drivers/net: update Rx RSS hash offload capabilities
[dpdk.git] / drivers / net / sfc / sfc_ef10_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 /* EF10 native datapath implementation */
11
12 #include <stdbool.h>
13
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18
19 #include "efx.h"
20 #include "efx_types.h"
21 #include "efx_regs.h"
22 #include "efx_regs_ef10.h"
23
24 #include "sfc_tweak.h"
25 #include "sfc_dp_rx.h"
26 #include "sfc_kvargs.h"
27 #include "sfc_ef10.h"
28
29 #define SFC_EF10_RX_EV_ENCAP_SUPPORT    1
30 #include "sfc_ef10_rx_ev.h"
31
32 #define sfc_ef10_rx_err(dpq, ...) \
33         SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
34
35 /**
36  * Maximum number of descriptors/buffers in the Rx ring.
37  * It should guarantee that corresponding event queue never overfill.
38  * EF10 native datapath uses event queue of the same size as Rx queue.
39  * Maximum number of events on datapath can be estimated as number of
40  * Rx queue entries (one event per Rx buffer in the worst case) plus
41  * Rx error and flush events.
42  */
43 #define SFC_EF10_RXQ_LIMIT(_ndesc) \
44         ((_ndesc) - 1 /* head must not step on tail */ - \
45          (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
46          1 /* Rx error */ - 1 /* flush */)
47
48 struct sfc_ef10_rx_sw_desc {
49         struct rte_mbuf                 *mbuf;
50 };
51
52 struct sfc_ef10_rxq {
53         /* Used on data path */
54         unsigned int                    flags;
55 #define SFC_EF10_RXQ_STARTED            0x1
56 #define SFC_EF10_RXQ_NOT_RUNNING        0x2
57 #define SFC_EF10_RXQ_EXCEPTION          0x4
58 #define SFC_EF10_RXQ_RSS_HASH           0x8
59 #define SFC_EF10_RXQ_FLAG_INTR_EN       0x10
60         unsigned int                    ptr_mask;
61         unsigned int                    pending;
62         unsigned int                    completed;
63         unsigned int                    evq_read_ptr;
64         unsigned int                    evq_read_ptr_primed;
65         efx_qword_t                     *evq_hw_ring;
66         struct sfc_ef10_rx_sw_desc      *sw_ring;
67         uint64_t                        rearm_data;
68         struct rte_mbuf                 *scatter_pkt;
69         volatile void                   *evq_prime;
70         uint16_t                        prefix_size;
71
72         /* Used on refill */
73         uint16_t                        buf_size;
74         unsigned int                    added;
75         unsigned int                    max_fill_level;
76         unsigned int                    refill_threshold;
77         struct rte_mempool              *refill_mb_pool;
78         efx_qword_t                     *rxq_hw_ring;
79         volatile void                   *doorbell;
80
81         /* Datapath receive queue anchor */
82         struct sfc_dp_rxq               dp;
83 };
84
85 static inline struct sfc_ef10_rxq *
86 sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
87 {
88         return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
89 }
90
91 static void
92 sfc_ef10_rx_qprime(struct sfc_ef10_rxq *rxq)
93 {
94         sfc_ef10_ev_qprime(rxq->evq_prime, rxq->evq_read_ptr, rxq->ptr_mask);
95         rxq->evq_read_ptr_primed = rxq->evq_read_ptr;
96 }
97
98 static void
99 sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
100 {
101         const unsigned int ptr_mask = rxq->ptr_mask;
102         const uint32_t buf_size = rxq->buf_size;
103         unsigned int free_space;
104         unsigned int bulks;
105         void *objs[SFC_RX_REFILL_BULK];
106         unsigned int added = rxq->added;
107
108         RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
109
110         free_space = rxq->max_fill_level - (added - rxq->completed);
111
112         if (free_space < rxq->refill_threshold)
113                 return;
114
115         bulks = free_space / RTE_DIM(objs);
116         /* refill_threshold guarantees that bulks is positive */
117         SFC_ASSERT(bulks > 0);
118
119         do {
120                 unsigned int id;
121                 unsigned int i;
122
123                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
124                                                   RTE_DIM(objs)) < 0)) {
125                         struct rte_eth_dev_data *dev_data =
126                                 rte_eth_devices[rxq->dp.dpq.port_id].data;
127
128                         /*
129                          * It is hardly a safe way to increment counter
130                          * from different contexts, but all PMDs do it.
131                          */
132                         dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
133                         /* Return if we have posted nothing yet */
134                         if (added == rxq->added)
135                                 return;
136                         /* Push posted */
137                         break;
138                 }
139
140                 for (i = 0, id = added & ptr_mask;
141                      i < RTE_DIM(objs);
142                      ++i, ++id) {
143                         struct rte_mbuf *m = objs[i];
144                         struct sfc_ef10_rx_sw_desc *rxd;
145                         rte_iova_t phys_addr;
146
147                         MBUF_RAW_ALLOC_CHECK(m);
148
149                         SFC_ASSERT((id & ~ptr_mask) == 0);
150                         rxd = &rxq->sw_ring[id];
151                         rxd->mbuf = m;
152
153                         /*
154                          * Avoid writing to mbuf. It is cheaper to do it
155                          * when we receive packet and fill in nearby
156                          * structure members.
157                          */
158
159                         phys_addr = rte_mbuf_data_iova_default(m);
160                         EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
161                             ESF_DZ_RX_KER_BYTE_CNT, buf_size,
162                             ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
163                 }
164
165                 added += RTE_DIM(objs);
166         } while (--bulks > 0);
167
168         SFC_ASSERT(rxq->added != added);
169         rxq->added = added;
170         sfc_ef10_rx_qpush(rxq->doorbell, added, ptr_mask);
171 }
172
173 static void
174 sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
175 {
176         struct rte_mbuf *next_mbuf;
177
178         /* Prefetch next bunch of software descriptors */
179         if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
180                 rte_prefetch0(&rxq->sw_ring[next_id]);
181
182         /*
183          * It looks strange to prefetch depending on previous prefetch
184          * data, but measurements show that it is really efficient and
185          * increases packet rate.
186          */
187         next_mbuf = rxq->sw_ring[next_id].mbuf;
188         if (likely(next_mbuf != NULL)) {
189                 /* Prefetch the next mbuf structure */
190                 rte_mbuf_prefetch_part1(next_mbuf);
191
192                 /* Prefetch pseudo header of the next packet */
193                 /* data_off is not filled in yet */
194                 /* Yes, data could be not ready yet, but we hope */
195                 rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
196                               RTE_PKTMBUF_HEADROOM);
197         }
198 }
199
200 static struct rte_mbuf **
201 sfc_ef10_rx_pending(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
202                     uint16_t nb_pkts)
203 {
204         uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->pending - rxq->completed);
205
206         SFC_ASSERT(rxq->pending == rxq->completed || rxq->scatter_pkt == NULL);
207
208         if (n_rx_pkts != 0) {
209                 unsigned int completed = rxq->completed;
210
211                 rxq->completed = completed + n_rx_pkts;
212
213                 do {
214                         *rx_pkts++ =
215                                 rxq->sw_ring[completed++ & rxq->ptr_mask].mbuf;
216                 } while (completed != rxq->completed);
217         }
218
219         return rx_pkts;
220 }
221
222 static uint16_t
223 sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
224 {
225         return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
226 }
227
228 static uint32_t
229 sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
230 {
231         return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
232 }
233
234 static struct rte_mbuf **
235 sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
236                           struct rte_mbuf **rx_pkts,
237                           struct rte_mbuf ** const rx_pkts_end)
238 {
239         const unsigned int ptr_mask = rxq->ptr_mask;
240         unsigned int pending = rxq->pending;
241         unsigned int ready;
242         struct sfc_ef10_rx_sw_desc *rxd;
243         struct rte_mbuf *m;
244         struct rte_mbuf *m0;
245         const uint8_t *pseudo_hdr;
246         uint16_t seg_len;
247
248         ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - pending) &
249                 EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
250
251         if (ready == 0) {
252                 /* Rx abort - it was no enough descriptors for Rx packet */
253                 rte_pktmbuf_free(rxq->scatter_pkt);
254                 rxq->scatter_pkt = NULL;
255                 return rx_pkts;
256         }
257
258         rxq->pending = pending + ready;
259
260         if (rx_ev.eq_u64[0] &
261             rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
262                              (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
263                 SFC_ASSERT(rxq->completed == pending);
264                 do {
265                         rxd = &rxq->sw_ring[pending++ & ptr_mask];
266                         rte_mbuf_raw_free(rxd->mbuf);
267                 } while (pending != rxq->pending);
268                 rxq->completed = pending;
269                 return rx_pkts;
270         }
271
272         /* If scattered packet is in progress */
273         if (rxq->scatter_pkt != NULL) {
274                 /* Events for scattered packet frags are not merged */
275                 SFC_ASSERT(ready == 1);
276                 SFC_ASSERT(rxq->completed == pending);
277
278                 /* There is no pseudo-header in scatter segments. */
279                 seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES);
280
281                 rxd = &rxq->sw_ring[pending++ & ptr_mask];
282                 m = rxd->mbuf;
283
284                 MBUF_RAW_ALLOC_CHECK(m);
285
286                 m->data_off = RTE_PKTMBUF_HEADROOM;
287                 rte_pktmbuf_data_len(m) = seg_len;
288                 rte_pktmbuf_pkt_len(m) = seg_len;
289
290                 rxq->scatter_pkt->nb_segs++;
291                 rte_pktmbuf_pkt_len(rxq->scatter_pkt) += seg_len;
292                 rte_pktmbuf_lastseg(rxq->scatter_pkt)->next = m;
293
294                 if (~rx_ev.eq_u64[0] &
295                     rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
296                         *rx_pkts++ = rxq->scatter_pkt;
297                         rxq->scatter_pkt = NULL;
298                 }
299                 rxq->completed = pending;
300                 return rx_pkts;
301         }
302
303         rxd = &rxq->sw_ring[pending++ & ptr_mask];
304
305         sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
306
307         m = rxd->mbuf;
308
309         RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
310         m->rearm_data[0] = rxq->rearm_data;
311
312         /* Classify packet based on Rx event */
313         /* Mask RSS hash offload flag if RSS is not enabled */
314         sfc_ef10_rx_ev_to_offloads(rx_ev, m,
315                                    (rxq->flags & SFC_EF10_RXQ_RSS_HASH) ?
316                                    ~0ull : ~PKT_RX_RSS_HASH);
317
318         /* data_off already moved past pseudo header */
319         pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
320
321         /*
322          * Always get RSS hash from pseudo header to avoid
323          * condition/branching. If it is valid or not depends on
324          * PKT_RX_RSS_HASH in m->ol_flags.
325          */
326         m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
327
328         if (ready == 1)
329                 seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
330                         rxq->prefix_size;
331         else
332                 seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
333         SFC_ASSERT(seg_len > 0);
334         rte_pktmbuf_data_len(m) = seg_len;
335         rte_pktmbuf_pkt_len(m) = seg_len;
336
337         SFC_ASSERT(m->next == NULL);
338
339         if (~rx_ev.eq_u64[0] & rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
340                 *rx_pkts++ = m;
341                 rxq->completed = pending;
342         } else {
343                 /* Events with CONT bit are not merged */
344                 SFC_ASSERT(ready == 1);
345                 rxq->scatter_pkt = m;
346                 rxq->completed = pending;
347                 return rx_pkts;
348         }
349
350         /* Remember mbuf to copy offload flags and packet type from */
351         m0 = m;
352         while (pending != rxq->pending) {
353                 rxd = &rxq->sw_ring[pending++ & ptr_mask];
354
355                 sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
356
357                 m = rxd->mbuf;
358
359                 if (rx_pkts != rx_pkts_end) {
360                         *rx_pkts++ = m;
361                         rxq->completed = pending;
362                 }
363
364                 RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
365                                  sizeof(rxq->rearm_data));
366                 m->rearm_data[0] = rxq->rearm_data;
367
368                 /* Event-dependent information is the same */
369                 m->ol_flags = m0->ol_flags;
370                 m->packet_type = m0->packet_type;
371
372                 /* data_off already moved past pseudo header */
373                 pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
374
375                 /*
376                  * Always get RSS hash from pseudo header to avoid
377                  * condition/branching. If it is valid or not depends on
378                  * PKT_RX_RSS_HASH in m->ol_flags.
379                  */
380                 m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
381
382                 seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
383                 SFC_ASSERT(seg_len > 0);
384                 rte_pktmbuf_data_len(m) = seg_len;
385                 rte_pktmbuf_pkt_len(m) = seg_len;
386
387                 SFC_ASSERT(m->next == NULL);
388         }
389
390         return rx_pkts;
391 }
392
393 static bool
394 sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
395 {
396         *rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
397
398         if (!sfc_ef10_ev_present(*rx_ev))
399                 return false;
400
401         if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
402                      FSE_AZ_EV_CODE_RX_EV)) {
403                 /*
404                  * Do not move read_ptr to keep the event for exception
405                  * handling by the control path.
406                  */
407                 rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
408                 sfc_ef10_rx_err(&rxq->dp.dpq,
409                                 "RxQ exception at EvQ read ptr %#x",
410                                 rxq->evq_read_ptr);
411                 return false;
412         }
413
414         rxq->evq_read_ptr++;
415         return true;
416 }
417
418 static uint16_t
419 sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
420 {
421         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
422         struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
423         unsigned int evq_old_read_ptr;
424         efx_qword_t rx_ev;
425
426         rx_pkts = sfc_ef10_rx_pending(rxq, rx_pkts, nb_pkts);
427
428         if (unlikely(rxq->flags &
429                      (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
430                 goto done;
431
432         evq_old_read_ptr = rxq->evq_read_ptr;
433         while (rx_pkts != rx_pkts_end && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
434                 /*
435                  * DROP_EVENT is an internal to the NIC, software should
436                  * never see it and, therefore, may ignore it.
437                  */
438
439                 rx_pkts = sfc_ef10_rx_process_event(rxq, rx_ev,
440                                                     rx_pkts, rx_pkts_end);
441         }
442
443         sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
444                            rxq->evq_read_ptr);
445
446         /* It is not a problem if we refill in the case of exception */
447         sfc_ef10_rx_qrefill(rxq);
448
449         if ((rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN) &&
450             rxq->evq_read_ptr_primed != rxq->evq_read_ptr)
451                 sfc_ef10_rx_qprime(rxq);
452
453 done:
454         return nb_pkts - (rx_pkts_end - rx_pkts);
455 }
456
457 const uint32_t *
458 sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
459 {
460         static const uint32_t ef10_native_ptypes[] = {
461                 RTE_PTYPE_L2_ETHER,
462                 RTE_PTYPE_L2_ETHER_ARP,
463                 RTE_PTYPE_L2_ETHER_VLAN,
464                 RTE_PTYPE_L2_ETHER_QINQ,
465                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
466                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
467                 RTE_PTYPE_L4_FRAG,
468                 RTE_PTYPE_L4_TCP,
469                 RTE_PTYPE_L4_UDP,
470                 RTE_PTYPE_UNKNOWN
471         };
472         static const uint32_t ef10_overlay_ptypes[] = {
473                 RTE_PTYPE_L2_ETHER,
474                 RTE_PTYPE_L2_ETHER_ARP,
475                 RTE_PTYPE_L2_ETHER_VLAN,
476                 RTE_PTYPE_L2_ETHER_QINQ,
477                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
478                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
479                 RTE_PTYPE_L4_FRAG,
480                 RTE_PTYPE_L4_TCP,
481                 RTE_PTYPE_L4_UDP,
482                 RTE_PTYPE_TUNNEL_VXLAN,
483                 RTE_PTYPE_TUNNEL_NVGRE,
484                 RTE_PTYPE_INNER_L2_ETHER,
485                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
486                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
487                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
488                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
489                 RTE_PTYPE_INNER_L4_FRAG,
490                 RTE_PTYPE_INNER_L4_TCP,
491                 RTE_PTYPE_INNER_L4_UDP,
492                 RTE_PTYPE_UNKNOWN
493         };
494
495         /*
496          * The function returns static set of supported packet types,
497          * so we can't build it dynamically based on supported tunnel
498          * encapsulations and should limit to known sets.
499          */
500         switch (tunnel_encaps) {
501         case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
502               1u << EFX_TUNNEL_PROTOCOL_GENEVE |
503               1u << EFX_TUNNEL_PROTOCOL_NVGRE):
504                 return ef10_overlay_ptypes;
505         default:
506                 SFC_GENERIC_LOG(ERR,
507                         "Unexpected set of supported tunnel encapsulations: %#x",
508                         tunnel_encaps);
509                 /* FALLTHROUGH */
510         case 0:
511                 return ef10_native_ptypes;
512         }
513 }
514
515 static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
516 static unsigned int
517 sfc_ef10_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
518 {
519         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
520         efx_qword_t rx_ev;
521         const unsigned int evq_old_read_ptr = rxq->evq_read_ptr;
522         unsigned int pending = rxq->pending;
523         unsigned int ready;
524
525         if (unlikely(rxq->flags &
526                      (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
527                 goto done;
528
529         while (sfc_ef10_rx_get_event(rxq, &rx_ev)) {
530                 ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) -
531                          pending) &
532                         EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
533                 pending += ready;
534         }
535
536         /*
537          * The function does not process events, so return event queue read
538          * pointer to the original position to allow the events that were
539          * read to be processed later
540          */
541         rxq->evq_read_ptr = evq_old_read_ptr;
542
543 done:
544         return pending - rxq->completed;
545 }
546
547 static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
548 static int
549 sfc_ef10_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
550 {
551         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
552         unsigned int npending = sfc_ef10_rx_qdesc_npending(dp_rxq);
553
554         if (unlikely(offset > rxq->ptr_mask))
555                 return -EINVAL;
556
557         if (offset < npending)
558                 return RTE_ETH_RX_DESC_DONE;
559
560         if (offset < (rxq->added - rxq->completed))
561                 return RTE_ETH_RX_DESC_AVAIL;
562
563         return RTE_ETH_RX_DESC_UNAVAIL;
564 }
565
566
567 static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
568 static void
569 sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
570 {
571         /*
572          * Number of descriptors just defines maximum number of pushed
573          * descriptors (fill level).
574          */
575         dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
576         dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
577 }
578
579
580 static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
581 static int
582 sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
583                            struct sfc_dp_rx_hw_limits *limits,
584                            __rte_unused struct rte_mempool *mb_pool,
585                            unsigned int *rxq_entries,
586                            unsigned int *evq_entries,
587                            unsigned int *rxq_max_fill_level)
588 {
589         /*
590          * rte_ethdev API guarantees that the number meets min, max and
591          * alignment requirements.
592          */
593         if (nb_rx_desc <= limits->rxq_min_entries)
594                 *rxq_entries = limits->rxq_min_entries;
595         else
596                 *rxq_entries = rte_align32pow2(nb_rx_desc);
597
598         *evq_entries = *rxq_entries;
599
600         *rxq_max_fill_level = RTE_MIN(nb_rx_desc,
601                                       SFC_EF10_RXQ_LIMIT(*evq_entries));
602         return 0;
603 }
604
605
606 static uint64_t
607 sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
608 {
609         struct rte_mbuf m;
610
611         memset(&m, 0, sizeof(m));
612
613         rte_mbuf_refcnt_set(&m, 1);
614         m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
615         m.nb_segs = 1;
616         m.port = port_id;
617
618         /* rearm_data covers structure members filled in above */
619         rte_compiler_barrier();
620         RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
621         return m.rearm_data[0];
622 }
623
624 static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
625 static int
626 sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
627                     const struct rte_pci_addr *pci_addr, int socket_id,
628                     const struct sfc_dp_rx_qcreate_info *info,
629                     struct sfc_dp_rxq **dp_rxqp)
630 {
631         struct sfc_ef10_rxq *rxq;
632         int rc;
633
634         rc = EINVAL;
635         if (info->rxq_entries != info->evq_entries)
636                 goto fail_rxq_args;
637
638         rc = ENOMEM;
639         rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
640                                  RTE_CACHE_LINE_SIZE, socket_id);
641         if (rxq == NULL)
642                 goto fail_rxq_alloc;
643
644         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
645
646         rc = ENOMEM;
647         rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
648                                          info->rxq_entries,
649                                          sizeof(*rxq->sw_ring),
650                                          RTE_CACHE_LINE_SIZE, socket_id);
651         if (rxq->sw_ring == NULL)
652                 goto fail_desc_alloc;
653
654         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
655         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
656                 rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
657         rxq->ptr_mask = info->rxq_entries - 1;
658         rxq->evq_hw_ring = info->evq_hw_ring;
659         rxq->max_fill_level = info->max_fill_level;
660         rxq->refill_threshold = info->refill_threshold;
661         rxq->rearm_data =
662                 sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
663         rxq->prefix_size = info->prefix_size;
664         rxq->buf_size = info->buf_size;
665         rxq->refill_mb_pool = info->refill_mb_pool;
666         rxq->rxq_hw_ring = info->rxq_hw_ring;
667         rxq->doorbell = (volatile uint8_t *)info->mem_bar +
668                         ER_DZ_RX_DESC_UPD_REG_OFST +
669                         (info->hw_index << info->vi_window_shift);
670         rxq->evq_prime = (volatile uint8_t *)info->mem_bar +
671                       ER_DZ_EVQ_RPTR_REG_OFST +
672                       (info->evq_hw_index << info->vi_window_shift);
673
674         *dp_rxqp = &rxq->dp;
675         return 0;
676
677 fail_desc_alloc:
678         rte_free(rxq);
679
680 fail_rxq_alloc:
681 fail_rxq_args:
682         return rc;
683 }
684
685 static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
686 static void
687 sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
688 {
689         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
690
691         rte_free(rxq->sw_ring);
692         rte_free(rxq);
693 }
694
695 static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
696 static int
697 sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr)
698 {
699         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
700
701         SFC_ASSERT(rxq->completed == 0);
702         SFC_ASSERT(rxq->pending == 0);
703         SFC_ASSERT(rxq->added == 0);
704
705         sfc_ef10_rx_qrefill(rxq);
706
707         rxq->evq_read_ptr = evq_read_ptr;
708
709         rxq->flags |= SFC_EF10_RXQ_STARTED;
710         rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
711
712         if (rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN)
713                 sfc_ef10_rx_qprime(rxq);
714
715         return 0;
716 }
717
718 static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
719 static void
720 sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
721 {
722         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
723
724         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
725
726         *evq_read_ptr = rxq->evq_read_ptr;
727 }
728
729 static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
730 static bool
731 sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
732 {
733         __rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
734
735         SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
736
737         /*
738          * It is safe to ignore Rx event since we free all mbufs on
739          * queue purge anyway.
740          */
741
742         return false;
743 }
744
745 static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
746 static void
747 sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
748 {
749         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
750         unsigned int i;
751         struct sfc_ef10_rx_sw_desc *rxd;
752
753         rte_pktmbuf_free(rxq->scatter_pkt);
754         rxq->scatter_pkt = NULL;
755
756         for (i = rxq->completed; i != rxq->added; ++i) {
757                 rxd = &rxq->sw_ring[i & rxq->ptr_mask];
758                 rte_mbuf_raw_free(rxd->mbuf);
759                 rxd->mbuf = NULL;
760         }
761
762         rxq->completed = rxq->pending = rxq->added = 0;
763
764         rxq->flags &= ~SFC_EF10_RXQ_STARTED;
765 }
766
767 static sfc_dp_rx_intr_enable_t sfc_ef10_rx_intr_enable;
768 static int
769 sfc_ef10_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
770 {
771         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
772
773         rxq->flags |= SFC_EF10_RXQ_FLAG_INTR_EN;
774         if (rxq->flags & SFC_EF10_RXQ_STARTED)
775                 sfc_ef10_rx_qprime(rxq);
776         return 0;
777 }
778
779 static sfc_dp_rx_intr_disable_t sfc_ef10_rx_intr_disable;
780 static int
781 sfc_ef10_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
782 {
783         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
784
785         /* Cannot disarm, just disable rearm */
786         rxq->flags &= ~SFC_EF10_RXQ_FLAG_INTR_EN;
787         return 0;
788 }
789
790 struct sfc_dp_rx sfc_ef10_rx = {
791         .dp = {
792                 .name           = SFC_KVARG_DATAPATH_EF10,
793                 .type           = SFC_DP_RX,
794                 .hw_fw_caps     = SFC_DP_HW_FW_CAP_EF10,
795         },
796         .features               = SFC_DP_RX_FEAT_MULTI_PROCESS |
797                                   SFC_DP_RX_FEAT_INTR,
798         .dev_offload_capa       = DEV_RX_OFFLOAD_CHECKSUM |
799                                   DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
800                                   DEV_RX_OFFLOAD_RSS_HASH,
801         .queue_offload_capa     = DEV_RX_OFFLOAD_SCATTER,
802         .get_dev_info           = sfc_ef10_rx_get_dev_info,
803         .qsize_up_rings         = sfc_ef10_rx_qsize_up_rings,
804         .qcreate                = sfc_ef10_rx_qcreate,
805         .qdestroy               = sfc_ef10_rx_qdestroy,
806         .qstart                 = sfc_ef10_rx_qstart,
807         .qstop                  = sfc_ef10_rx_qstop,
808         .qrx_ev                 = sfc_ef10_rx_qrx_ev,
809         .qpurge                 = sfc_ef10_rx_qpurge,
810         .supported_ptypes_get   = sfc_ef10_supported_ptypes_get,
811         .qdesc_npending         = sfc_ef10_rx_qdesc_npending,
812         .qdesc_status           = sfc_ef10_rx_qdesc_status,
813         .intr_enable            = sfc_ef10_rx_intr_enable,
814         .intr_disable           = sfc_ef10_rx_intr_disable,
815         .pkt_burst              = sfc_ef10_recv_pkts,
816 };