net/qede/base: use passed ptt handler
[dpdk.git] / drivers / net / qede / base / ecore_int.c
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8
9 #include "bcm_osal.h"
10 #include "ecore.h"
11 #include "ecore_spq.h"
12 #include "reg_addr.h"
13 #include "ecore_gtt_reg_addr.h"
14 #include "ecore_init_ops.h"
15 #include "ecore_rt_defs.h"
16 #include "ecore_int.h"
17 #include "reg_addr.h"
18 #include "ecore_hw.h"
19 #include "ecore_sriov.h"
20 #include "ecore_vf.h"
21 #include "ecore_hw_defs.h"
22 #include "ecore_hsi_common.h"
23 #include "ecore_mcp.h"
24
25 struct ecore_pi_info {
26         ecore_int_comp_cb_t comp_cb;
27         void *cookie;           /* Will be sent to the compl cb function */
28 };
29
30 struct ecore_sb_sp_info {
31         struct ecore_sb_info sb_info;
32         /* per protocol index data */
33         struct ecore_pi_info pi_info_arr[PIS_PER_SB];
34 };
35
36 enum ecore_attention_type {
37         ECORE_ATTN_TYPE_ATTN,
38         ECORE_ATTN_TYPE_PARITY,
39 };
40
41 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
42         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
43
44 struct aeu_invert_reg_bit {
45         char bit_name[30];
46
47 #define ATTENTION_PARITY                (1 << 0)
48
49 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
50 #define ATTENTION_LENGTH_SHIFT          (4)
51 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
52                                          ATTENTION_LENGTH_SHIFT)
53 #define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
54 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
55 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
56                                          ATTENTION_PARITY)
57
58 /* Multiple bits start with this offset */
59 #define ATTENTION_OFFSET_MASK           (0x000ff000)
60 #define ATTENTION_OFFSET_SHIFT          (12)
61
62 #define ATTENTION_BB_MASK               (0x00700000)
63 #define ATTENTION_BB_SHIFT              (20)
64 #define ATTENTION_BB(value)             ((value) << ATTENTION_BB_SHIFT)
65 #define ATTENTION_BB_DIFFERENT          (1 << 23)
66
67 #define ATTENTION_CLEAR_ENABLE          (1 << 28)
68         unsigned int flags;
69
70         /* Callback to call if attention will be triggered */
71         enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
72
73         enum block_id block_index;
74 };
75
76 struct aeu_invert_reg {
77         struct aeu_invert_reg_bit bits[32];
78 };
79
80 #define MAX_ATTN_GRPS           (8)
81 #define NUM_ATTN_REGS           (9)
82
83 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
84 {
85         u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
86
87         DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
88         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
89
90         return ECORE_SUCCESS;
91 }
92
93 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK         (0x3c000)
94 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT        (14)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK         (0x03fc0)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT        (6)
97 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK      (0x00020)
98 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT     (5)
99 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK     (0x0001e)
100 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT    (1)
101 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK      (0x1)
102 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT     (0)
103 #define ECORE_PSWHST_ATTENTION_VF_DISABLED              (0x1)
104 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS         (0x1)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK         (0x1)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT        (0)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK     (0x1e)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT    (1)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK   (0x20)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT  (5)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK      (0x3fc0)
112 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT     (6)
113 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK      (0x3c000)
114 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT     (14)
115 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK    (0x3fc0000)
116 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT   (18)
117 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
118 {
119         u32 tmp =
120             ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
121                      PSWHST_REG_VF_DISABLED_ERROR_VALID);
122
123         /* Disabled VF access */
124         if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
125                 u32 addr, data;
126
127                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
128                                 PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
129                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
130                                 PSWHST_REG_VF_DISABLED_ERROR_DATA);
131                 DP_INFO(p_hwfn->p_dev,
132                         "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
133                         " Write [0x%02x] Addr [0x%08x]\n",
134                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
135                              >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
136                         (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
137                              >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
138                         (u8)((data &
139                               ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
140                               ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
141                         (u8)((data &
142                               ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
143                               ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
144                         (u8)((data &
145                               ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
146                               ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
147                         addr);
148         }
149
150         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
151                        PSWHST_REG_INCORRECT_ACCESS_VALID);
152         if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
153                 u32 addr, data, length;
154
155                 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
156                                 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
157                 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
158                                 PSWHST_REG_INCORRECT_ACCESS_DATA);
159                 length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
160                                   PSWHST_REG_INCORRECT_ACCESS_LENGTH);
161
162                 DP_INFO(p_hwfn->p_dev,
163                         "Incorrect access to %08x of length %08x - PF [%02x]"
164                         " VF [%04x] [valid %02x] client [%02x] write [%02x]"
165                         " Byte-Enable [%04x] [%08x]\n",
166                         addr, length,
167                         (u8)((data &
168                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
169                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
170                         (u8)((data &
171                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
172                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
173                         (u8)((data &
174                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
175                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
176                         (u8)((data &
177                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
178                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
179                         (u8)((data &
180                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
181                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
182                         (u8)((data &
183                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
184                       ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
185                         data);
186         }
187
188         /* TODO - We know 'some' of these are legal due to virtualization,
189          * but is it true for all of them?
190          */
191         return ECORE_SUCCESS;
192 }
193
194 #define ECORE_GRC_ATTENTION_VALID_BIT           (1 << 0)
195 #define ECORE_GRC_ATTENTION_ADDRESS_MASK        (0x7fffff << 0)
196 #define ECORE_GRC_ATTENTION_RDWR_BIT            (1 << 23)
197 #define ECORE_GRC_ATTENTION_MASTER_MASK         (0xf << 24)
198 #define ECORE_GRC_ATTENTION_MASTER_SHIFT        (24)
199 #define ECORE_GRC_ATTENTION_PF_MASK             (0xf)
200 #define ECORE_GRC_ATTENTION_VF_MASK             (0xff << 4)
201 #define ECORE_GRC_ATTENTION_VF_SHIFT            (4)
202 #define ECORE_GRC_ATTENTION_PRIV_MASK           (0x3 << 14)
203 #define ECORE_GRC_ATTENTION_PRIV_SHIFT          (14)
204 #define ECORE_GRC_ATTENTION_PRIV_VF             (0)
205 static const char *grc_timeout_attn_master_to_str(u8 master)
206 {
207         switch (master) {
208         case 1:
209                 return "PXP";
210         case 2:
211                 return "MCP";
212         case 3:
213                 return "MSDM";
214         case 4:
215                 return "PSDM";
216         case 5:
217                 return "YSDM";
218         case 6:
219                 return "USDM";
220         case 7:
221                 return "TSDM";
222         case 8:
223                 return "XSDM";
224         case 9:
225                 return "DBU";
226         case 10:
227                 return "DMAE";
228         default:
229                 return "Unknown";
230         }
231 }
232
233 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
234 {
235         u32 tmp, tmp2;
236
237         /* We've already cleared the timeout interrupt register, so we learn
238          * of interrupts via the validity register
239          */
240         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
241                        GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
242         if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
243                 goto out;
244
245         /* Read the GRC timeout information */
246         tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
247                        GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
248         tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
249                         GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
250
251         DP_NOTICE(p_hwfn->p_dev, false,
252                   "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
253                   tmp2, tmp,
254                   (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
255                                                        : "Read from",
256                   (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
257                   grc_timeout_attn_master_to_str(
258                         (tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
259                          ECORE_GRC_ATTENTION_MASTER_SHIFT),
260                   (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
261                   (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
262                   ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
263                   ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
264                   (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
265                   ECORE_GRC_ATTENTION_VF_SHIFT);
266
267 out:
268         /* Regardles of anything else, clean the validity bit */
269         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
270                  GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
271         return ECORE_SUCCESS;
272 }
273
274 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
275 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
276 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
277 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
278 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
279 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
280 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
281 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
282 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME      (1 << 22)
283 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
284 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
285 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
286 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
287
288 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
289                                                    struct ecore_ptt *p_ptt)
290 {
291         u32 tmp;
292
293         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
294         if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
295                 u32 addr_lo, addr_hi, details;
296
297                 addr_lo = ecore_rd(p_hwfn, p_ptt,
298                                    PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
299                 addr_hi = ecore_rd(p_hwfn, p_ptt,
300                                    PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
301                 details = ecore_rd(p_hwfn, p_ptt,
302                                    PGLUE_B_REG_TX_ERR_WR_DETAILS);
303
304                 DP_NOTICE(p_hwfn, false,
305                           "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
306                           addr_hi, addr_lo, details,
307                           (u8)((details &
308                                 ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
309                                ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
310                           (u8)((details &
311                                 ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
312                                ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
313                           (u8)((details &
314                                ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
315                           tmp,
316                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
317                                 1 : 0),
318                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
319                                 1 : 0),
320                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
321                                 1 : 0));
322         }
323
324         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
325         if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
326                 u32 addr_lo, addr_hi, details;
327
328                 addr_lo = ecore_rd(p_hwfn, p_ptt,
329                                    PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
330                 addr_hi = ecore_rd(p_hwfn, p_ptt,
331                                    PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
332                 details = ecore_rd(p_hwfn, p_ptt,
333                                    PGLUE_B_REG_TX_ERR_RD_DETAILS);
334
335                 DP_NOTICE(p_hwfn, false,
336                           "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
337                           addr_hi, addr_lo, details,
338                           (u8)((details &
339                                 ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
340                                ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
341                           (u8)((details &
342                                 ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
343                                ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
344                           (u8)((details &
345                                ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
346                           tmp,
347                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
348                                 1 : 0),
349                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
350                                 1 : 0),
351                           (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
352                                 1 : 0));
353         }
354
355         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
356         if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
357                 DP_NOTICE(p_hwfn, false, "ICPL erorr - %08x\n", tmp);
358
359         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
360         if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
361                 u32 addr_hi, addr_lo;
362
363                 addr_lo = ecore_rd(p_hwfn, p_ptt,
364                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
365                 addr_hi = ecore_rd(p_hwfn, p_ptt,
366                                    PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
367
368                 DP_NOTICE(p_hwfn, false,
369                           "ICPL erorr - %08x [Address %08x:%08x]\n",
370                           tmp, addr_hi, addr_lo);
371         }
372
373         tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
374         if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
375                 u32 addr_hi, addr_lo, details;
376
377                 addr_lo = ecore_rd(p_hwfn, p_ptt,
378                                    PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
379                 addr_hi = ecore_rd(p_hwfn, p_ptt,
380                                    PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
381                 details = ecore_rd(p_hwfn, p_ptt,
382                                    PGLUE_B_REG_VF_ILT_ERR_DETAILS);
383
384                 DP_NOTICE(p_hwfn, false,
385                           "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
386                           details, tmp, addr_hi, addr_lo);
387         }
388
389         /* Clear the indications */
390         ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
391
392         return ECORE_SUCCESS;
393 }
394
395 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
396 {
397         return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
398 }
399
400 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
401 {
402         DP_NOTICE(p_hwfn, false, "FW assertion!\n");
403
404         ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
405
406         return ECORE_INVAL;
407 }
408
409 static enum _ecore_status_t
410 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
411 {
412         DP_INFO(p_hwfn, "General attention 35!\n");
413
414         return ECORE_SUCCESS;
415 }
416
417 #define ECORE_DORQ_ATTENTION_REASON_MASK (0xfffff)
418 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
419 #define ECORE_DORQ_ATTENTION_SIZE_MASK   (0x7f0000)
420 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT  (16)
421
422 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
423 {
424         u32 reason;
425
426         reason = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, DORQ_REG_DB_DROP_REASON) &
427             ECORE_DORQ_ATTENTION_REASON_MASK;
428         if (reason) {
429                 u32 details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
430                                        DORQ_REG_DB_DROP_DETAILS);
431
432                 DP_INFO(p_hwfn->p_dev,
433                         "DORQ db_drop: address 0x%08x Opaque FID 0x%04x"
434                         " Size [bytes] 0x%08x Reason: 0x%08x\n",
435                         ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
436                                  DORQ_REG_DB_DROP_DETAILS_ADDRESS),
437                         (u16)(details & ECORE_DORQ_ATTENTION_OPAQUE_MASK),
438                         ((details & ECORE_DORQ_ATTENTION_SIZE_MASK) >>
439                          ECORE_DORQ_ATTENTION_SIZE_SHIFT) * 4, reason);
440         }
441
442         return ECORE_INVAL;
443 }
444
445 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
446 {
447 #ifndef ASIC_ONLY
448         if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
449                 u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
450                                    TM_REG_INT_STS_1);
451
452                 if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
453                             TM_REG_INT_STS_1_PEND_CONN_SCAN))
454                         return ECORE_INVAL;
455
456                 if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
457                            TM_REG_INT_STS_1_PEND_CONN_SCAN))
458                         DP_INFO(p_hwfn,
459                                 "TM attention on emulation - most likely"
460                                 " results of clock-ratios\n");
461                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
462                 val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
463                     TM_REG_INT_MASK_1_PEND_TASK_SCAN;
464                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
465
466                 return ECORE_SUCCESS;
467         }
468 #endif
469
470         return ECORE_INVAL;
471 }
472
473 /* Instead of major changes to the data-structure, we have a some 'special'
474  * identifiers for sources that changed meaning between adapters.
475  */
476 enum aeu_invert_reg_special_type {
477         AEU_INVERT_REG_SPECIAL_CNIG_0,
478         AEU_INVERT_REG_SPECIAL_CNIG_1,
479         AEU_INVERT_REG_SPECIAL_CNIG_2,
480         AEU_INVERT_REG_SPECIAL_CNIG_3,
481         AEU_INVERT_REG_SPECIAL_MAX,
482 };
483
484 static struct aeu_invert_reg_bit
485 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
486         {"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
487         {"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
488         {"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
489         {"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
490 };
491
492 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
493 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
494         {
495          {                      /* After Invert 1 */
496           {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
497            MAX_BLOCK_ID},
498           }
499          },
500
501         {
502          {                      /* After Invert 2 */
503           {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
504           {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
505           {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb,
506            BLOCK_PGLUE_B},
507           {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
508           {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
509           {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
510           {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
511           {"SW timers #%d",
512            (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
513            OSAL_NULL, MAX_BLOCK_ID},
514           {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
515            BLOCK_PGLCS},
516           }
517          },
518
519         {
520          {                      /* After Invert 3 */
521           {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
522            MAX_BLOCK_ID},
523           }
524          },
525
526         {
527          {                      /* After Invert 4 */
528           {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
529            ecore_fw_assertion, MAX_BLOCK_ID},
530           {"General Attention %d",
531            (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
532            OSAL_NULL, MAX_BLOCK_ID},
533           {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
534            ecore_general_attention_35, MAX_BLOCK_ID},
535           {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
536                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
537                          OSAL_NULL, BLOCK_NWS},
538           {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
539                             ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
540                             OSAL_NULL, BLOCK_NWS},
541           {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
542                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
543                          OSAL_NULL, BLOCK_NWM},
544           {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
545                             ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
546                             OSAL_NULL, BLOCK_NWM},
547           {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
548           {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
549           {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
550           {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
551           {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
552           {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
553           {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
554            MAX_BLOCK_ID},
555           {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
556           {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
557           {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
558           {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
559           {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
560           }
561          },
562
563         {
564          {                      /* After Invert 5 */
565           {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
566           {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
567           {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
568           {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
569           {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
570           {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
571           {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
572           {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
573           {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
574           {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
575           {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
576           {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
577           {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
578           {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
579           {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
580           {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
581           }
582          },
583
584         {
585          {                      /* After Invert 6 */
586           {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
587           {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
588           {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
589           {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
590           {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
591           {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
592           {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
593           {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
594           {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
595           {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
596           {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
597           {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
598           {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
599           {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
600           {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
601           {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
602           }
603          },
604
605         {
606          {                      /* After Invert 7 */
607           {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
608           {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
609           {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
610           {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
611           {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
612           {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
613           {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
614           {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
615           {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
616           {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
617           {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
618           {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
619           {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
620           {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
621           {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
622           {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
623           {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
624           }
625          },
626
627         {
628          {                      /* After Invert 8 */
629           {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
630           {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
631           {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
632           {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
633           {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
634           {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
635           {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
636           {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
637           {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
638           {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
639           {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
640           {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
641           {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
642           {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
643           {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
644           {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
645           {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
646           {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
647           {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
648           {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
649           {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
650            MAX_BLOCK_ID},
651           }
652          },
653
654         {
655          {                      /* After Invert 9 */
656           {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
657           {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
658            MAX_BLOCK_ID},
659           {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
660           {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
661           {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
662            MAX_BLOCK_ID},
663           }
664          },
665
666 };
667
668 static struct aeu_invert_reg_bit *
669 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
670                         struct aeu_invert_reg_bit *p_bit)
671 {
672         if (!ECORE_IS_BB(p_hwfn->p_dev))
673                 return p_bit;
674
675         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
676                 return p_bit;
677
678         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
679                                   ATTENTION_BB_SHIFT];
680 }
681
682 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
683                                      struct aeu_invert_reg_bit *p_bit)
684 {
685         return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
686                   ATTENTION_PARITY);
687 }
688
689 #define ATTN_STATE_BITS         (0xfff)
690 #define ATTN_BITS_MASKABLE      (0x3ff)
691 struct ecore_sb_attn_info {
692         /* Virtual & Physical address of the SB */
693         struct atten_status_block *sb_attn;
694         dma_addr_t sb_phys;
695
696         /* Last seen running index */
697         u16 index;
698
699         /* A mask of the AEU bits resulting in a parity error */
700         u32 parity_mask[NUM_ATTN_REGS];
701
702         /* A pointer to the attention description structure */
703         struct aeu_invert_reg *p_aeu_desc;
704
705         /* Previously asserted attentions, which are still unasserted */
706         u16 known_attn;
707
708         /* Cleanup address for the link's general hw attention */
709         u32 mfw_attn_addr;
710 };
711
712 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
713                                  struct ecore_sb_attn_info *p_sb_desc)
714 {
715         u16 rc = 0, index;
716
717         OSAL_MMIOWB(p_hwfn->p_dev);
718
719         index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
720         if (p_sb_desc->index != index) {
721                 p_sb_desc->index = index;
722                 rc = ECORE_SB_ATT_IDX;
723         }
724
725         OSAL_MMIOWB(p_hwfn->p_dev);
726
727         return rc;
728 }
729
730 /**
731  * @brief ecore_int_assertion - handles asserted attention bits
732  *
733  * @param p_hwfn
734  * @param asserted_bits newly asserted bits
735  * @return enum _ecore_status_t
736  */
737 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
738                                                 u16 asserted_bits)
739 {
740         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
741         u32 igu_mask;
742
743         /* Mask the source of the attention in the IGU */
744         igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
745                             IGU_REG_ATTENTION_ENABLE);
746         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
747                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
748         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
749         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
750
751         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
752                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
753                    sb_attn_sw->known_attn,
754                    sb_attn_sw->known_attn | asserted_bits);
755         sb_attn_sw->known_attn |= asserted_bits;
756
757         /* Handle MCP events */
758         if (asserted_bits & 0x100) {
759                 ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
760                 /* Clean the MCP attention */
761                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
762                          sb_attn_sw->mfw_attn_addr, 0);
763         }
764
765         /* FIXME - this will change once we'll have GOOD gtt definitions */
766         DIRECT_REG_WR(p_hwfn,
767                       (u8 OSAL_IOMEM *) p_hwfn->regview +
768                       GTT_BAR0_MAP_REG_IGU_CMD +
769                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
770                         IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
771
772         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
773                    asserted_bits);
774
775         return ECORE_SUCCESS;
776 }
777
778 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
779                                  enum block_id id, enum dbg_attn_type type,
780                                  bool b_clear)
781 {
782         /* @DPDK */
783         DP_NOTICE(p_hwfn->p_dev, false, "[block_id %d type %d]\n", id, type);
784 }
785
786 /**
787  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
788  * cause of the attention
789  *
790  * @param p_hwfn
791  * @param p_aeu - descriptor of an AEU bit which caused the attention
792  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
793  *  this bit to this group.
794  * @param bit_index - index of this bit in the aeu_en_reg
795  *
796  * @return enum _ecore_status_t
797  */
798 static enum _ecore_status_t
799 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
800                               struct aeu_invert_reg_bit *p_aeu,
801                               u32 aeu_en_reg,
802                               const char *p_bit_name,
803                               u32 bitmask)
804 {
805         enum _ecore_status_t rc = ECORE_INVAL;
806         bool b_fatal = false;
807
808         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
809                 p_bit_name, bitmask);
810
811         /* Call callback before clearing the interrupt status */
812         if (p_aeu->cb) {
813                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
814                         p_bit_name);
815                 rc = p_aeu->cb(p_hwfn);
816         }
817
818         if (rc != ECORE_SUCCESS)
819                 b_fatal = true;
820
821         /* Print HW block interrupt registers */
822         if (p_aeu->block_index != MAX_BLOCK_ID) {
823                 ecore_int_attn_print(p_hwfn, p_aeu->block_index,
824                                      ATTN_TYPE_INTERRUPT, !b_fatal);
825 }
826
827         /* @DPDK */
828         /* Reach assertion if attention is fatal */
829         if (b_fatal || (strcmp(p_bit_name, "PGLUE B RBC") == 0)) {
830                 DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
831                           p_bit_name);
832
833                 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
834         }
835
836         /* Prevent this Attention from being asserted in the future */
837         if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
838             p_hwfn->p_dev->attn_clr_en) {
839                 u32 val;
840                 u32 mask = ~bitmask;
841                 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
842                 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
843                 DP_ERR(p_hwfn, "`%s' - Disabled future attentions\n",
844                         p_bit_name);
845         }
846
847         return rc;
848 }
849
850 /**
851  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
852  *
853  * @param p_hwfn
854  * @param p_aeu - descriptor of an AEU bit which caused the
855  *              parity
856  * @param bit_index
857  */
858 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
859                                          struct aeu_invert_reg_bit *p_aeu,
860                                          u8 bit_index)
861 {
862         u32 block_id = p_aeu->block_index;
863
864         DP_INFO(p_hwfn->p_dev, "%s[%d] parity attention is set\n",
865                 p_aeu->bit_name, bit_index);
866
867         if (block_id == MAX_BLOCK_ID)
868                 return;
869
870         ecore_int_attn_print(p_hwfn, block_id,
871                              ATTN_TYPE_PARITY, false);
872
873         /* In A0, there's a single parity bit for several blocks */
874         if (block_id == BLOCK_BTB) {
875                 ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
876                                      ATTN_TYPE_PARITY, false);
877                 ecore_int_attn_print(p_hwfn, BLOCK_MCP,
878                                      ATTN_TYPE_PARITY, false);
879         }
880 }
881
882 /**
883  * @brief - handles deassertion of previously asserted attentions.
884  *
885  * @param p_hwfn
886  * @param deasserted_bits - newly deasserted bits
887  * @return enum _ecore_status_t
888  *
889  */
890 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
891                                                   u16 deasserted_bits)
892 {
893         struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
894         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask;
895         bool b_parity = false;
896         u8 i, j, k, bit_idx;
897         enum _ecore_status_t rc = ECORE_SUCCESS;
898
899         /* Read the attention registers in the AEU */
900         for (i = 0; i < NUM_ATTN_REGS; i++) {
901                 aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
902                                           MISC_REG_AEU_AFTER_INVERT_1_IGU +
903                                           i * 0x4);
904                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
905                            "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
906         }
907
908         /* Handle parity attentions first */
909         for (i = 0; i < NUM_ATTN_REGS; i++) {
910                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
911                 u32 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
912                                   MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
913                                   i * sizeof(u32));
914
915                 u32 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
916
917                 /* Skip register in which no parity bit is currently set */
918                 if (!parities)
919                         continue;
920
921                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
922                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
923
924                         if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
925                             !!(parities & (1 << bit_idx))) {
926                                 ecore_int_deassertion_parity(p_hwfn, p_bit,
927                                                              bit_idx);
928                                 b_parity = true;
929                         }
930
931                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
932                 }
933         }
934
935         /* Find non-parity cause for attention and act */
936         for (k = 0; k < MAX_ATTN_GRPS; k++) {
937                 struct aeu_invert_reg_bit *p_aeu;
938
939                 /* Handle only groups whose attention is currently deasserted */
940                 if (!(deasserted_bits & (1 << k)))
941                         continue;
942
943                 for (i = 0; i < NUM_ATTN_REGS; i++) {
944                         u32 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
945                             i * sizeof(u32) + k * sizeof(u32) * NUM_ATTN_REGS;
946                         u32 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
947                         u32 bits = aeu_inv_arr[i] & en;
948
949                         /* Skip if no bit from this group is currently set */
950                         if (!bits)
951                                 continue;
952
953                         /* Find all set bits from current register which belong
954                          * to current group, making them responsible for the
955                          * previous assertion.
956                          */
957                         for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
958                                 unsigned long int bitmask;
959                                 u8 bit, bit_len;
960
961                                 /* Need to account bits with changed meaning */
962                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
963
964                                 bit = bit_idx;
965                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
966                                 if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
967                                         /* Skip Parity */
968                                         bit++;
969                                         bit_len--;
970                                 }
971
972                                 /* Find the bits relating to HW-block, then
973                                  * shift so they'll become LSB.
974                                  */
975                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
976                                 bitmask >>= bit;
977
978                                 if (bitmask) {
979                                         u32 flags = p_aeu->flags;
980                                         char bit_name[30];
981                                         u8 num;
982
983                                         num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
984                                                                 bit_len);
985
986                                         /* Some bits represent more than a
987                                          * a single interrupt. Correctly print
988                                          * their name.
989                                          */
990                                         if (ATTENTION_LENGTH(flags) > 2 ||
991                                             ((flags & ATTENTION_PAR_INT) &&
992                                             ATTENTION_LENGTH(flags) > 1))
993                                                 OSAL_SNPRINTF(bit_name, 30,
994                                                               p_aeu->bit_name,
995                                                               num);
996                                         else
997                                                 OSAL_STRNCPY(bit_name,
998                                                              p_aeu->bit_name,
999                                                              30);
1000
1001                                         /* We now need to pass bitmask in its
1002                                          * correct position.
1003                                          */
1004                                         bitmask <<= bit;
1005
1006                                         /* Handle source of the attention */
1007                                         ecore_int_deassertion_aeu_bit(p_hwfn,
1008                                                                       p_aeu,
1009                                                                       aeu_en,
1010                                                                       bit_name,
1011                                                                       bitmask);
1012                                 }
1013
1014                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1015                         }
1016                 }
1017         }
1018
1019         /* Clear IGU indication for the deasserted bits */
1020         /* FIXME - this will change once we'll have GOOD gtt definitions */
1021         DIRECT_REG_WR(p_hwfn,
1022                       (u8 OSAL_IOMEM *) p_hwfn->regview +
1023                       GTT_BAR0_MAP_REG_IGU_CMD +
1024                       ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1025                         IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
1026
1027         /* Unmask deasserted attentions in IGU */
1028         aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1029                             IGU_REG_ATTENTION_ENABLE);
1030         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1031         ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1032
1033         /* Clear deassertion from inner state */
1034         sb_attn_sw->known_attn &= ~deasserted_bits;
1035
1036         return rc;
1037 }
1038
1039 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1040 {
1041         struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1042         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1043         u16 index = 0, asserted_bits, deasserted_bits;
1044         u32 attn_bits = 0, attn_acks = 0;
1045         enum _ecore_status_t rc = ECORE_SUCCESS;
1046
1047         /* Read current attention bits/acks - safeguard against attentions
1048          * by guaranting work on a synchronized timeframe
1049          */
1050         do {
1051                 index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1052                 attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1053                 attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1054         } while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1055         p_sb_attn->sb_index = index;
1056
1057         /* Attention / Deassertion are meaningful (and in correct state)
1058          * only when they differ and consistent with known state - deassertion
1059          * when previous attention & current ack, and assertion when current
1060          * attention with no previous attention
1061          */
1062         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1063             ~p_sb_attn_sw->known_attn;
1064         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1065             p_sb_attn_sw->known_attn;
1066
1067         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1068                 DP_INFO(p_hwfn,
1069                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1070                         index, attn_bits, attn_acks, asserted_bits,
1071                         deasserted_bits, p_sb_attn_sw->known_attn);
1072         else if (asserted_bits == 0x100)
1073                 DP_INFO(p_hwfn, "MFW indication via attention\n");
1074         else
1075                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1076                            "MFW indication [deassertion]\n");
1077
1078         if (asserted_bits) {
1079                 rc = ecore_int_assertion(p_hwfn, asserted_bits);
1080                 if (rc)
1081                         return rc;
1082         }
1083
1084         if (deasserted_bits)
1085                 rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1086
1087         return rc;
1088 }
1089
1090 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1091                               void OSAL_IOMEM *igu_addr, u32 ack_cons)
1092 {
1093         struct igu_prod_cons_update igu_ack = { 0 };
1094
1095         igu_ack.sb_id_and_flags =
1096             ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1097              (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1098              (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1099              (IGU_SEG_ACCESS_ATTN <<
1100               IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1101
1102         DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1103
1104         /* Both segments (interrupts & acks) are written to same place address;
1105          * Need to guarantee all commands will be received (in-order) by HW.
1106          */
1107         OSAL_MMIOWB(p_hwfn->p_dev);
1108         OSAL_BARRIER(p_hwfn->p_dev);
1109 }
1110
1111 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1112 {
1113         struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1114         struct ecore_pi_info *pi_info = OSAL_NULL;
1115         struct ecore_sb_attn_info *sb_attn;
1116         struct ecore_sb_info *sb_info;
1117         int arr_size;
1118         u16 rc = 0;
1119
1120         if (!p_hwfn)
1121                 return;
1122
1123         if (!p_hwfn->p_sp_sb) {
1124                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1125                 return;
1126         }
1127
1128         sb_info = &p_hwfn->p_sp_sb->sb_info;
1129         arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1130         if (!sb_info) {
1131                 DP_ERR(p_hwfn->p_dev,
1132                        "Status block is NULL - cannot ack interrupts\n");
1133                 return;
1134         }
1135
1136         if (!p_hwfn->p_sb_attn) {
1137                 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1138                 return;
1139         }
1140         sb_attn = p_hwfn->p_sb_attn;
1141
1142         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1143                    p_hwfn, p_hwfn->my_id);
1144
1145         /* Disable ack for def status block. Required both for msix +
1146          * inta in non-mask mode, in inta does no harm.
1147          */
1148         ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1149
1150         /* Gather Interrupts/Attentions information */
1151         if (!sb_info->sb_virt) {
1152                 DP_ERR(p_hwfn->p_dev,
1153                        "Interrupt Status block is NULL -"
1154                        " cannot check for new interrupts!\n");
1155         } else {
1156                 u32 tmp_index = sb_info->sb_ack;
1157                 rc = ecore_sb_update_sb_idx(sb_info);
1158                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1159                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1160                            tmp_index, sb_info->sb_ack);
1161         }
1162
1163         if (!sb_attn || !sb_attn->sb_attn) {
1164                 DP_ERR(p_hwfn->p_dev,
1165                        "Attentions Status block is NULL -"
1166                        " cannot check for new attentions!\n");
1167         } else {
1168                 u16 tmp_index = sb_attn->index;
1169
1170                 rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1171                 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1172                            "Attention indices: 0x%08x --> 0x%08x\n",
1173                            tmp_index, sb_attn->index);
1174         }
1175
1176         /* Check if we expect interrupts at this time. if not just ack them */
1177         if (!(rc & ECORE_SB_EVENT_MASK)) {
1178                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1179                 return;
1180         }
1181
1182 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1183
1184         if (!p_hwfn->p_dpc_ptt) {
1185                 DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1186                 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1187                 return;
1188         }
1189
1190         if (rc & ECORE_SB_ATT_IDX)
1191                 ecore_int_attentions(p_hwfn);
1192
1193         if (rc & ECORE_SB_IDX) {
1194                 int pi;
1195
1196                 /* Since we only looked at the SB index, it's possible more
1197                  * than a single protocol-index on the SB incremented.
1198                  * Iterate over all configured protocol indices and check
1199                  * whether something happened for each.
1200                  */
1201                 for (pi = 0; pi < arr_size; pi++) {
1202                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1203                         if (pi_info->comp_cb != OSAL_NULL)
1204                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1205                 }
1206         }
1207
1208         if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1209                 /* This should be done before the interrupts are enabled,
1210                  * since otherwise a new attention will be generated.
1211                  */
1212                 ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1213         }
1214
1215         ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1216 }
1217
1218 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1219 {
1220         struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1221
1222         if (!p_sb)
1223                 return;
1224
1225         if (p_sb->sb_attn) {
1226                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1227                                        p_sb->sb_phys,
1228                                        SB_ATTN_ALIGNED_SIZE(p_hwfn));
1229         }
1230         OSAL_FREE(p_hwfn->p_dev, p_sb);
1231 }
1232
1233 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1234                                     struct ecore_ptt *p_ptt)
1235 {
1236         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1237
1238         OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1239
1240         sb_info->index = 0;
1241         sb_info->known_attn = 0;
1242
1243         /* Configure Attention Status Block in IGU */
1244         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1245                  DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1246         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1247                  DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1248 }
1249
1250 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1251                                    struct ecore_ptt *p_ptt,
1252                                    void *sb_virt_addr, dma_addr_t sb_phy_addr)
1253 {
1254         struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1255         int i, j, k;
1256
1257         sb_info->sb_attn = sb_virt_addr;
1258         sb_info->sb_phys = sb_phy_addr;
1259
1260         /* Set the pointer to the AEU descriptors */
1261         sb_info->p_aeu_desc = aeu_descs;
1262
1263         /* Calculate Parity Masks */
1264         OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1265         for (i = 0; i < NUM_ATTN_REGS; i++) {
1266                 /* j is array index, k is bit index */
1267                 for (j = 0, k = 0; k < 32; j++) {
1268                         struct aeu_invert_reg_bit *p_aeu;
1269
1270                         p_aeu = &aeu_descs[i].bits[j];
1271                         if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1272                                 sb_info->parity_mask[i] |= 1 << k;
1273
1274                         k += ATTENTION_LENGTH(p_aeu->flags);
1275                 }
1276                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1277                            "Attn Mask [Reg %d]: 0x%08x\n",
1278                            i, sb_info->parity_mask[i]);
1279         }
1280
1281         /* Set the address of cleanup for the mcp attention */
1282         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1283             MISC_REG_AEU_GENERAL_ATTN_0;
1284
1285         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1286 }
1287
1288 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1289                                                     struct ecore_ptt *p_ptt)
1290 {
1291         struct ecore_dev *p_dev = p_hwfn->p_dev;
1292         struct ecore_sb_attn_info *p_sb;
1293         dma_addr_t p_phys = 0;
1294         void *p_virt;
1295
1296         /* SB struct */
1297         p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1298         if (!p_sb) {
1299                 DP_NOTICE(p_dev, true,
1300                           "Failed to allocate `struct ecore_sb_attn_info'\n");
1301                 return ECORE_NOMEM;
1302         }
1303
1304         /* SB ring  */
1305         p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1306                                          SB_ATTN_ALIGNED_SIZE(p_hwfn));
1307         if (!p_virt) {
1308                 DP_NOTICE(p_dev, true,
1309                           "Failed to allocate status block (attentions)\n");
1310                 OSAL_FREE(p_dev, p_sb);
1311                 return ECORE_NOMEM;
1312         }
1313
1314         /* Attention setup */
1315         p_hwfn->p_sb_attn = p_sb;
1316         ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1317
1318         return ECORE_SUCCESS;
1319 }
1320
1321 /* coalescing timeout = timeset << (timer_res + 1) */
1322 #define ECORE_CAU_DEF_RX_USECS 24
1323 #define ECORE_CAU_DEF_TX_USECS 48
1324
1325 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1326                              struct cau_sb_entry *p_sb_entry,
1327                              u8 pf_id, u16 vf_number, u8 vf_valid)
1328 {
1329         struct ecore_dev *p_dev = p_hwfn->p_dev;
1330         u32 cau_state;
1331         u8 timer_res;
1332
1333         OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1334
1335         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1336         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1337         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1338         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1339         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1340
1341         cau_state = CAU_HC_DISABLE_STATE;
1342
1343         if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1344                 cau_state = CAU_HC_ENABLE_STATE;
1345                 if (!p_dev->rx_coalesce_usecs)
1346                         p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1347                 if (!p_dev->tx_coalesce_usecs)
1348                         p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1349         }
1350
1351         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1352         if (p_dev->rx_coalesce_usecs <= 0x7F)
1353                 timer_res = 0;
1354         else if (p_dev->rx_coalesce_usecs <= 0xFF)
1355                 timer_res = 1;
1356         else
1357                 timer_res = 2;
1358         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1359
1360         if (p_dev->tx_coalesce_usecs <= 0x7F)
1361                 timer_res = 0;
1362         else if (p_dev->tx_coalesce_usecs <= 0xFF)
1363                 timer_res = 1;
1364         else
1365                 timer_res = 2;
1366         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1367
1368         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1369         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1370 }
1371
1372 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1373                                    struct ecore_ptt *p_ptt,
1374                                    u16 igu_sb_id, u32 pi_index,
1375                                    enum ecore_coalescing_fsm coalescing_fsm,
1376                                    u8 timeset)
1377 {
1378         struct cau_pi_entry pi_entry;
1379         u32 sb_offset, pi_offset;
1380
1381         if (IS_VF(p_hwfn->p_dev))
1382                 return;/* @@@TBD MichalK- VF CAU... */
1383
1384         sb_offset = igu_sb_id * PIS_PER_SB;
1385         OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1386
1387         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1388         if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1389                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1390         else
1391                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1392
1393         pi_offset = sb_offset + pi_index;
1394         if (p_hwfn->hw_init_done) {
1395                 ecore_wr(p_hwfn, p_ptt,
1396                          CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1397                          *((u32 *)&(pi_entry)));
1398         } else {
1399                 STORE_RT_REG(p_hwfn,
1400                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1401                              *((u32 *)&(pi_entry)));
1402         }
1403 }
1404
1405 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1406                            struct ecore_ptt *p_ptt,
1407                            struct ecore_sb_info *p_sb, u32 pi_index,
1408                            enum ecore_coalescing_fsm coalescing_fsm,
1409                            u8 timeset)
1410 {
1411         _ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1412                                pi_index, coalescing_fsm, timeset);
1413 }
1414
1415 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1416                            struct ecore_ptt *p_ptt,
1417                            dma_addr_t sb_phys, u16 igu_sb_id,
1418                            u16 vf_number, u8 vf_valid)
1419 {
1420         struct cau_sb_entry sb_entry;
1421
1422         ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1423                                 vf_number, vf_valid);
1424
1425         if (p_hwfn->hw_init_done) {
1426                 /* Wide-bus, initialize via DMAE */
1427                 u64 phys_addr = (u64)sb_phys;
1428
1429                 ecore_dmae_host2grc(p_hwfn, p_ptt,
1430                                     (u64)(osal_uintptr_t)&phys_addr,
1431                                     CAU_REG_SB_ADDR_MEMORY +
1432                                     igu_sb_id * sizeof(u64), 2, 0);
1433                 ecore_dmae_host2grc(p_hwfn, p_ptt,
1434                                     (u64)(osal_uintptr_t)&sb_entry,
1435                                     CAU_REG_SB_VAR_MEMORY +
1436                                     igu_sb_id * sizeof(u64), 2, 0);
1437         } else {
1438                 /* Initialize Status Block Address */
1439                 STORE_RT_REG_AGG(p_hwfn,
1440                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1441                                  igu_sb_id * 2, sb_phys);
1442
1443                 STORE_RT_REG_AGG(p_hwfn,
1444                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1445                                  igu_sb_id * 2, sb_entry);
1446         }
1447
1448         /* Configure pi coalescing if set */
1449         if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1450                 /* eth will open queues for all tcs, so configure all of them
1451                  * properly, rather than just the active ones
1452                  */
1453                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1454
1455                 u8 timeset, timer_res;
1456                 u8 i;
1457
1458                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1459                 if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1460                         timer_res = 0;
1461                 else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1462                         timer_res = 1;
1463                 else
1464                         timer_res = 2;
1465                 timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1466                 _ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1467                                        ECORE_COAL_RX_STATE_MACHINE,
1468                                        timeset);
1469
1470                 if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1471                         timer_res = 0;
1472                 else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1473                         timer_res = 1;
1474                 else
1475                         timer_res = 2;
1476                 timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1477                 for (i = 0; i < num_tc; i++) {
1478                         _ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1479                                                igu_sb_id, TX_PI(i),
1480                                                ECORE_COAL_TX_STATE_MACHINE,
1481                                                timeset);
1482                 }
1483         }
1484 }
1485
1486 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1487                         struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1488 {
1489         /* zero status block and ack counter */
1490         sb_info->sb_ack = 0;
1491         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1492
1493         if (IS_PF(p_hwfn->p_dev))
1494                 ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1495                                       sb_info->igu_sb_id, 0, 0);
1496 }
1497
1498 struct ecore_igu_block *
1499 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1500 {
1501         struct ecore_igu_block *p_block;
1502         u16 igu_id;
1503
1504         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1505              igu_id++) {
1506                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1507
1508                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1509                     !(p_block->status & ECORE_IGU_STATUS_FREE))
1510                         continue;
1511
1512                 if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1513                     b_is_pf)
1514                         return p_block;
1515         }
1516
1517         return OSAL_NULL;
1518 }
1519
1520 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1521                                   u16 vector_id)
1522 {
1523         struct ecore_igu_block *p_block;
1524         u16 igu_id;
1525
1526         for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1527              igu_id++) {
1528                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1529
1530                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1531                     !p_block->is_pf ||
1532                     p_block->vector_number != vector_id)
1533                         continue;
1534
1535                 return igu_id;
1536         }
1537
1538         return ECORE_SB_INVALID_IDX;
1539 }
1540
1541 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1542 {
1543         u16 igu_sb_id;
1544
1545         /* Assuming continuous set of IGU SBs dedicated for given PF */
1546         if (sb_id == ECORE_SP_SB_ID)
1547                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1548         else if (IS_PF(p_hwfn->p_dev))
1549                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1550         else
1551                 igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1552
1553         if (igu_sb_id == ECORE_SB_INVALID_IDX)
1554                 DP_NOTICE(p_hwfn, true,
1555                           "Slowpath SB vector %04x doesn't exist\n",
1556                           sb_id);
1557         else if (sb_id == ECORE_SP_SB_ID)
1558                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1559                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1560         else
1561                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1562                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1563
1564         return igu_sb_id;
1565 }
1566
1567 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1568                                        struct ecore_ptt *p_ptt,
1569                                        struct ecore_sb_info *sb_info,
1570                                        void *sb_virt_addr,
1571                                        dma_addr_t sb_phy_addr, u16 sb_id)
1572 {
1573         sb_info->sb_virt = sb_virt_addr;
1574         sb_info->sb_phys = sb_phy_addr;
1575
1576         sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1577
1578         if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1579                 return ECORE_INVAL;
1580
1581         /* Let the igu info reference the client's SB info */
1582         if (sb_id != ECORE_SP_SB_ID) {
1583                 if (IS_PF(p_hwfn->p_dev)) {
1584                         struct ecore_igu_info *p_info;
1585                         struct ecore_igu_block *p_block;
1586
1587                         p_info = p_hwfn->hw_info.p_igu_info;
1588                         p_block = &p_info->entry[sb_info->igu_sb_id];
1589
1590                         p_block->sb_info = sb_info;
1591                         p_block->status &= ~ECORE_IGU_STATUS_FREE;
1592                         p_info->usage.free_cnt--;
1593                 } else {
1594                         ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1595                 }
1596         }
1597 #ifdef ECORE_CONFIG_DIRECT_HWFN
1598         sb_info->p_hwfn = p_hwfn;
1599 #endif
1600         sb_info->p_dev = p_hwfn->p_dev;
1601
1602         /* The igu address will hold the absolute address that needs to be
1603          * written to for a specific status block
1604          */
1605         if (IS_PF(p_hwfn->p_dev)) {
1606                 sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1607                     GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3);
1608
1609         } else {
1610                 sb_info->igu_addr =
1611                     (u8 OSAL_IOMEM *)p_hwfn->regview +
1612                     PXP_VF_BAR0_START_IGU +
1613                     ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1614         }
1615
1616         sb_info->flags |= ECORE_SB_INFO_INIT;
1617
1618         ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1619
1620         return ECORE_SUCCESS;
1621 }
1622
1623 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1624                                           struct ecore_sb_info *sb_info,
1625                                           u16 sb_id)
1626 {
1627         struct ecore_igu_info *p_info;
1628         struct ecore_igu_block *p_block;
1629
1630         if (sb_info == OSAL_NULL)
1631                 return ECORE_SUCCESS;
1632
1633         /* zero status block and ack counter */
1634         sb_info->sb_ack = 0;
1635         OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1636
1637         if (IS_VF(p_hwfn->p_dev)) {
1638                 ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1639                 return ECORE_SUCCESS;
1640         }
1641
1642         p_info = p_hwfn->hw_info.p_igu_info;
1643         p_block = &p_info->entry[sb_info->igu_sb_id];
1644
1645         /* Vector 0 is reserved to Default SB */
1646         if (p_block->vector_number == 0) {
1647                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1648                 return ECORE_INVAL;
1649         }
1650
1651         /* Lose reference to client's SB info, and fix counters */
1652         p_block->sb_info = OSAL_NULL;
1653         p_block->status |= ECORE_IGU_STATUS_FREE;
1654         p_info->usage.free_cnt++;
1655
1656         return ECORE_SUCCESS;
1657 }
1658
1659 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1660 {
1661         struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1662
1663         if (!p_sb)
1664                 return;
1665
1666         if (p_sb->sb_info.sb_virt) {
1667                 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1668                                        p_sb->sb_info.sb_virt,
1669                                        p_sb->sb_info.sb_phys,
1670                                        SB_ALIGNED_SIZE(p_hwfn));
1671         }
1672
1673         OSAL_FREE(p_hwfn->p_dev, p_sb);
1674 }
1675
1676 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1677                                                   struct ecore_ptt *p_ptt)
1678 {
1679         struct ecore_sb_sp_info *p_sb;
1680         dma_addr_t p_phys = 0;
1681         void *p_virt;
1682
1683         /* SB struct */
1684         p_sb =
1685             OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL,
1686                        sizeof(*p_sb));
1687         if (!p_sb) {
1688                 DP_NOTICE(p_hwfn, true,
1689                           "Failed to allocate `struct ecore_sb_info'\n");
1690                 return ECORE_NOMEM;
1691         }
1692
1693         /* SB ring  */
1694         p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1695                                          &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1696         if (!p_virt) {
1697                 DP_NOTICE(p_hwfn, true, "Failed to allocate status block\n");
1698                 OSAL_FREE(p_hwfn->p_dev, p_sb);
1699                 return ECORE_NOMEM;
1700         }
1701
1702         /* Status Block setup */
1703         p_hwfn->p_sp_sb = p_sb;
1704         ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1705                           p_virt, p_phys, ECORE_SP_SB_ID);
1706
1707         OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1708
1709         return ECORE_SUCCESS;
1710 }
1711
1712 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1713                                            ecore_int_comp_cb_t comp_cb,
1714                                            void *cookie,
1715                                            u8 *sb_idx, __le16 **p_fw_cons)
1716 {
1717         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1718         enum _ecore_status_t rc = ECORE_NOMEM;
1719         u8 pi;
1720
1721         /* Look for a free index */
1722         for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1723                 if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1724                         continue;
1725
1726                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1727                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1728                 *sb_idx = pi;
1729                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1730                 rc = ECORE_SUCCESS;
1731                 break;
1732         }
1733
1734         return rc;
1735 }
1736
1737 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1738 {
1739         struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1740
1741         if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1742                 return ECORE_NOMEM;
1743
1744         p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1745         p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1746         return ECORE_SUCCESS;
1747 }
1748
1749 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1750 {
1751         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1752 }
1753
1754 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1755                               struct ecore_ptt *p_ptt,
1756                               enum ecore_int_mode int_mode)
1757 {
1758         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1759
1760 #ifndef ASIC_ONLY
1761         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1762                 DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1763                 igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1764         }
1765 #endif
1766
1767         p_hwfn->p_dev->int_mode = int_mode;
1768         switch (p_hwfn->p_dev->int_mode) {
1769         case ECORE_INT_MODE_INTA:
1770                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1771                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1772                 break;
1773
1774         case ECORE_INT_MODE_MSI:
1775                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1776                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1777                 break;
1778
1779         case ECORE_INT_MODE_MSIX:
1780                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1781                 break;
1782         case ECORE_INT_MODE_POLL:
1783                 break;
1784         }
1785
1786         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1787 }
1788
1789 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1790                                       struct ecore_ptt *p_ptt)
1791 {
1792 #ifndef ASIC_ONLY
1793         if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1794                 DP_INFO(p_hwfn,
1795                         "FPGA - Don't enable Attentions in IGU and MISC\n");
1796                 return;
1797         }
1798 #endif
1799
1800         /* Configure AEU signal change to produce attentions */
1801         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1802         ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1803         ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1804         ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1805
1806         /* Flush the writes to IGU */
1807         OSAL_MMIOWB(p_hwfn->p_dev);
1808
1809         /* Unmask AEU signals toward IGU */
1810         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1811 }
1812
1813 enum _ecore_status_t
1814 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1815                           enum ecore_int_mode int_mode)
1816 {
1817         enum _ecore_status_t rc = ECORE_SUCCESS;
1818         u32 tmp;
1819
1820         /* @@@tmp - Starting with MFW 8.2.1.0 we've started hitting AVS stop
1821          * attentions. Since we're waiting for BRCM answer regarding this
1822          * attention, in the meanwhile we simply mask it.
1823          */
1824         tmp = ecore_rd(p_hwfn, p_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0);
1825         tmp &= ~0x800;
1826         ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0, tmp);
1827
1828         ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1829
1830         if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1831                 rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1832                 if (rc != ECORE_SUCCESS) {
1833                         DP_NOTICE(p_hwfn, true,
1834                                   "Slowpath IRQ request failed\n");
1835                         return ECORE_NORESOURCES;
1836                 }
1837                 p_hwfn->b_int_requested = true;
1838         }
1839
1840         /* Enable interrupt Generation */
1841         ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1842
1843         p_hwfn->b_int_enabled = 1;
1844
1845         return rc;
1846 }
1847
1848 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
1849                                struct ecore_ptt *p_ptt)
1850 {
1851         p_hwfn->b_int_enabled = 0;
1852
1853         if (IS_VF(p_hwfn->p_dev))
1854                 return;
1855
1856         ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1857 }
1858
1859 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1860 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1861                                      struct ecore_ptt *p_ptt,
1862                                      u32 igu_sb_id,
1863                                      bool cleanup_set,
1864                                      u16 opaque_fid)
1865 {
1866         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1867         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1868         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1869         u8 type = 0;            /* FIXME MichalS type??? */
1870
1871         OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1872                            IGU_REG_CLEANUP_STATUS_0) != 0x200);
1873
1874         /* USE Control Command Register to perform cleanup. There is an
1875          * option to do this using IGU bar, but then it can't be used for VFs.
1876          */
1877
1878         /* Set the data field */
1879         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1880         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1881         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1882
1883         /* Set the control register */
1884         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1885         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1886         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1887
1888         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1889
1890         OSAL_BARRIER(p_hwfn->p_dev);
1891
1892         ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1893
1894         /* Flush the write to IGU */
1895         OSAL_MMIOWB(p_hwfn->p_dev);
1896
1897         /* calculate where to read the status bit from */
1898         sb_bit = 1 << (igu_sb_id % 32);
1899         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1900
1901         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
1902
1903         /* Now wait for the command to complete */
1904         while (--sleep_cnt) {
1905                 val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
1906                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1907                         break;
1908                 OSAL_MSLEEP(5);
1909         }
1910
1911         if (!sleep_cnt)
1912                 DP_NOTICE(p_hwfn, true,
1913                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1914                           val, igu_sb_id);
1915 }
1916
1917 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
1918                                        struct ecore_ptt *p_ptt,
1919                                        u16 igu_sb_id, u16 opaque, bool b_set)
1920 {
1921         struct ecore_igu_block *p_block;
1922         int pi, i;
1923
1924         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1925         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1926                    "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1927                    igu_sb_id, p_block->function_id, p_block->is_pf,
1928                    p_block->vector_number);
1929
1930         /* Set */
1931         if (b_set)
1932                 ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1933
1934         /* Clear */
1935         ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1936
1937         /* Wait for the IGU SB to cleanup */
1938         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1939                 u32 val;
1940
1941                 val = ecore_rd(p_hwfn, p_ptt,
1942                                IGU_REG_WRITE_DONE_PENDING +
1943                                ((igu_sb_id / 32) * 4));
1944                 if (val & (1 << (igu_sb_id % 32)))
1945                         OSAL_UDELAY(10);
1946                 else
1947                         break;
1948         }
1949         if (i == IGU_CLEANUP_SLEEP_LENGTH)
1950                 DP_NOTICE(p_hwfn, true,
1951                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1952                           igu_sb_id);
1953
1954         /* Clear the CAU for the SB */
1955         for (pi = 0; pi < 12; pi++)
1956                 ecore_wr(p_hwfn, p_ptt,
1957                          CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1958 }
1959
1960 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
1961                                 struct ecore_ptt *p_ptt,
1962                                 bool b_set, bool b_slowpath)
1963 {
1964         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1965         struct ecore_igu_block *p_block;
1966         u16 igu_sb_id = 0;
1967         u32 val = 0;
1968
1969         /* @@@TBD MichalK temporary... should be moved to init-tool... */
1970         val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1971         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1972         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1973         ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1974         /* end temporary */
1975
1976         for (igu_sb_id = 0;
1977              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1978              igu_sb_id++) {
1979                 p_block = &p_info->entry[igu_sb_id];
1980
1981                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1982                     !p_block->is_pf ||
1983                     (p_block->status & ECORE_IGU_STATUS_DSB))
1984                         continue;
1985
1986                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
1987                                                   p_hwfn->hw_info.opaque_fid,
1988                                                   b_set);
1989         }
1990
1991         if (b_slowpath)
1992                 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
1993                                                   p_info->igu_dsb_id,
1994                                                   p_hwfn->hw_info.opaque_fid,
1995                                                   b_set);
1996 }
1997
1998 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
1999                             struct ecore_ptt *p_ptt)
2000 {
2001         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2002         struct ecore_igu_block *p_block;
2003         int pf_sbs, vf_sbs;
2004         u16 igu_sb_id;
2005         u32 val, rval;
2006
2007         if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2008                 /* We're using an old MFW - have to prevent any switching
2009                  * of SBs between PF and VFs as later driver wouldn't be
2010                  * able to tell which belongs to which.
2011                  */
2012                 p_info->b_allow_pf_vf_change = false;
2013         } else {
2014                 /* Use the numbers the MFW have provided -
2015                  * don't forget MFW accounts for the default SB as well.
2016                  */
2017                 p_info->b_allow_pf_vf_change = true;
2018
2019                 if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2020                         DP_INFO(p_hwfn,
2021                                 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2022                                 RESC_NUM(p_hwfn, ECORE_SB) - 1,
2023                                 p_info->usage.cnt);
2024                         p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2025                 }
2026
2027                 /* TODO - how do we learn about VF SBs from MFW? */
2028                 if (IS_PF_SRIOV(p_hwfn)) {
2029                         u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2030
2031                         if (vfs != p_info->usage.iov_cnt)
2032                                 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2033                                            "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2034                                            p_info->usage.iov_cnt, vfs);
2035
2036                         /* At this point we know how many SBs we have totally
2037                          * in IGU + number of PF SBs. So we can validate that
2038                          * we'd have sufficient for VF.
2039                          */
2040                         if (vfs > p_info->usage.free_cnt +
2041                                   p_info->usage.free_cnt_iov -
2042                                   p_info->usage.cnt) {
2043                                 DP_NOTICE(p_hwfn, true,
2044                                           "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2045                                           p_info->usage.free_cnt +
2046                                           p_info->usage.free_cnt_iov,
2047                                           p_info->usage.cnt, vfs);
2048                                 return ECORE_INVAL;
2049                         }
2050                 }
2051         }
2052
2053         /* Cap the number of VFs SBs by the number of VFs */
2054         if (IS_PF_SRIOV(p_hwfn))
2055                 p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2056
2057         /* Mark all SBs as free, now in the right PF/VFs division */
2058         p_info->usage.free_cnt = p_info->usage.cnt;
2059         p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2060         p_info->usage.orig = p_info->usage.cnt;
2061         p_info->usage.iov_orig = p_info->usage.iov_cnt;
2062
2063         /* We now proceed to re-configure the IGU cam to reflect the initial
2064          * configuration. We can start with the Default SB.
2065          */
2066         pf_sbs = p_info->usage.cnt;
2067         vf_sbs = p_info->usage.iov_cnt;
2068
2069         for (igu_sb_id = p_info->igu_dsb_id;
2070              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2071              igu_sb_id++) {
2072                 p_block = &p_info->entry[igu_sb_id];
2073                 val = 0;
2074
2075                 if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2076                         continue;
2077
2078                 if (p_block->status & ECORE_IGU_STATUS_DSB) {
2079                         p_block->function_id = p_hwfn->rel_pf_id;
2080                         p_block->is_pf = 1;
2081                         p_block->vector_number = 0;
2082                         p_block->status = ECORE_IGU_STATUS_VALID |
2083                                           ECORE_IGU_STATUS_PF |
2084                                           ECORE_IGU_STATUS_DSB;
2085                 } else if (pf_sbs) {
2086                         pf_sbs--;
2087                         p_block->function_id = p_hwfn->rel_pf_id;
2088                         p_block->is_pf = 1;
2089                         p_block->vector_number = p_info->usage.cnt - pf_sbs;
2090                         p_block->status = ECORE_IGU_STATUS_VALID |
2091                                           ECORE_IGU_STATUS_PF |
2092                                           ECORE_IGU_STATUS_FREE;
2093                 } else if (vf_sbs) {
2094                         p_block->function_id =
2095                                 p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2096                                 p_info->usage.iov_cnt - vf_sbs;
2097                         p_block->is_pf = 0;
2098                         p_block->vector_number = 0;
2099                         p_block->status = ECORE_IGU_STATUS_VALID |
2100                                           ECORE_IGU_STATUS_FREE;
2101                         vf_sbs--;
2102                 } else {
2103                         p_block->function_id = 0;
2104                         p_block->is_pf = 0;
2105                         p_block->vector_number = 0;
2106                 }
2107
2108                 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2109                           p_block->function_id);
2110                 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2111                 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2112                           p_block->vector_number);
2113
2114                 /* VF entries would be enabled when VF is initializaed */
2115                 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2116
2117                 rval = ecore_rd(p_hwfn, p_ptt,
2118                                 IGU_REG_MAPPING_MEMORY +
2119                                 sizeof(u32) * igu_sb_id);
2120
2121                 if (rval != val) {
2122                         ecore_wr(p_hwfn, p_ptt,
2123                                  IGU_REG_MAPPING_MEMORY +
2124                                  sizeof(u32) * igu_sb_id,
2125                                  val);
2126
2127                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2128                                    "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2129                                    igu_sb_id, p_block->function_id,
2130                                    p_block->is_pf, p_block->vector_number,
2131                                    rval, val);
2132                 }
2133         }
2134
2135         return 0;
2136 }
2137
2138 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2139                                     struct ecore_ptt *p_ptt)
2140 {
2141         struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2142
2143         /* Return all the usage indications to default prior to the reset;
2144          * The reset expects the !orig to reflect the initial status of the
2145          * SBs, and would re-calculate the originals based on those.
2146          */
2147         p_cnt->cnt = p_cnt->orig;
2148         p_cnt->free_cnt = p_cnt->orig;
2149         p_cnt->iov_cnt = p_cnt->iov_orig;
2150         p_cnt->free_cnt_iov = p_cnt->iov_orig;
2151         p_cnt->orig = 0;
2152         p_cnt->iov_orig = 0;
2153
2154         /* TODO - we probably need to re-configure the CAU as well... */
2155         return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2156 }
2157
2158 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2159                                          struct ecore_ptt *p_ptt,
2160                                          u16 igu_sb_id)
2161 {
2162         u32 val = ecore_rd(p_hwfn, p_ptt,
2163                            IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2164         struct ecore_igu_block *p_block;
2165
2166         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2167
2168         /* Fill the block information */
2169         p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2170         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2171         p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2172
2173         p_block->igu_sb_id = igu_sb_id;
2174 }
2175
2176 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2177                                             struct ecore_ptt *p_ptt)
2178 {
2179         struct ecore_igu_info *p_igu_info;
2180         struct ecore_igu_block *p_block;
2181         u32 min_vf = 0, max_vf = 0;
2182         u16 igu_sb_id;
2183
2184         p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2185                                                  GFP_KERNEL,
2186                                                  sizeof(*p_igu_info));
2187         if (!p_hwfn->hw_info.p_igu_info)
2188                 return ECORE_NOMEM;
2189         p_igu_info = p_hwfn->hw_info.p_igu_info;
2190
2191         /* Distinguish between existent and onn-existent default SB */
2192         p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2193
2194         /* Find the range of VF ids whose SB belong to this PF */
2195         if (p_hwfn->p_dev->p_iov_info) {
2196                 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2197
2198                 min_vf = p_iov->first_vf_in_pf;
2199                 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2200         }
2201
2202         for (igu_sb_id = 0;
2203              igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2204              igu_sb_id++) {
2205                 /* Read current entry; Notice it might not belong to this PF */
2206                 ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2207                 p_block = &p_igu_info->entry[igu_sb_id];
2208
2209                 if ((p_block->is_pf) &&
2210                     (p_block->function_id == p_hwfn->rel_pf_id)) {
2211                         p_block->status = ECORE_IGU_STATUS_PF |
2212                                           ECORE_IGU_STATUS_VALID |
2213                                           ECORE_IGU_STATUS_FREE;
2214
2215                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2216                                 p_igu_info->usage.cnt++;
2217                 } else if (!(p_block->is_pf) &&
2218                            (p_block->function_id >= min_vf) &&
2219                            (p_block->function_id < max_vf)) {
2220                         /* Available for VFs of this PF */
2221                         p_block->status = ECORE_IGU_STATUS_VALID |
2222                                           ECORE_IGU_STATUS_FREE;
2223
2224                         if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2225                                 p_igu_info->usage.iov_cnt++;
2226                 }
2227
2228                 /* Mark the First entry belonging to the PF or its VFs
2229                  * as the default SB [we'll reset IGU prior to first usage].
2230                  */
2231                 if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2232                     (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2233                         p_igu_info->igu_dsb_id = igu_sb_id;
2234                         p_block->status |= ECORE_IGU_STATUS_DSB;
2235                 }
2236
2237                 /* While this isn't suitable for all clients, limit number
2238                  * of prints by having each PF print only its entries with the
2239                  * exception of PF0 which would print everything.
2240                  */
2241                 if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2242                     (p_hwfn->abs_pf_id == 0))
2243                         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2244                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2245                                    igu_sb_id, p_block->function_id,
2246                                    p_block->is_pf, p_block->vector_number);
2247         }
2248
2249         if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2250                 DP_NOTICE(p_hwfn, true,
2251                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2252                           p_igu_info->igu_dsb_id);
2253                 return ECORE_INVAL;
2254         }
2255
2256         /* All non default SB are considered free at this point */
2257         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2258         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2259
2260         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2261                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2262                    p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2263                    p_igu_info->usage.iov_cnt);
2264
2265         return ECORE_SUCCESS;
2266 }
2267
2268 enum _ecore_status_t
2269 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2270                           u16 sb_id, bool b_to_vf)
2271 {
2272         struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2273         struct ecore_igu_block *p_block = OSAL_NULL;
2274         u16 igu_sb_id = 0, vf_num = 0;
2275         u32 val = 0;
2276
2277         if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2278                 return ECORE_INVAL;
2279
2280         if (sb_id == ECORE_SP_SB_ID)
2281                 return ECORE_INVAL;
2282
2283         if (!p_info->b_allow_pf_vf_change) {
2284                 DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2285                 return ECORE_INVAL;
2286         }
2287
2288         /* If we're moving a SB from PF to VF, the client had to specify
2289          * which vector it wants to move.
2290          */
2291         if (b_to_vf) {
2292                 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2293                 if (igu_sb_id == ECORE_SB_INVALID_IDX)
2294                         return ECORE_INVAL;
2295         }
2296
2297         /* If we're moving a SB from VF to PF, need to validate there isn't
2298          * already a line configured for that vector.
2299          */
2300         if (!b_to_vf) {
2301                 if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2302                     ECORE_SB_INVALID_IDX)
2303                         return ECORE_INVAL;
2304         }
2305
2306         /* We need to validate that the SB can actually be relocated.
2307          * This would also handle the previous case where we've explicitly
2308          * stated which IGU SB needs to move.
2309          */
2310         for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2311              igu_sb_id++) {
2312                 p_block = &p_info->entry[igu_sb_id];
2313
2314                 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2315                     !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2316                     (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2317                         if (b_to_vf)
2318                                 return ECORE_INVAL;
2319                         else
2320                                 continue;
2321                 }
2322
2323                 break;
2324         }
2325
2326         if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2327                 DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2328                            "Failed to find a free SB to move\n");
2329                 return ECORE_INVAL;
2330         }
2331
2332         /* At this point, p_block points to the SB we want to relocate */
2333         if (b_to_vf) {
2334                 p_block->status &= ~ECORE_IGU_STATUS_PF;
2335
2336                 /* It doesn't matter which VF number we choose, since we're
2337                  * going to disable the line; But let's keep it in range.
2338                  */
2339                 vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2340
2341                 p_block->function_id = (u8)vf_num;
2342                 p_block->is_pf = 0;
2343                 p_block->vector_number = 0;
2344
2345                 p_info->usage.cnt--;
2346                 p_info->usage.free_cnt--;
2347                 p_info->usage.iov_cnt++;
2348                 p_info->usage.free_cnt_iov++;
2349
2350                 /* TODO - if SBs aren't really the limiting factor,
2351                  * then it might not be accurate [in the since that
2352                  * we might not need decrement the feature].
2353                  */
2354                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2355                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2356         } else {
2357                 p_block->status |= ECORE_IGU_STATUS_PF;
2358                 p_block->function_id = p_hwfn->rel_pf_id;
2359                 p_block->is_pf = 1;
2360                 p_block->vector_number = sb_id + 1;
2361
2362                 p_info->usage.cnt++;
2363                 p_info->usage.free_cnt++;
2364                 p_info->usage.iov_cnt--;
2365                 p_info->usage.free_cnt_iov--;
2366
2367                 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2368                 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2369         }
2370
2371         /* Update the IGU and CAU with the new configuration */
2372         SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2373                   p_block->function_id);
2374         SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2375         SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2376         SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2377                   p_block->vector_number);
2378
2379         ecore_wr(p_hwfn, p_ptt,
2380                  IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2381                  val);
2382
2383         ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2384                               igu_sb_id, vf_num,
2385                               p_block->is_pf ? 0 : 1);
2386
2387         DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2388                    "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2389                    igu_sb_id, p_block->function_id,
2390                    p_block->is_pf, p_block->vector_number);
2391
2392         return ECORE_SUCCESS;
2393 }
2394
2395 /**
2396  * @brief Initialize igu runtime registers
2397  *
2398  * @param p_hwfn
2399  */
2400 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2401 {
2402         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2403
2404         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2405 }
2406
2407 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2408                           IGU_CMD_INT_ACK_BASE)
2409 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2410                           IGU_CMD_INT_ACK_BASE)
2411 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2412 {
2413         u32 intr_status_hi = 0, intr_status_lo = 0;
2414         u64 intr_status = 0;
2415
2416         intr_status_lo = REG_RD(p_hwfn,
2417                                 GTT_BAR0_MAP_REG_IGU_CMD +
2418                                 LSB_IGU_CMD_ADDR * 8);
2419         intr_status_hi = REG_RD(p_hwfn,
2420                                 GTT_BAR0_MAP_REG_IGU_CMD +
2421                                 MSB_IGU_CMD_ADDR * 8);
2422         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2423
2424         return intr_status;
2425 }
2426
2427 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2428 {
2429         OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2430         p_hwfn->b_sp_dpc_enabled = true;
2431 }
2432
2433 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2434 {
2435         p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2436         if (!p_hwfn->sp_dpc)
2437                 return ECORE_NOMEM;
2438
2439         return ECORE_SUCCESS;
2440 }
2441
2442 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2443 {
2444         OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2445 }
2446
2447 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2448                                      struct ecore_ptt *p_ptt)
2449 {
2450         enum _ecore_status_t rc = ECORE_SUCCESS;
2451
2452         rc = ecore_int_sp_dpc_alloc(p_hwfn);
2453         if (rc != ECORE_SUCCESS) {
2454                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2455                 return rc;
2456         }
2457
2458         rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2459         if (rc != ECORE_SUCCESS) {
2460                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2461                 return rc;
2462         }
2463
2464         rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2465         if (rc != ECORE_SUCCESS)
2466                 DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2467
2468         return rc;
2469 }
2470
2471 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2472 {
2473         ecore_int_sp_sb_free(p_hwfn);
2474         ecore_int_sb_attn_free(p_hwfn);
2475         ecore_int_sp_dpc_free(p_hwfn);
2476 }
2477
2478 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2479 {
2480         if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2481                 return;
2482
2483         ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2484         ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2485         ecore_int_sp_dpc_setup(p_hwfn);
2486 }
2487
2488 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2489                            struct ecore_sb_cnt_info *p_sb_cnt_info)
2490 {
2491         struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2492
2493         if (!p_igu_info || !p_sb_cnt_info)
2494                 return;
2495
2496         OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2497                     sizeof(*p_sb_cnt_info));
2498 }
2499
2500 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2501 {
2502         int i;
2503
2504         for_each_hwfn(p_dev, i)
2505                 p_dev->hwfns[i].b_int_requested = false;
2506 }
2507
2508 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2509 {
2510         p_dev->attn_clr_en = clr_enable;
2511 }
2512
2513 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2514                                              struct ecore_ptt *p_ptt,
2515                                              u8 timer_res, u16 sb_id, bool tx)
2516 {
2517         struct cau_sb_entry sb_entry;
2518         enum _ecore_status_t rc;
2519
2520         if (!p_hwfn->hw_init_done) {
2521                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2522                 return ECORE_INVAL;
2523         }
2524
2525         rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2526                                  sb_id * sizeof(u64),
2527                                  (u64)(osal_uintptr_t)&sb_entry, 2, 0);
2528         if (rc != ECORE_SUCCESS) {
2529                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2530                 return rc;
2531         }
2532
2533         if (tx)
2534                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2535         else
2536                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2537
2538         rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2539                                  (u64)(osal_uintptr_t)&sb_entry,
2540                                  CAU_REG_SB_VAR_MEMORY +
2541                                  sb_id * sizeof(u64), 2, 0);
2542         if (rc != ECORE_SUCCESS) {
2543                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2544                 return rc;
2545         }
2546
2547         return rc;
2548 }
2549
2550 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2551                                           struct ecore_ptt *p_ptt,
2552                                           struct ecore_sb_info *p_sb,
2553                                           struct ecore_sb_info_dbg *p_info)
2554 {
2555         u16 sbid = p_sb->igu_sb_id;
2556         int i;
2557
2558         if (IS_VF(p_hwfn->p_dev))
2559                 return ECORE_INVAL;
2560
2561         if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2562                 return ECORE_INVAL;
2563
2564         p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2565                                     IGU_REG_PRODUCER_MEMORY + sbid * 4);
2566         p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2567                                     IGU_REG_CONSUMER_MEM + sbid * 4);
2568
2569         for (i = 0; i < PIS_PER_SB; i++)
2570                 p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2571                                               CAU_REG_PI_MEMORY +
2572                                               sbid * 4 * PIS_PER_SB +  i * 4);
2573
2574         return ECORE_SUCCESS;
2575 }