU indication for the deasserted bits */
1154         /* FIXME - this will change once we'll have GOOD gtt definitions */
1155         DIRECT_REG_WR(p_hwfn,
1156                       (u8 OSAL_IOMEM *) p_hwfn->regview +
1157                       GTT_BAR0_MAP_REG_IGU_CMD +
1158                       ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1159                         IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
1160
1161         /* Unmask deasserted attentions in IGU */
1162         aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1163                             IGU_REG_ATTENTION_ENABLE);
1164         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1165         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1166
1167         /* Clear deassertion from inner state */
1168         sb_attn_sw->known_attn &= ~deasserted_bits;
1169
1170         return rc;
1171 }
1172
1173 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1174 {
1175         struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1176         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1177         u16 index = 0, asserted_bits, deasserted_bits;
1178         u32 attn_bits = 0, attn_acks = 0;
1179         enum _ecore_status_t rc = ECORE_SUCCESS;
1180
1181         /* Read current attention bits/acks - safeguard against attentions
1182          * by guaranting work on a synchronized timeframe
1183          */
1184         do {
1185                 index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1186                 attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1187                 attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1188         } while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1189         p_sb_attn->sb_index = index;
1190
1191         /* Attention / Deassertion are meaningful (and in correct state)
1192          * only when they differ and consistent with known state - deassertion
1193          * when previous attention & current ack, and assertion when current
1194          * attention with no previous attention
1195          */
1196         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1197             ~p_sb_attn_sw->known_attn;
1198         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1199             p_sb_attn_sw->known_attn;
1200
1201         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1202                 DP_INFO(p_hwfn,
1203                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1204                         index, attn_bits, attn_acks, asserted_bits,
1205                         deasserted_bits, p_sb_attn_sw->known_attn);
1206         else if (asserted_bits == 0x100)
1207                 DP_INFO(p_hwfn, "MFW indication via attention\n");
1208         else
1209                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1210                            "MFW indication [deassertion]\n");
1211
1212         if (asserted_bits) {
1213                 rc = ecore_int_assertion(p_hwfn, asserted_bits);
1214                 if (rc)
1215                         return rc;
1216         }
1217
1218         if (deasserted_bits)
1219                 rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1220
1221         return rc;
1222 }
1223
1224 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1225                               void OSAL_IOMEM *igu_addr, u32 ack_cons)
1226 {
1227         struct igu_prod_cons_update igu_ack = { 0 };
1228
1229         igu_ack.sb_id_and_flags =
1230             ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1231              (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1232              (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1233              (IGU_SEG_ACCESS_ATTN <<
1234               IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1235
1236         DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1237
1238         /* Both segments (interrupts & acks) are written to same place address;
1239          * Need to guarantee all commands will be received (in-order) by HW.
1240          */
1241         OSAL_MMIOWB(p_hwfn->p_dev);
1242         OSAL_BARRIER(p_hwfn->p_dev);
1243 }
1244
1245 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1246 {
1247         struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1248         struct ecore_pi_info *pi_info = OSAL_NULL;
1249         struct ecore_sb_attn_info *sb_attn;
1250         struct ecore_sb_info *sb_info;
1251         int arr_size;
1252         u16 rc = 0;
1253
1254         if (!p_hwfn)
1255                 return;
1256
1257         if (!p_hwfn->p_sp_sb) {
1258                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1259                 return;
1260         }
1261
1262         sb_info = &p_hwfn->p_sp_sb->sb_info;
1263         arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1264         if (!sb_info) {
1265                 DP_ERR(p_hwfn->p_dev,
1266                        "Status block is NULL - cannot ack interrupts\n");
1267                 return;
1268         }
1269
1270         if (!p_hwfn->p_sb_attn) {
1271                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1272                 return;
1273         }
1274         sb_attn = p_hwfn->p_sb_attn;
1275
1276         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1277                    p_hwfn, p_hwfn->my_id);
1278
1279         /* Disable ack for def status block. Required both for msix +
1280          * inta in non-mask mode, in inta does no harm.
1281          */
1282         ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1283
1284         /* Gather Interrupts/Attentions information */
1285         if (!sb_info->sb_virt) {
1286                 DP_ERR(p_hwfn->p_dev,
1287                        "Interrupt Status block is NULL -"
1288                        " cannot check for new interrupts!\n");
1289         } else {
1290                 u32 tmp_index = sb_info->sb_ack;
1291                 rc = ecore_sb_update_sb_idx(sb_info);
1292                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1293                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1294                            tmp_index, sb_info->sb_ack);
1295         }
1296
1297         if (!sb_attn || !sb_attn->sb_attn) {
1298                 DP_ERR(p_hwfn->p_dev,
1299                        "Attentions Status block is NULL -"
1300                        " cannot check for new attentions!\n");
1301         } else {
1302                 u16 tmp_index = sb_attn->index;
1303
1304                 rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1305                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1306                            "Attention indices: 0x%08x --> 0x%08x\n",
1307                            tmp_index, sb_attn->index);
1308         }
1309
1310         /* Check if we expect interrupts at this time. if not just ack them */
1311         if (!(rc & ECORE_SB_EVENT_MASK)) {
1312                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1313                 return;
1314         }
1315
1316 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1317
1318         if (!p_hwfn->p_dpc_ptt) {
1319                 DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1320                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1321                 return;
1322         }
1323
1324         if (rc & ECORE_SB_ATT_IDX)
1325                 ecore_int_attentions(p_hwfn);
1326
1327         if (rc & ECORE_SB_IDX) {
1328                 int pi;
1329
1330                 /* Since we only looked at the SB index, it's possible more
1331                  * than a single protocol-index on the SB incremented.
1332                  * Iterate over all configured protocol indices and check
1333                  * whether something happened for each.
1334                  */
1335                 for (pi = 0; pi < arr_size; pi++) {
1336                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1337                         if (pi_info->comp_cb != OSAL_NULL)
1338                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1339                 }
1340         }
1341
1342         if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1343                 /* This should be done before the interrupts are enabled,
1344                  * since otherwise a new attention will be generated.
1345                  */
1346                 ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1347         }
1348
1349         ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1350 }
1351
1352 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1353 {
1354         struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1355
1356         if (!p_sb)
1357                 return;
1358
1359         if (p_sb->sb_attn) {
1360                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1361                                        p_sb->sb_phys,
1362                                        SB_ATTN_ALIGNED_SIZE(p_hwfn));
1363         }
1364         OSAL_FREE(p_hwfn->p_dev, p_sb);
1365 }
1366
1367 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1368                                     struct ecore_ptt *p_ptt)
1369 {
1370         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1371
1372         OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1373
1374         sb_info->index = 0;
1375         sb_info->known_attn = 0;
1376
1377         /* Configure Attention Status Block in IGU */
1378         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1379                  DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1380         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1381                  DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1382 }
1383
1384 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1385                                    struct ecore_ptt *p_ptt,
1386                                    void *sb_virt_addr, dma_addr_t sb_phy_addr)
1387 {
1388         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1389         int i, j, k;
1390
1391         sb_info->sb_attn = sb_virt_addr;
1392         sb_info->sb_phys = sb_phy_addr;
1393
1394         /* Set the pointer to the AEU descriptors */
1395         sb_info->p_aeu_desc = aeu_descs;
1396
1397         /* Calculate Parity Masks */
1398         OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1399         for (i = 0; i < NUM_ATTN_REGS; i++) {
1400                 /* j is array index, k is bit index */
1401                 for (j = 0, k = 0; k < 32; j++) {
1402                         struct aeu_invert_reg_bit *p_aeu;
1403
1404                         p_aeu = &aeu_descs[i].bits[j];
1405                         if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1406                                 sb_info->parity_mask[i] |= 1 << k;
1407
1408                         k += ATTENTION_LENGTH(p_aeu->flags);
1409                 }
1410                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1411                            "Attn Mask [Reg %d]: 0x%08x\n",
1412                            i, sb_info->parity_mask[i]);
1413         }
1414
1415         /* Set the address of cleanup for the mcp attention */
1416         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1417             MISC_REG_AEU_GENERAL_ATTN_0;
1418
1419         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1420 }
1421
1422 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1423                                                     struct ecore_ptt *p_ptt)
1424 {
1425         struct ecore_dev *p_dev = p_hwfn->p_dev;
1426         struct ecore_sb_attn_info *p_sb;
1427         dma_addr_t p_phys = 0;
1428         void *p_virt;
1429
1430         /* SB struct */
1431         p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1432         if (!p_sb) {
1433                 DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1434                 return ECORE_NOMEM;
1435         }
1436
1437         /* SB ring  */
1438         p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1439                                          SB_ATTN_ALIGNED_SIZE(p_hwfn));
1440         if (!p_virt) {
1441                 DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1442                 OSAL_FREE(p_dev, p_sb);
1443                 return ECORE_NOMEM;
1444         }
1445
1446         /* Attention setup */
1447         p_hwfn->p_sb_attn = p_sb;
1448         ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1449
1450         return ECORE_SUCCESS;
1451 }
1452
1453 /* coalescing timeout = timeset << (timer_res + 1) */
1454 #define ECORE_CAU_DEF_RX_USECS 24
1455 #define ECORE_CAU_DEF_TX_USECS 48
1456
1457 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1458                              struct cau_sb_entry *p_sb_entry,
1459                              u8 pf_id, u16 vf_number, u8 vf_valid)
1460 {
1461         struct ecore_dev *p_dev = p_hwfn->p_dev;
1462         u32 cau_state;
1463         u8 timer_res;
1464
1465         OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1466
1467         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1468         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1469         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1470         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1471         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1472
1473         cau_state = CAU_HC_DISABLE_STATE;
1474
1475         if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1476                 cau_state = CAU_HC_ENABLE_STATE;
1477                 if (!p_dev->rx_coalesce_usecs)
1478                         p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1479                 if (!p_dev->tx_coalesce_usecs)
1480                         p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1481         }
1482
1483         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1484         if (p_dev->rx_coalesce_usecs <= 0x7F)
1485                 timer_res = 0;
1486         else if (p_dev->rx_coalesce_usecs <= 0xFF)
1487                 timer_res = 1;
1488         else
1489                 timer_res = 2;
1490         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1491
1492         if (p_dev->tx_coalesce_usecs <= 0x7F)
1493                 timer_res = 0;
1494         else if (p_dev->tx_coalesce_usecs <= 0xFF)
1495                 timer_res = 1;
1496         else
1497                 timer_res = 2;
1498         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1499
1500         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1501         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1502 }
1503
1504 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1505                                    struct ecore_ptt *p_ptt,
1506                                    u16 igu_sb_id, u32 pi_index,
1507                                    enum ecore_coalescing_fsm coalescing_fsm,
1508                                    u8 timeset)
1509 {
1510         struct cau_pi_entry pi_entry;
1511         u32 sb_offset, pi_offset;
1512
1513         if (IS_VF(p_hwfn->p_dev))
1514                 return;/* @@@TBD MichalK- VF CAU... */
1515
1516         sb_offset = igu_sb_id * PIS_PER_SB_E4;
1517         OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1518
1519         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1520         if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1521                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1522         else
1523                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1524
1525         pi_offset = sb_offset + pi_index;
1526         if (p_hwfn->hw_init_done) {
1527                 ecore_wr(p_hwfn, p_ptt,
1528                          CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1529                          *((u32 *)&(pi_entry)));
1530         } else {
1531                 STORE_RT_REG(p_hwfn,
1532                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1533                              *((u32 *)&(pi_entry)));
1534         }
1535 }
1536
1537 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1538                            struct ecore_ptt *p_ptt,
1539                            struct ecore_sb_info *p_sb, u32 pi_index,
1540                            enum ecore_coalescing_fsm coalescing_fsm,
1541                            u8 timeset)
1542 {
1543         _ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1544                                pi_index, coalescing_fsm, timeset);
1545 }
1546
1547 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1548                            struct ecore_ptt *p_ptt,
1549                            dma_addr_t sb_phys, u16 igu_sb_id,
1550                            u16 vf_number, u8 vf_valid)
1551 {
1552         struct cau_sb_entry sb_entry;
1553
1554         ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1555                                 vf_number, vf_valid);
1556
1557         if (p_hwfn->hw_init_done) {
1558                 /* Wide-bus, initialize via DMAE */
1559                 u64 phys_addr = (u64)sb_phys;
1560
1561                 ecore_dmae_host2grc(p_hwfn, p_ptt,
1562                                     (u64)(osal_uintptr_t)&phys_addr,
1563                                     CAU_REG_SB_ADDR_MEMORY +
1564                                     igu_sb_id * sizeof(u64), 2,
1565                                     OSAL_NULL /* default parameters */);
1566                 ecore_dmae_host2grc(p_hwfn, p_ptt,
1567                                     (u64)(osal_uintptr_t)&sb_entry,
1568                                     CAU_REG_SB_VAR_MEMORY +
1569                                     igu_sb_id * sizeof(u64), 2,
1570                                     OSAL_NULL /* default parameters */);
1571         } else {
1572                 /* Initialize Status Block Address */
1573                 STORE_RT_REG_AGG(p_hwfn,
1574                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1575                                  igu_sb_id * 2, sb_phys);
1576
1577                 STORE_RT_REG_AGG(p_hwfn,
1578                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1579                                  igu_sb_id * 2, sb_entry);
1580         }
1581
1582         /* Configure pi coalescing if set */
1583         if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1584                 /* eth will open queues for all tcs, so configure all of them
1585                  * properly, rather than just the active ones
1586                  */
1587                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1588
1589                 u8 timeset, timer_res;
1590                 u8 i;
1591
1592                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1593                 if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1594                         timer_res = 0;
1595                 else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1596                         timer_res = 1;
1597                 else
1598                         timer_res = 2;
1599                 timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1600                 _ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1601                                        ECORE_COAL_RX_STATE_MACHINE,
1602                                        timeset);
1603
1604                 if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1605                         timer_res = 0;
1606                 else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1607                         timer_res = 1;
1608                 else
1609                         timer_res = 2;
1610                 timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1611                 for (i = 0; i < num_tc; i++) {
1612                         _ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1613                                                igu_sb_id, TX_PI(i),
1614                                                ECORE_COAL_TX_STATE_MACHINE,
1615                                                timeset);
1616                 }
1617         }
1618 }
1619
1620 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1621                         struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1622 {
1623         /* zero status block and ack counter */
1624         sb_info->sb_ack = 0;
1625         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1626
1627         if (IS_PF(p_hwfn->p_dev))
1628                 ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1629                                       sb_info->igu_sb_id, 0, 0);
1630 }
1631
1632 struct ecore_igu_block *
1633 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1634 {
1635         struct ecore_igu_block *p_block;
1636         u16 igu_id;
1637
1638         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1639              igu_id++) {
1640                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1641
1642                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1643                     !(p_block->status & ECORE_IGU_STATUS_FREE))
1644                         continue;
1645
1646                 if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1647                     b_is_pf)
1648                         return p_block;
1649         }
1650
1651         return OSAL_NULL;
1652 }
1653
1654 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1655                                   u16 vector_id)
1656 {
1657         struct ecore_igu_block *p_block;
1658         u16 igu_id;
1659
1660         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1661              igu_id++) {
1662                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1663
1664                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1665                     !p_block->is_pf ||
1666                     p_block->vector_number != vector_id)
1667                         continue;
1668
1669                 return igu_id;
1670         }
1671
1672         return ECORE_SB_INVALID_IDX;
1673 }
1674
1675 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1676 {
1677         u16 igu_sb_id;
1678
1679         /* Assuming continuous set of IGU SBs dedicated for given PF */
1680         if (sb_id == ECORE_SP_SB_ID)
1681                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1682         else if (IS_PF(p_hwfn->p_dev))
1683                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1684         else
1685                 igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1686
1687         if (igu_sb_id == ECORE_SB_INVALID_IDX)
1688                 DP_NOTICE(p_hwfn, true,
1689                           "Slowpath SB vector %04x doesn't exist\n",
1690                           sb_id);
1691         else if (sb_id == ECORE_SP_SB_ID)
1692                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1693                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1694         else
1695                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1696                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1697
1698         return igu_sb_id;
1699 }
1700
1701 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1702                                        struct ecore_ptt *p_ptt,
1703                                        struct ecore_sb_info *sb_info,
1704                                        void *sb_virt_addr,
1705                                        dma_addr_t sb_phy_addr, u16 sb_id)
1706 {
1707         sb_info->sb_virt = sb_virt_addr;
1708         sb_info->sb_phys = sb_phy_addr;
1709
1710         sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1711
1712         if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1713                 return ECORE_INVAL;
1714
1715         /* Let the igu info reference the client's SB info */
1716         if (sb_id != ECORE_SP_SB_ID) {
1717                 if (IS_PF(p_hwfn->p_dev)) {
1718                         struct ecore_igu_info *p_info;
1719                         struct ecore_igu_block *p_block;
1720
1721                         p_info = p_hwfn->hw_info.p_igu_info;
1722                         p_block = &p_info->entry[sb_info->igu_sb_id];
1723
1724                         p_block->sb_info = sb_info;
1725                         p_block->status &= ~ECORE_IGU_STATUS_FREE;
1726                         p_info->usage.free_cnt--;
1727                 } else {
1728                         ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1729                 }
1730         }
1731 #ifdef ECORE_CONFIG_DIRECT_HWFN
1732         sb_info->p_hwfn = p_hwfn;
1733 #endif
1734         sb_info->p_dev = p_hwfn->p_dev;
1735
1736         /* The igu address will hold the absolute address that needs to be
1737          * written to for a specific status block
1738          */
1739         if (IS_PF(p_hwfn->p_dev)) {
1740                 sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1741                     GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3);
1742
1743         } else {
1744                 sb_info->igu_addr =
1745                     (u8 OSAL_IOMEM *)p_hwfn->regview +
1746                     PXP_VF_BAR0_START_IGU +
1747                     ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1748         }
1749
1750         sb_info->flags |= ECORE_SB_INFO_INIT;
1751
1752         ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1753
1754         return ECORE_SUCCESS;
1755 }
1756
1757 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1758                                           struct ecore_sb_info *sb_info,
1759                                           u16 sb_id)
1760 {
1761         struct ecore_igu_info *p_info;
1762         struct ecore_igu_block *p_block;
1763
1764         if (sb_info == OSAL_NULL)
1765                 return ECORE_SUCCESS;
1766
1767         /* zero status block and ack counter */
1768         sb_info->sb_ack = 0;
1769         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1770
1771         if (IS_VF(p_hwfn->p_dev)) {
1772                 ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1773                 return ECORE_SUCCESS;
1774         }
1775
1776         p_info = p_hwfn->hw_info.p_igu_info;
1777         p_block = &p_info->entry[sb_info->igu_sb_id];
1778
1779         /* Vector 0 is reserved to Default SB */
1780         if (p_block->vector_number == 0) {
1781                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1782                 return ECORE_INVAL;
1783         }
1784
1785         /* Lose reference to client's SB info, and fix counters */
1786         p_block->sb_info = OSAL_NULL;
1787         p_block->status |= ECORE_IGU_STATUS_FREE;
1788         p_info->usage.free_cnt++;
1789
1790         return ECORE_SUCCESS;
1791 }
1792
1793 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1794 {
1795         struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1796
1797         if (!p_sb)
1798                 return;
1799
1800         if (p_sb->sb_info.sb_virt) {
1801                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1802                                        p_sb->sb_info.sb_virt,
1803                                        p_sb->sb_info.sb_phys,
1804                                        SB_ALIGNED_SIZE(p_hwfn));
1805         }
1806
1807         OSAL_FREE(p_hwfn->p_dev, p_sb);
1808 }
1809
1810 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1811                                                   struct ecore_ptt *p_ptt)
1812 {
1813         struct ecore_sb_sp_info *p_sb;
1814         dma_addr_t p_phys = 0;
1815         void *p_virt;
1816
1817         /* SB struct */
1818         p_sb =
1819             OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL,
1820                        sizeof(*p_sb));
1821         if (!p_sb) {
1822                 DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
1823                 return ECORE_NOMEM;
1824         }
1825
1826         /* SB ring  */
1827         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1828                                          &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1829         if (!p_virt) {
1830                 DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1831                 OSAL_FREE(p_hwfn->p_dev, p_sb);
1832                 return ECORE_NOMEM;
1833         }
1834
1835         /* Status Block setup */
1836         p_hwfn->p_sp_sb = p_sb;
1837         ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1838                           p_virt, p_phys, ECORE_SP_SB_ID);
1839
1840         OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1841
1842         return ECORE_SUCCESS;
1843 }
1844
1845 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1846                                            ecore_int_comp_cb_t comp_cb,
1847                                            void *cookie,
1848                                            u8 *sb_idx, __le16 **p_fw_cons)
1849 {
1850         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1851         enum _ecore_status_t rc = ECORE_NOMEM;
1852         u8 pi;
1853
1854         /* Look for a free index */
1855         for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1856                 if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1857                         continue;
1858
1859                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1860                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1861                 *sb_idx = pi;
1862                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1863                 rc = ECORE_SUCCESS;
1864                 break;
1865         }
1866
1867         return rc;
1868 }
1869
1870 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1871 {
1872         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1873
1874         if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1875                 return ECORE_NOMEM;
1876
1877         p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1878         p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1879         return ECORE_SUCCESS;
1880 }
1881
1882 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1883 {
1884         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1885 }
1886
1887 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1888                               struct ecore_ptt *p_ptt,
1889                               enum ecore_int_mode int_mode)
1890 {
1891         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1892
1893 #ifndef ASIC_ONLY
1894         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1895                 DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1896                 igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1897         }
1898 #endif
1899
1900         p_hwfn->p_dev->int_mode = int_mode;
1901         switch (p_hwfn->p_dev->int_mode) {
1902         case ECORE_INT_MODE_INTA:
1903                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1904                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1905                 break;
1906
1907         case ECORE_INT_MODE_MSI:
1908                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1909                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1910                 break;
1911
1912         case ECORE_INT_MODE_MSIX:
1913                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1914                 break;
1915         case ECORE_INT_MODE_POLL:
1916                 break;
1917         }
1918
1919         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1920 }
1921
1922 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1923                                       struct ecore_ptt *p_ptt)
1924 {
1925 #ifndef ASIC_ONLY
1926         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1927                 DP_INFO(p_hwfn,
1928                         "FPGA - Don't enable Attentions in IGU and MISC\n");
1929                 return;
1930         }
1931 #endif
1932
1933         /* Configure AEU signal change to produce attentions */
1934         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1935         ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1936         ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1937         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1938
1939         /* Flush the writes to IGU */
1940         OSAL_MMIOWB(p_hwfn->p_dev);
1941
1942         /* Unmask AEU signals toward IGU */
1943         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1944 }
1945
1946 enum _ecore_status_t
1947 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1948                           enum ecore_int_mode int_mode)
1949 {
1950         enum _ecore_status_t rc = ECORE_SUCCESS;
1951
1952         ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1953
1954         if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1955                 rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1956                 if (rc != ECORE_SUCCESS) {
1957                         DP_NOTICE(p_hwfn, true,
1958                                   "Slowpath IRQ request failed\n");
1959                         return ECORE_NORESOURCES;
1960                 }
1961                 p_hwfn->b_int_requested = true;
1962         }
1963
1964         /* Enable interrupt Generation */
1965         ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1966
1967         p_hwfn->b_int_enabled = 1;
1968
1969         return rc;
1970 }
1971
1972 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
1973                                struct ecore_ptt *p_ptt)
1974 {
1975         p_hwfn->b_int_enabled = 0;
1976
1977         if (IS_VF(p_hwfn->p_dev))
1978                 return;
1979
1980         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1981 }
1982
1983 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1984 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1985                                      struct ecore_ptt *p_ptt,
1986                                      u32 igu_sb_id,
1987                                      bool cleanup_set,
1988                                      u16 opaque_fid)
1989 {
1990         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1991         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1992         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1993         u8 type = 0;            /* FIXME MichalS type??? */
1994
1995         OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1996                            IGU_REG_CLEANUP_STATUS_0) != 0x200);
1997
1998         /* USE Control Command Register to perform cleanup. There is an
1999          * option to do this using IGU bar, but then it can't be used for VFs.
2000          */
2001
2002         /* Set the data field */
2003         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
2004         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
2005         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
2006
2007         /* Set the control register */
2008         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
2009         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
2010         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
2011
2012         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
2013
2014         OSAL_BARRIER(p_hwfn->p_dev);
2015
2016         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2017
2018         /* Flush the write to IGU */
2019         OSAL_MMIOWB(p_hwfn->p_dev);
2020
2021         /* calculate where to read the status bit from */
2022         sb_bit = 1 << (igu_sb_id % 32);
2023         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2024
2025         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2026
2027         /* Now wait for the command to complete */
2028         while (--sleep_cnt) {
2029                 val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2030                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2031                         break;
2032                 OSAL_MSLEEP(5);
2033         }
2034
2035         if (!sleep_cnt)
2036                 DP_NOTICE(p_hwfn, true,
2037                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2038                           val, igu_sb_id);
2039 }
2040
2041 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2042                                        struct ecore_ptt *p_ptt,
2043                                        u16 igu_sb_id, u16 opaque, bool b_set)
2044 {
2045         struct ecore_igu_block *p_block;
2046         int pi, i;
2047
2048         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2049         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2050                    "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2051                    igu_sb_id, p_block->function_id, p_block->is_pf,
2052                    p_block->vector_number);
2053
2054         /* Set */
2055         if (b_set)
2056                 ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2057
2058         /* Clear */
2059         ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2060
2061         /* Wait for the IGU SB to cleanup */
2062         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2063                 u32 val;
2064
2065                 val = ecore_rd(p_hwfn, p_ptt,
2066                                IGU_REG_WRITE_DONE_PENDING +
2067                                ((igu_sb_id / 32) * 4));
2068                 if (val & (1 << (igu_sb_id % 32)))
2069                         OSAL_UDELAY(10);
2070                 else
2071                         break;
2072         }
2073         if (i == IGU_CLEANUP_SLEEP_LENGTH)
2074                 DP_NOTICE(p_hwfn, true,
2075                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2076                           igu_sb_id);
2077
2078         /* Clear the CAU for the SB */
2079         for (pi = 0; pi < 12; pi++)
2080                 ecore_wr(p_hwfn, p_ptt,
2081                          CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2082 }
2083
2084 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2085                                 struct ecore_ptt *p_ptt,
2086                                 bool b_set, bool b_slowpath)
2087 {
2088         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2089         struct ecore_igu_block *p_block;
2090         u16 igu_sb_id = 0;
2091         u32 val = 0;
2092
2093         /* @@@TBD MichalK temporary... should be moved to init-tool... */
2094         val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2095         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2096         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2097         ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2098         /* end temporary */
2099
2100         for (igu_sb_id = 0;
2101              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2102              igu_sb_id++) {
2103                 p_block = &p_info->entry[igu_sb_id];
2104
2105                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2106                     !p_block->is_pf ||
2107                     (p_block->status & ECORE_IGU_STATUS_DSB))
2108                         continue;
2109
2110                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2111                                                   p_hwfn->hw_info.opaque_fid,
2112                                                   b_set);
2113         }
2114
2115         if (b_slowpath)
2116                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2117                                                   p_info->igu_dsb_id,
2118                                                   p_hwfn->hw_info.opaque_fid,
2119                                                   b_set);
2120 }
2121
2122 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2123                             struct ecore_ptt *p_ptt)
2124 {
2125         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2126         struct ecore_igu_block *p_block;
2127         int pf_sbs, vf_sbs;
2128         u16 igu_sb_id;
2129         u32 val, rval;
2130
2131         if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2132                 /* We're using an old MFW - have to prevent any switching
2133                  * of SBs between PF and VFs as later driver wouldn't be
2134                  * able to tell which belongs to which.
2135                  */
2136                 p_info->b_allow_pf_vf_change = false;
2137         } else {
2138                 /* Use the numbers the MFW have provided -
2139                  * don't forget MFW accounts for the default SB as well.
2140                  */
2141                 p_info->b_allow_pf_vf_change = true;
2142
2143                 if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2144                         DP_INFO(p_hwfn,
2145                                 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2146                                 RESC_NUM(p_hwfn, ECORE_SB) - 1,
2147                                 p_info->usage.cnt);
2148                         p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2149                 }
2150
2151                 /* TODO - how do we learn about VF SBs from MFW? */
2152                 if (IS_PF_SRIOV(p_hwfn)) {
2153                         u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2154
2155                         if (vfs != p_info->usage.iov_cnt)
2156                                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2157                                            "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2158                                            p_info->usage.iov_cnt, vfs);
2159
2160                         /* At this point we know how many SBs we have totally
2161                          * in IGU + number of PF SBs. So we can validate that
2162                          * we'd have sufficient for VF.
2163                          */
2164                         if (vfs > p_info->usage.free_cnt +
2165                                   p_info->usage.free_cnt_iov -
2166                                   p_info->usage.cnt) {
2167                                 DP_NOTICE(p_hwfn, true,
2168                                           "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2169                                           p_info->usage.free_cnt +
2170                                           p_info->usage.free_cnt_iov,
2171                                           p_info->usage.cnt, vfs);
2172                                 return ECORE_INVAL;
2173                         }
2174                 }
2175         }
2176
2177         /* Cap the number of VFs SBs by the number of VFs */
2178         if (IS_PF_SRIOV(p_hwfn))
2179                 p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2180
2181         /* Mark all SBs as free, now in the right PF/VFs division */
2182         p_info->usage.free_cnt = p_info->usage.cnt;
2183         p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2184         p_info->usage.orig = p_info->usage.cnt;
2185         p_info->usage.iov_orig = p_info->usage.iov_cnt;
2186
2187         /* We now proceed to re-configure the IGU cam to reflect the initial
2188          * configuration. We can start with the Default SB.
2189          */
2190         pf_sbs = p_info->usage.cnt;
2191         vf_sbs = p_info->usage.iov_cnt;
2192
2193         for (igu_sb_id = p_info->igu_dsb_id;
2194              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2195              igu_sb_id++) {
2196                 p_block = &p_info->entry[igu_sb_id];
2197                 val = 0;
2198
2199                 if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2200                         continue;
2201
2202                 if (p_block->status & ECORE_IGU_STATUS_DSB) {
2203                         p_block->function_id = p_hwfn->rel_pf_id;
2204                         p_block->is_pf = 1;
2205                         p_block->vector_number = 0;
2206                         p_block->status = ECORE_IGU_STATUS_VALID |
2207                                           ECORE_IGU_STATUS_PF |
2208                                           ECORE_IGU_STATUS_DSB;
2209                 } else if (pf_sbs) {
2210                         pf_sbs--;
2211                         p_block->function_id = p_hwfn->rel_pf_id;
2212                         p_block->is_pf = 1;
2213                         p_block->vector_number = p_info->usage.cnt - pf_sbs;
2214                         p_block->status = ECORE_IGU_STATUS_VALID |
2215                                           ECORE_IGU_STATUS_PF |
2216                                           ECORE_IGU_STATUS_FREE;
2217                 } else if (vf_sbs) {
2218                         p_block->function_id =
2219                                 p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2220                                 p_info->usage.iov_cnt - vf_sbs;
2221                         p_block->is_pf = 0;
2222                         p_block->vector_number = 0;
2223                         p_block->status = ECORE_IGU_STATUS_VALID |
2224                                           ECORE_IGU_STATUS_FREE;
2225                         vf_sbs--;
2226                 } else {
2227                         p_block->function_id = 0;
2228                         p_block->is_pf = 0;
2229                         p_block->vector_number = 0;
2230                 }
2231
2232                 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2233                           p_block->function_id);
2234                 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2235                 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2236                           p_block->vector_number);
2237
2238                 /* VF entries would be enabled when VF is initializaed */
2239                 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2240
2241                 rval = ecore_rd(p_hwfn, p_ptt,
2242                                 IGU_REG_MAPPING_MEMORY +
2243                                 sizeof(u32) * igu_sb_id);
2244
2245                 if (rval != val) {
2246                         ecore_wr(p_hwfn, p_ptt,
2247                                  IGU_REG_MAPPING_MEMORY +
2248                                  sizeof(u32) * igu_sb_id,
2249                                  val);
2250
2251                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2252                                    "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2253                                    igu_sb_id, p_block->function_id,
2254                                    p_block->is_pf, p_block->vector_number,
2255                                    rval, val);
2256                 }
2257         }
2258
2259         return 0;
2260 }
2261
2262 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2263                                     struct ecore_ptt *p_ptt)
2264 {
2265         struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2266
2267         /* Return all the usage indications to default prior to the reset;
2268          * The reset expects the !orig to reflect the initial status of the
2269          * SBs, and would re-calculate the originals based on those.
2270          */
2271         p_cnt->cnt = p_cnt->orig;
2272         p_cnt->free_cnt = p_cnt->orig;
2273         p_cnt->iov_cnt = p_cnt->iov_orig;
2274         p_cnt->free_cnt_iov = p_cnt->iov_orig;
2275         p_cnt->orig = 0;
2276         p_cnt->iov_orig = 0;
2277
2278         /* TODO - we probably need to re-configure the CAU as well... */
2279         return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2280 }
2281
2282 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2283                                          struct ecore_ptt *p_ptt,
2284                                          u16 igu_sb_id)
2285 {
2286         u32 val = ecore_rd(p_hwfn, p_ptt,
2287                            IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2288         struct ecore_igu_block *p_block;
2289
2290         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2291
2292         /* Fill the block information */
2293         p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2294         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2295         p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2296
2297         p_block->igu_sb_id = igu_sb_id;
2298 }
2299
2300 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2301                                             struct ecore_ptt *p_ptt)
2302 {
2303         struct ecore_igu_info *p_igu_info;
2304         struct ecore_igu_block *p_block;
2305         u32 min_vf = 0, max_vf = 0;
2306         u16 igu_sb_id;
2307
2308         p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2309                                                  GFP_KERNEL,
2310                                                  sizeof(*p_igu_info));
2311         if (!p_hwfn->hw_info.p_igu_info)
2312                 return ECORE_NOMEM;
2313         p_igu_info = p_hwfn->hw_info.p_igu_info;
2314
2315         /* Distinguish between existent and onn-existent default SB */
2316         p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2317
2318         /* Find the range of VF ids whose SB belong to this PF */
2319         if (p_hwfn->p_dev->p_iov_info) {
2320                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2321
2322                 min_vf = p_iov->first_vf_in_pf;
2323                 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2324         }
2325
2326         for (igu_sb_id = 0;
2327              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2328              igu_sb_id++) {
2329                 /* Read current entry; Notice it might not belong to this PF */
2330                 ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2331                 p_block = &p_igu_info->entry[igu_sb_id];
2332
2333                 if ((p_block->is_pf) &&
2334                     (p_block->function_id == p_hwfn->rel_pf_id)) {
2335                         p_block->status = ECORE_IGU_STATUS_PF |
2336                                           ECORE_IGU_STATUS_VALID |
2337                                           ECORE_IGU_STATUS_FREE;
2338
2339                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2340                                 p_igu_info->usage.cnt++;
2341                 } else if (!(p_block->is_pf) &&
2342                            (p_block->function_id >= min_vf) &&
2343                            (p_block->function_id < max_vf)) {
2344                         /* Available for VFs of this PF */
2345                         p_block->status = ECORE_IGU_STATUS_VALID |
2346                                           ECORE_IGU_STATUS_FREE;
2347
2348                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2349                                 p_igu_info->usage.iov_cnt++;
2350                 }
2351
2352                 /* Mark the First entry belonging to the PF or its VFs
2353                  * as the default SB [we'll reset IGU prior to first usage].
2354                  */
2355                 if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2356                     (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2357                         p_igu_info->igu_dsb_id = igu_sb_id;
2358                         p_block->status |= ECORE_IGU_STATUS_DSB;
2359                 }
2360
2361                 /* While this isn't suitable for all clients, limit number
2362                  * of prints by having each PF print only its entries with the
2363                  * exception of PF0 which would print everything.
2364                  */
2365                 if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2366                     (p_hwfn->abs_pf_id == 0))
2367                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2368                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2369                                    igu_sb_id, p_block->function_id,
2370                                    p_block->is_pf, p_block->vector_number);
2371         }
2372
2373         if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2374                 DP_NOTICE(p_hwfn, true,
2375                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2376                           p_igu_info->igu_dsb_id);
2377                 return ECORE_INVAL;
2378         }
2379
2380         /* All non default SB are considered free at this point */
2381         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2382         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2383
2384         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2385                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2386                    p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2387                    p_igu_info->usage.iov_cnt);
2388
2389         return ECORE_SUCCESS;
2390 }
2391
2392 enum _ecore_status_t
2393 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2394                           u16 sb_id, bool b_to_vf)
2395 {
2396         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2397         struct ecore_igu_block *p_block = OSAL_NULL;
2398         u16 igu_sb_id = 0, vf_num = 0;
2399         u32 val = 0;
2400
2401         if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2402                 return ECORE_INVAL;
2403
2404         if (sb_id == ECORE_SP_SB_ID)
2405                 return ECORE_INVAL;
2406
2407         if (!p_info->b_allow_pf_vf_change) {
2408                 DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2409                 return ECORE_INVAL;
2410         }
2411
2412         /* If we're moving a SB from PF to VF, the client had to specify
2413          * which vector it wants to move.
2414          */
2415         if (b_to_vf) {
2416                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2417                 if (igu_sb_id == ECORE_SB_INVALID_IDX)
2418                         return ECORE_INVAL;
2419         }
2420
2421         /* If we're moving a SB from VF to PF, need to validate there isn't
2422          * already a line configured for that vector.
2423          */
2424         if (!b_to_vf) {
2425                 if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2426                     ECORE_SB_INVALID_IDX)
2427                         return ECORE_INVAL;
2428         }
2429
2430         /* We need to validate that the SB can actually be relocated.
2431          * This would also handle the previous case where we've explicitly
2432          * stated which IGU SB needs to move.
2433          */
2434         for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2435              igu_sb_id++) {
2436                 p_block = &p_info->entry[igu_sb_id];
2437
2438                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2439                     !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2440                     (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2441                         if (b_to_vf)
2442                                 return ECORE_INVAL;
2443                         else
2444                                 continue;
2445                 }
2446
2447                 break;
2448         }
2449
2450         if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2451                 DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2452                            "Failed to find a free SB to move\n");
2453                 return ECORE_INVAL;
2454         }
2455
2456         /* At this point, p_block points to the SB we want to relocate */
2457         if (b_to_vf) {
2458                 p_block->status &= ~ECORE_IGU_STATUS_PF;
2459
2460                 /* It doesn't matter which VF number we choose, since we're
2461                  * going to disable the line; But let's keep it in range.
2462                  */
2463                 vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2464
2465                 p_block->function_id = (u8)vf_num;
2466                 p_block->is_pf = 0;
2467                 p_block->vector_number = 0;
2468
2469                 p_info->usage.cnt--;
2470                 p_info->usage.free_cnt--;
2471                 p_info->usage.iov_cnt++;
2472                 p_info->usage.free_cnt_iov++;
2473
2474                 /* TODO - if SBs aren't really the limiting factor,
2475                  * then it might not be accurate [in the since that
2476                  * we might not need decrement the feature].
2477                  */
2478                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2479                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2480         } else {
2481                 p_block->status |= ECORE_IGU_STATUS_PF;
2482                 p_block->function_id = p_hwfn->rel_pf_id;
2483                 p_block->is_pf = 1;
2484                 p_block->vector_number = sb_id + 1;
2485
2486                 p_info->usage.cnt++;
2487                 p_info->usage.free_cnt++;
2488                 p_info->usage.iov_cnt--;
2489                 p_info->usage.free_cnt_iov--;
2490
2491                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2492                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2493         }
2494
2495         /* Update the IGU and CAU with the new configuration */
2496         SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2497                   p_block->function_id);
2498         SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2499         SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2500         SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2501                   p_block->vector_number);
2502
2503         ecore_wr(p_hwfn, p_ptt,
2504                  IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2505                  val);
2506
2507         ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2508                               igu_sb_id, vf_num,
2509                               p_block->is_pf ? 0 : 1);
2510
2511         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2512                    "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2513                    igu_sb_id, p_block->function_id,
2514                    p_block->is_pf, p_block->vector_number);
2515
2516         return ECORE_SUCCESS;
2517 }
2518
2519 /**
2520  * @brief Initialize igu runtime registers
2521  *
2522  * @param p_hwfn
2523  */
2524 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2525 {
2526         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2527
2528         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2529 }
2530
2531 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2532                           IGU_CMD_INT_ACK_BASE)
2533 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2534                           IGU_CMD_INT_ACK_BASE)
2535 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2536 {
2537         u32 intr_status_hi = 0, intr_status_lo = 0;
2538         u64 intr_status = 0;
2539
2540         intr_status_lo = REG_RD(p_hwfn,
2541                                 GTT_BAR0_MAP_REG_IGU_CMD +
2542                                 LSB_IGU_CMD_ADDR * 8);
2543         intr_status_hi = REG_RD(p_hwfn,
2544                                 GTT_BAR0_MAP_REG_IGU_CMD +
2545                                 MSB_IGU_CMD_ADDR * 8);
2546         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2547
2548         return intr_status;
2549 }
2550
2551 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2552 {
2553         OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2554         p_hwfn->b_sp_dpc_enabled = true;
2555 }
2556
2557 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2558 {
2559         p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2560         if (!p_hwfn->sp_dpc)
2561                 return ECORE_NOMEM;
2562
2563         return ECORE_SUCCESS;
2564 }
2565
2566 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2567 {
2568         OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2569 }
2570
2571 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2572                                      struct ecore_ptt *p_ptt)
2573 {
2574         enum _ecore_status_t rc = ECORE_SUCCESS;
2575
2576         rc = ecore_int_sp_dpc_alloc(p_hwfn);
2577         if (rc != ECORE_SUCCESS) {
2578                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2579                 return rc;
2580         }
2581
2582         rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2583         if (rc != ECORE_SUCCESS) {
2584                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2585                 return rc;
2586         }
2587
2588         rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2589         if (rc != ECORE_SUCCESS)
2590                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2591
2592         return rc;
2593 }
2594
2595 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2596 {
2597         ecore_int_sp_sb_free(p_hwfn);
2598         ecore_int_sb_attn_free(p_hwfn);
2599         ecore_int_sp_dpc_free(p_hwfn);
2600 }
2601
2602 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2603 {
2604         if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2605                 return;
2606
2607         ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2608         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2609         ecore_int_sp_dpc_setup(p_hwfn);
2610 }
2611
2612 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2613                            struct ecore_sb_cnt_info *p_sb_cnt_info)
2614 {
2615         struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2616
2617         if (!p_igu_info || !p_sb_cnt_info)
2618                 return;
2619
2620         OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2621                     sizeof(*p_sb_cnt_info));
2622 }
2623
2624 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2625 {
2626         int i;
2627
2628         for_each_hwfn(p_dev, i)
2629                 p_dev->hwfns[i].b_int_requested = false;
2630 }
2631
2632 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2633 {
2634         p_dev->attn_clr_en = clr_enable;
2635 }
2636
2637 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2638                                              struct ecore_ptt *p_ptt,
2639                                              u8 timer_res, u16 sb_id, bool tx)
2640 {
2641         struct cau_sb_entry sb_entry;
2642         enum _ecore_status_t rc;
2643
2644         if (!p_hwfn->hw_init_done) {
2645                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2646                 return ECORE_INVAL;
2647         }
2648
2649         rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2650                                  sb_id * sizeof(u64),
2651                                  (u64)(osal_uintptr_t)&sb_entry, 2,
2652                                  OSAL_NULL /* default parameters */);
2653         if (rc != ECORE_SUCCESS) {
2654                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2655                 return rc;
2656         }
2657
2658         if (tx)
2659                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2660         else
2661                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2662
2663         rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2664                                  (u64)(osal_uintptr_t)&sb_entry,
2665                                  CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2,
2666                                  OSAL_NULL /* default parameters */);
2667         if (rc != ECORE_SUCCESS) {
2668                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2669                 return rc;
2670         }
2671
2672         return rc;
2673 }
2674
2675 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2676                                           struct ecore_ptt *p_ptt,
2677                                           struct ecore_sb_info *p_sb,
2678                                           struct ecore_sb_info_dbg *p_info)
2679 {
2680         u16 sbid = p_sb->igu_sb_id;
2681         int i;
2682
2683         if (IS_VF(p_hwfn->p_dev))
2684                 return ECORE_INVAL;
2685
2686         if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2687                 return ECORE_INVAL;
2688
2689         p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2690                                     IGU_REG_PRODUCER_MEMORY + sbid * 4);
2691         p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2692                                     IGU_REG_CONSUMER_MEM + sbid * 4);
2693
2694         for (i = 0; i < PIS_PER_SB_E4; i++)
2695                 p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2696                                               CAU_REG_PI_MEMORY +
2697                                               sbid * 4 * PIS_PER_SB_E4 +
2698                                               i * 4);
2699
2700         return ECORE_SUCCESS;
2701 }
2702
2703 void ecore_pf_flr_igu_cleanup(struct ecore_hwfn *p_hwfn)
2704 {
2705         struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2706         struct ecore_ptt *p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
2707                                                              RESERVED_PTT_DPC);
2708         int i;
2709
2710         /* Do not reorder the following cleanup sequence */
2711         /* Ack all attentions */
2712         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ACK_BITS, 0xfff);
2713
2714         /* Clear driver attention */
2715         ecore_wr(p_hwfn,  p_dpc_ptt,
2716                 ((p_hwfn->rel_pf_id << 3) + MISC_REG_AEU_GENERAL_ATTN_0), 0);
2717
2718         /* Clear per-PF IGU registers to restore them as if the IGU
2719          * was reset for this PF
2720          */
2721         ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
2722         ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
2723         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
2724
2725         /* Execute IGU clean up*/
2726         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_FUNCTIONAL_CLEANUP, 1);
2727
2728         /* Clear Stats */
2729         ecore_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_OF_INTA_ASSERTED, 0);
2730
2731         for (i = 0; i < IGU_REG_PBA_STS_PF_SIZE; i++)
2732                 ecore_wr(p_hwfn, p_ptt, IGU_REG_PBA_STS_PF + i * 4, 0);
2733 }