net/sfc: rename variable to prepare for scatter support
[dpdk.git] / drivers / net / sfc / sfc_ef10_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 /* EF10 native datapath implementation */
11
12 #include <stdbool.h>
13
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18
19 #include "efx.h"
20 #include "efx_types.h"
21 #include "efx_regs.h"
22 #include "efx_regs_ef10.h"
23
24 #include "sfc_tweak.h"
25 #include "sfc_dp_rx.h"
26 #include "sfc_kvargs.h"
27 #include "sfc_ef10.h"
28
29 #define SFC_EF10_RX_EV_ENCAP_SUPPORT    1
30 #include "sfc_ef10_rx_ev.h"
31
32 #define sfc_ef10_rx_err(dpq, ...) \
33         SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
34
35 /**
36  * Maximum number of descriptors/buffers in the Rx ring.
37  * It should guarantee that corresponding event queue never overfill.
38  * EF10 native datapath uses event queue of the same size as Rx queue.
39  * Maximum number of events on datapath can be estimated as number of
40  * Rx queue entries (one event per Rx buffer in the worst case) plus
41  * Rx error and flush events.
42  */
43 #define SFC_EF10_RXQ_LIMIT(_ndesc) \
44         ((_ndesc) - 1 /* head must not step on tail */ - \
45          (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
46          1 /* Rx error */ - 1 /* flush */)
47
48 struct sfc_ef10_rx_sw_desc {
49         struct rte_mbuf                 *mbuf;
50 };
51
52 struct sfc_ef10_rxq {
53         /* Used on data path */
54         unsigned int                    flags;
55 #define SFC_EF10_RXQ_STARTED            0x1
56 #define SFC_EF10_RXQ_NOT_RUNNING        0x2
57 #define SFC_EF10_RXQ_EXCEPTION          0x4
58 #define SFC_EF10_RXQ_RSS_HASH           0x8
59         unsigned int                    ptr_mask;
60         unsigned int                    pending;
61         unsigned int                    completed;
62         unsigned int                    evq_read_ptr;
63         efx_qword_t                     *evq_hw_ring;
64         struct sfc_ef10_rx_sw_desc      *sw_ring;
65         uint64_t                        rearm_data;
66         uint16_t                        prefix_size;
67
68         /* Used on refill */
69         uint16_t                        buf_size;
70         unsigned int                    added;
71         unsigned int                    max_fill_level;
72         unsigned int                    refill_threshold;
73         struct rte_mempool              *refill_mb_pool;
74         efx_qword_t                     *rxq_hw_ring;
75         volatile void                   *doorbell;
76
77         /* Datapath receive queue anchor */
78         struct sfc_dp_rxq               dp;
79 };
80
81 static inline struct sfc_ef10_rxq *
82 sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
83 {
84         return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
85 }
86
87 static void
88 sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
89 {
90         const unsigned int ptr_mask = rxq->ptr_mask;
91         const uint32_t buf_size = rxq->buf_size;
92         unsigned int free_space;
93         unsigned int bulks;
94         void *objs[SFC_RX_REFILL_BULK];
95         unsigned int added = rxq->added;
96
97         RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
98
99         free_space = rxq->max_fill_level - (added - rxq->completed);
100
101         if (free_space < rxq->refill_threshold)
102                 return;
103
104         bulks = free_space / RTE_DIM(objs);
105         /* refill_threshold guarantees that bulks is positive */
106         SFC_ASSERT(bulks > 0);
107
108         do {
109                 unsigned int id;
110                 unsigned int i;
111
112                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
113                                                   RTE_DIM(objs)) < 0)) {
114                         struct rte_eth_dev_data *dev_data =
115                                 rte_eth_devices[rxq->dp.dpq.port_id].data;
116
117                         /*
118                          * It is hardly a safe way to increment counter
119                          * from different contexts, but all PMDs do it.
120                          */
121                         dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
122                         /* Return if we have posted nothing yet */
123                         if (added == rxq->added)
124                                 return;
125                         /* Push posted */
126                         break;
127                 }
128
129                 for (i = 0, id = added & ptr_mask;
130                      i < RTE_DIM(objs);
131                      ++i, ++id) {
132                         struct rte_mbuf *m = objs[i];
133                         struct sfc_ef10_rx_sw_desc *rxd;
134                         rte_iova_t phys_addr;
135
136                         MBUF_RAW_ALLOC_CHECK(m);
137
138                         SFC_ASSERT((id & ~ptr_mask) == 0);
139                         rxd = &rxq->sw_ring[id];
140                         rxd->mbuf = m;
141
142                         /*
143                          * Avoid writing to mbuf. It is cheaper to do it
144                          * when we receive packet and fill in nearby
145                          * structure members.
146                          */
147
148                         phys_addr = rte_mbuf_data_iova_default(m);
149                         EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
150                             ESF_DZ_RX_KER_BYTE_CNT, buf_size,
151                             ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
152                 }
153
154                 added += RTE_DIM(objs);
155         } while (--bulks > 0);
156
157         SFC_ASSERT(rxq->added != added);
158         rxq->added = added;
159         sfc_ef10_rx_qpush(rxq->doorbell, added, ptr_mask);
160 }
161
162 static void
163 sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
164 {
165         struct rte_mbuf *next_mbuf;
166
167         /* Prefetch next bunch of software descriptors */
168         if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
169                 rte_prefetch0(&rxq->sw_ring[next_id]);
170
171         /*
172          * It looks strange to prefetch depending on previous prefetch
173          * data, but measurements show that it is really efficient and
174          * increases packet rate.
175          */
176         next_mbuf = rxq->sw_ring[next_id].mbuf;
177         if (likely(next_mbuf != NULL)) {
178                 /* Prefetch the next mbuf structure */
179                 rte_mbuf_prefetch_part1(next_mbuf);
180
181                 /* Prefetch pseudo header of the next packet */
182                 /* data_off is not filled in yet */
183                 /* Yes, data could be not ready yet, but we hope */
184                 rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
185                               RTE_PKTMBUF_HEADROOM);
186         }
187 }
188
189 static struct rte_mbuf **
190 sfc_ef10_rx_pending(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
191                     uint16_t nb_pkts)
192 {
193         uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->pending - rxq->completed);
194
195         if (n_rx_pkts != 0) {
196                 unsigned int completed = rxq->completed;
197
198                 rxq->completed = completed + n_rx_pkts;
199
200                 do {
201                         *rx_pkts++ =
202                                 rxq->sw_ring[completed++ & rxq->ptr_mask].mbuf;
203                 } while (completed != rxq->completed);
204         }
205
206         return rx_pkts;
207 }
208
209 static uint16_t
210 sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
211 {
212         return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
213 }
214
215 static uint32_t
216 sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
217 {
218         return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
219 }
220
221 static struct rte_mbuf **
222 sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
223                           struct rte_mbuf **rx_pkts,
224                           struct rte_mbuf ** const rx_pkts_end)
225 {
226         const unsigned int ptr_mask = rxq->ptr_mask;
227         unsigned int pending = rxq->pending;
228         unsigned int ready;
229         struct sfc_ef10_rx_sw_desc *rxd;
230         struct rte_mbuf *m;
231         struct rte_mbuf *m0;
232         const uint8_t *pseudo_hdr;
233         uint16_t seg_len;
234
235         ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - pending) &
236                 EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
237         SFC_ASSERT(ready > 0);
238
239         rxq->pending = pending + ready;
240
241         if (rx_ev.eq_u64[0] &
242             rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
243                              (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
244                 SFC_ASSERT(rxq->completed == pending);
245                 do {
246                         rxd = &rxq->sw_ring[pending++ & ptr_mask];
247                         rte_mbuf_raw_free(rxd->mbuf);
248                 } while (pending != rxq->pending);
249                 rxq->completed = pending;
250                 return rx_pkts;
251         }
252
253         rxd = &rxq->sw_ring[pending++ & ptr_mask];
254
255         sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
256
257         m = rxd->mbuf;
258
259         *rx_pkts++ = m;
260         rxq->completed = pending;
261
262         RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
263         m->rearm_data[0] = rxq->rearm_data;
264
265         /* Classify packet based on Rx event */
266         /* Mask RSS hash offload flag if RSS is not enabled */
267         sfc_ef10_rx_ev_to_offloads(rx_ev, m,
268                                    (rxq->flags & SFC_EF10_RXQ_RSS_HASH) ?
269                                    ~0ull : ~PKT_RX_RSS_HASH);
270
271         /* data_off already moved past pseudo header */
272         pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
273
274         /*
275          * Always get RSS hash from pseudo header to avoid
276          * condition/branching. If it is valid or not depends on
277          * PKT_RX_RSS_HASH in m->ol_flags.
278          */
279         m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
280
281         if (ready == 1)
282                 seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
283                         rxq->prefix_size;
284         else
285                 seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
286         SFC_ASSERT(seg_len > 0);
287         rte_pktmbuf_data_len(m) = seg_len;
288         rte_pktmbuf_pkt_len(m) = seg_len;
289
290         SFC_ASSERT(m->next == NULL);
291
292         /* Remember mbuf to copy offload flags and packet type from */
293         m0 = m;
294         while (pending != rxq->pending) {
295                 rxd = &rxq->sw_ring[pending++ & ptr_mask];
296
297                 sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
298
299                 m = rxd->mbuf;
300
301                 if (rx_pkts != rx_pkts_end) {
302                         *rx_pkts++ = m;
303                         rxq->completed = pending;
304                 }
305
306                 RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
307                                  sizeof(rxq->rearm_data));
308                 m->rearm_data[0] = rxq->rearm_data;
309
310                 /* Event-dependent information is the same */
311                 m->ol_flags = m0->ol_flags;
312                 m->packet_type = m0->packet_type;
313
314                 /* data_off already moved past pseudo header */
315                 pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
316
317                 /*
318                  * Always get RSS hash from pseudo header to avoid
319                  * condition/branching. If it is valid or not depends on
320                  * PKT_RX_RSS_HASH in m->ol_flags.
321                  */
322                 m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
323
324                 seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
325                 SFC_ASSERT(seg_len > 0);
326                 rte_pktmbuf_data_len(m) = seg_len;
327                 rte_pktmbuf_pkt_len(m) = seg_len;
328
329                 SFC_ASSERT(m->next == NULL);
330         }
331
332         return rx_pkts;
333 }
334
335 static bool
336 sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
337 {
338         *rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
339
340         if (!sfc_ef10_ev_present(*rx_ev))
341                 return false;
342
343         if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
344                      FSE_AZ_EV_CODE_RX_EV)) {
345                 /*
346                  * Do not move read_ptr to keep the event for exception
347                  * handling by the control path.
348                  */
349                 rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
350                 sfc_ef10_rx_err(&rxq->dp.dpq,
351                                 "RxQ exception at EvQ read ptr %#x",
352                                 rxq->evq_read_ptr);
353                 return false;
354         }
355
356         rxq->evq_read_ptr++;
357         return true;
358 }
359
360 static uint16_t
361 sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
362 {
363         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
364         struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
365         unsigned int evq_old_read_ptr;
366         efx_qword_t rx_ev;
367
368         rx_pkts = sfc_ef10_rx_pending(rxq, rx_pkts, nb_pkts);
369
370         if (unlikely(rxq->flags &
371                      (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
372                 goto done;
373
374         evq_old_read_ptr = rxq->evq_read_ptr;
375         while (rx_pkts != rx_pkts_end && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
376                 /*
377                  * DROP_EVENT is an internal to the NIC, software should
378                  * never see it and, therefore, may ignore it.
379                  */
380
381                 rx_pkts = sfc_ef10_rx_process_event(rxq, rx_ev,
382                                                     rx_pkts, rx_pkts_end);
383         }
384
385         sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
386                            rxq->evq_read_ptr);
387
388         /* It is not a problem if we refill in the case of exception */
389         sfc_ef10_rx_qrefill(rxq);
390
391 done:
392         return nb_pkts - (rx_pkts_end - rx_pkts);
393 }
394
395 const uint32_t *
396 sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
397 {
398         static const uint32_t ef10_native_ptypes[] = {
399                 RTE_PTYPE_L2_ETHER,
400                 RTE_PTYPE_L2_ETHER_ARP,
401                 RTE_PTYPE_L2_ETHER_VLAN,
402                 RTE_PTYPE_L2_ETHER_QINQ,
403                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
404                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
405                 RTE_PTYPE_L4_FRAG,
406                 RTE_PTYPE_L4_TCP,
407                 RTE_PTYPE_L4_UDP,
408                 RTE_PTYPE_UNKNOWN
409         };
410         static const uint32_t ef10_overlay_ptypes[] = {
411                 RTE_PTYPE_L2_ETHER,
412                 RTE_PTYPE_L2_ETHER_ARP,
413                 RTE_PTYPE_L2_ETHER_VLAN,
414                 RTE_PTYPE_L2_ETHER_QINQ,
415                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
416                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
417                 RTE_PTYPE_L4_FRAG,
418                 RTE_PTYPE_L4_TCP,
419                 RTE_PTYPE_L4_UDP,
420                 RTE_PTYPE_TUNNEL_VXLAN,
421                 RTE_PTYPE_TUNNEL_NVGRE,
422                 RTE_PTYPE_INNER_L2_ETHER,
423                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
424                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
425                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
426                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
427                 RTE_PTYPE_INNER_L4_FRAG,
428                 RTE_PTYPE_INNER_L4_TCP,
429                 RTE_PTYPE_INNER_L4_UDP,
430                 RTE_PTYPE_UNKNOWN
431         };
432
433         /*
434          * The function returns static set of supported packet types,
435          * so we can't build it dynamically based on supported tunnel
436          * encapsulations and should limit to known sets.
437          */
438         switch (tunnel_encaps) {
439         case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
440               1u << EFX_TUNNEL_PROTOCOL_GENEVE |
441               1u << EFX_TUNNEL_PROTOCOL_NVGRE):
442                 return ef10_overlay_ptypes;
443         default:
444                 SFC_GENERIC_LOG(ERR,
445                         "Unexpected set of supported tunnel encapsulations: %#x",
446                         tunnel_encaps);
447                 /* FALLTHROUGH */
448         case 0:
449                 return ef10_native_ptypes;
450         }
451 }
452
453 static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
454 static unsigned int
455 sfc_ef10_rx_qdesc_npending(__rte_unused struct sfc_dp_rxq *dp_rxq)
456 {
457         /*
458          * Correct implementation requires EvQ polling and events
459          * processing (keeping all ready mbufs in prepared).
460          */
461         return -ENOTSUP;
462 }
463
464 static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
465 static int
466 sfc_ef10_rx_qdesc_status(__rte_unused struct sfc_dp_rxq *dp_rxq,
467                          __rte_unused uint16_t offset)
468 {
469         return -ENOTSUP;
470 }
471
472
473 static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
474 static void
475 sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
476 {
477         /*
478          * Number of descriptors just defines maximum number of pushed
479          * descriptors (fill level).
480          */
481         dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
482         dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
483 }
484
485
486 static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
487 static int
488 sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
489                            __rte_unused struct rte_mempool *mb_pool,
490                            unsigned int *rxq_entries,
491                            unsigned int *evq_entries,
492                            unsigned int *rxq_max_fill_level)
493 {
494         /*
495          * rte_ethdev API guarantees that the number meets min, max and
496          * alignment requirements.
497          */
498         if (nb_rx_desc <= EFX_RXQ_MINNDESCS)
499                 *rxq_entries = EFX_RXQ_MINNDESCS;
500         else
501                 *rxq_entries = rte_align32pow2(nb_rx_desc);
502
503         *evq_entries = *rxq_entries;
504
505         *rxq_max_fill_level = RTE_MIN(nb_rx_desc,
506                                       SFC_EF10_RXQ_LIMIT(*evq_entries));
507         return 0;
508 }
509
510
511 static uint64_t
512 sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
513 {
514         struct rte_mbuf m;
515
516         memset(&m, 0, sizeof(m));
517
518         rte_mbuf_refcnt_set(&m, 1);
519         m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
520         m.nb_segs = 1;
521         m.port = port_id;
522
523         /* rearm_data covers structure members filled in above */
524         rte_compiler_barrier();
525         RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
526         return m.rearm_data[0];
527 }
528
529 static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
530 static int
531 sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
532                     const struct rte_pci_addr *pci_addr, int socket_id,
533                     const struct sfc_dp_rx_qcreate_info *info,
534                     struct sfc_dp_rxq **dp_rxqp)
535 {
536         struct sfc_ef10_rxq *rxq;
537         int rc;
538
539         rc = EINVAL;
540         if (info->rxq_entries != info->evq_entries)
541                 goto fail_rxq_args;
542
543         rc = ENOMEM;
544         rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
545                                  RTE_CACHE_LINE_SIZE, socket_id);
546         if (rxq == NULL)
547                 goto fail_rxq_alloc;
548
549         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
550
551         rc = ENOMEM;
552         rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
553                                          info->rxq_entries,
554                                          sizeof(*rxq->sw_ring),
555                                          RTE_CACHE_LINE_SIZE, socket_id);
556         if (rxq->sw_ring == NULL)
557                 goto fail_desc_alloc;
558
559         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
560         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
561                 rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
562         rxq->ptr_mask = info->rxq_entries - 1;
563         rxq->evq_hw_ring = info->evq_hw_ring;
564         rxq->max_fill_level = info->max_fill_level;
565         rxq->refill_threshold = info->refill_threshold;
566         rxq->rearm_data =
567                 sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
568         rxq->prefix_size = info->prefix_size;
569         rxq->buf_size = info->buf_size;
570         rxq->refill_mb_pool = info->refill_mb_pool;
571         rxq->rxq_hw_ring = info->rxq_hw_ring;
572         rxq->doorbell = (volatile uint8_t *)info->mem_bar +
573                         ER_DZ_RX_DESC_UPD_REG_OFST +
574                         (info->hw_index << info->vi_window_shift);
575
576         *dp_rxqp = &rxq->dp;
577         return 0;
578
579 fail_desc_alloc:
580         rte_free(rxq);
581
582 fail_rxq_alloc:
583 fail_rxq_args:
584         return rc;
585 }
586
587 static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
588 static void
589 sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
590 {
591         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
592
593         rte_free(rxq->sw_ring);
594         rte_free(rxq);
595 }
596
597 static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
598 static int
599 sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr)
600 {
601         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
602
603         SFC_ASSERT(rxq->completed == 0);
604         SFC_ASSERT(rxq->pending == 0);
605         SFC_ASSERT(rxq->added == 0);
606
607         sfc_ef10_rx_qrefill(rxq);
608
609         rxq->evq_read_ptr = evq_read_ptr;
610
611         rxq->flags |= SFC_EF10_RXQ_STARTED;
612         rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
613
614         return 0;
615 }
616
617 static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
618 static void
619 sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
620 {
621         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
622
623         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
624
625         *evq_read_ptr = rxq->evq_read_ptr;
626 }
627
628 static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
629 static bool
630 sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
631 {
632         __rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
633
634         SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
635
636         /*
637          * It is safe to ignore Rx event since we free all mbufs on
638          * queue purge anyway.
639          */
640
641         return false;
642 }
643
644 static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
645 static void
646 sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
647 {
648         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
649         unsigned int i;
650         struct sfc_ef10_rx_sw_desc *rxd;
651
652         for (i = rxq->completed; i != rxq->added; ++i) {
653                 rxd = &rxq->sw_ring[i & rxq->ptr_mask];
654                 rte_mbuf_raw_free(rxd->mbuf);
655                 rxd->mbuf = NULL;
656         }
657
658         rxq->completed = rxq->pending = rxq->added = 0;
659
660         rxq->flags &= ~SFC_EF10_RXQ_STARTED;
661 }
662
663 struct sfc_dp_rx sfc_ef10_rx = {
664         .dp = {
665                 .name           = SFC_KVARG_DATAPATH_EF10,
666                 .type           = SFC_DP_RX,
667                 .hw_fw_caps     = SFC_DP_HW_FW_CAP_EF10,
668         },
669         .features               = SFC_DP_RX_FEAT_MULTI_PROCESS |
670                                   SFC_DP_RX_FEAT_TUNNELS |
671                                   SFC_DP_RX_FEAT_CHECKSUM,
672         .get_dev_info           = sfc_ef10_rx_get_dev_info,
673         .qsize_up_rings         = sfc_ef10_rx_qsize_up_rings,
674         .qcreate                = sfc_ef10_rx_qcreate,
675         .qdestroy               = sfc_ef10_rx_qdestroy,
676         .qstart                 = sfc_ef10_rx_qstart,
677         .qstop                  = sfc_ef10_rx_qstop,
678         .qrx_ev                 = sfc_ef10_rx_qrx_ev,
679         .qpurge                 = sfc_ef10_rx_qpurge,
680         .supported_ptypes_get   = sfc_ef10_supported_ptypes_get,
681         .qdesc_npending         = sfc_ef10_rx_qdesc_npending,
682         .qdesc_status           = sfc_ef10_rx_qdesc_status,
683         .pkt_burst              = sfc_ef10_recv_pkts,
684 };