net/sfc: decrease number of variables maintained on EF10 Rx
[dpdk.git] / drivers / net / sfc / sfc_ef10_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 /* EF10 native datapath implementation */
11
12 #include <stdbool.h>
13
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18
19 #include "efx.h"
20 #include "efx_types.h"
21 #include "efx_regs.h"
22 #include "efx_regs_ef10.h"
23
24 #include "sfc_tweak.h"
25 #include "sfc_dp_rx.h"
26 #include "sfc_kvargs.h"
27 #include "sfc_ef10.h"
28
29 #define SFC_EF10_RX_EV_ENCAP_SUPPORT    1
30 #include "sfc_ef10_rx_ev.h"
31
32 #define sfc_ef10_rx_err(dpq, ...) \
33         SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
34
35 /**
36  * Maximum number of descriptors/buffers in the Rx ring.
37  * It should guarantee that corresponding event queue never overfill.
38  * EF10 native datapath uses event queue of the same size as Rx queue.
39  * Maximum number of events on datapath can be estimated as number of
40  * Rx queue entries (one event per Rx buffer in the worst case) plus
41  * Rx error and flush events.
42  */
43 #define SFC_EF10_RXQ_LIMIT(_ndesc) \
44         ((_ndesc) - 1 /* head must not step on tail */ - \
45          (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
46          1 /* Rx error */ - 1 /* flush */)
47
48 struct sfc_ef10_rx_sw_desc {
49         struct rte_mbuf                 *mbuf;
50 };
51
52 struct sfc_ef10_rxq {
53         /* Used on data path */
54         unsigned int                    flags;
55 #define SFC_EF10_RXQ_STARTED            0x1
56 #define SFC_EF10_RXQ_NOT_RUNNING        0x2
57 #define SFC_EF10_RXQ_EXCEPTION          0x4
58 #define SFC_EF10_RXQ_RSS_HASH           0x8
59         unsigned int                    ptr_mask;
60         unsigned int                    prepared;
61         unsigned int                    completed;
62         unsigned int                    evq_read_ptr;
63         efx_qword_t                     *evq_hw_ring;
64         struct sfc_ef10_rx_sw_desc      *sw_ring;
65         uint64_t                        rearm_data;
66         uint16_t                        prefix_size;
67
68         /* Used on refill */
69         uint16_t                        buf_size;
70         unsigned int                    added;
71         unsigned int                    max_fill_level;
72         unsigned int                    refill_threshold;
73         struct rte_mempool              *refill_mb_pool;
74         efx_qword_t                     *rxq_hw_ring;
75         volatile void                   *doorbell;
76
77         /* Datapath receive queue anchor */
78         struct sfc_dp_rxq               dp;
79 };
80
81 static inline struct sfc_ef10_rxq *
82 sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
83 {
84         return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
85 }
86
87 static void
88 sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
89 {
90         const unsigned int ptr_mask = rxq->ptr_mask;
91         const uint32_t buf_size = rxq->buf_size;
92         unsigned int free_space;
93         unsigned int bulks;
94         void *objs[SFC_RX_REFILL_BULK];
95         unsigned int added = rxq->added;
96
97         RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
98
99         free_space = rxq->max_fill_level - (added - rxq->completed);
100
101         if (free_space < rxq->refill_threshold)
102                 return;
103
104         bulks = free_space / RTE_DIM(objs);
105         /* refill_threshold guarantees that bulks is positive */
106         SFC_ASSERT(bulks > 0);
107
108         do {
109                 unsigned int id;
110                 unsigned int i;
111
112                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
113                                                   RTE_DIM(objs)) < 0)) {
114                         struct rte_eth_dev_data *dev_data =
115                                 rte_eth_devices[rxq->dp.dpq.port_id].data;
116
117                         /*
118                          * It is hardly a safe way to increment counter
119                          * from different contexts, but all PMDs do it.
120                          */
121                         dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
122                         /* Return if we have posted nothing yet */
123                         if (added == rxq->added)
124                                 return;
125                         /* Push posted */
126                         break;
127                 }
128
129                 for (i = 0, id = added & ptr_mask;
130                      i < RTE_DIM(objs);
131                      ++i, ++id) {
132                         struct rte_mbuf *m = objs[i];
133                         struct sfc_ef10_rx_sw_desc *rxd;
134                         rte_iova_t phys_addr;
135
136                         MBUF_RAW_ALLOC_CHECK(m);
137
138                         SFC_ASSERT((id & ~ptr_mask) == 0);
139                         rxd = &rxq->sw_ring[id];
140                         rxd->mbuf = m;
141
142                         /*
143                          * Avoid writing to mbuf. It is cheaper to do it
144                          * when we receive packet and fill in nearby
145                          * structure members.
146                          */
147
148                         phys_addr = rte_mbuf_data_iova_default(m);
149                         EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
150                             ESF_DZ_RX_KER_BYTE_CNT, buf_size,
151                             ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
152                 }
153
154                 added += RTE_DIM(objs);
155         } while (--bulks > 0);
156
157         SFC_ASSERT(rxq->added != added);
158         rxq->added = added;
159         sfc_ef10_rx_qpush(rxq->doorbell, added, ptr_mask);
160 }
161
162 static void
163 sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
164 {
165         struct rte_mbuf *next_mbuf;
166
167         /* Prefetch next bunch of software descriptors */
168         if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
169                 rte_prefetch0(&rxq->sw_ring[next_id]);
170
171         /*
172          * It looks strange to prefetch depending on previous prefetch
173          * data, but measurements show that it is really efficient and
174          * increases packet rate.
175          */
176         next_mbuf = rxq->sw_ring[next_id].mbuf;
177         if (likely(next_mbuf != NULL)) {
178                 /* Prefetch the next mbuf structure */
179                 rte_mbuf_prefetch_part1(next_mbuf);
180
181                 /* Prefetch pseudo header of the next packet */
182                 /* data_off is not filled in yet */
183                 /* Yes, data could be not ready yet, but we hope */
184                 rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
185                               RTE_PKTMBUF_HEADROOM);
186         }
187 }
188
189 static struct rte_mbuf **
190 sfc_ef10_rx_prepared(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
191                      uint16_t nb_pkts)
192 {
193         uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->prepared);
194
195         if (n_rx_pkts != 0) {
196                 unsigned int completed = rxq->completed;
197
198                 rxq->prepared -= n_rx_pkts;
199                 rxq->completed = completed + n_rx_pkts;
200
201                 do {
202                         *rx_pkts++ =
203                                 rxq->sw_ring[completed++ & rxq->ptr_mask].mbuf;
204                 } while (completed != rxq->completed);
205         }
206
207         return rx_pkts;
208 }
209
210 static uint16_t
211 sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
212 {
213         return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
214 }
215
216 static uint32_t
217 sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
218 {
219         return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
220 }
221
222 static struct rte_mbuf **
223 sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
224                           struct rte_mbuf **rx_pkts,
225                           struct rte_mbuf ** const rx_pkts_end)
226 {
227         const unsigned int ptr_mask = rxq->ptr_mask;
228         unsigned int completed = rxq->completed;
229         unsigned int ready;
230         struct sfc_ef10_rx_sw_desc *rxd;
231         struct rte_mbuf *m;
232         struct rte_mbuf *m0;
233         uint16_t n_rx_pkts;
234         const uint8_t *pseudo_hdr;
235         uint16_t pkt_len;
236
237         ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - completed) &
238                 EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
239         SFC_ASSERT(ready > 0);
240
241         if (rx_ev.eq_u64[0] &
242             rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
243                              (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
244                 SFC_ASSERT(rxq->prepared == 0);
245                 rxq->completed += ready;
246                 while (ready-- > 0) {
247                         rxd = &rxq->sw_ring[completed++ & ptr_mask];
248                         rte_mbuf_raw_free(rxd->mbuf);
249                 }
250                 return rx_pkts;
251         }
252
253         n_rx_pkts = RTE_MIN(ready, rx_pkts_end - rx_pkts);
254         rxq->prepared = ready - n_rx_pkts;
255         rxq->completed += n_rx_pkts;
256
257         rxd = &rxq->sw_ring[completed++ & ptr_mask];
258
259         sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask);
260
261         m = rxd->mbuf;
262
263         *rx_pkts++ = m;
264
265         RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
266         m->rearm_data[0] = rxq->rearm_data;
267
268         /* Classify packet based on Rx event */
269         /* Mask RSS hash offload flag if RSS is not enabled */
270         sfc_ef10_rx_ev_to_offloads(rx_ev, m,
271                                    (rxq->flags & SFC_EF10_RXQ_RSS_HASH) ?
272                                    ~0ull : ~PKT_RX_RSS_HASH);
273
274         /* data_off already moved past pseudo header */
275         pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
276
277         /*
278          * Always get RSS hash from pseudo header to avoid
279          * condition/branching. If it is valid or not depends on
280          * PKT_RX_RSS_HASH in m->ol_flags.
281          */
282         m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
283
284         if (ready == 1)
285                 pkt_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
286                         rxq->prefix_size;
287         else
288                 pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
289         SFC_ASSERT(pkt_len > 0);
290         rte_pktmbuf_data_len(m) = pkt_len;
291         rte_pktmbuf_pkt_len(m) = pkt_len;
292
293         SFC_ASSERT(m->next == NULL);
294
295         /* Remember mbuf to copy offload flags and packet type from */
296         m0 = m;
297         for (--ready; ready > 0; --ready) {
298                 rxd = &rxq->sw_ring[completed++ & ptr_mask];
299
300                 sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask);
301
302                 m = rxd->mbuf;
303
304                 if (ready > rxq->prepared)
305                         *rx_pkts++ = m;
306
307                 RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
308                                  sizeof(rxq->rearm_data));
309                 m->rearm_data[0] = rxq->rearm_data;
310
311                 /* Event-dependent information is the same */
312                 m->ol_flags = m0->ol_flags;
313                 m->packet_type = m0->packet_type;
314
315                 /* data_off already moved past pseudo header */
316                 pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
317
318                 /*
319                  * Always get RSS hash from pseudo header to avoid
320                  * condition/branching. If it is valid or not depends on
321                  * PKT_RX_RSS_HASH in m->ol_flags.
322                  */
323                 m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
324
325                 pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
326                 SFC_ASSERT(pkt_len > 0);
327                 rte_pktmbuf_data_len(m) = pkt_len;
328                 rte_pktmbuf_pkt_len(m) = pkt_len;
329
330                 SFC_ASSERT(m->next == NULL);
331         }
332
333         return rx_pkts;
334 }
335
336 static bool
337 sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
338 {
339         *rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
340
341         if (!sfc_ef10_ev_present(*rx_ev))
342                 return false;
343
344         if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
345                      FSE_AZ_EV_CODE_RX_EV)) {
346                 /*
347                  * Do not move read_ptr to keep the event for exception
348                  * handling by the control path.
349                  */
350                 rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
351                 sfc_ef10_rx_err(&rxq->dp.dpq,
352                                 "RxQ exception at EvQ read ptr %#x",
353                                 rxq->evq_read_ptr);
354                 return false;
355         }
356
357         rxq->evq_read_ptr++;
358         return true;
359 }
360
361 static uint16_t
362 sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
363 {
364         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
365         struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
366         unsigned int evq_old_read_ptr;
367         efx_qword_t rx_ev;
368
369         rx_pkts = sfc_ef10_rx_prepared(rxq, rx_pkts, nb_pkts);
370
371         if (unlikely(rxq->flags &
372                      (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
373                 goto done;
374
375         evq_old_read_ptr = rxq->evq_read_ptr;
376         while (rx_pkts != rx_pkts_end && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
377                 /*
378                  * DROP_EVENT is an internal to the NIC, software should
379                  * never see it and, therefore, may ignore it.
380                  */
381
382                 rx_pkts = sfc_ef10_rx_process_event(rxq, rx_ev,
383                                                     rx_pkts, rx_pkts_end);
384         }
385
386         sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
387                            rxq->evq_read_ptr);
388
389         /* It is not a problem if we refill in the case of exception */
390         sfc_ef10_rx_qrefill(rxq);
391
392 done:
393         return nb_pkts - (rx_pkts_end - rx_pkts);
394 }
395
396 const uint32_t *
397 sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
398 {
399         static const uint32_t ef10_native_ptypes[] = {
400                 RTE_PTYPE_L2_ETHER,
401                 RTE_PTYPE_L2_ETHER_ARP,
402                 RTE_PTYPE_L2_ETHER_VLAN,
403                 RTE_PTYPE_L2_ETHER_QINQ,
404                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
405                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
406                 RTE_PTYPE_L4_FRAG,
407                 RTE_PTYPE_L4_TCP,
408                 RTE_PTYPE_L4_UDP,
409                 RTE_PTYPE_UNKNOWN
410         };
411         static const uint32_t ef10_overlay_ptypes[] = {
412                 RTE_PTYPE_L2_ETHER,
413                 RTE_PTYPE_L2_ETHER_ARP,
414                 RTE_PTYPE_L2_ETHER_VLAN,
415                 RTE_PTYPE_L2_ETHER_QINQ,
416                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
417                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
418                 RTE_PTYPE_L4_FRAG,
419                 RTE_PTYPE_L4_TCP,
420                 RTE_PTYPE_L4_UDP,
421                 RTE_PTYPE_TUNNEL_VXLAN,
422                 RTE_PTYPE_TUNNEL_NVGRE,
423                 RTE_PTYPE_INNER_L2_ETHER,
424                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
425                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
426                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
427                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
428                 RTE_PTYPE_INNER_L4_FRAG,
429                 RTE_PTYPE_INNER_L4_TCP,
430                 RTE_PTYPE_INNER_L4_UDP,
431                 RTE_PTYPE_UNKNOWN
432         };
433
434         /*
435          * The function returns static set of supported packet types,
436          * so we can't build it dynamically based on supported tunnel
437          * encapsulations and should limit to known sets.
438          */
439         switch (tunnel_encaps) {
440         case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
441               1u << EFX_TUNNEL_PROTOCOL_GENEVE |
442               1u << EFX_TUNNEL_PROTOCOL_NVGRE):
443                 return ef10_overlay_ptypes;
444         default:
445                 SFC_GENERIC_LOG(ERR,
446                         "Unexpected set of supported tunnel encapsulations: %#x",
447                         tunnel_encaps);
448                 /* FALLTHROUGH */
449         case 0:
450                 return ef10_native_ptypes;
451         }
452 }
453
454 static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
455 static unsigned int
456 sfc_ef10_rx_qdesc_npending(__rte_unused struct sfc_dp_rxq *dp_rxq)
457 {
458         /*
459          * Correct implementation requires EvQ polling and events
460          * processing (keeping all ready mbufs in prepared).
461          */
462         return -ENOTSUP;
463 }
464
465 static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
466 static int
467 sfc_ef10_rx_qdesc_status(__rte_unused struct sfc_dp_rxq *dp_rxq,
468                          __rte_unused uint16_t offset)
469 {
470         return -ENOTSUP;
471 }
472
473
474 static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
475 static void
476 sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
477 {
478         /*
479          * Number of descriptors just defines maximum number of pushed
480          * descriptors (fill level).
481          */
482         dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
483         dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
484 }
485
486
487 static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
488 static int
489 sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
490                            __rte_unused struct rte_mempool *mb_pool,
491                            unsigned int *rxq_entries,
492                            unsigned int *evq_entries,
493                            unsigned int *rxq_max_fill_level)
494 {
495         /*
496          * rte_ethdev API guarantees that the number meets min, max and
497          * alignment requirements.
498          */
499         if (nb_rx_desc <= EFX_RXQ_MINNDESCS)
500                 *rxq_entries = EFX_RXQ_MINNDESCS;
501         else
502                 *rxq_entries = rte_align32pow2(nb_rx_desc);
503
504         *evq_entries = *rxq_entries;
505
506         *rxq_max_fill_level = RTE_MIN(nb_rx_desc,
507                                       SFC_EF10_RXQ_LIMIT(*evq_entries));
508         return 0;
509 }
510
511
512 static uint64_t
513 sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
514 {
515         struct rte_mbuf m;
516
517         memset(&m, 0, sizeof(m));
518
519         rte_mbuf_refcnt_set(&m, 1);
520         m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
521         m.nb_segs = 1;
522         m.port = port_id;
523
524         /* rearm_data covers structure members filled in above */
525         rte_compiler_barrier();
526         RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
527         return m.rearm_data[0];
528 }
529
530 static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
531 static int
532 sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
533                     const struct rte_pci_addr *pci_addr, int socket_id,
534                     const struct sfc_dp_rx_qcreate_info *info,
535                     struct sfc_dp_rxq **dp_rxqp)
536 {
537         struct sfc_ef10_rxq *rxq;
538         int rc;
539
540         rc = EINVAL;
541         if (info->rxq_entries != info->evq_entries)
542                 goto fail_rxq_args;
543
544         rc = ENOMEM;
545         rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
546                                  RTE_CACHE_LINE_SIZE, socket_id);
547         if (rxq == NULL)
548                 goto fail_rxq_alloc;
549
550         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
551
552         rc = ENOMEM;
553         rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
554                                          info->rxq_entries,
555                                          sizeof(*rxq->sw_ring),
556                                          RTE_CACHE_LINE_SIZE, socket_id);
557         if (rxq->sw_ring == NULL)
558                 goto fail_desc_alloc;
559
560         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
561         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
562                 rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
563         rxq->ptr_mask = info->rxq_entries - 1;
564         rxq->evq_hw_ring = info->evq_hw_ring;
565         rxq->max_fill_level = info->max_fill_level;
566         rxq->refill_threshold = info->refill_threshold;
567         rxq->rearm_data =
568                 sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
569         rxq->prefix_size = info->prefix_size;
570         rxq->buf_size = info->buf_size;
571         rxq->refill_mb_pool = info->refill_mb_pool;
572         rxq->rxq_hw_ring = info->rxq_hw_ring;
573         rxq->doorbell = (volatile uint8_t *)info->mem_bar +
574                         ER_DZ_RX_DESC_UPD_REG_OFST +
575                         (info->hw_index << info->vi_window_shift);
576
577         *dp_rxqp = &rxq->dp;
578         return 0;
579
580 fail_desc_alloc:
581         rte_free(rxq);
582
583 fail_rxq_alloc:
584 fail_rxq_args:
585         return rc;
586 }
587
588 static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
589 static void
590 sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
591 {
592         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
593
594         rte_free(rxq->sw_ring);
595         rte_free(rxq);
596 }
597
598 static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
599 static int
600 sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr)
601 {
602         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
603
604         SFC_ASSERT(rxq->prepared == 0);
605         SFC_ASSERT(rxq->completed == 0);
606         SFC_ASSERT(rxq->added == 0);
607
608         sfc_ef10_rx_qrefill(rxq);
609
610         rxq->evq_read_ptr = evq_read_ptr;
611
612         rxq->flags |= SFC_EF10_RXQ_STARTED;
613         rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
614
615         return 0;
616 }
617
618 static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
619 static void
620 sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
621 {
622         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
623
624         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
625
626         *evq_read_ptr = rxq->evq_read_ptr;
627 }
628
629 static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
630 static bool
631 sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
632 {
633         __rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
634
635         SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
636
637         /*
638          * It is safe to ignore Rx event since we free all mbufs on
639          * queue purge anyway.
640          */
641
642         return false;
643 }
644
645 static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
646 static void
647 sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
648 {
649         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
650         unsigned int i;
651         struct sfc_ef10_rx_sw_desc *rxd;
652
653         rxq->prepared = 0;
654
655         for (i = rxq->completed; i != rxq->added; ++i) {
656                 rxd = &rxq->sw_ring[i & rxq->ptr_mask];
657                 rte_mbuf_raw_free(rxd->mbuf);
658                 rxd->mbuf = NULL;
659         }
660
661         rxq->completed = rxq->added = 0;
662
663         rxq->flags &= ~SFC_EF10_RXQ_STARTED;
664 }
665
666 struct sfc_dp_rx sfc_ef10_rx = {
667         .dp = {
668                 .name           = SFC_KVARG_DATAPATH_EF10,
669                 .type           = SFC_DP_RX,
670                 .hw_fw_caps     = SFC_DP_HW_FW_CAP_EF10,
671         },
672         .features               = SFC_DP_RX_FEAT_MULTI_PROCESS |
673                                   SFC_DP_RX_FEAT_TUNNELS |
674                                   SFC_DP_RX_FEAT_CHECKSUM,
675         .get_dev_info           = sfc_ef10_rx_get_dev_info,
676         .qsize_up_rings         = sfc_ef10_rx_qsize_up_rings,
677         .qcreate                = sfc_ef10_rx_qcreate,
678         .qdestroy               = sfc_ef10_rx_qdestroy,
679         .qstart                 = sfc_ef10_rx_qstart,
680         .qstop                  = sfc_ef10_rx_qstop,
681         .qrx_ev                 = sfc_ef10_rx_qrx_ev,
682         .qpurge                 = sfc_ef10_rx_qpurge,
683         .supported_ptypes_get   = sfc_ef10_supported_ptypes_get,
684         .qdesc_npending         = sfc_ef10_rx_qdesc_npending,
685         .qdesc_status           = sfc_ef10_rx_qdesc_status,
686         .pkt_burst              = sfc_ef10_recv_pkts,
687 };