net/sfc: collect per queue stats in EF100 Tx
[dpdk.git] / drivers / net / sfc / sfc_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_dev.h>
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18
19 #include "efx.h"
20
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31 #include "sfc_sw_stats.h"
32
33 #define SFC_XSTAT_ID_INVALID_VAL  UINT64_MAX
34 #define SFC_XSTAT_ID_INVALID_NAME '\0'
35
36 uint32_t sfc_logtype_driver;
37
38 static struct sfc_dp_list sfc_dp_head =
39         TAILQ_HEAD_INITIALIZER(sfc_dp_head);
40
41
42 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
43
44
45 static int
46 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
47 {
48         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
49         efx_nic_fw_info_t enfi;
50         int ret;
51         int rc;
52
53         rc = efx_nic_get_fw_version(sa->nic, &enfi);
54         if (rc != 0)
55                 return -rc;
56
57         ret = snprintf(fw_version, fw_size,
58                        "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
59                        enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
60                        enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
61         if (ret < 0)
62                 return ret;
63
64         if (enfi.enfi_dpcpu_fw_ids_valid) {
65                 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
66                 int ret_extra;
67
68                 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
69                                      fw_size - dpcpu_fw_ids_offset,
70                                      " rx%" PRIx16 " tx%" PRIx16,
71                                      enfi.enfi_rx_dpcpu_fw_id,
72                                      enfi.enfi_tx_dpcpu_fw_id);
73                 if (ret_extra < 0)
74                         return ret_extra;
75
76                 ret += ret_extra;
77         }
78
79         if (fw_size < (size_t)(++ret))
80                 return ret;
81         else
82                 return 0;
83 }
84
85 static int
86 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
87 {
88         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
89         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
90         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
91         struct sfc_rss *rss = &sas->rss;
92         struct sfc_mae *mae = &sa->mae;
93         uint64_t txq_offloads_def = 0;
94
95         sfc_log_init(sa, "entry");
96
97         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
98         dev_info->max_mtu = EFX_MAC_SDU_MAX;
99
100         dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
101
102         dev_info->max_vfs = sa->sriov.num_vfs;
103
104         /* Autonegotiation may be disabled */
105         dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
106         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
107                 dev_info->speed_capa |= ETH_LINK_SPEED_1G;
108         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
109                 dev_info->speed_capa |= ETH_LINK_SPEED_10G;
110         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
111                 dev_info->speed_capa |= ETH_LINK_SPEED_25G;
112         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
113                 dev_info->speed_capa |= ETH_LINK_SPEED_40G;
114         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
115                 dev_info->speed_capa |= ETH_LINK_SPEED_50G;
116         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
117                 dev_info->speed_capa |= ETH_LINK_SPEED_100G;
118
119         dev_info->max_rx_queues = sa->rxq_max;
120         dev_info->max_tx_queues = sa->txq_max;
121
122         /* By default packets are dropped if no descriptors are available */
123         dev_info->default_rxconf.rx_drop_en = 1;
124
125         dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
126
127         /*
128          * rx_offload_capa includes both device and queue offloads since
129          * the latter may be requested on a per device basis which makes
130          * sense when some offloads are needed to be set on all queues.
131          */
132         dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
133                                     dev_info->rx_queue_offload_capa;
134
135         dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
136
137         /*
138          * tx_offload_capa includes both device and queue offloads since
139          * the latter may be requested on a per device basis which makes
140          * sense when some offloads are needed to be set on all queues.
141          */
142         dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
143                                     dev_info->tx_queue_offload_capa;
144
145         if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
146                 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
147
148         dev_info->default_txconf.offloads |= txq_offloads_def;
149
150         if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
151                 uint64_t rte_hf = 0;
152                 unsigned int i;
153
154                 for (i = 0; i < rss->hf_map_nb_entries; ++i)
155                         rte_hf |= rss->hf_map[i].rte;
156
157                 dev_info->reta_size = EFX_RSS_TBL_SIZE;
158                 dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
159                 dev_info->flow_type_rss_offloads = rte_hf;
160         }
161
162         /* Initialize to hardware limits */
163         dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
164         dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
165         /* The RXQ hardware requires that the descriptor count is a power
166          * of 2, but rx_desc_lim cannot properly describe that constraint.
167          */
168         dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
169
170         /* Initialize to hardware limits */
171         dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
172         dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
173         /*
174          * The TXQ hardware requires that the descriptor count is a power
175          * of 2, but tx_desc_lim cannot properly describe that constraint
176          */
177         dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
178
179         if (sap->dp_rx->get_dev_info != NULL)
180                 sap->dp_rx->get_dev_info(dev_info);
181         if (sap->dp_tx->get_dev_info != NULL)
182                 sap->dp_tx->get_dev_info(dev_info);
183
184         dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
185                              RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
186
187         if (mae->status == SFC_MAE_STATUS_SUPPORTED) {
188                 dev_info->switch_info.name = dev->device->driver->name;
189                 dev_info->switch_info.domain_id = mae->switch_domain_id;
190                 dev_info->switch_info.port_id = mae->switch_port_id;
191         }
192
193         return 0;
194 }
195
196 static const uint32_t *
197 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
198 {
199         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
200
201         return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
202 }
203
204 static int
205 sfc_dev_configure(struct rte_eth_dev *dev)
206 {
207         struct rte_eth_dev_data *dev_data = dev->data;
208         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
209         int rc;
210
211         sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
212                      dev_data->nb_rx_queues, dev_data->nb_tx_queues);
213
214         sfc_adapter_lock(sa);
215         switch (sa->state) {
216         case SFC_ADAPTER_CONFIGURED:
217                 /* FALLTHROUGH */
218         case SFC_ADAPTER_INITIALIZED:
219                 rc = sfc_configure(sa);
220                 break;
221         default:
222                 sfc_err(sa, "unexpected adapter state %u to configure",
223                         sa->state);
224                 rc = EINVAL;
225                 break;
226         }
227         sfc_adapter_unlock(sa);
228
229         sfc_log_init(sa, "done %d", rc);
230         SFC_ASSERT(rc >= 0);
231         return -rc;
232 }
233
234 static int
235 sfc_dev_start(struct rte_eth_dev *dev)
236 {
237         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
238         int rc;
239
240         sfc_log_init(sa, "entry");
241
242         sfc_adapter_lock(sa);
243         rc = sfc_start(sa);
244         sfc_adapter_unlock(sa);
245
246         sfc_log_init(sa, "done %d", rc);
247         SFC_ASSERT(rc >= 0);
248         return -rc;
249 }
250
251 static int
252 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
253 {
254         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
255         struct rte_eth_link current_link;
256         int ret;
257
258         sfc_log_init(sa, "entry");
259
260         if (sa->state != SFC_ADAPTER_STARTED) {
261                 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
262         } else if (wait_to_complete) {
263                 efx_link_mode_t link_mode;
264
265                 if (efx_port_poll(sa->nic, &link_mode) != 0)
266                         link_mode = EFX_LINK_UNKNOWN;
267                 sfc_port_link_mode_to_info(link_mode, &current_link);
268
269         } else {
270                 sfc_ev_mgmt_qpoll(sa);
271                 rte_eth_linkstatus_get(dev, &current_link);
272         }
273
274         ret = rte_eth_linkstatus_set(dev, &current_link);
275         if (ret == 0)
276                 sfc_notice(sa, "Link status is %s",
277                            current_link.link_status ? "UP" : "DOWN");
278
279         return ret;
280 }
281
282 static int
283 sfc_dev_stop(struct rte_eth_dev *dev)
284 {
285         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
286
287         sfc_log_init(sa, "entry");
288
289         sfc_adapter_lock(sa);
290         sfc_stop(sa);
291         sfc_adapter_unlock(sa);
292
293         sfc_log_init(sa, "done");
294
295         return 0;
296 }
297
298 static int
299 sfc_dev_set_link_up(struct rte_eth_dev *dev)
300 {
301         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
302         int rc;
303
304         sfc_log_init(sa, "entry");
305
306         sfc_adapter_lock(sa);
307         rc = sfc_start(sa);
308         sfc_adapter_unlock(sa);
309
310         SFC_ASSERT(rc >= 0);
311         return -rc;
312 }
313
314 static int
315 sfc_dev_set_link_down(struct rte_eth_dev *dev)
316 {
317         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
318
319         sfc_log_init(sa, "entry");
320
321         sfc_adapter_lock(sa);
322         sfc_stop(sa);
323         sfc_adapter_unlock(sa);
324
325         return 0;
326 }
327
328 static void
329 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
330 {
331         free(dev->process_private);
332         rte_eth_dev_release_port(dev);
333 }
334
335 static int
336 sfc_dev_close(struct rte_eth_dev *dev)
337 {
338         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
339
340         sfc_log_init(sa, "entry");
341
342         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
343                 sfc_eth_dev_secondary_clear_ops(dev);
344                 return 0;
345         }
346
347         sfc_adapter_lock(sa);
348         switch (sa->state) {
349         case SFC_ADAPTER_STARTED:
350                 sfc_stop(sa);
351                 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
352                 /* FALLTHROUGH */
353         case SFC_ADAPTER_CONFIGURED:
354                 sfc_close(sa);
355                 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
356                 /* FALLTHROUGH */
357         case SFC_ADAPTER_INITIALIZED:
358                 break;
359         default:
360                 sfc_err(sa, "unexpected adapter state %u on close", sa->state);
361                 break;
362         }
363
364         /*
365          * Cleanup all resources.
366          * Rollback primary process sfc_eth_dev_init() below.
367          */
368
369         sfc_eth_dev_clear_ops(dev);
370
371         sfc_detach(sa);
372         sfc_unprobe(sa);
373
374         sfc_kvargs_cleanup(sa);
375
376         sfc_adapter_unlock(sa);
377         sfc_adapter_lock_fini(sa);
378
379         sfc_log_init(sa, "done");
380
381         /* Required for logging, so cleanup last */
382         sa->eth_dev = NULL;
383
384         free(sa);
385
386         return 0;
387 }
388
389 static int
390 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
391                    boolean_t enabled)
392 {
393         struct sfc_port *port;
394         boolean_t *toggle;
395         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
396         boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
397         const char *desc = (allmulti) ? "all-multi" : "promiscuous";
398         int rc = 0;
399
400         sfc_adapter_lock(sa);
401
402         port = &sa->port;
403         toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
404
405         if (*toggle != enabled) {
406                 *toggle = enabled;
407
408                 if (sfc_sa2shared(sa)->isolated) {
409                         sfc_warn(sa, "isolated mode is active on the port");
410                         sfc_warn(sa, "the change is to be applied on the next "
411                                      "start provided that isolated mode is "
412                                      "disabled prior the next start");
413                 } else if ((sa->state == SFC_ADAPTER_STARTED) &&
414                            ((rc = sfc_set_rx_mode(sa)) != 0)) {
415                         *toggle = !(enabled);
416                         sfc_warn(sa, "Failed to %s %s mode, rc = %d",
417                                  ((enabled) ? "enable" : "disable"), desc, rc);
418
419                         /*
420                          * For promiscuous and all-multicast filters a
421                          * permission failure should be reported as an
422                          * unsupported filter.
423                          */
424                         if (rc == EPERM)
425                                 rc = ENOTSUP;
426                 }
427         }
428
429         sfc_adapter_unlock(sa);
430         return rc;
431 }
432
433 static int
434 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
435 {
436         int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
437
438         SFC_ASSERT(rc >= 0);
439         return -rc;
440 }
441
442 static int
443 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
444 {
445         int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
446
447         SFC_ASSERT(rc >= 0);
448         return -rc;
449 }
450
451 static int
452 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
453 {
454         int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
455
456         SFC_ASSERT(rc >= 0);
457         return -rc;
458 }
459
460 static int
461 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
462 {
463         int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
464
465         SFC_ASSERT(rc >= 0);
466         return -rc;
467 }
468
469 static int
470 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
471                    uint16_t nb_rx_desc, unsigned int socket_id,
472                    const struct rte_eth_rxconf *rx_conf,
473                    struct rte_mempool *mb_pool)
474 {
475         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
476         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
477         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
478         struct sfc_rxq_info *rxq_info;
479         sfc_sw_index_t sw_index;
480         int rc;
481
482         sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
483                      ethdev_qid, nb_rx_desc, socket_id);
484
485         sfc_adapter_lock(sa);
486
487         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
488         rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id,
489                           rx_conf, mb_pool);
490         if (rc != 0)
491                 goto fail_rx_qinit;
492
493         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
494         dev->data->rx_queues[ethdev_qid] = rxq_info->dp;
495
496         sfc_adapter_unlock(sa);
497
498         return 0;
499
500 fail_rx_qinit:
501         sfc_adapter_unlock(sa);
502         SFC_ASSERT(rc > 0);
503         return -rc;
504 }
505
506 static void
507 sfc_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
508 {
509         struct sfc_dp_rxq *dp_rxq = dev->data->rx_queues[qid];
510         struct sfc_rxq *rxq;
511         struct sfc_adapter *sa;
512         sfc_sw_index_t sw_index;
513
514         if (dp_rxq == NULL)
515                 return;
516
517         rxq = sfc_rxq_by_dp_rxq(dp_rxq);
518         sa = rxq->evq->sa;
519         sfc_adapter_lock(sa);
520
521         sw_index = dp_rxq->dpq.queue_id;
522
523         sfc_log_init(sa, "RxQ=%u", sw_index);
524
525         sfc_rx_qfini(sa, sw_index);
526
527         sfc_adapter_unlock(sa);
528 }
529
530 static int
531 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
532                    uint16_t nb_tx_desc, unsigned int socket_id,
533                    const struct rte_eth_txconf *tx_conf)
534 {
535         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
536         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
537         struct sfc_txq_info *txq_info;
538         sfc_sw_index_t sw_index;
539         int rc;
540
541         sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
542                      ethdev_qid, nb_tx_desc, socket_id);
543
544         sfc_adapter_lock(sa);
545
546         sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
547         rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf);
548         if (rc != 0)
549                 goto fail_tx_qinit;
550
551         txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
552         dev->data->tx_queues[ethdev_qid] = txq_info->dp;
553
554         sfc_adapter_unlock(sa);
555         return 0;
556
557 fail_tx_qinit:
558         sfc_adapter_unlock(sa);
559         SFC_ASSERT(rc > 0);
560         return -rc;
561 }
562
563 static void
564 sfc_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
565 {
566         struct sfc_dp_txq *dp_txq = dev->data->tx_queues[qid];
567         struct sfc_txq *txq;
568         sfc_sw_index_t sw_index;
569         struct sfc_adapter *sa;
570
571         if (dp_txq == NULL)
572                 return;
573
574         txq = sfc_txq_by_dp_txq(dp_txq);
575         sw_index = dp_txq->dpq.queue_id;
576
577         SFC_ASSERT(txq->evq != NULL);
578         sa = txq->evq->sa;
579
580         sfc_log_init(sa, "TxQ = %u", sw_index);
581
582         sfc_adapter_lock(sa);
583
584         sfc_tx_qfini(sa, sw_index);
585
586         sfc_adapter_unlock(sa);
587 }
588
589 static void
590 sfc_stats_get_dp_rx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
591 {
592         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
593         uint64_t pkts_sum = 0;
594         uint64_t bytes_sum = 0;
595         unsigned int i;
596
597         for (i = 0; i < sas->ethdev_rxq_count; ++i) {
598                 struct sfc_rxq_info *rxq_info;
599
600                 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, i);
601                 if (rxq_info->state & SFC_RXQ_INITIALIZED) {
602                         union sfc_pkts_bytes qstats;
603
604                         sfc_pkts_bytes_get(&rxq_info->dp->dpq.stats, &qstats);
605                         pkts_sum += qstats.pkts -
606                                         sa->sw_stats.reset_rx_pkts[i];
607                         bytes_sum += qstats.bytes -
608                                         sa->sw_stats.reset_rx_bytes[i];
609                 }
610         }
611
612         *pkts = pkts_sum;
613         *bytes = bytes_sum;
614 }
615
616 static void
617 sfc_stats_get_dp_tx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
618 {
619         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
620         uint64_t pkts_sum = 0;
621         uint64_t bytes_sum = 0;
622         unsigned int i;
623
624         for (i = 0; i < sas->ethdev_txq_count; ++i) {
625                 struct sfc_txq_info *txq_info;
626
627                 txq_info = sfc_txq_info_by_ethdev_qid(sas, i);
628                 if (txq_info->state & SFC_TXQ_INITIALIZED) {
629                         union sfc_pkts_bytes qstats;
630
631                         sfc_pkts_bytes_get(&txq_info->dp->dpq.stats, &qstats);
632                         pkts_sum += qstats.pkts -
633                                         sa->sw_stats.reset_tx_pkts[i];
634                         bytes_sum += qstats.bytes -
635                                         sa->sw_stats.reset_tx_bytes[i];
636                 }
637         }
638
639         *pkts = pkts_sum;
640         *bytes = bytes_sum;
641 }
642
643 /*
644  * Some statistics are computed as A - B where A and B each increase
645  * monotonically with some hardware counter(s) and the counters are read
646  * asynchronously.
647  *
648  * If packet X is counted in A, but not counted in B yet, computed value is
649  * greater than real.
650  *
651  * If packet X is not counted in A at the moment of reading the counter,
652  * but counted in B at the moment of reading the counter, computed value
653  * is less than real.
654  *
655  * However, counter which grows backward is worse evil than slightly wrong
656  * value. So, let's try to guarantee that it never happens except may be
657  * the case when the MAC stats are zeroed as a result of a NIC reset.
658  */
659 static void
660 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
661 {
662         if ((int64_t)(newval - *stat) > 0 || newval == 0)
663                 *stat = newval;
664 }
665
666 static int
667 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
668 {
669         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
670         bool have_dp_rx_stats = sap->dp_rx->features & SFC_DP_RX_FEAT_STATS;
671         bool have_dp_tx_stats = sap->dp_tx->features & SFC_DP_TX_FEAT_STATS;
672         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
673         struct sfc_port *port = &sa->port;
674         uint64_t *mac_stats;
675         int ret;
676
677         sfc_adapter_lock(sa);
678
679         if (have_dp_rx_stats)
680                 sfc_stats_get_dp_rx(sa, &stats->ipackets, &stats->ibytes);
681         if (have_dp_tx_stats)
682                 sfc_stats_get_dp_tx(sa, &stats->opackets, &stats->obytes);
683
684         ret = sfc_port_update_mac_stats(sa, B_FALSE);
685         if (ret != 0)
686                 goto unlock;
687
688         mac_stats = port->mac_stats_buf;
689
690         if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
691                                    EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
692                 if (!have_dp_rx_stats) {
693                         stats->ipackets =
694                                 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
695                                 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
696                                 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
697                         stats->ibytes =
698                                 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
699                                 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
700                                 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
701
702                         /* CRC is included in these stats, but shouldn't be */
703                         stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
704                 }
705                 if (!have_dp_tx_stats) {
706                         stats->opackets =
707                                 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
708                                 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
709                                 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
710                         stats->obytes =
711                                 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
712                                 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
713                                 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
714
715                         /* CRC is included in these stats, but shouldn't be */
716                         stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
717                 }
718                 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
719                 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
720         } else {
721                 if (!have_dp_tx_stats) {
722                         stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
723                         stats->obytes = mac_stats[EFX_MAC_TX_OCTETS] -
724                                 mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
725                 }
726
727                 /*
728                  * Take into account stats which are whenever supported
729                  * on EF10. If some stat is not supported by current
730                  * firmware variant or HW revision, it is guaranteed
731                  * to be zero in mac_stats.
732                  */
733                 stats->imissed =
734                         mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
735                         mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
736                         mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
737                         mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
738                         mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
739                         mac_stats[EFX_MAC_PM_TRUNC_QBB] +
740                         mac_stats[EFX_MAC_PM_DISCARD_QBB] +
741                         mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
742                         mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
743                         mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
744                 stats->ierrors =
745                         mac_stats[EFX_MAC_RX_FCS_ERRORS] +
746                         mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
747                         mac_stats[EFX_MAC_RX_JABBER_PKTS];
748                 /* no oerrors counters supported on EF10 */
749
750                 if (!have_dp_rx_stats) {
751                         /* Exclude missed, errors and pauses from Rx packets */
752                         sfc_update_diff_stat(&port->ipackets,
753                                 mac_stats[EFX_MAC_RX_PKTS] -
754                                 mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
755                                 stats->imissed - stats->ierrors);
756                         stats->ipackets = port->ipackets;
757                         stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS] -
758                                 mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
759                 }
760         }
761
762 unlock:
763         sfc_adapter_unlock(sa);
764         SFC_ASSERT(ret >= 0);
765         return -ret;
766 }
767
768 static int
769 sfc_stats_reset(struct rte_eth_dev *dev)
770 {
771         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
772         struct sfc_port *port = &sa->port;
773         int rc;
774
775         sfc_adapter_lock(sa);
776
777         if (sa->state != SFC_ADAPTER_STARTED) {
778                 /*
779                  * The operation cannot be done if port is not started; it
780                  * will be scheduled to be done during the next port start
781                  */
782                 port->mac_stats_reset_pending = B_TRUE;
783                 sfc_adapter_unlock(sa);
784                 return 0;
785         }
786
787         rc = sfc_port_reset_mac_stats(sa);
788         if (rc != 0)
789                 sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
790
791         sfc_sw_xstats_reset(sa);
792
793         sfc_adapter_unlock(sa);
794
795         SFC_ASSERT(rc >= 0);
796         return -rc;
797 }
798
799 static unsigned int
800 sfc_xstats_get_nb_supported(struct sfc_adapter *sa)
801 {
802         struct sfc_port *port = &sa->port;
803         unsigned int nb_supported;
804
805         sfc_adapter_lock(sa);
806         nb_supported = port->mac_stats_nb_supported +
807                        sfc_sw_xstats_get_nb_supported(sa);
808         sfc_adapter_unlock(sa);
809
810         return nb_supported;
811 }
812
813 static int
814 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
815                unsigned int xstats_count)
816 {
817         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
818         unsigned int nb_written = 0;
819         unsigned int nb_supported = 0;
820         int rc;
821
822         if (unlikely(xstats == NULL))
823                 return sfc_xstats_get_nb_supported(sa);
824
825         rc = sfc_port_get_mac_stats(sa, xstats, xstats_count, &nb_written);
826         if (rc < 0)
827                 return rc;
828
829         nb_supported = rc;
830         sfc_sw_xstats_get_vals(sa, xstats, xstats_count, &nb_written,
831                                &nb_supported);
832
833         return nb_supported;
834 }
835
836 static int
837 sfc_xstats_get_names(struct rte_eth_dev *dev,
838                      struct rte_eth_xstat_name *xstats_names,
839                      unsigned int xstats_count)
840 {
841         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
842         struct sfc_port *port = &sa->port;
843         unsigned int i;
844         unsigned int nstats = 0;
845         unsigned int nb_written = 0;
846         int ret;
847
848         if (unlikely(xstats_names == NULL))
849                 return sfc_xstats_get_nb_supported(sa);
850
851         for (i = 0; i < EFX_MAC_NSTATS; ++i) {
852                 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
853                         if (nstats < xstats_count) {
854                                 strlcpy(xstats_names[nstats].name,
855                                         efx_mac_stat_name(sa->nic, i),
856                                         sizeof(xstats_names[0].name));
857                                 nb_written++;
858                         }
859                         nstats++;
860                 }
861         }
862
863         ret = sfc_sw_xstats_get_names(sa, xstats_names, xstats_count,
864                                       &nb_written, &nstats);
865         if (ret != 0) {
866                 SFC_ASSERT(ret < 0);
867                 return ret;
868         }
869
870         return nstats;
871 }
872
873 static int
874 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
875                      uint64_t *values, unsigned int n)
876 {
877         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
878         struct sfc_port *port = &sa->port;
879         unsigned int nb_supported;
880         unsigned int i;
881         int rc;
882
883         if (unlikely(ids == NULL || values == NULL))
884                 return -EINVAL;
885
886         /*
887          * Values array could be filled in nonsequential order. Fill values with
888          * constant indicating invalid ID first.
889          */
890         for (i = 0; i < n; i++)
891                 values[i] = SFC_XSTAT_ID_INVALID_VAL;
892
893         rc = sfc_port_get_mac_stats_by_id(sa, ids, values, n);
894         if (rc != 0)
895                 return rc;
896
897         nb_supported = port->mac_stats_nb_supported;
898         sfc_sw_xstats_get_vals_by_id(sa, ids, values, n, &nb_supported);
899
900         /* Return number of written stats before invalid ID is encountered. */
901         for (i = 0; i < n; i++) {
902                 if (values[i] == SFC_XSTAT_ID_INVALID_VAL)
903                         return i;
904         }
905
906         return n;
907 }
908
909 static int
910 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
911                            const uint64_t *ids,
912                            struct rte_eth_xstat_name *xstats_names,
913                            unsigned int size)
914 {
915         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
916         struct sfc_port *port = &sa->port;
917         unsigned int nb_supported;
918         unsigned int i;
919         int ret;
920
921         if (unlikely(xstats_names == NULL && ids != NULL) ||
922             unlikely(xstats_names != NULL && ids == NULL))
923                 return -EINVAL;
924
925         if (unlikely(xstats_names == NULL && ids == NULL))
926                 return sfc_xstats_get_nb_supported(sa);
927
928         /*
929          * Names array could be filled in nonsequential order. Fill names with
930          * string indicating invalid ID first.
931          */
932         for (i = 0; i < size; i++)
933                 xstats_names[i].name[0] = SFC_XSTAT_ID_INVALID_NAME;
934
935         sfc_adapter_lock(sa);
936
937         SFC_ASSERT(port->mac_stats_nb_supported <=
938                    RTE_DIM(port->mac_stats_by_id));
939
940         for (i = 0; i < size; i++) {
941                 if (ids[i] < port->mac_stats_nb_supported) {
942                         strlcpy(xstats_names[i].name,
943                                 efx_mac_stat_name(sa->nic,
944                                                  port->mac_stats_by_id[ids[i]]),
945                                 sizeof(xstats_names[0].name));
946                 }
947         }
948
949         nb_supported = port->mac_stats_nb_supported;
950
951         sfc_adapter_unlock(sa);
952
953         ret = sfc_sw_xstats_get_names_by_id(sa, ids, xstats_names, size,
954                                             &nb_supported);
955         if (ret != 0) {
956                 SFC_ASSERT(ret < 0);
957                 return ret;
958         }
959
960         /* Return number of written names before invalid ID is encountered. */
961         for (i = 0; i < size; i++) {
962                 if (xstats_names[i].name[0] == SFC_XSTAT_ID_INVALID_NAME)
963                         return i;
964         }
965
966         return size;
967 }
968
969 static int
970 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
971 {
972         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
973         unsigned int wanted_fc, link_fc;
974
975         memset(fc_conf, 0, sizeof(*fc_conf));
976
977         sfc_adapter_lock(sa);
978
979         if (sa->state == SFC_ADAPTER_STARTED)
980                 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
981         else
982                 link_fc = sa->port.flow_ctrl;
983
984         switch (link_fc) {
985         case 0:
986                 fc_conf->mode = RTE_FC_NONE;
987                 break;
988         case EFX_FCNTL_RESPOND:
989                 fc_conf->mode = RTE_FC_RX_PAUSE;
990                 break;
991         case EFX_FCNTL_GENERATE:
992                 fc_conf->mode = RTE_FC_TX_PAUSE;
993                 break;
994         case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
995                 fc_conf->mode = RTE_FC_FULL;
996                 break;
997         default:
998                 sfc_err(sa, "%s: unexpected flow control value %#x",
999                         __func__, link_fc);
1000         }
1001
1002         fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
1003
1004         sfc_adapter_unlock(sa);
1005
1006         return 0;
1007 }
1008
1009 static int
1010 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1011 {
1012         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1013         struct sfc_port *port = &sa->port;
1014         unsigned int fcntl;
1015         int rc;
1016
1017         if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
1018             fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
1019             fc_conf->mac_ctrl_frame_fwd != 0) {
1020                 sfc_err(sa, "unsupported flow control settings specified");
1021                 rc = EINVAL;
1022                 goto fail_inval;
1023         }
1024
1025         switch (fc_conf->mode) {
1026         case RTE_FC_NONE:
1027                 fcntl = 0;
1028                 break;
1029         case RTE_FC_RX_PAUSE:
1030                 fcntl = EFX_FCNTL_RESPOND;
1031                 break;
1032         case RTE_FC_TX_PAUSE:
1033                 fcntl = EFX_FCNTL_GENERATE;
1034                 break;
1035         case RTE_FC_FULL:
1036                 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
1037                 break;
1038         default:
1039                 rc = EINVAL;
1040                 goto fail_inval;
1041         }
1042
1043         sfc_adapter_lock(sa);
1044
1045         if (sa->state == SFC_ADAPTER_STARTED) {
1046                 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
1047                 if (rc != 0)
1048                         goto fail_mac_fcntl_set;
1049         }
1050
1051         port->flow_ctrl = fcntl;
1052         port->flow_ctrl_autoneg = fc_conf->autoneg;
1053
1054         sfc_adapter_unlock(sa);
1055
1056         return 0;
1057
1058 fail_mac_fcntl_set:
1059         sfc_adapter_unlock(sa);
1060 fail_inval:
1061         SFC_ASSERT(rc > 0);
1062         return -rc;
1063 }
1064
1065 static int
1066 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
1067 {
1068         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1069         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1070         boolean_t scatter_enabled;
1071         const char *error;
1072         unsigned int i;
1073
1074         for (i = 0; i < sas->rxq_count; i++) {
1075                 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
1076                         continue;
1077
1078                 scatter_enabled = (sas->rxq_info[i].type_flags &
1079                                    EFX_RXQ_FLAG_SCATTER);
1080
1081                 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
1082                                           encp->enc_rx_prefix_size,
1083                                           scatter_enabled,
1084                                           encp->enc_rx_scatter_max, &error)) {
1085                         sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
1086                                 error);
1087                         return EINVAL;
1088                 }
1089         }
1090
1091         return 0;
1092 }
1093
1094 static int
1095 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
1096 {
1097         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1098         size_t pdu = EFX_MAC_PDU(mtu);
1099         size_t old_pdu;
1100         int rc;
1101
1102         sfc_log_init(sa, "mtu=%u", mtu);
1103
1104         rc = EINVAL;
1105         if (pdu < EFX_MAC_PDU_MIN) {
1106                 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
1107                         (unsigned int)mtu, (unsigned int)pdu,
1108                         EFX_MAC_PDU_MIN);
1109                 goto fail_inval;
1110         }
1111         if (pdu > EFX_MAC_PDU_MAX) {
1112                 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
1113                         (unsigned int)mtu, (unsigned int)pdu,
1114                         (unsigned int)EFX_MAC_PDU_MAX);
1115                 goto fail_inval;
1116         }
1117
1118         sfc_adapter_lock(sa);
1119
1120         rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
1121         if (rc != 0)
1122                 goto fail_check_scatter;
1123
1124         if (pdu != sa->port.pdu) {
1125                 if (sa->state == SFC_ADAPTER_STARTED) {
1126                         sfc_stop(sa);
1127
1128                         old_pdu = sa->port.pdu;
1129                         sa->port.pdu = pdu;
1130                         rc = sfc_start(sa);
1131                         if (rc != 0)
1132                                 goto fail_start;
1133                 } else {
1134                         sa->port.pdu = pdu;
1135                 }
1136         }
1137
1138         /*
1139          * The driver does not use it, but other PMDs update jumbo frame
1140          * flag and max_rx_pkt_len when MTU is set.
1141          */
1142         if (mtu > RTE_ETHER_MTU) {
1143                 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1144                 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1145         }
1146
1147         dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1148
1149         sfc_adapter_unlock(sa);
1150
1151         sfc_log_init(sa, "done");
1152         return 0;
1153
1154 fail_start:
1155         sa->port.pdu = old_pdu;
1156         if (sfc_start(sa) != 0)
1157                 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1158                         "PDU max size - port is stopped",
1159                         (unsigned int)pdu, (unsigned int)old_pdu);
1160
1161 fail_check_scatter:
1162         sfc_adapter_unlock(sa);
1163
1164 fail_inval:
1165         sfc_log_init(sa, "failed %d", rc);
1166         SFC_ASSERT(rc > 0);
1167         return -rc;
1168 }
1169 static int
1170 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1171 {
1172         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1173         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1174         struct sfc_port *port = &sa->port;
1175         struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1176         int rc = 0;
1177
1178         sfc_adapter_lock(sa);
1179
1180         if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1181                 goto unlock;
1182
1183         /*
1184          * Copy the address to the device private data so that
1185          * it could be recalled in the case of adapter restart.
1186          */
1187         rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1188
1189         /*
1190          * Neither of the two following checks can return
1191          * an error. The new MAC address is preserved in
1192          * the device private data and can be activated
1193          * on the next port start if the user prevents
1194          * isolated mode from being enabled.
1195          */
1196         if (sfc_sa2shared(sa)->isolated) {
1197                 sfc_warn(sa, "isolated mode is active on the port");
1198                 sfc_warn(sa, "will not set MAC address");
1199                 goto unlock;
1200         }
1201
1202         if (sa->state != SFC_ADAPTER_STARTED) {
1203                 sfc_notice(sa, "the port is not started");
1204                 sfc_notice(sa, "the new MAC address will be set on port start");
1205
1206                 goto unlock;
1207         }
1208
1209         if (encp->enc_allow_set_mac_with_installed_filters) {
1210                 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1211                 if (rc != 0) {
1212                         sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1213                         goto unlock;
1214                 }
1215
1216                 /*
1217                  * Changing the MAC address by means of MCDI request
1218                  * has no effect on received traffic, therefore
1219                  * we also need to update unicast filters
1220                  */
1221                 rc = sfc_set_rx_mode_unchecked(sa);
1222                 if (rc != 0) {
1223                         sfc_err(sa, "cannot set filter (rc = %u)", rc);
1224                         /* Rollback the old address */
1225                         (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1226                         (void)sfc_set_rx_mode_unchecked(sa);
1227                 }
1228         } else {
1229                 sfc_warn(sa, "cannot set MAC address with filters installed");
1230                 sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1231                 sfc_warn(sa, "(some traffic may be dropped)");
1232
1233                 /*
1234                  * Since setting MAC address with filters installed is not
1235                  * allowed on the adapter, the new MAC address will be set
1236                  * by means of adapter restart. sfc_start() shall retrieve
1237                  * the new address from the device private data and set it.
1238                  */
1239                 sfc_stop(sa);
1240                 rc = sfc_start(sa);
1241                 if (rc != 0)
1242                         sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1243         }
1244
1245 unlock:
1246         if (rc != 0)
1247                 rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1248
1249         sfc_adapter_unlock(sa);
1250
1251         SFC_ASSERT(rc >= 0);
1252         return -rc;
1253 }
1254
1255
1256 static int
1257 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1258                 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1259 {
1260         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1261         struct sfc_port *port = &sa->port;
1262         uint8_t *mc_addrs = port->mcast_addrs;
1263         int rc;
1264         unsigned int i;
1265
1266         if (sfc_sa2shared(sa)->isolated) {
1267                 sfc_err(sa, "isolated mode is active on the port");
1268                 sfc_err(sa, "will not set multicast address list");
1269                 return -ENOTSUP;
1270         }
1271
1272         if (mc_addrs == NULL)
1273                 return -ENOBUFS;
1274
1275         if (nb_mc_addr > port->max_mcast_addrs) {
1276                 sfc_err(sa, "too many multicast addresses: %u > %u",
1277                          nb_mc_addr, port->max_mcast_addrs);
1278                 return -EINVAL;
1279         }
1280
1281         for (i = 0; i < nb_mc_addr; ++i) {
1282                 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1283                                  EFX_MAC_ADDR_LEN);
1284                 mc_addrs += EFX_MAC_ADDR_LEN;
1285         }
1286
1287         port->nb_mcast_addrs = nb_mc_addr;
1288
1289         if (sa->state != SFC_ADAPTER_STARTED)
1290                 return 0;
1291
1292         rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1293                                         port->nb_mcast_addrs);
1294         if (rc != 0)
1295                 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1296
1297         SFC_ASSERT(rc >= 0);
1298         return -rc;
1299 }
1300
1301 /*
1302  * The function is used by the secondary process as well. It must not
1303  * use any process-local pointers from the adapter data.
1304  */
1305 static void
1306 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1307                       struct rte_eth_rxq_info *qinfo)
1308 {
1309         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1310         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1311         struct sfc_rxq_info *rxq_info;
1312
1313         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1314
1315         qinfo->mp = rxq_info->refill_mb_pool;
1316         qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1317         qinfo->conf.rx_drop_en = 1;
1318         qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1319         qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1320         if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1321                 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1322                 qinfo->scattered_rx = 1;
1323         }
1324         qinfo->nb_desc = rxq_info->entries;
1325 }
1326
1327 /*
1328  * The function is used by the secondary process as well. It must not
1329  * use any process-local pointers from the adapter data.
1330  */
1331 static void
1332 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1333                       struct rte_eth_txq_info *qinfo)
1334 {
1335         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1336         struct sfc_txq_info *txq_info;
1337
1338         SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count);
1339
1340         txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1341
1342         memset(qinfo, 0, sizeof(*qinfo));
1343
1344         qinfo->conf.offloads = txq_info->offloads;
1345         qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1346         qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1347         qinfo->nb_desc = txq_info->entries;
1348 }
1349
1350 /*
1351  * The function is used by the secondary process as well. It must not
1352  * use any process-local pointers from the adapter data.
1353  */
1354 static uint32_t
1355 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1356 {
1357         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1358         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1359         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1360         struct sfc_rxq_info *rxq_info;
1361
1362         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1363
1364         if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1365                 return 0;
1366
1367         return sap->dp_rx->qdesc_npending(rxq_info->dp);
1368 }
1369
1370 /*
1371  * The function is used by the secondary process as well. It must not
1372  * use any process-local pointers from the adapter data.
1373  */
1374 static int
1375 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1376 {
1377         struct sfc_dp_rxq *dp_rxq = queue;
1378         const struct sfc_dp_rx *dp_rx;
1379
1380         dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1381
1382         return dp_rx->qdesc_status(dp_rxq, offset);
1383 }
1384
1385 /*
1386  * The function is used by the secondary process as well. It must not
1387  * use any process-local pointers from the adapter data.
1388  */
1389 static int
1390 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1391 {
1392         struct sfc_dp_txq *dp_txq = queue;
1393         const struct sfc_dp_tx *dp_tx;
1394
1395         dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1396
1397         return dp_tx->qdesc_status(dp_txq, offset);
1398 }
1399
1400 static int
1401 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1402 {
1403         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1404         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1405         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1406         struct sfc_rxq_info *rxq_info;
1407         sfc_sw_index_t sw_index;
1408         int rc;
1409
1410         sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1411
1412         sfc_adapter_lock(sa);
1413
1414         rc = EINVAL;
1415         if (sa->state != SFC_ADAPTER_STARTED)
1416                 goto fail_not_started;
1417
1418         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1419         if (rxq_info->state != SFC_RXQ_INITIALIZED)
1420                 goto fail_not_setup;
1421
1422         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1423         rc = sfc_rx_qstart(sa, sw_index);
1424         if (rc != 0)
1425                 goto fail_rx_qstart;
1426
1427         rxq_info->deferred_started = B_TRUE;
1428
1429         sfc_adapter_unlock(sa);
1430
1431         return 0;
1432
1433 fail_rx_qstart:
1434 fail_not_setup:
1435 fail_not_started:
1436         sfc_adapter_unlock(sa);
1437         SFC_ASSERT(rc > 0);
1438         return -rc;
1439 }
1440
1441 static int
1442 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1443 {
1444         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1445         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1446         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1447         struct sfc_rxq_info *rxq_info;
1448         sfc_sw_index_t sw_index;
1449
1450         sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1451
1452         sfc_adapter_lock(sa);
1453
1454         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1455         sfc_rx_qstop(sa, sw_index);
1456
1457         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1458         rxq_info->deferred_started = B_FALSE;
1459
1460         sfc_adapter_unlock(sa);
1461
1462         return 0;
1463 }
1464
1465 static int
1466 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1467 {
1468         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1469         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1470         struct sfc_txq_info *txq_info;
1471         sfc_sw_index_t sw_index;
1472         int rc;
1473
1474         sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1475
1476         sfc_adapter_lock(sa);
1477
1478         rc = EINVAL;
1479         if (sa->state != SFC_ADAPTER_STARTED)
1480                 goto fail_not_started;
1481
1482         txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1483         if (txq_info->state != SFC_TXQ_INITIALIZED)
1484                 goto fail_not_setup;
1485
1486         sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1487         rc = sfc_tx_qstart(sa, sw_index);
1488         if (rc != 0)
1489                 goto fail_tx_qstart;
1490
1491         txq_info->deferred_started = B_TRUE;
1492
1493         sfc_adapter_unlock(sa);
1494         return 0;
1495
1496 fail_tx_qstart:
1497
1498 fail_not_setup:
1499 fail_not_started:
1500         sfc_adapter_unlock(sa);
1501         SFC_ASSERT(rc > 0);
1502         return -rc;
1503 }
1504
1505 static int
1506 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1507 {
1508         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1509         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1510         struct sfc_txq_info *txq_info;
1511         sfc_sw_index_t sw_index;
1512
1513         sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1514
1515         sfc_adapter_lock(sa);
1516
1517         sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1518         sfc_tx_qstop(sa, sw_index);
1519
1520         txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1521         txq_info->deferred_started = B_FALSE;
1522
1523         sfc_adapter_unlock(sa);
1524         return 0;
1525 }
1526
1527 static efx_tunnel_protocol_t
1528 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1529 {
1530         switch (rte_type) {
1531         case RTE_TUNNEL_TYPE_VXLAN:
1532                 return EFX_TUNNEL_PROTOCOL_VXLAN;
1533         case RTE_TUNNEL_TYPE_GENEVE:
1534                 return EFX_TUNNEL_PROTOCOL_GENEVE;
1535         default:
1536                 return EFX_TUNNEL_NPROTOS;
1537         }
1538 }
1539
1540 enum sfc_udp_tunnel_op_e {
1541         SFC_UDP_TUNNEL_ADD_PORT,
1542         SFC_UDP_TUNNEL_DEL_PORT,
1543 };
1544
1545 static int
1546 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1547                       struct rte_eth_udp_tunnel *tunnel_udp,
1548                       enum sfc_udp_tunnel_op_e op)
1549 {
1550         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1551         efx_tunnel_protocol_t tunnel_proto;
1552         int rc;
1553
1554         sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1555                      (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1556                      (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1557                      tunnel_udp->udp_port, tunnel_udp->prot_type);
1558
1559         tunnel_proto =
1560                 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1561         if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1562                 rc = ENOTSUP;
1563                 goto fail_bad_proto;
1564         }
1565
1566         sfc_adapter_lock(sa);
1567
1568         switch (op) {
1569         case SFC_UDP_TUNNEL_ADD_PORT:
1570                 rc = efx_tunnel_config_udp_add(sa->nic,
1571                                                tunnel_udp->udp_port,
1572                                                tunnel_proto);
1573                 break;
1574         case SFC_UDP_TUNNEL_DEL_PORT:
1575                 rc = efx_tunnel_config_udp_remove(sa->nic,
1576                                                   tunnel_udp->udp_port,
1577                                                   tunnel_proto);
1578                 break;
1579         default:
1580                 rc = EINVAL;
1581                 goto fail_bad_op;
1582         }
1583
1584         if (rc != 0)
1585                 goto fail_op;
1586
1587         if (sa->state == SFC_ADAPTER_STARTED) {
1588                 rc = efx_tunnel_reconfigure(sa->nic);
1589                 if (rc == EAGAIN) {
1590                         /*
1591                          * Configuration is accepted by FW and MC reboot
1592                          * is initiated to apply the changes. MC reboot
1593                          * will be handled in a usual way (MC reboot
1594                          * event on management event queue and adapter
1595                          * restart).
1596                          */
1597                         rc = 0;
1598                 } else if (rc != 0) {
1599                         goto fail_reconfigure;
1600                 }
1601         }
1602
1603         sfc_adapter_unlock(sa);
1604         return 0;
1605
1606 fail_reconfigure:
1607         /* Remove/restore entry since the change makes the trouble */
1608         switch (op) {
1609         case SFC_UDP_TUNNEL_ADD_PORT:
1610                 (void)efx_tunnel_config_udp_remove(sa->nic,
1611                                                    tunnel_udp->udp_port,
1612                                                    tunnel_proto);
1613                 break;
1614         case SFC_UDP_TUNNEL_DEL_PORT:
1615                 (void)efx_tunnel_config_udp_add(sa->nic,
1616                                                 tunnel_udp->udp_port,
1617                                                 tunnel_proto);
1618                 break;
1619         }
1620
1621 fail_op:
1622 fail_bad_op:
1623         sfc_adapter_unlock(sa);
1624
1625 fail_bad_proto:
1626         SFC_ASSERT(rc > 0);
1627         return -rc;
1628 }
1629
1630 static int
1631 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1632                             struct rte_eth_udp_tunnel *tunnel_udp)
1633 {
1634         return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1635 }
1636
1637 static int
1638 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1639                             struct rte_eth_udp_tunnel *tunnel_udp)
1640 {
1641         return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1642 }
1643
1644 /*
1645  * The function is used by the secondary process as well. It must not
1646  * use any process-local pointers from the adapter data.
1647  */
1648 static int
1649 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1650                           struct rte_eth_rss_conf *rss_conf)
1651 {
1652         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1653         struct sfc_rss *rss = &sas->rss;
1654
1655         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1656                 return -ENOTSUP;
1657
1658         /*
1659          * Mapping of hash configuration between RTE and EFX is not one-to-one,
1660          * hence, conversion is done here to derive a correct set of ETH_RSS
1661          * flags which corresponds to the active EFX configuration stored
1662          * locally in 'sfc_adapter' and kept up-to-date
1663          */
1664         rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1665         rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1666         if (rss_conf->rss_key != NULL)
1667                 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1668
1669         return 0;
1670 }
1671
1672 static int
1673 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1674                         struct rte_eth_rss_conf *rss_conf)
1675 {
1676         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1677         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1678         unsigned int efx_hash_types;
1679         uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1680         unsigned int n_contexts;
1681         unsigned int mode_i = 0;
1682         unsigned int key_i = 0;
1683         unsigned int i = 0;
1684         int rc = 0;
1685
1686         n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1687
1688         if (sfc_sa2shared(sa)->isolated)
1689                 return -ENOTSUP;
1690
1691         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1692                 sfc_err(sa, "RSS is not available");
1693                 return -ENOTSUP;
1694         }
1695
1696         if (rss->channels == 0) {
1697                 sfc_err(sa, "RSS is not configured");
1698                 return -EINVAL;
1699         }
1700
1701         if ((rss_conf->rss_key != NULL) &&
1702             (rss_conf->rss_key_len != sizeof(rss->key))) {
1703                 sfc_err(sa, "RSS key size is wrong (should be %zu)",
1704                         sizeof(rss->key));
1705                 return -EINVAL;
1706         }
1707
1708         sfc_adapter_lock(sa);
1709
1710         rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1711         if (rc != 0)
1712                 goto fail_rx_hf_rte_to_efx;
1713
1714         for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1715                 rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1716                                            rss->hash_alg, efx_hash_types,
1717                                            B_TRUE);
1718                 if (rc != 0)
1719                         goto fail_scale_mode_set;
1720         }
1721
1722         if (rss_conf->rss_key != NULL) {
1723                 if (sa->state == SFC_ADAPTER_STARTED) {
1724                         for (key_i = 0; key_i < n_contexts; key_i++) {
1725                                 rc = efx_rx_scale_key_set(sa->nic,
1726                                                           contexts[key_i],
1727                                                           rss_conf->rss_key,
1728                                                           sizeof(rss->key));
1729                                 if (rc != 0)
1730                                         goto fail_scale_key_set;
1731                         }
1732                 }
1733
1734                 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1735         }
1736
1737         rss->hash_types = efx_hash_types;
1738
1739         sfc_adapter_unlock(sa);
1740
1741         return 0;
1742
1743 fail_scale_key_set:
1744         for (i = 0; i < key_i; i++) {
1745                 if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1746                                          sizeof(rss->key)) != 0)
1747                         sfc_err(sa, "failed to restore RSS key");
1748         }
1749
1750 fail_scale_mode_set:
1751         for (i = 0; i < mode_i; i++) {
1752                 if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1753                                           EFX_RX_HASHALG_TOEPLITZ,
1754                                           rss->hash_types, B_TRUE) != 0)
1755                         sfc_err(sa, "failed to restore RSS mode");
1756         }
1757
1758 fail_rx_hf_rte_to_efx:
1759         sfc_adapter_unlock(sa);
1760         return -rc;
1761 }
1762
1763 /*
1764  * The function is used by the secondary process as well. It must not
1765  * use any process-local pointers from the adapter data.
1766  */
1767 static int
1768 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1769                        struct rte_eth_rss_reta_entry64 *reta_conf,
1770                        uint16_t reta_size)
1771 {
1772         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1773         struct sfc_rss *rss = &sas->rss;
1774         int entry;
1775
1776         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1777                 return -ENOTSUP;
1778
1779         if (rss->channels == 0)
1780                 return -EINVAL;
1781
1782         if (reta_size != EFX_RSS_TBL_SIZE)
1783                 return -EINVAL;
1784
1785         for (entry = 0; entry < reta_size; entry++) {
1786                 int grp = entry / RTE_RETA_GROUP_SIZE;
1787                 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1788
1789                 if ((reta_conf[grp].mask >> grp_idx) & 1)
1790                         reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1791         }
1792
1793         return 0;
1794 }
1795
1796 static int
1797 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1798                         struct rte_eth_rss_reta_entry64 *reta_conf,
1799                         uint16_t reta_size)
1800 {
1801         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1802         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1803         unsigned int *rss_tbl_new;
1804         uint16_t entry;
1805         int rc = 0;
1806
1807
1808         if (sfc_sa2shared(sa)->isolated)
1809                 return -ENOTSUP;
1810
1811         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1812                 sfc_err(sa, "RSS is not available");
1813                 return -ENOTSUP;
1814         }
1815
1816         if (rss->channels == 0) {
1817                 sfc_err(sa, "RSS is not configured");
1818                 return -EINVAL;
1819         }
1820
1821         if (reta_size != EFX_RSS_TBL_SIZE) {
1822                 sfc_err(sa, "RETA size is wrong (should be %u)",
1823                         EFX_RSS_TBL_SIZE);
1824                 return -EINVAL;
1825         }
1826
1827         rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1828         if (rss_tbl_new == NULL)
1829                 return -ENOMEM;
1830
1831         sfc_adapter_lock(sa);
1832
1833         rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1834
1835         for (entry = 0; entry < reta_size; entry++) {
1836                 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1837                 struct rte_eth_rss_reta_entry64 *grp;
1838
1839                 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1840
1841                 if (grp->mask & (1ull << grp_idx)) {
1842                         if (grp->reta[grp_idx] >= rss->channels) {
1843                                 rc = EINVAL;
1844                                 goto bad_reta_entry;
1845                         }
1846                         rss_tbl_new[entry] = grp->reta[grp_idx];
1847                 }
1848         }
1849
1850         if (sa->state == SFC_ADAPTER_STARTED) {
1851                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1852                                           rss_tbl_new, EFX_RSS_TBL_SIZE);
1853                 if (rc != 0)
1854                         goto fail_scale_tbl_set;
1855         }
1856
1857         rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1858
1859 fail_scale_tbl_set:
1860 bad_reta_entry:
1861         sfc_adapter_unlock(sa);
1862
1863         rte_free(rss_tbl_new);
1864
1865         SFC_ASSERT(rc >= 0);
1866         return -rc;
1867 }
1868
1869 static int
1870 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1871                      const struct rte_flow_ops **ops)
1872 {
1873         *ops = &sfc_flow_ops;
1874         return 0;
1875 }
1876
1877 static int
1878 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1879 {
1880         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1881
1882         /*
1883          * If Rx datapath does not provide callback to check mempool,
1884          * all pools are supported.
1885          */
1886         if (sap->dp_rx->pool_ops_supported == NULL)
1887                 return 1;
1888
1889         return sap->dp_rx->pool_ops_supported(pool);
1890 }
1891
1892 static int
1893 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1894 {
1895         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1896         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1897         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1898         struct sfc_rxq_info *rxq_info;
1899
1900         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1901
1902         return sap->dp_rx->intr_enable(rxq_info->dp);
1903 }
1904
1905 static int
1906 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1907 {
1908         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1909         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1910         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1911         struct sfc_rxq_info *rxq_info;
1912
1913         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1914
1915         return sap->dp_rx->intr_disable(rxq_info->dp);
1916 }
1917
1918 static const struct eth_dev_ops sfc_eth_dev_ops = {
1919         .dev_configure                  = sfc_dev_configure,
1920         .dev_start                      = sfc_dev_start,
1921         .dev_stop                       = sfc_dev_stop,
1922         .dev_set_link_up                = sfc_dev_set_link_up,
1923         .dev_set_link_down              = sfc_dev_set_link_down,
1924         .dev_close                      = sfc_dev_close,
1925         .promiscuous_enable             = sfc_dev_promisc_enable,
1926         .promiscuous_disable            = sfc_dev_promisc_disable,
1927         .allmulticast_enable            = sfc_dev_allmulti_enable,
1928         .allmulticast_disable           = sfc_dev_allmulti_disable,
1929         .link_update                    = sfc_dev_link_update,
1930         .stats_get                      = sfc_stats_get,
1931         .stats_reset                    = sfc_stats_reset,
1932         .xstats_get                     = sfc_xstats_get,
1933         .xstats_reset                   = sfc_stats_reset,
1934         .xstats_get_names               = sfc_xstats_get_names,
1935         .dev_infos_get                  = sfc_dev_infos_get,
1936         .dev_supported_ptypes_get       = sfc_dev_supported_ptypes_get,
1937         .mtu_set                        = sfc_dev_set_mtu,
1938         .rx_queue_start                 = sfc_rx_queue_start,
1939         .rx_queue_stop                  = sfc_rx_queue_stop,
1940         .tx_queue_start                 = sfc_tx_queue_start,
1941         .tx_queue_stop                  = sfc_tx_queue_stop,
1942         .rx_queue_setup                 = sfc_rx_queue_setup,
1943         .rx_queue_release               = sfc_rx_queue_release,
1944         .rx_queue_intr_enable           = sfc_rx_queue_intr_enable,
1945         .rx_queue_intr_disable          = sfc_rx_queue_intr_disable,
1946         .tx_queue_setup                 = sfc_tx_queue_setup,
1947         .tx_queue_release               = sfc_tx_queue_release,
1948         .flow_ctrl_get                  = sfc_flow_ctrl_get,
1949         .flow_ctrl_set                  = sfc_flow_ctrl_set,
1950         .mac_addr_set                   = sfc_mac_addr_set,
1951         .udp_tunnel_port_add            = sfc_dev_udp_tunnel_port_add,
1952         .udp_tunnel_port_del            = sfc_dev_udp_tunnel_port_del,
1953         .reta_update                    = sfc_dev_rss_reta_update,
1954         .reta_query                     = sfc_dev_rss_reta_query,
1955         .rss_hash_update                = sfc_dev_rss_hash_update,
1956         .rss_hash_conf_get              = sfc_dev_rss_hash_conf_get,
1957         .flow_ops_get                   = sfc_dev_flow_ops_get,
1958         .set_mc_addr_list               = sfc_set_mc_addr_list,
1959         .rxq_info_get                   = sfc_rx_queue_info_get,
1960         .txq_info_get                   = sfc_tx_queue_info_get,
1961         .fw_version_get                 = sfc_fw_version_get,
1962         .xstats_get_by_id               = sfc_xstats_get_by_id,
1963         .xstats_get_names_by_id         = sfc_xstats_get_names_by_id,
1964         .pool_ops_supported             = sfc_pool_ops_supported,
1965 };
1966
1967 /**
1968  * Duplicate a string in potentially shared memory required for
1969  * multi-process support.
1970  *
1971  * strdup() allocates from process-local heap/memory.
1972  */
1973 static char *
1974 sfc_strdup(const char *str)
1975 {
1976         size_t size;
1977         char *copy;
1978
1979         if (str == NULL)
1980                 return NULL;
1981
1982         size = strlen(str) + 1;
1983         copy = rte_malloc(__func__, size, 0);
1984         if (copy != NULL)
1985                 rte_memcpy(copy, str, size);
1986
1987         return copy;
1988 }
1989
1990 static int
1991 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1992 {
1993         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1994         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1995         const struct sfc_dp_rx *dp_rx;
1996         const struct sfc_dp_tx *dp_tx;
1997         const efx_nic_cfg_t *encp;
1998         unsigned int avail_caps = 0;
1999         const char *rx_name = NULL;
2000         const char *tx_name = NULL;
2001         int rc;
2002
2003         switch (sa->family) {
2004         case EFX_FAMILY_HUNTINGTON:
2005         case EFX_FAMILY_MEDFORD:
2006         case EFX_FAMILY_MEDFORD2:
2007                 avail_caps |= SFC_DP_HW_FW_CAP_EF10;
2008                 avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
2009                 avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
2010                 break;
2011         case EFX_FAMILY_RIVERHEAD:
2012                 avail_caps |= SFC_DP_HW_FW_CAP_EF100;
2013                 break;
2014         default:
2015                 break;
2016         }
2017
2018         encp = efx_nic_cfg_get(sa->nic);
2019         if (encp->enc_rx_es_super_buffer_supported)
2020                 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
2021
2022         rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
2023                                 sfc_kvarg_string_handler, &rx_name);
2024         if (rc != 0)
2025                 goto fail_kvarg_rx_datapath;
2026
2027         if (rx_name != NULL) {
2028                 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
2029                 if (dp_rx == NULL) {
2030                         sfc_err(sa, "Rx datapath %s not found", rx_name);
2031                         rc = ENOENT;
2032                         goto fail_dp_rx;
2033                 }
2034                 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
2035                         sfc_err(sa,
2036                                 "Insufficient Hw/FW capabilities to use Rx datapath %s",
2037                                 rx_name);
2038                         rc = EINVAL;
2039                         goto fail_dp_rx_caps;
2040                 }
2041         } else {
2042                 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
2043                 if (dp_rx == NULL) {
2044                         sfc_err(sa, "Rx datapath by caps %#x not found",
2045                                 avail_caps);
2046                         rc = ENOENT;
2047                         goto fail_dp_rx;
2048                 }
2049         }
2050
2051         sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
2052         if (sas->dp_rx_name == NULL) {
2053                 rc = ENOMEM;
2054                 goto fail_dp_rx_name;
2055         }
2056
2057         sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
2058
2059         rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
2060                                 sfc_kvarg_string_handler, &tx_name);
2061         if (rc != 0)
2062                 goto fail_kvarg_tx_datapath;
2063
2064         if (tx_name != NULL) {
2065                 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
2066                 if (dp_tx == NULL) {
2067                         sfc_err(sa, "Tx datapath %s not found", tx_name);
2068                         rc = ENOENT;
2069                         goto fail_dp_tx;
2070                 }
2071                 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
2072                         sfc_err(sa,
2073                                 "Insufficient Hw/FW capabilities to use Tx datapath %s",
2074                                 tx_name);
2075                         rc = EINVAL;
2076                         goto fail_dp_tx_caps;
2077                 }
2078         } else {
2079                 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
2080                 if (dp_tx == NULL) {
2081                         sfc_err(sa, "Tx datapath by caps %#x not found",
2082                                 avail_caps);
2083                         rc = ENOENT;
2084                         goto fail_dp_tx;
2085                 }
2086         }
2087
2088         sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2089         if (sas->dp_tx_name == NULL) {
2090                 rc = ENOMEM;
2091                 goto fail_dp_tx_name;
2092         }
2093
2094         sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2095
2096         sa->priv.dp_rx = dp_rx;
2097         sa->priv.dp_tx = dp_tx;
2098
2099         dev->rx_pkt_burst = dp_rx->pkt_burst;
2100         dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2101         dev->tx_pkt_burst = dp_tx->pkt_burst;
2102
2103         dev->rx_queue_count = sfc_rx_queue_count;
2104         dev->rx_descriptor_status = sfc_rx_descriptor_status;
2105         dev->tx_descriptor_status = sfc_tx_descriptor_status;
2106         dev->dev_ops = &sfc_eth_dev_ops;
2107
2108         return 0;
2109
2110 fail_dp_tx_name:
2111 fail_dp_tx_caps:
2112 fail_dp_tx:
2113 fail_kvarg_tx_datapath:
2114         rte_free(sas->dp_rx_name);
2115         sas->dp_rx_name = NULL;
2116
2117 fail_dp_rx_name:
2118 fail_dp_rx_caps:
2119 fail_dp_rx:
2120 fail_kvarg_rx_datapath:
2121         return rc;
2122 }
2123
2124 static void
2125 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2126 {
2127         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2128         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2129
2130         dev->dev_ops = NULL;
2131         dev->tx_pkt_prepare = NULL;
2132         dev->rx_pkt_burst = NULL;
2133         dev->tx_pkt_burst = NULL;
2134
2135         rte_free(sas->dp_tx_name);
2136         sas->dp_tx_name = NULL;
2137         sa->priv.dp_tx = NULL;
2138
2139         rte_free(sas->dp_rx_name);
2140         sas->dp_rx_name = NULL;
2141         sa->priv.dp_rx = NULL;
2142 }
2143
2144 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2145         .dev_supported_ptypes_get       = sfc_dev_supported_ptypes_get,
2146         .reta_query                     = sfc_dev_rss_reta_query,
2147         .rss_hash_conf_get              = sfc_dev_rss_hash_conf_get,
2148         .rxq_info_get                   = sfc_rx_queue_info_get,
2149         .txq_info_get                   = sfc_tx_queue_info_get,
2150 };
2151
2152 static int
2153 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2154 {
2155         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2156         struct sfc_adapter_priv *sap;
2157         const struct sfc_dp_rx *dp_rx;
2158         const struct sfc_dp_tx *dp_tx;
2159         int rc;
2160
2161         /*
2162          * Allocate process private data from heap, since it should not
2163          * be located in shared memory allocated using rte_malloc() API.
2164          */
2165         sap = calloc(1, sizeof(*sap));
2166         if (sap == NULL) {
2167                 rc = ENOMEM;
2168                 goto fail_alloc_priv;
2169         }
2170
2171         sap->logtype_main = logtype_main;
2172
2173         dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2174         if (dp_rx == NULL) {
2175                 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2176                         "cannot find %s Rx datapath", sas->dp_rx_name);
2177                 rc = ENOENT;
2178                 goto fail_dp_rx;
2179         }
2180         if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2181                 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2182                         "%s Rx datapath does not support multi-process",
2183                         sas->dp_rx_name);
2184                 rc = EINVAL;
2185                 goto fail_dp_rx_multi_process;
2186         }
2187
2188         dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2189         if (dp_tx == NULL) {
2190                 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2191                         "cannot find %s Tx datapath", sas->dp_tx_name);
2192                 rc = ENOENT;
2193                 goto fail_dp_tx;
2194         }
2195         if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2196                 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2197                         "%s Tx datapath does not support multi-process",
2198                         sas->dp_tx_name);
2199                 rc = EINVAL;
2200                 goto fail_dp_tx_multi_process;
2201         }
2202
2203         sap->dp_rx = dp_rx;
2204         sap->dp_tx = dp_tx;
2205
2206         dev->process_private = sap;
2207         dev->rx_pkt_burst = dp_rx->pkt_burst;
2208         dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2209         dev->tx_pkt_burst = dp_tx->pkt_burst;
2210         dev->rx_queue_count = sfc_rx_queue_count;
2211         dev->rx_descriptor_status = sfc_rx_descriptor_status;
2212         dev->tx_descriptor_status = sfc_tx_descriptor_status;
2213         dev->dev_ops = &sfc_eth_dev_secondary_ops;
2214
2215         return 0;
2216
2217 fail_dp_tx_multi_process:
2218 fail_dp_tx:
2219 fail_dp_rx_multi_process:
2220 fail_dp_rx:
2221         free(sap);
2222
2223 fail_alloc_priv:
2224         return rc;
2225 }
2226
2227 static void
2228 sfc_register_dp(void)
2229 {
2230         /* Register once */
2231         if (TAILQ_EMPTY(&sfc_dp_head)) {
2232                 /* Prefer EF10 datapath */
2233                 sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2234                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2235                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2236                 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2237
2238                 sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2239                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2240                 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2241                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2242         }
2243 }
2244
2245 static int
2246 sfc_eth_dev_init(struct rte_eth_dev *dev)
2247 {
2248         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2249         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2250         uint32_t logtype_main;
2251         struct sfc_adapter *sa;
2252         int rc;
2253         const efx_nic_cfg_t *encp;
2254         const struct rte_ether_addr *from;
2255         int ret;
2256
2257         if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
2258                         SFC_EFX_DEV_CLASS_NET) {
2259                 SFC_GENERIC_LOG(DEBUG,
2260                         "Incompatible device class: skip probing, should be probed by other sfc driver.");
2261                 return 1;
2262         }
2263
2264         sfc_register_dp();
2265
2266         logtype_main = sfc_register_logtype(&pci_dev->addr,
2267                                             SFC_LOGTYPE_MAIN_STR,
2268                                             RTE_LOG_NOTICE);
2269
2270         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2271                 return -sfc_eth_dev_secondary_init(dev, logtype_main);
2272
2273         /* Required for logging */
2274         ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2275                         "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2276                         pci_dev->addr.domain, pci_dev->addr.bus,
2277                         pci_dev->addr.devid, pci_dev->addr.function,
2278                         dev->data->port_id);
2279         if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2280                 SFC_GENERIC_LOG(ERR,
2281                         "reserved log prefix is too short for " PCI_PRI_FMT,
2282                         pci_dev->addr.domain, pci_dev->addr.bus,
2283                         pci_dev->addr.devid, pci_dev->addr.function);
2284                 return -EINVAL;
2285         }
2286         sas->pci_addr = pci_dev->addr;
2287         sas->port_id = dev->data->port_id;
2288
2289         /*
2290          * Allocate process private data from heap, since it should not
2291          * be located in shared memory allocated using rte_malloc() API.
2292          */
2293         sa = calloc(1, sizeof(*sa));
2294         if (sa == NULL) {
2295                 rc = ENOMEM;
2296                 goto fail_alloc_sa;
2297         }
2298
2299         dev->process_private = sa;
2300
2301         /* Required for logging */
2302         sa->priv.shared = sas;
2303         sa->priv.logtype_main = logtype_main;
2304
2305         sa->eth_dev = dev;
2306
2307         /* Copy PCI device info to the dev->data */
2308         rte_eth_copy_pci_info(dev, pci_dev);
2309         dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2310         dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2311
2312         rc = sfc_kvargs_parse(sa);
2313         if (rc != 0)
2314                 goto fail_kvargs_parse;
2315
2316         sfc_log_init(sa, "entry");
2317
2318         dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2319         if (dev->data->mac_addrs == NULL) {
2320                 rc = ENOMEM;
2321                 goto fail_mac_addrs;
2322         }
2323
2324         sfc_adapter_lock_init(sa);
2325         sfc_adapter_lock(sa);
2326
2327         sfc_log_init(sa, "probing");
2328         rc = sfc_probe(sa);
2329         if (rc != 0)
2330                 goto fail_probe;
2331
2332         sfc_log_init(sa, "set device ops");
2333         rc = sfc_eth_dev_set_ops(dev);
2334         if (rc != 0)
2335                 goto fail_set_ops;
2336
2337         sfc_log_init(sa, "attaching");
2338         rc = sfc_attach(sa);
2339         if (rc != 0)
2340                 goto fail_attach;
2341
2342         encp = efx_nic_cfg_get(sa->nic);
2343
2344         /*
2345          * The arguments are really reverse order in comparison to
2346          * Linux kernel. Copy from NIC config to Ethernet device data.
2347          */
2348         from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2349         rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2350
2351         sfc_adapter_unlock(sa);
2352
2353         sfc_log_init(sa, "done");
2354         return 0;
2355
2356 fail_attach:
2357         sfc_eth_dev_clear_ops(dev);
2358
2359 fail_set_ops:
2360         sfc_unprobe(sa);
2361
2362 fail_probe:
2363         sfc_adapter_unlock(sa);
2364         sfc_adapter_lock_fini(sa);
2365         rte_free(dev->data->mac_addrs);
2366         dev->data->mac_addrs = NULL;
2367
2368 fail_mac_addrs:
2369         sfc_kvargs_cleanup(sa);
2370
2371 fail_kvargs_parse:
2372         sfc_log_init(sa, "failed %d", rc);
2373         dev->process_private = NULL;
2374         free(sa);
2375
2376 fail_alloc_sa:
2377         SFC_ASSERT(rc > 0);
2378         return -rc;
2379 }
2380
2381 static int
2382 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2383 {
2384         sfc_dev_close(dev);
2385
2386         return 0;
2387 }
2388
2389 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2390         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2391         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2392         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2393         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2394         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2395         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2396         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2397         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2398         { RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2399         { .vendor_id = 0 /* sentinel */ }
2400 };
2401
2402 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2403         struct rte_pci_device *pci_dev)
2404 {
2405         return rte_eth_dev_pci_generic_probe(pci_dev,
2406                 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2407 }
2408
2409 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2410 {
2411         return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2412 }
2413
2414 static struct rte_pci_driver sfc_efx_pmd = {
2415         .id_table = pci_id_sfc_efx_map,
2416         .drv_flags =
2417                 RTE_PCI_DRV_INTR_LSC |
2418                 RTE_PCI_DRV_NEED_MAPPING,
2419         .probe = sfc_eth_dev_pci_probe,
2420         .remove = sfc_eth_dev_pci_remove,
2421 };
2422
2423 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2424 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2425 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2426 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2427         SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2428         SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2429         SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2430         SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2431         SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2432         SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2433
2434 RTE_INIT(sfc_driver_register_logtype)
2435 {
2436         int ret;
2437
2438         ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2439                                                    RTE_LOG_NOTICE);
2440         sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2441 }