net/sfc: check mbufs allocated using mempool API for Rx
[dpdk.git] / drivers / net / sfc / sfc_ef10_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 /* EF10 native datapath implementation */
11
12 #include <stdbool.h>
13
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18
19 #include "efx.h"
20 #include "efx_types.h"
21 #include "efx_regs.h"
22 #include "efx_regs_ef10.h"
23
24 #include "sfc_tweak.h"
25 #include "sfc_dp_rx.h"
26 #include "sfc_kvargs.h"
27 #include "sfc_ef10.h"
28
29 #define SFC_EF10_RX_EV_ENCAP_SUPPORT    1
30 #include "sfc_ef10_rx_ev.h"
31
32 #define sfc_ef10_rx_err(dpq, ...) \
33         SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
34
35 /**
36  * Maximum number of descriptors/buffers in the Rx ring.
37  * It should guarantee that corresponding event queue never overfill.
38  * EF10 native datapath uses event queue of the same size as Rx queue.
39  * Maximum number of events on datapath can be estimated as number of
40  * Rx queue entries (one event per Rx buffer in the worst case) plus
41  * Rx error and flush events.
42  */
43 #define SFC_EF10_RXQ_LIMIT(_ndesc) \
44         ((_ndesc) - 1 /* head must not step on tail */ - \
45          (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
46          1 /* Rx error */ - 1 /* flush */)
47
48 struct sfc_ef10_rx_sw_desc {
49         struct rte_mbuf                 *mbuf;
50 };
51
52 struct sfc_ef10_rxq {
53         /* Used on data path */
54         unsigned int                    flags;
55 #define SFC_EF10_RXQ_STARTED            0x1
56 #define SFC_EF10_RXQ_NOT_RUNNING        0x2
57 #define SFC_EF10_RXQ_EXCEPTION          0x4
58 #define SFC_EF10_RXQ_RSS_HASH           0x8
59         unsigned int                    ptr_mask;
60         unsigned int                    prepared;
61         unsigned int                    completed;
62         unsigned int                    evq_read_ptr;
63         efx_qword_t                     *evq_hw_ring;
64         struct sfc_ef10_rx_sw_desc      *sw_ring;
65         uint64_t                        rearm_data;
66         uint16_t                        prefix_size;
67
68         /* Used on refill */
69         uint16_t                        buf_size;
70         unsigned int                    added;
71         unsigned int                    max_fill_level;
72         unsigned int                    refill_threshold;
73         struct rte_mempool              *refill_mb_pool;
74         efx_qword_t                     *rxq_hw_ring;
75         volatile void                   *doorbell;
76
77         /* Datapath receive queue anchor */
78         struct sfc_dp_rxq               dp;
79 };
80
81 static inline struct sfc_ef10_rxq *
82 sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
83 {
84         return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
85 }
86
87 static void
88 sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
89 {
90         const unsigned int ptr_mask = rxq->ptr_mask;
91         const uint32_t buf_size = rxq->buf_size;
92         unsigned int free_space;
93         unsigned int bulks;
94         void *objs[SFC_RX_REFILL_BULK];
95         unsigned int added = rxq->added;
96
97         RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
98
99         free_space = rxq->max_fill_level - (added - rxq->completed);
100
101         if (free_space < rxq->refill_threshold)
102                 return;
103
104         bulks = free_space / RTE_DIM(objs);
105         /* refill_threshold guarantees that bulks is positive */
106         SFC_ASSERT(bulks > 0);
107
108         do {
109                 unsigned int id;
110                 unsigned int i;
111
112                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
113                                                   RTE_DIM(objs)) < 0)) {
114                         struct rte_eth_dev_data *dev_data =
115                                 rte_eth_devices[rxq->dp.dpq.port_id].data;
116
117                         /*
118                          * It is hardly a safe way to increment counter
119                          * from different contexts, but all PMDs do it.
120                          */
121                         dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
122                         /* Return if we have posted nothing yet */
123                         if (added == rxq->added)
124                                 return;
125                         /* Push posted */
126                         break;
127                 }
128
129                 for (i = 0, id = added & ptr_mask;
130                      i < RTE_DIM(objs);
131                      ++i, ++id) {
132                         struct rte_mbuf *m = objs[i];
133                         struct sfc_ef10_rx_sw_desc *rxd;
134                         rte_iova_t phys_addr;
135
136                         MBUF_RAW_ALLOC_CHECK(m);
137
138                         SFC_ASSERT((id & ~ptr_mask) == 0);
139                         rxd = &rxq->sw_ring[id];
140                         rxd->mbuf = m;
141
142                         /*
143                          * Avoid writing to mbuf. It is cheaper to do it
144                          * when we receive packet and fill in nearby
145                          * structure members.
146                          */
147
148                         phys_addr = rte_mbuf_data_iova_default(m);
149                         EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
150                             ESF_DZ_RX_KER_BYTE_CNT, buf_size,
151                             ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
152                 }
153
154                 added += RTE_DIM(objs);
155         } while (--bulks > 0);
156
157         SFC_ASSERT(rxq->added != added);
158         rxq->added = added;
159         sfc_ef10_rx_qpush(rxq->doorbell, added, ptr_mask);
160 }
161
162 static void
163 sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
164 {
165         struct rte_mbuf *next_mbuf;
166
167         /* Prefetch next bunch of software descriptors */
168         if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
169                 rte_prefetch0(&rxq->sw_ring[next_id]);
170
171         /*
172          * It looks strange to prefetch depending on previous prefetch
173          * data, but measurements show that it is really efficient and
174          * increases packet rate.
175          */
176         next_mbuf = rxq->sw_ring[next_id].mbuf;
177         if (likely(next_mbuf != NULL)) {
178                 /* Prefetch the next mbuf structure */
179                 rte_mbuf_prefetch_part1(next_mbuf);
180
181                 /* Prefetch pseudo header of the next packet */
182                 /* data_off is not filled in yet */
183                 /* Yes, data could be not ready yet, but we hope */
184                 rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
185                               RTE_PKTMBUF_HEADROOM);
186         }
187 }
188
189 static uint16_t
190 sfc_ef10_rx_prepared(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
191                      uint16_t nb_pkts)
192 {
193         uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->prepared);
194         unsigned int completed = rxq->completed;
195         unsigned int i;
196
197         rxq->prepared -= n_rx_pkts;
198         rxq->completed = completed + n_rx_pkts;
199
200         for (i = 0; i < n_rx_pkts; ++i, ++completed)
201                 rx_pkts[i] = rxq->sw_ring[completed & rxq->ptr_mask].mbuf;
202
203         return n_rx_pkts;
204 }
205
206 static uint16_t
207 sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
208 {
209         return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
210 }
211
212 static uint32_t
213 sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
214 {
215         return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
216 }
217
218 static uint16_t
219 sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
220                           struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
221 {
222         const unsigned int ptr_mask = rxq->ptr_mask;
223         unsigned int completed = rxq->completed;
224         unsigned int ready;
225         struct sfc_ef10_rx_sw_desc *rxd;
226         struct rte_mbuf *m;
227         struct rte_mbuf *m0;
228         uint16_t n_rx_pkts;
229         const uint8_t *pseudo_hdr;
230         uint16_t pkt_len;
231
232         ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - completed) &
233                 EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
234         SFC_ASSERT(ready > 0);
235
236         if (rx_ev.eq_u64[0] &
237             rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
238                              (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
239                 SFC_ASSERT(rxq->prepared == 0);
240                 rxq->completed += ready;
241                 while (ready-- > 0) {
242                         rxd = &rxq->sw_ring[completed++ & ptr_mask];
243                         rte_mbuf_raw_free(rxd->mbuf);
244                 }
245                 return 0;
246         }
247
248         n_rx_pkts = RTE_MIN(ready, nb_pkts);
249         rxq->prepared = ready - n_rx_pkts;
250         rxq->completed += n_rx_pkts;
251
252         rxd = &rxq->sw_ring[completed++ & ptr_mask];
253
254         sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask);
255
256         m = rxd->mbuf;
257
258         *rx_pkts++ = m;
259
260         RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
261         m->rearm_data[0] = rxq->rearm_data;
262
263         /* Classify packet based on Rx event */
264         /* Mask RSS hash offload flag if RSS is not enabled */
265         sfc_ef10_rx_ev_to_offloads(rx_ev, m,
266                                    (rxq->flags & SFC_EF10_RXQ_RSS_HASH) ?
267                                    ~0ull : ~PKT_RX_RSS_HASH);
268
269         /* data_off already moved past pseudo header */
270         pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
271
272         /*
273          * Always get RSS hash from pseudo header to avoid
274          * condition/branching. If it is valid or not depends on
275          * PKT_RX_RSS_HASH in m->ol_flags.
276          */
277         m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
278
279         if (ready == 1)
280                 pkt_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
281                         rxq->prefix_size;
282         else
283                 pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
284         SFC_ASSERT(pkt_len > 0);
285         rte_pktmbuf_data_len(m) = pkt_len;
286         rte_pktmbuf_pkt_len(m) = pkt_len;
287
288         SFC_ASSERT(m->next == NULL);
289
290         /* Remember mbuf to copy offload flags and packet type from */
291         m0 = m;
292         for (--ready; ready > 0; --ready) {
293                 rxd = &rxq->sw_ring[completed++ & ptr_mask];
294
295                 sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask);
296
297                 m = rxd->mbuf;
298
299                 if (ready > rxq->prepared)
300                         *rx_pkts++ = m;
301
302                 RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
303                                  sizeof(rxq->rearm_data));
304                 m->rearm_data[0] = rxq->rearm_data;
305
306                 /* Event-dependent information is the same */
307                 m->ol_flags = m0->ol_flags;
308                 m->packet_type = m0->packet_type;
309
310                 /* data_off already moved past pseudo header */
311                 pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
312
313                 /*
314                  * Always get RSS hash from pseudo header to avoid
315                  * condition/branching. If it is valid or not depends on
316                  * PKT_RX_RSS_HASH in m->ol_flags.
317                  */
318                 m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
319
320                 pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
321                 SFC_ASSERT(pkt_len > 0);
322                 rte_pktmbuf_data_len(m) = pkt_len;
323                 rte_pktmbuf_pkt_len(m) = pkt_len;
324
325                 SFC_ASSERT(m->next == NULL);
326         }
327
328         return n_rx_pkts;
329 }
330
331 static bool
332 sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
333 {
334         *rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
335
336         if (!sfc_ef10_ev_present(*rx_ev))
337                 return false;
338
339         if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
340                      FSE_AZ_EV_CODE_RX_EV)) {
341                 /*
342                  * Do not move read_ptr to keep the event for exception
343                  * handling by the control path.
344                  */
345                 rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
346                 sfc_ef10_rx_err(&rxq->dp.dpq,
347                                 "RxQ exception at EvQ read ptr %#x",
348                                 rxq->evq_read_ptr);
349                 return false;
350         }
351
352         rxq->evq_read_ptr++;
353         return true;
354 }
355
356 static uint16_t
357 sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
358 {
359         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
360         unsigned int evq_old_read_ptr;
361         uint16_t n_rx_pkts;
362         efx_qword_t rx_ev;
363
364         n_rx_pkts = sfc_ef10_rx_prepared(rxq, rx_pkts, nb_pkts);
365
366         if (unlikely(rxq->flags &
367                      (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
368                 goto done;
369
370         evq_old_read_ptr = rxq->evq_read_ptr;
371         while (n_rx_pkts != nb_pkts && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
372                 /*
373                  * DROP_EVENT is an internal to the NIC, software should
374                  * never see it and, therefore, may ignore it.
375                  */
376
377                 n_rx_pkts += sfc_ef10_rx_process_event(rxq, rx_ev,
378                                                        rx_pkts + n_rx_pkts,
379                                                        nb_pkts - n_rx_pkts);
380         }
381
382         sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
383                            rxq->evq_read_ptr);
384
385         /* It is not a problem if we refill in the case of exception */
386         sfc_ef10_rx_qrefill(rxq);
387
388 done:
389         return n_rx_pkts;
390 }
391
392 const uint32_t *
393 sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
394 {
395         static const uint32_t ef10_native_ptypes[] = {
396                 RTE_PTYPE_L2_ETHER,
397                 RTE_PTYPE_L2_ETHER_ARP,
398                 RTE_PTYPE_L2_ETHER_VLAN,
399                 RTE_PTYPE_L2_ETHER_QINQ,
400                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
401                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
402                 RTE_PTYPE_L4_FRAG,
403                 RTE_PTYPE_L4_TCP,
404                 RTE_PTYPE_L4_UDP,
405                 RTE_PTYPE_UNKNOWN
406         };
407         static const uint32_t ef10_overlay_ptypes[] = {
408                 RTE_PTYPE_L2_ETHER,
409                 RTE_PTYPE_L2_ETHER_ARP,
410                 RTE_PTYPE_L2_ETHER_VLAN,
411                 RTE_PTYPE_L2_ETHER_QINQ,
412                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
413                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
414                 RTE_PTYPE_L4_FRAG,
415                 RTE_PTYPE_L4_TCP,
416                 RTE_PTYPE_L4_UDP,
417                 RTE_PTYPE_TUNNEL_VXLAN,
418                 RTE_PTYPE_TUNNEL_NVGRE,
419                 RTE_PTYPE_INNER_L2_ETHER,
420                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
421                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
422                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
423                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
424                 RTE_PTYPE_INNER_L4_FRAG,
425                 RTE_PTYPE_INNER_L4_TCP,
426                 RTE_PTYPE_INNER_L4_UDP,
427                 RTE_PTYPE_UNKNOWN
428         };
429
430         /*
431          * The function returns static set of supported packet types,
432          * so we can't build it dynamically based on supported tunnel
433          * encapsulations and should limit to known sets.
434          */
435         switch (tunnel_encaps) {
436         case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
437               1u << EFX_TUNNEL_PROTOCOL_GENEVE |
438               1u << EFX_TUNNEL_PROTOCOL_NVGRE):
439                 return ef10_overlay_ptypes;
440         default:
441                 SFC_GENERIC_LOG(ERR,
442                         "Unexpected set of supported tunnel encapsulations: %#x",
443                         tunnel_encaps);
444                 /* FALLTHROUGH */
445         case 0:
446                 return ef10_native_ptypes;
447         }
448 }
449
450 static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
451 static unsigned int
452 sfc_ef10_rx_qdesc_npending(__rte_unused struct sfc_dp_rxq *dp_rxq)
453 {
454         /*
455          * Correct implementation requires EvQ polling and events
456          * processing (keeping all ready mbufs in prepared).
457          */
458         return -ENOTSUP;
459 }
460
461 static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
462 static int
463 sfc_ef10_rx_qdesc_status(__rte_unused struct sfc_dp_rxq *dp_rxq,
464                          __rte_unused uint16_t offset)
465 {
466         return -ENOTSUP;
467 }
468
469
470 static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
471 static void
472 sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
473 {
474         /*
475          * Number of descriptors just defines maximum number of pushed
476          * descriptors (fill level).
477          */
478         dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
479         dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
480 }
481
482
483 static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
484 static int
485 sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
486                            __rte_unused struct rte_mempool *mb_pool,
487                            unsigned int *rxq_entries,
488                            unsigned int *evq_entries,
489                            unsigned int *rxq_max_fill_level)
490 {
491         /*
492          * rte_ethdev API guarantees that the number meets min, max and
493          * alignment requirements.
494          */
495         if (nb_rx_desc <= EFX_RXQ_MINNDESCS)
496                 *rxq_entries = EFX_RXQ_MINNDESCS;
497         else
498                 *rxq_entries = rte_align32pow2(nb_rx_desc);
499
500         *evq_entries = *rxq_entries;
501
502         *rxq_max_fill_level = RTE_MIN(nb_rx_desc,
503                                       SFC_EF10_RXQ_LIMIT(*evq_entries));
504         return 0;
505 }
506
507
508 static uint64_t
509 sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
510 {
511         struct rte_mbuf m;
512
513         memset(&m, 0, sizeof(m));
514
515         rte_mbuf_refcnt_set(&m, 1);
516         m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
517         m.nb_segs = 1;
518         m.port = port_id;
519
520         /* rearm_data covers structure members filled in above */
521         rte_compiler_barrier();
522         RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
523         return m.rearm_data[0];
524 }
525
526 static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
527 static int
528 sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
529                     const struct rte_pci_addr *pci_addr, int socket_id,
530                     const struct sfc_dp_rx_qcreate_info *info,
531                     struct sfc_dp_rxq **dp_rxqp)
532 {
533         struct sfc_ef10_rxq *rxq;
534         int rc;
535
536         rc = EINVAL;
537         if (info->rxq_entries != info->evq_entries)
538                 goto fail_rxq_args;
539
540         rc = ENOMEM;
541         rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
542                                  RTE_CACHE_LINE_SIZE, socket_id);
543         if (rxq == NULL)
544                 goto fail_rxq_alloc;
545
546         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
547
548         rc = ENOMEM;
549         rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
550                                          info->rxq_entries,
551                                          sizeof(*rxq->sw_ring),
552                                          RTE_CACHE_LINE_SIZE, socket_id);
553         if (rxq->sw_ring == NULL)
554                 goto fail_desc_alloc;
555
556         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
557         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
558                 rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
559         rxq->ptr_mask = info->rxq_entries - 1;
560         rxq->evq_hw_ring = info->evq_hw_ring;
561         rxq->max_fill_level = info->max_fill_level;
562         rxq->refill_threshold = info->refill_threshold;
563         rxq->rearm_data =
564                 sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
565         rxq->prefix_size = info->prefix_size;
566         rxq->buf_size = info->buf_size;
567         rxq->refill_mb_pool = info->refill_mb_pool;
568         rxq->rxq_hw_ring = info->rxq_hw_ring;
569         rxq->doorbell = (volatile uint8_t *)info->mem_bar +
570                         ER_DZ_RX_DESC_UPD_REG_OFST +
571                         (info->hw_index << info->vi_window_shift);
572
573         *dp_rxqp = &rxq->dp;
574         return 0;
575
576 fail_desc_alloc:
577         rte_free(rxq);
578
579 fail_rxq_alloc:
580 fail_rxq_args:
581         return rc;
582 }
583
584 static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
585 static void
586 sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
587 {
588         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
589
590         rte_free(rxq->sw_ring);
591         rte_free(rxq);
592 }
593
594 static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
595 static int
596 sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr)
597 {
598         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
599
600         SFC_ASSERT(rxq->prepared == 0);
601         SFC_ASSERT(rxq->completed == 0);
602         SFC_ASSERT(rxq->added == 0);
603
604         sfc_ef10_rx_qrefill(rxq);
605
606         rxq->evq_read_ptr = evq_read_ptr;
607
608         rxq->flags |= SFC_EF10_RXQ_STARTED;
609         rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
610
611         return 0;
612 }
613
614 static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
615 static void
616 sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
617 {
618         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
619
620         rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
621
622         *evq_read_ptr = rxq->evq_read_ptr;
623 }
624
625 static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
626 static bool
627 sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
628 {
629         __rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
630
631         SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
632
633         /*
634          * It is safe to ignore Rx event since we free all mbufs on
635          * queue purge anyway.
636          */
637
638         return false;
639 }
640
641 static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
642 static void
643 sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
644 {
645         struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
646         unsigned int i;
647         struct sfc_ef10_rx_sw_desc *rxd;
648
649         rxq->prepared = 0;
650
651         for (i = rxq->completed; i != rxq->added; ++i) {
652                 rxd = &rxq->sw_ring[i & rxq->ptr_mask];
653                 rte_mbuf_raw_free(rxd->mbuf);
654                 rxd->mbuf = NULL;
655         }
656
657         rxq->completed = rxq->added = 0;
658
659         rxq->flags &= ~SFC_EF10_RXQ_STARTED;
660 }
661
662 struct sfc_dp_rx sfc_ef10_rx = {
663         .dp = {
664                 .name           = SFC_KVARG_DATAPATH_EF10,
665                 .type           = SFC_DP_RX,
666                 .hw_fw_caps     = SFC_DP_HW_FW_CAP_EF10,
667         },
668         .features               = SFC_DP_RX_FEAT_MULTI_PROCESS |
669                                   SFC_DP_RX_FEAT_TUNNELS |
670                                   SFC_DP_RX_FEAT_CHECKSUM,
671         .get_dev_info           = sfc_ef10_rx_get_dev_info,
672         .qsize_up_rings         = sfc_ef10_rx_qsize_up_rings,
673         .qcreate                = sfc_ef10_rx_qcreate,
674         .qdestroy               = sfc_ef10_rx_qdestroy,
675         .qstart                 = sfc_ef10_rx_qstart,
676         .qstop                  = sfc_ef10_rx_qstop,
677         .qrx_ev                 = sfc_ef10_rx_qrx_ev,
678         .qpurge                 = sfc_ef10_rx_qpurge,
679         .supported_ptypes_get   = sfc_ef10_supported_ptypes_get,
680         .qdesc_npending         = sfc_ef10_rx_qdesc_npending,
681         .qdesc_status           = sfc_ef10_rx_qdesc_status,
682         .pkt_burst              = sfc_ef10_recv_pkts,
683 };