mbuf: clean up comments and prefix
[dpdk.git] / drivers / net / sfc / sfc_ef10_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 /* EF10 native datapath implementation */
11
12 #include <stdbool.h>
13
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18
19 #include "efx.h"
20 #include "efx_types.h"
21 #include "efx_regs.h"
22 #include "efx_regs_ef10.h"
23
24 #include "sfc_debug.h"
25 #include "sfc_tweak.h"
26 #include "sfc_dp_rx.h"
27 #include "sfc_kvargs.h"
28 #include "sfc_ef10.h"
29
30 #define SFC_EF10_RX_EV_ENCAP_SUPPORT    1
31 #include "sfc_ef10_rx_ev.h"
32
33 #define sfc_ef10_rx_err(dpq, ...) \
34         SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
35
36 #define sfc_ef10_rx_info(dpq, ...) \
37         SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, INFO, dpq, __VA_ARGS__)
38
39 /**
40  * Maximum number of descriptors/buffers in the Rx ring.
41  * It should guarantee that corresponding event queue never overfill.
42  * EF10 native datapath uses event queue of the same size as Rx queue.
43  * Maximum number of events on datapath can be estimated as number of
44  * Rx queue entries (one event per Rx buffer in the worst case) plus
45  * Rx error and flush events.
46  */
47 #define SFC_EF10_RXQ_LIMIT(_ndesc) \
48         ((_ndesc) - 1 /* head must not step on tail */ - \
49          (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
50          1 /* Rx error */ - 1 /* flush */)
51
52 struct sfc_ef10_rx_sw_desc {
53         struct rte_mbuf                 *mbuf;
54 };
55
56 struct sfc_ef10_rxq {
57         /* Used on data path */
58         unsigned int                    flags;
59 #define SFC_EF10_RXQ_STARTED            0x1
60 #define SFC_EF10_RXQ_NOT_RUNNING        0x2
61 #define SFC_EF10_RXQ_EXCEPTION          0x4
62 #define SFC_EF10_RXQ_RSS_HASH           0x8
63 #define SFC_EF10_RXQ_FLAG_INTR_EN       0x10
64         unsigned int                    ptr_mask;
65         unsigned int                    pending;
66         unsigned int                    completed;
67         unsigned int                    evq_read_ptr;
68         unsigned int                    evq_read_ptr_primed;
69         efx_qword_t                     *evq_hw_ring;
70         struct sfc_ef10_rx_sw_desc      *sw_ring;
71         uint64_t                        rearm_data;
72         struct rte_mbuf                 *scatter_pkt;
73         volatile void                   *evq_prime;
74         uint16_t                        prefix_size;
75
76         /* Used on refill */
77         uint16_t                        buf_size;
78         unsigned int                    added;
79         unsigned int                    max_fill_level;
80         unsigned int                    refill_threshold;
81         struct rte_mempool              *refill_mb_pool;
82         efx_qword_t                     *rxq_hw_ring;
83         volatile void                   *doorbell;
84
85         /* Datapath receive queue anchor */
86         struct sfc_dp_rxq               dp;
87 };
88
89 static inline struct sfc_ef10_rxq *
90 sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
91 {
92         return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
93 }
94
95 static void
96 sfc_ef10_rx_qprime(struct sfc_ef10_rxq *rxq)
97 {
98         sfc_ef10_ev_qprime(rxq->evq_prime, rxq->evq_read_ptr, rxq->ptr_mask);
99         rxq->evq_read_ptr_primed = rxq->evq_read_ptr;
100 }
101
102 static void
103 sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
104 {
105         const unsigned int ptr_mask = rxq->ptr_mask;
106         const uint32_t buf_size = rxq->buf_size;
107         unsigned int free_space;
108         unsigned int bulks;
109         void *objs[SFC_RX_REFILL_BULK];
110         unsigned int added = rxq->added;
111
112         RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
113
114         free_space = rxq->max_fill_level - (added - rxq->completed);
115
116         if (free_space < rxq->refill_threshold)
117                 return;
118
119         bulks = free_space / RTE_DIM(objs);
120         /* refill_threshold guarantees that bulks is positive */
121         SFC_ASSERT(bulks > 0);
122
123         do {
124                 unsigned int id;
125                 unsigned int i;
126
127                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
128                                                   RTE_DIM(objs)) < 0)) {
129                         struct rte_eth_dev_data *dev_data =
130                                 rte_eth_devices[rxq->dp.dpq.port_id].data;
131
132                         /*
133                          * It is hardly a safe way to increment counter
134                          * from different contexts, but all PMDs do it.
135                          */
136                         dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
137                         /* Return if we have posted nothing yet */
138                         if (added == rxq->added)
139                                 return;
140                         /* Push posted */
141                         break;
142                 }
143
144                 for (i = 0, id = added & ptr_mask;
145                      i < RTE_DIM(objs);
146                      ++i, ++id) {
147                         struct rte_mbuf *m = objs[i];
148                         struct sfc_ef10_rx_sw_desc *rxd;
149                         rte_iova_t phys_addr;
150
151                         __rte_mbuf_raw_sanity_check(m);
152
153                         SFC_ASSERT((id & ~ptr_mask) == 0);
154                         rxd = &rxq->sw_ring[id];
155                         rxd->mbuf = m;
156
157                         /*
158                          * Avoid writing to mbuf. It is cheaper to do it
159                          * when we receive packet and fill in nearby
160                          * structure members.
161                          */
162
163                         phys_addr = rte_mbuf_data_iova_default(m);
164                         EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
165                             ESF_DZ_RX_KER_BYTE_CNT, buf_size,
166                             ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
167                 }
168
169                 added += RTE_DIM(objs);
170         } while (--bulks > 0);
171
172         SFC_ASSERT(rxq->added != added);
173         rxq->added = added;
174         sfc_ef10_rx_qpush(rxq->doorbell, added, ptr_mask);
175 }
176
177 static void
178 sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
179 {
180         struct rte_mbuf *next_mbuf;
181
182         /* Prefetch next bunch of software descriptors */
183         if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
184                 rte_prefetch0(&rxq->sw_ring[next_id]);
185
186         /*
187          * It looks strange to prefetch depending on previous prefetch
188          * data, but measurements show that it is really efficient and
189          * increases packet rate.
190          */
191         next_mbuf = rxq->sw_ring[next_id].mbuf;
192         if (likely(next_mbuf != NULL)) {
193                 /* Prefetch the next mbuf structure */
194                 rte_mbuf_prefetch_part1(next_mbuf);
195
196                 /* Prefetch pseudo header of the next packet */
197                 /* data_off is not filled in yet */
198                 /* Yes, data could be not ready yet, but we hope */
199                 rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
200                               RTE_PKTMBUF_HEADROOM);
201         }
202 }
203
204 static struct rte_mbuf **
205 sfc_ef10_rx_pending(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
206                     uint16_t nb_pkts)
207 {
208         uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->pending - rxq->completed);
209
210         SFC_ASSERT(rxq->pending == rxq->completed || rxq->scatter_pkt == NULL);
211
212         if (n_rx_pkts != 0) {
213                 unsigned int completed = rxq->completed;
214
215                 rxq->completed = completed + n_rx_pkts;
216
217                 do {
218                         *rx_pkts++ =
219                                 rxq->sw_ring[completed++ & rxq->ptr_mask].mbuf;
220                 } while (completed != rxq->completed);
221         }
222
223         return rx_pkts;
224 }
225
226 /*
227  * Below Rx pseudo-header (aka Rx prefix) accessors rely on the
228  * following fields layout.
229  */
230 static const efx_rx_prefix_layout_t sfc_ef10_rx_prefix_layout = {
231         .erpl_fields    = {
232                 [EFX_RX_PREFIX_FIELD_RSS_HASH]  =
233                     { 0, sizeof(uint32_t) * CHAR_BIT, B_FALSE },
234                 [EFX_RX_PREFIX_FIELD_LENGTH]    =
235                     { 8 * CHAR_BIT, sizeof(uint16_t) * CHAR_BIT, B_FALSE },
236         }
237 };
238 static uint16_t
239 sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
240 {
241         return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
242 }
243
244 static uint32_t
245 sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
246 {
247         return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
248 }
249
250 static struct rte_mbuf **
251 sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
252                           struct rte_mbuf **rx_pkts,
253                           struct rte_mbuf ** const rx_pkts_end)
254 {
255         const unsigned int ptr_mask = rxq->ptr_mask;
256         unsigned int pending = rxq->pending;
257         unsigned int ready;
258         struct sfc_ef10_rx_sw_desc *rxd;
259         struct rte_mbuf *m;
260         struct rte_mbuf *m0;
261         const uint8_t *pseudo_hdr;
262         uint16_t seg_len;
263
264         ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - pending) &
265                 EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
266
267         if (ready == 0) {
268                 /* Rx abort - it was no enough descriptors for Rx packet */
269                 rte_pktmbuf_free(rxq->scatter_pkt);
270                 rxq->scatter_pkt = NULL;
271                 return rx_pkts;
272         }
273
274         rxq->pending = pending + ready;
275
276         if (rx_ev.eq_u64[0] &
277             rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
278                              (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
279                 SFC_ASSERT(rxq->completed == pending);
280                 do {
281                         rxd = &rxq->sw_ring[pending++ & ptr_mask];
282                         rte_mbuf_raw_free(rxd->mbuf);
283                 } while (pending != rxq->pending);
284                 rxq->completed = pending;
285                 return rx_pkts;
286         }
287
288         /* If scattered packet is in progress */
289         if (rxq->scatter_pkt != NULL) {
290                 /* Events for scattered packet frags are not merged */
291                 SFC_ASSERT(ready == 1);
292                 SFC_ASSERT(rxq->completed == pending);
293
294                 /* There is no pseudo-header in scatter segments. */
295                 seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES);
296
297                 rxd = &rxq->sw_ring[pending++ & ptr_mask];
298                 m = rxd->mbuf;
299
300                 __rte_mbuf_raw_sanity_check(m);
301
302                 m->data_off = RTE_PKTMBUF_HEADROOM;
303                 rte_pktmbuf_data_len(m) = seg_len;
304                 rte_pktmbuf_pkt_len(m) = seg_len;
305
306                 rxq->scatter_pkt->nb_segs++;
307                 rte_pktmbuf_pkt_len(rxq->scatter_pkt) += seg_len;
308                 rte_pktmbuf_lastseg(rxq->scatter_pkt)->next = m;
309
310                 if (~rx_ev.eq_u64[0] &
311                     rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
312                         *rx_pkts++ = rxq->scatter_pkt;
313                         rxq->scatter_pkt = NULL;
314                 }
315                 rxq->completed = pending;
316                 return rx_pkts;
317         }
318
319         rxd = &rxq->sw_ring[pending++ & ptr_mask];
320
321         sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
322
323         m = rxd->mbuf;
324
325         RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
326         m->rearm_data[0] = rxq->rearm_data;
327
328         /* Classify packet based on Rx event */
329         /* Mask RSS hash offload flag if RSS is not enabled */
330         sfc_ef10_rx_ev_to_offloads(rx_ev, m,
331                                    (rxq->flags & SFC_EF10_RXQ_RSS_HASH) ?
332                                    ~0ull : ~PKT_RX_RSS_HASH);
333
334         /* data_off already moved past pseudo header */
335         pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
336
337         /*
338          * Always get RSS hash from pseudo header to avoid
339          * condition/branching. If it is valid or not depends on
340          * PKT_RX_RSS_HASH in m->ol_flags.
341          */
342         m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
343
344         if (ready == 1)
345                 seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
346                         rxq->prefix_size;
347         else
348                 seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
349         SFC_ASSERT(seg_len > 0);
350         rte_pktmbuf_data_len(m) = seg_len;
351         rte_pktmbuf_pkt_len(m) = seg_len;
352
353         SFC_ASSERT(m->next == NULL);
354
355         if (~rx_ev.eq_u64[0] & rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
356                 *rx_pkts++ = m;
357                 rxq->completed = pending;
358         } else {
359                 /* Events with CONT bit are not merged */
360                 SFC_ASSERT(ready == 1);
361                 rxq->scatter_pkt = m;
362                 rxq->completed = pending;
363                 return rx_pkts;
364         }
365
366         /* Remember mbuf to copy offload flags and packet type from */
367         m0 = m;
368         while (pending != rxq->pending) {
369                 rxd = &rxq->sw_ring[pending++ & ptr_mask];
370
371                 sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
372
373                 m = rxd->mbuf;
374
375                 if (rx_pkts != rx_pkts_end) {
376                         *rx_pkts++ = m;
377                         rxq->completed = pending;
378                 }
379
380                 RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
381                                  sizeof(rxq->rearm_data));
382                 m->rearm_data[0] = rxq->rearm_data;
383
384                 /* Event-dependent information is the same */
385                 m->ol_flags = m0->ol_flags;
386                 m->packet_type = m0->packet_type;
387
388                 /* data_off already moved past pseudo header */
389                 pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
390
391                 /*
392                  * Always get RSS hash from pseudo header to avoid
393                  * condition/branching. If it is valid or not depends on
394                  * PKT_RX_RSS_HASH in m->ol_flags.
395                  */
396                 m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
397
398                 seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
399                 SFC_ASSERT(seg_len > 0);
400                 rte_pktmbuf_data_len(m) = seg_len;
401                 rte_pktmbuf_pkt_len(m) = seg_len;
402
403                 SFC_ASSERT(m->next == NULL);
404         }
405
406         return rx_pkts;
407 }
408
409 static bool
410 sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
411 {
412         *rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
413
414         if (!sfc_ef10_ev_present(*rx_ev))
415                 return false;
416
417         if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
418                      FSE_AZ_EV_CODE_RX_EV)) {
419                 /*
420                  * Do not move read_ptr to keep the event for exception
421                  * handling by the control path.
422                  */
423                 rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
424                 sfc_ef10_rx_err(&rxq->dp.dpq,
425                                 "RxQ exception at EvQ read ptr %#x",
426                                 rxq->evq_read_ptr);
427                 return false;
428         }
429
430         rxq->evq_read_ptr++;
431         return true;
432 }
433
434 static uint16_t
435 sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
436 {
437         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
438         struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
439         unsigned int evq_old_read_ptr;
440         efx_qword_t rx_ev;
441
442         rx_pkts = sfc_ef10_rx_pending(rxq, rx_pkts, nb_pkts);
443
444         if (unlikely(rxq->flags &
445                      (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
446                 goto done;
447
448         evq_old_read_ptr = rxq->evq_read_ptr;
449         while (rx_pkts != rx_pkts_end && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
450                 /*
451                  * DROP_EVENT is an internal to the NIC, software should
452                  * never see it and, therefore, may ignore it.
453                  */
454
455                 rx_pkts = sfc_ef10_rx_process_event(rxq, rx_ev,
456                                                     rx_pkts, rx_pkts_end);
457         }
458
459         sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
460                            rxq->evq_read_ptr);
461
462         /* It is not a problem if we refill in the case of exception */
463         sfc_ef10_rx_qrefill(rxq);
464
465         if ((rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN) &&
466             rxq->evq_read_ptr_primed != rxq->evq_read_ptr)
467                 sfc_ef10_rx_qprime(rxq);
468
469 done:
470         return nb_pkts - (rx_pkts_end - rx_pkts);
471 }
472
473 const uint32_t *
474 sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
475 {
476         static const uint32_t ef10_native_ptypes[] = {
477                 RTE_PTYPE_L2_ETHER,
478                 RTE_PTYPE_L2_ETHER_ARP,
479                 RTE_PTYPE_L2_ETHER_VLAN,
480                 RTE_PTYPE_L2_ETHER_QINQ,
481                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
482                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
483                 RTE_PTYPE_L4_FRAG,
484                 RTE_PTYPE_L4_TCP,
485                 RTE_PTYPE_L4_UDP,
486                 RTE_PTYPE_UNKNOWN
487         };
488         static const uint32_t ef10_overlay_ptypes[] = {
489                 RTE_PTYPE_L2_ETHER,
490                 RTE_PTYPE_L2_ETHER_ARP,
491                 RTE_PTYPE_L2_ETHER_VLAN,
492                 RTE_PTYPE_L2_ETHER_QINQ,
493                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
494                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
495                 RTE_PTYPE_L4_FRAG,
496                 RTE_PTYPE_L4_TCP,
497                 RTE_PTYPE_L4_UDP,
498                 RTE_PTYPE_TUNNEL_VXLAN,
499                 RTE_PTYPE_TUNNEL_NVGRE,
500                 RTE_PTYPE_INNER_L2_ETHER,
501                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
502                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
503                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
504                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
505                 RTE_PTYPE_INNER_L4_FRAG,
506                 RTE_PTYPE_INNER_L4_TCP,
507                 RTE_PTYPE_INNER_L4_UDP,
508                 RTE_PTYPE_UNKNOWN
509         };
510
511         /*
512          * The function returns static set of supported packet types,
513          * so we can't build it dynamically based on supported tunnel
514          * encapsulations and should limit to known sets.
515          */
516         switch (tunnel_encaps) {
517         case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
518               1u << EFX_TUNNEL_PROTOCOL_GENEVE |
519               1u << EFX_TUNNEL_PROTOCOL_NVGRE):
520                 return ef10_overlay_ptypes;
521         default:
522                 SFC_GENERIC_LOG(ERR,
523                         "Unexpected set of supported tunnel encapsulations: %#x",
524                         tunnel_encaps);
525                 /* FALLTHROUGH */
526         case 0:
527                 return ef10_native_ptypes;
528         }
529 }
530
531 static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
532 static unsigned int
533 sfc_ef10_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
534 {
535         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
536         efx_qword_t rx_ev;
537         const unsigned int evq_old_read_ptr = rxq->evq_read_ptr;
538         unsigned int pending = rxq->pending;
539         unsigned int ready;
540
541         if (unlikely(rxq->flags &
542                      (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
543                 goto done;
544
545         while (sfc_ef10_rx_get_event(rxq, &rx_ev)) {
546                 ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) -
547                          pending) &
548                         EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
549                 pending += ready;
550         }
551
552         /*
553          * The function does not process events, so return event queue read
554          * pointer to the original position to allow the events that were
555          * read to be processed later
556          */
557         rxq->evq_read_ptr = evq_old_read_ptr;
558
559 done:
560         return pending - rxq->completed;
561 }
562
563 static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
564 static int
565 sfc_ef10_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
566 {
567         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
568         unsigned int npending = sfc_ef10_rx_qdesc_npending(dp_rxq);
569
570         if (unlikely(offset > rxq->ptr_mask))
571                 return -EINVAL;
572
573         if (offset < npending)
574                 return RTE_ETH_RX_DESC_DONE;
575
576         if (offset < (rxq->added - rxq->completed))
577                 return RTE_ETH_RX_DESC_AVAIL;
578
579         return RTE_ETH_RX_DESC_UNAVAIL;
580 }
581
582
583 static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
584 static void
585 sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
586 {
587         /*
588          * Number of descriptors just defines maximum number of pushed
589          * descriptors (fill level).
590          */
591         dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
592         dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
593 }
594
595
596 static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
597 static int
598 sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
599                            struct sfc_dp_rx_hw_limits *limits,
600                            __rte_unused struct rte_mempool *mb_pool,
601                            unsigned int *rxq_entries,
602                            unsigned int *evq_entries,
603                            unsigned int *rxq_max_fill_level)
604 {
605         /*
606          * rte_ethdev API guarantees that the number meets min, max and
607          * alignment requirements.
608          */
609         if (nb_rx_desc <= limits->rxq_min_entries)
610                 *rxq_entries = limits->rxq_min_entries;
611         else
612                 *rxq_entries = rte_align32pow2(nb_rx_desc);
613
614         *evq_entries = *rxq_entries;
615
616         *rxq_max_fill_level = RTE_MIN(nb_rx_desc,
617                                       SFC_EF10_RXQ_LIMIT(*evq_entries));
618         return 0;
619 }
620
621
622 static uint64_t
623 sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
624 {
625         struct rte_mbuf m;
626
627         memset(&m, 0, sizeof(m));
628
629         rte_mbuf_refcnt_set(&m, 1);
630         m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
631         m.nb_segs = 1;
632         m.port = port_id;
633
634         /* rearm_data covers structure members filled in above */
635         rte_compiler_barrier();
636         RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
637         return m.rearm_data[0];
638 }
639
640 static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
641 static int
642 sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
643                     const struct rte_pci_addr *pci_addr, int socket_id,
644                     const struct sfc_dp_rx_qcreate_info *info,
645                     struct sfc_dp_rxq **dp_rxqp)
646 {
647         struct sfc_ef10_rxq *rxq;
648         int rc;
649
650         rc = EINVAL;
651         if (info->rxq_entries != info->evq_entries)
652                 goto fail_rxq_args;
653
654         rc = ENOMEM;
655         rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
656                                  RTE_CACHE_LINE_SIZE, socket_id);
657         if (rxq == NULL)
658                 goto fail_rxq_alloc;
659
660         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
661
662         rc = ENOMEM;
663         rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
664                                          info->rxq_entries,
665                                          sizeof(*rxq->sw_ring),
666                                          RTE_CACHE_LINE_SIZE, socket_id);
667         if (rxq->sw_ring == NULL)
668                 goto fail_desc_alloc;
669
670         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
671         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
672                 rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
673         rxq->ptr_mask = info->rxq_entries - 1;
674         rxq->evq_hw_ring = info->evq_hw_ring;
675         rxq->max_fill_level = info->max_fill_level;
676         rxq->refill_threshold = info->refill_threshold;
677         rxq->rearm_data =
678                 sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
679         rxq->prefix_size = info->prefix_size;
680         rxq->buf_size = info->buf_size;
681         rxq->refill_mb_pool = info->refill_mb_pool;
682         rxq->rxq_hw_ring = info->rxq_hw_ring;
683         rxq->doorbell = (volatile uint8_t *)info->mem_bar +
684                         ER_DZ_RX_DESC_UPD_REG_OFST +
685                         (info->hw_index << info->vi_window_shift);
686         rxq->evq_prime = (volatile uint8_t *)info->mem_bar +
687                       ER_DZ_EVQ_RPTR_REG_OFST +
688                       (info->evq_hw_index << info->vi_window_shift);
689
690         sfc_ef10_rx_info(&rxq->dp.dpq, "RxQ doorbell is %p", rxq->doorbell);
691
692         *dp_rxqp = &rxq->dp;
693         return 0;
694
695 fail_desc_alloc:
696         rte_free(rxq);
697
698 fail_rxq_alloc:
699 fail_rxq_args:
700         return rc;
701 }
702
703 static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
704 static void
705 sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
706 {
707         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
708
709         rte_free(rxq->sw_ring);
710         rte_free(rxq);
711 }
712
713 static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
714 static int
715 sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr,
716                    const efx_rx_prefix_layout_t *pinfo)
717 {
718         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
719
720         SFC_ASSERT(rxq->completed == 0);
721         SFC_ASSERT(rxq->pending == 0);
722         SFC_ASSERT(rxq->added == 0);
723
724         if (pinfo->erpl_length != rxq->prefix_size ||
725             efx_rx_prefix_layout_check(pinfo, &sfc_ef10_rx_prefix_layout) != 0)
726                 return ENOTSUP;
727
728         sfc_ef10_rx_qrefill(rxq);
729
730         rxq->evq_read_ptr = evq_read_ptr;
731
732         rxq->flags |= SFC_EF10_RXQ_STARTED;
733         rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
734
735         if (rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN)
736                 sfc_ef10_rx_qprime(rxq);
737
738         return 0;
739 }
740
741 static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
742 static void
743 sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
744 {
745         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
746
747         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
748
749         *evq_read_ptr = rxq->evq_read_ptr;
750 }
751
752 static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
753 static bool
754 sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
755 {
756         __rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
757
758         SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
759
760         /*
761          * It is safe to ignore Rx event since we free all mbufs on
762          * queue purge anyway.
763          */
764
765         return false;
766 }
767
768 static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
769 static void
770 sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
771 {
772         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
773         unsigned int i;
774         struct sfc_ef10_rx_sw_desc *rxd;
775
776         rte_pktmbuf_free(rxq->scatter_pkt);
777         rxq->scatter_pkt = NULL;
778
779         for (i = rxq->completed; i != rxq->added; ++i) {
780                 rxd = &rxq->sw_ring[i & rxq->ptr_mask];
781                 rte_mbuf_raw_free(rxd->mbuf);
782                 rxd->mbuf = NULL;
783         }
784
785         rxq->completed = rxq->pending = rxq->added = 0;
786
787         rxq->flags &= ~SFC_EF10_RXQ_STARTED;
788 }
789
790 static sfc_dp_rx_intr_enable_t sfc_ef10_rx_intr_enable;
791 static int
792 sfc_ef10_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
793 {
794         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
795
796         rxq->flags |= SFC_EF10_RXQ_FLAG_INTR_EN;
797         if (rxq->flags & SFC_EF10_RXQ_STARTED)
798                 sfc_ef10_rx_qprime(rxq);
799         return 0;
800 }
801
802 static sfc_dp_rx_intr_disable_t sfc_ef10_rx_intr_disable;
803 static int
804 sfc_ef10_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
805 {
806         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
807
808         /* Cannot disarm, just disable rearm */
809         rxq->flags &= ~SFC_EF10_RXQ_FLAG_INTR_EN;
810         return 0;
811 }
812
813 struct sfc_dp_rx sfc_ef10_rx = {
814         .dp = {
815                 .name           = SFC_KVARG_DATAPATH_EF10,
816                 .type           = SFC_DP_RX,
817                 .hw_fw_caps     = SFC_DP_HW_FW_CAP_EF10,
818         },
819         .features               = SFC_DP_RX_FEAT_MULTI_PROCESS |
820                                   SFC_DP_RX_FEAT_INTR,
821         .dev_offload_capa       = DEV_RX_OFFLOAD_CHECKSUM |
822                                   DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
823                                   DEV_RX_OFFLOAD_RSS_HASH,
824         .queue_offload_capa     = DEV_RX_OFFLOAD_SCATTER,
825         .get_dev_info           = sfc_ef10_rx_get_dev_info,
826         .qsize_up_rings         = sfc_ef10_rx_qsize_up_rings,
827         .qcreate                = sfc_ef10_rx_qcreate,
828         .qdestroy               = sfc_ef10_rx_qdestroy,
829         .qstart                 = sfc_ef10_rx_qstart,
830         .qstop                  = sfc_ef10_rx_qstop,
831         .qrx_ev                 = sfc_ef10_rx_qrx_ev,
832         .qpurge                 = sfc_ef10_rx_qpurge,
833         .supported_ptypes_get   = sfc_ef10_supported_ptypes_get,
834         .qdesc_npending         = sfc_ef10_rx_qdesc_npending,
835         .qdesc_status           = sfc_ef10_rx_qdesc_status,
836         .intr_enable            = sfc_ef10_rx_intr_enable,
837         .intr_disable           = sfc_ef10_rx_intr_disable,
838         .pkt_burst              = sfc_ef10_recv_pkts,
839 };