1 /* SPDX-License-Identifier: BSD-3-Clause
3 * Copyright(c) 2019-2020 Xilinx, Inc.
4 * Copyright(c) 2016-2019 Solarflare Communications Inc.
6 * This software was jointly developed between OKTET Labs (under contract
7 * for Solarflare) and Solarflare Communications, Inc.
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
22 #include "sfc_debug.h"
24 #include "sfc_kvargs.h"
30 #include "sfc_dp_rx.h"
32 uint32_t sfc_logtype_driver;
34 static struct sfc_dp_list sfc_dp_head =
35 TAILQ_HEAD_INITIALIZER(sfc_dp_head);
38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
45 efx_nic_fw_info_t enfi;
50 * Return value of the callback is likely supposed to be
51 * equal to or greater than 0, nevertheless, if an error
52 * occurs, it will be desirable to pass it to the caller
54 if ((fw_version == NULL) || (fw_size == 0))
57 rc = efx_nic_get_fw_version(sa->nic, &enfi);
61 ret = snprintf(fw_version, fw_size,
62 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
63 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
64 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
68 if (enfi.enfi_dpcpu_fw_ids_valid) {
69 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
72 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
73 fw_size - dpcpu_fw_ids_offset,
74 " rx%" PRIx16 " tx%" PRIx16,
75 enfi.enfi_rx_dpcpu_fw_id,
76 enfi.enfi_tx_dpcpu_fw_id);
83 if (fw_size < (size_t)(++ret))
90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
92 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
93 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
94 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
95 struct sfc_rss *rss = &sas->rss;
96 uint64_t txq_offloads_def = 0;
98 sfc_log_init(sa, "entry");
100 dev_info->min_mtu = RTE_ETHER_MIN_MTU;
101 dev_info->max_mtu = EFX_MAC_SDU_MAX;
103 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
105 /* Autonegotiation may be disabled */
106 dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
107 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
108 dev_info->speed_capa |= ETH_LINK_SPEED_1G;
109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
110 dev_info->speed_capa |= ETH_LINK_SPEED_10G;
111 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
112 dev_info->speed_capa |= ETH_LINK_SPEED_25G;
113 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
114 dev_info->speed_capa |= ETH_LINK_SPEED_40G;
115 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
116 dev_info->speed_capa |= ETH_LINK_SPEED_50G;
117 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
118 dev_info->speed_capa |= ETH_LINK_SPEED_100G;
120 dev_info->max_rx_queues = sa->rxq_max;
121 dev_info->max_tx_queues = sa->txq_max;
123 /* By default packets are dropped if no descriptors are available */
124 dev_info->default_rxconf.rx_drop_en = 1;
126 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
129 * rx_offload_capa includes both device and queue offloads since
130 * the latter may be requested on a per device basis which makes
131 * sense when some offloads are needed to be set on all queues.
133 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
134 dev_info->rx_queue_offload_capa;
136 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
139 * tx_offload_capa includes both device and queue offloads since
140 * the latter may be requested on a per device basis which makes
141 * sense when some offloads are needed to be set on all queues.
143 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
144 dev_info->tx_queue_offload_capa;
146 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
147 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
149 dev_info->default_txconf.offloads |= txq_offloads_def;
151 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
155 for (i = 0; i < rss->hf_map_nb_entries; ++i)
156 rte_hf |= rss->hf_map[i].rte;
158 dev_info->reta_size = EFX_RSS_TBL_SIZE;
159 dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
160 dev_info->flow_type_rss_offloads = rte_hf;
163 /* Initialize to hardware limits */
164 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
165 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
166 /* The RXQ hardware requires that the descriptor count is a power
167 * of 2, but rx_desc_lim cannot properly describe that constraint.
169 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
171 /* Initialize to hardware limits */
172 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
173 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
175 * The TXQ hardware requires that the descriptor count is a power
176 * of 2, but tx_desc_lim cannot properly describe that constraint
178 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
180 if (sap->dp_rx->get_dev_info != NULL)
181 sap->dp_rx->get_dev_info(dev_info);
182 if (sap->dp_tx->get_dev_info != NULL)
183 sap->dp_tx->get_dev_info(dev_info);
185 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
186 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
191 static const uint32_t *
192 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
194 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
196 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
200 sfc_dev_configure(struct rte_eth_dev *dev)
202 struct rte_eth_dev_data *dev_data = dev->data;
203 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
206 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
207 dev_data->nb_rx_queues, dev_data->nb_tx_queues);
209 sfc_adapter_lock(sa);
211 case SFC_ADAPTER_CONFIGURED:
213 case SFC_ADAPTER_INITIALIZED:
214 rc = sfc_configure(sa);
217 sfc_err(sa, "unexpected adapter state %u to configure",
222 sfc_adapter_unlock(sa);
224 sfc_log_init(sa, "done %d", rc);
230 sfc_dev_start(struct rte_eth_dev *dev)
232 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
235 sfc_log_init(sa, "entry");
237 sfc_adapter_lock(sa);
239 sfc_adapter_unlock(sa);
241 sfc_log_init(sa, "done %d", rc);
247 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
249 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
250 struct rte_eth_link current_link;
253 sfc_log_init(sa, "entry");
255 if (sa->state != SFC_ADAPTER_STARTED) {
256 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link);
257 } else if (wait_to_complete) {
258 efx_link_mode_t link_mode;
260 if (efx_port_poll(sa->nic, &link_mode) != 0)
261 link_mode = EFX_LINK_UNKNOWN;
262 sfc_port_link_mode_to_info(link_mode, ¤t_link);
265 sfc_ev_mgmt_qpoll(sa);
266 rte_eth_linkstatus_get(dev, ¤t_link);
269 ret = rte_eth_linkstatus_set(dev, ¤t_link);
271 sfc_notice(sa, "Link status is %s",
272 current_link.link_status ? "UP" : "DOWN");
278 sfc_dev_stop(struct rte_eth_dev *dev)
280 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
282 sfc_log_init(sa, "entry");
284 sfc_adapter_lock(sa);
286 sfc_adapter_unlock(sa);
288 sfc_log_init(sa, "done");
292 sfc_dev_set_link_up(struct rte_eth_dev *dev)
294 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
297 sfc_log_init(sa, "entry");
299 sfc_adapter_lock(sa);
301 sfc_adapter_unlock(sa);
308 sfc_dev_set_link_down(struct rte_eth_dev *dev)
310 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
312 sfc_log_init(sa, "entry");
314 sfc_adapter_lock(sa);
316 sfc_adapter_unlock(sa);
322 sfc_dev_close(struct rte_eth_dev *dev)
324 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
326 sfc_log_init(sa, "entry");
328 sfc_adapter_lock(sa);
330 case SFC_ADAPTER_STARTED:
332 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
334 case SFC_ADAPTER_CONFIGURED:
336 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
338 case SFC_ADAPTER_INITIALIZED:
341 sfc_err(sa, "unexpected adapter state %u on close", sa->state);
346 * Cleanup all resources in accordance with RTE_ETH_DEV_CLOSE_REMOVE.
347 * Rollback primary process sfc_eth_dev_init() below.
350 sfc_eth_dev_clear_ops(dev);
355 sfc_kvargs_cleanup(sa);
357 sfc_adapter_unlock(sa);
358 sfc_adapter_lock_fini(sa);
360 sfc_log_init(sa, "done");
362 /* Required for logging, so cleanup last */
365 dev->process_private = NULL;
372 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
375 struct sfc_port *port;
377 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
378 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
379 const char *desc = (allmulti) ? "all-multi" : "promiscuous";
382 sfc_adapter_lock(sa);
385 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
387 if (*toggle != enabled) {
390 if (sfc_sa2shared(sa)->isolated) {
391 sfc_warn(sa, "isolated mode is active on the port");
392 sfc_warn(sa, "the change is to be applied on the next "
393 "start provided that isolated mode is "
394 "disabled prior the next start");
395 } else if ((sa->state == SFC_ADAPTER_STARTED) &&
396 ((rc = sfc_set_rx_mode(sa)) != 0)) {
397 *toggle = !(enabled);
398 sfc_warn(sa, "Failed to %s %s mode, rc = %d",
399 ((enabled) ? "enable" : "disable"), desc, rc);
402 * For promiscuous and all-multicast filters a
403 * permission failure should be reported as an
404 * unsupported filter.
411 sfc_adapter_unlock(sa);
416 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
418 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
425 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
427 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
434 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
436 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
443 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
445 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
452 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
453 uint16_t nb_rx_desc, unsigned int socket_id,
454 const struct rte_eth_rxconf *rx_conf,
455 struct rte_mempool *mb_pool)
457 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
458 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
461 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
462 rx_queue_id, nb_rx_desc, socket_id);
464 sfc_adapter_lock(sa);
466 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
471 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp;
473 sfc_adapter_unlock(sa);
478 sfc_adapter_unlock(sa);
484 sfc_rx_queue_release(void *queue)
486 struct sfc_dp_rxq *dp_rxq = queue;
488 struct sfc_adapter *sa;
489 unsigned int sw_index;
494 rxq = sfc_rxq_by_dp_rxq(dp_rxq);
496 sfc_adapter_lock(sa);
498 sw_index = dp_rxq->dpq.queue_id;
500 sfc_log_init(sa, "RxQ=%u", sw_index);
502 sfc_rx_qfini(sa, sw_index);
504 sfc_adapter_unlock(sa);
508 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
509 uint16_t nb_tx_desc, unsigned int socket_id,
510 const struct rte_eth_txconf *tx_conf)
512 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
513 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
516 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
517 tx_queue_id, nb_tx_desc, socket_id);
519 sfc_adapter_lock(sa);
521 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
525 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp;
527 sfc_adapter_unlock(sa);
531 sfc_adapter_unlock(sa);
537 sfc_tx_queue_release(void *queue)
539 struct sfc_dp_txq *dp_txq = queue;
541 unsigned int sw_index;
542 struct sfc_adapter *sa;
547 txq = sfc_txq_by_dp_txq(dp_txq);
548 sw_index = dp_txq->dpq.queue_id;
550 SFC_ASSERT(txq->evq != NULL);
553 sfc_log_init(sa, "TxQ = %u", sw_index);
555 sfc_adapter_lock(sa);
557 sfc_tx_qfini(sa, sw_index);
559 sfc_adapter_unlock(sa);
563 * Some statistics are computed as A - B where A and B each increase
564 * monotonically with some hardware counter(s) and the counters are read
567 * If packet X is counted in A, but not counted in B yet, computed value is
570 * If packet X is not counted in A at the moment of reading the counter,
571 * but counted in B at the moment of reading the counter, computed value
574 * However, counter which grows backward is worse evil than slightly wrong
575 * value. So, let's try to guarantee that it never happens except may be
576 * the case when the MAC stats are zeroed as a result of a NIC reset.
579 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
581 if ((int64_t)(newval - *stat) > 0 || newval == 0)
586 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
588 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
589 struct sfc_port *port = &sa->port;
593 rte_spinlock_lock(&port->mac_stats_lock);
595 ret = sfc_port_update_mac_stats(sa);
599 mac_stats = port->mac_stats_buf;
601 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
602 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
604 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
605 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
606 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
608 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
609 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
610 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
612 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
613 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
614 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
616 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
617 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
618 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
619 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
620 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
622 stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
623 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
624 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
626 * Take into account stats which are whenever supported
627 * on EF10. If some stat is not supported by current
628 * firmware variant or HW revision, it is guaranteed
629 * to be zero in mac_stats.
632 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
633 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
634 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
635 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
636 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
637 mac_stats[EFX_MAC_PM_TRUNC_QBB] +
638 mac_stats[EFX_MAC_PM_DISCARD_QBB] +
639 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
640 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
641 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
643 mac_stats[EFX_MAC_RX_FCS_ERRORS] +
644 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
645 mac_stats[EFX_MAC_RX_JABBER_PKTS];
646 /* no oerrors counters supported on EF10 */
648 /* Exclude missed, errors and pauses from Rx packets */
649 sfc_update_diff_stat(&port->ipackets,
650 mac_stats[EFX_MAC_RX_PKTS] -
651 mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
652 stats->imissed - stats->ierrors);
653 stats->ipackets = port->ipackets;
657 rte_spinlock_unlock(&port->mac_stats_lock);
658 SFC_ASSERT(ret >= 0);
663 sfc_stats_reset(struct rte_eth_dev *dev)
665 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
666 struct sfc_port *port = &sa->port;
669 if (sa->state != SFC_ADAPTER_STARTED) {
671 * The operation cannot be done if port is not started; it
672 * will be scheduled to be done during the next port start
674 port->mac_stats_reset_pending = B_TRUE;
678 rc = sfc_port_reset_mac_stats(sa);
680 sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
687 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
688 unsigned int xstats_count)
690 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
691 struct sfc_port *port = &sa->port;
697 rte_spinlock_lock(&port->mac_stats_lock);
699 rc = sfc_port_update_mac_stats(sa);
706 mac_stats = port->mac_stats_buf;
708 for (i = 0; i < EFX_MAC_NSTATS; ++i) {
709 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
710 if (xstats != NULL && nstats < (int)xstats_count) {
711 xstats[nstats].id = nstats;
712 xstats[nstats].value = mac_stats[i];
719 rte_spinlock_unlock(&port->mac_stats_lock);
725 sfc_xstats_get_names(struct rte_eth_dev *dev,
726 struct rte_eth_xstat_name *xstats_names,
727 unsigned int xstats_count)
729 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
730 struct sfc_port *port = &sa->port;
732 unsigned int nstats = 0;
734 for (i = 0; i < EFX_MAC_NSTATS; ++i) {
735 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
736 if (xstats_names != NULL && nstats < xstats_count)
737 strlcpy(xstats_names[nstats].name,
738 efx_mac_stat_name(sa->nic, i),
739 sizeof(xstats_names[0].name));
748 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
749 uint64_t *values, unsigned int n)
751 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
752 struct sfc_port *port = &sa->port;
754 unsigned int nb_supported = 0;
755 unsigned int nb_written = 0;
760 if (unlikely(values == NULL) ||
761 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
762 return port->mac_stats_nb_supported;
764 rte_spinlock_lock(&port->mac_stats_lock);
766 rc = sfc_port_update_mac_stats(sa);
773 mac_stats = port->mac_stats_buf;
775 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
776 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
779 if ((ids == NULL) || (ids[nb_written] == nb_supported))
780 values[nb_written++] = mac_stats[i];
788 rte_spinlock_unlock(&port->mac_stats_lock);
794 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
795 struct rte_eth_xstat_name *xstats_names,
796 const uint64_t *ids, unsigned int size)
798 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
799 struct sfc_port *port = &sa->port;
800 unsigned int nb_supported = 0;
801 unsigned int nb_written = 0;
804 if (unlikely(xstats_names == NULL) ||
805 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
806 return port->mac_stats_nb_supported;
808 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
809 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
812 if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
813 char *name = xstats_names[nb_written++].name;
815 strlcpy(name, efx_mac_stat_name(sa->nic, i),
816 sizeof(xstats_names[0].name));
826 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
828 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
829 unsigned int wanted_fc, link_fc;
831 memset(fc_conf, 0, sizeof(*fc_conf));
833 sfc_adapter_lock(sa);
835 if (sa->state == SFC_ADAPTER_STARTED)
836 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
838 link_fc = sa->port.flow_ctrl;
842 fc_conf->mode = RTE_FC_NONE;
844 case EFX_FCNTL_RESPOND:
845 fc_conf->mode = RTE_FC_RX_PAUSE;
847 case EFX_FCNTL_GENERATE:
848 fc_conf->mode = RTE_FC_TX_PAUSE;
850 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
851 fc_conf->mode = RTE_FC_FULL;
854 sfc_err(sa, "%s: unexpected flow control value %#x",
858 fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
860 sfc_adapter_unlock(sa);
866 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
868 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
869 struct sfc_port *port = &sa->port;
873 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
874 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
875 fc_conf->mac_ctrl_frame_fwd != 0) {
876 sfc_err(sa, "unsupported flow control settings specified");
881 switch (fc_conf->mode) {
885 case RTE_FC_RX_PAUSE:
886 fcntl = EFX_FCNTL_RESPOND;
888 case RTE_FC_TX_PAUSE:
889 fcntl = EFX_FCNTL_GENERATE;
892 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
899 sfc_adapter_lock(sa);
901 if (sa->state == SFC_ADAPTER_STARTED) {
902 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
904 goto fail_mac_fcntl_set;
907 port->flow_ctrl = fcntl;
908 port->flow_ctrl_autoneg = fc_conf->autoneg;
910 sfc_adapter_unlock(sa);
915 sfc_adapter_unlock(sa);
922 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
924 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
925 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
926 boolean_t scatter_enabled;
930 for (i = 0; i < sas->rxq_count; i++) {
931 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
934 scatter_enabled = (sas->rxq_info[i].type_flags &
935 EFX_RXQ_FLAG_SCATTER);
937 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
938 encp->enc_rx_prefix_size,
939 scatter_enabled, &error)) {
940 sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
950 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
952 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
953 size_t pdu = EFX_MAC_PDU(mtu);
957 sfc_log_init(sa, "mtu=%u", mtu);
960 if (pdu < EFX_MAC_PDU_MIN) {
961 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
962 (unsigned int)mtu, (unsigned int)pdu,
966 if (pdu > EFX_MAC_PDU_MAX) {
967 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
968 (unsigned int)mtu, (unsigned int)pdu,
969 (unsigned int)EFX_MAC_PDU_MAX);
973 sfc_adapter_lock(sa);
975 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
977 goto fail_check_scatter;
979 if (pdu != sa->port.pdu) {
980 if (sa->state == SFC_ADAPTER_STARTED) {
983 old_pdu = sa->port.pdu;
994 * The driver does not use it, but other PMDs update jumbo frame
995 * flag and max_rx_pkt_len when MTU is set.
997 if (mtu > RTE_ETHER_MAX_LEN) {
998 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
999 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1002 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1004 sfc_adapter_unlock(sa);
1006 sfc_log_init(sa, "done");
1010 sa->port.pdu = old_pdu;
1011 if (sfc_start(sa) != 0)
1012 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1013 "PDU max size - port is stopped",
1014 (unsigned int)pdu, (unsigned int)old_pdu);
1017 sfc_adapter_unlock(sa);
1020 sfc_log_init(sa, "failed %d", rc);
1025 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1027 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1028 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1029 struct sfc_port *port = &sa->port;
1030 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1033 sfc_adapter_lock(sa);
1035 if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1039 * Copy the address to the device private data so that
1040 * it could be recalled in the case of adapter restart.
1042 rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1045 * Neither of the two following checks can return
1046 * an error. The new MAC address is preserved in
1047 * the device private data and can be activated
1048 * on the next port start if the user prevents
1049 * isolated mode from being enabled.
1051 if (sfc_sa2shared(sa)->isolated) {
1052 sfc_warn(sa, "isolated mode is active on the port");
1053 sfc_warn(sa, "will not set MAC address");
1057 if (sa->state != SFC_ADAPTER_STARTED) {
1058 sfc_notice(sa, "the port is not started");
1059 sfc_notice(sa, "the new MAC address will be set on port start");
1064 if (encp->enc_allow_set_mac_with_installed_filters) {
1065 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1067 sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1072 * Changing the MAC address by means of MCDI request
1073 * has no effect on received traffic, therefore
1074 * we also need to update unicast filters
1076 rc = sfc_set_rx_mode_unchecked(sa);
1078 sfc_err(sa, "cannot set filter (rc = %u)", rc);
1079 /* Rollback the old address */
1080 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1081 (void)sfc_set_rx_mode_unchecked(sa);
1084 sfc_warn(sa, "cannot set MAC address with filters installed");
1085 sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1086 sfc_warn(sa, "(some traffic may be dropped)");
1089 * Since setting MAC address with filters installed is not
1090 * allowed on the adapter, the new MAC address will be set
1091 * by means of adapter restart. sfc_start() shall retrieve
1092 * the new address from the device private data and set it.
1097 sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1102 rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1104 sfc_adapter_unlock(sa);
1106 SFC_ASSERT(rc >= 0);
1112 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1113 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1115 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1116 struct sfc_port *port = &sa->port;
1117 uint8_t *mc_addrs = port->mcast_addrs;
1121 if (sfc_sa2shared(sa)->isolated) {
1122 sfc_err(sa, "isolated mode is active on the port");
1123 sfc_err(sa, "will not set multicast address list");
1127 if (mc_addrs == NULL)
1130 if (nb_mc_addr > port->max_mcast_addrs) {
1131 sfc_err(sa, "too many multicast addresses: %u > %u",
1132 nb_mc_addr, port->max_mcast_addrs);
1136 for (i = 0; i < nb_mc_addr; ++i) {
1137 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1139 mc_addrs += EFX_MAC_ADDR_LEN;
1142 port->nb_mcast_addrs = nb_mc_addr;
1144 if (sa->state != SFC_ADAPTER_STARTED)
1147 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1148 port->nb_mcast_addrs);
1150 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1152 SFC_ASSERT(rc >= 0);
1157 * The function is used by the secondary process as well. It must not
1158 * use any process-local pointers from the adapter data.
1161 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1162 struct rte_eth_rxq_info *qinfo)
1164 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1165 struct sfc_rxq_info *rxq_info;
1167 SFC_ASSERT(rx_queue_id < sas->rxq_count);
1169 rxq_info = &sas->rxq_info[rx_queue_id];
1171 qinfo->mp = rxq_info->refill_mb_pool;
1172 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1173 qinfo->conf.rx_drop_en = 1;
1174 qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1175 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1176 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1177 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1178 qinfo->scattered_rx = 1;
1180 qinfo->nb_desc = rxq_info->entries;
1184 * The function is used by the secondary process as well. It must not
1185 * use any process-local pointers from the adapter data.
1188 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1189 struct rte_eth_txq_info *qinfo)
1191 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1192 struct sfc_txq_info *txq_info;
1194 SFC_ASSERT(tx_queue_id < sas->txq_count);
1196 txq_info = &sas->txq_info[tx_queue_id];
1198 memset(qinfo, 0, sizeof(*qinfo));
1200 qinfo->conf.offloads = txq_info->offloads;
1201 qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1202 qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1203 qinfo->nb_desc = txq_info->entries;
1207 * The function is used by the secondary process as well. It must not
1208 * use any process-local pointers from the adapter data.
1211 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1213 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1214 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1215 struct sfc_rxq_info *rxq_info;
1217 SFC_ASSERT(rx_queue_id < sas->rxq_count);
1218 rxq_info = &sas->rxq_info[rx_queue_id];
1220 if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1223 return sap->dp_rx->qdesc_npending(rxq_info->dp);
1227 * The function is used by the secondary process as well. It must not
1228 * use any process-local pointers from the adapter data.
1231 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1233 struct sfc_dp_rxq *dp_rxq = queue;
1234 const struct sfc_dp_rx *dp_rx;
1236 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1238 return offset < dp_rx->qdesc_npending(dp_rxq);
1242 * The function is used by the secondary process as well. It must not
1243 * use any process-local pointers from the adapter data.
1246 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1248 struct sfc_dp_rxq *dp_rxq = queue;
1249 const struct sfc_dp_rx *dp_rx;
1251 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1253 return dp_rx->qdesc_status(dp_rxq, offset);
1257 * The function is used by the secondary process as well. It must not
1258 * use any process-local pointers from the adapter data.
1261 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1263 struct sfc_dp_txq *dp_txq = queue;
1264 const struct sfc_dp_tx *dp_tx;
1266 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1268 return dp_tx->qdesc_status(dp_txq, offset);
1272 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1274 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1275 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1278 sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1280 sfc_adapter_lock(sa);
1283 if (sa->state != SFC_ADAPTER_STARTED)
1284 goto fail_not_started;
1286 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED)
1287 goto fail_not_setup;
1289 rc = sfc_rx_qstart(sa, rx_queue_id);
1291 goto fail_rx_qstart;
1293 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1295 sfc_adapter_unlock(sa);
1302 sfc_adapter_unlock(sa);
1308 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1310 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1311 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1313 sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1315 sfc_adapter_lock(sa);
1316 sfc_rx_qstop(sa, rx_queue_id);
1318 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1320 sfc_adapter_unlock(sa);
1326 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1328 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1329 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1332 sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1334 sfc_adapter_lock(sa);
1337 if (sa->state != SFC_ADAPTER_STARTED)
1338 goto fail_not_started;
1340 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED)
1341 goto fail_not_setup;
1343 rc = sfc_tx_qstart(sa, tx_queue_id);
1345 goto fail_tx_qstart;
1347 sas->txq_info[tx_queue_id].deferred_started = B_TRUE;
1349 sfc_adapter_unlock(sa);
1356 sfc_adapter_unlock(sa);
1362 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1364 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1365 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1367 sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1369 sfc_adapter_lock(sa);
1371 sfc_tx_qstop(sa, tx_queue_id);
1373 sas->txq_info[tx_queue_id].deferred_started = B_FALSE;
1375 sfc_adapter_unlock(sa);
1379 static efx_tunnel_protocol_t
1380 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1383 case RTE_TUNNEL_TYPE_VXLAN:
1384 return EFX_TUNNEL_PROTOCOL_VXLAN;
1385 case RTE_TUNNEL_TYPE_GENEVE:
1386 return EFX_TUNNEL_PROTOCOL_GENEVE;
1388 return EFX_TUNNEL_NPROTOS;
1392 enum sfc_udp_tunnel_op_e {
1393 SFC_UDP_TUNNEL_ADD_PORT,
1394 SFC_UDP_TUNNEL_DEL_PORT,
1398 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1399 struct rte_eth_udp_tunnel *tunnel_udp,
1400 enum sfc_udp_tunnel_op_e op)
1402 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1403 efx_tunnel_protocol_t tunnel_proto;
1406 sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1407 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1408 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1409 tunnel_udp->udp_port, tunnel_udp->prot_type);
1412 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1413 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1415 goto fail_bad_proto;
1418 sfc_adapter_lock(sa);
1421 case SFC_UDP_TUNNEL_ADD_PORT:
1422 rc = efx_tunnel_config_udp_add(sa->nic,
1423 tunnel_udp->udp_port,
1426 case SFC_UDP_TUNNEL_DEL_PORT:
1427 rc = efx_tunnel_config_udp_remove(sa->nic,
1428 tunnel_udp->udp_port,
1439 if (sa->state == SFC_ADAPTER_STARTED) {
1440 rc = efx_tunnel_reconfigure(sa->nic);
1443 * Configuration is accepted by FW and MC reboot
1444 * is initiated to apply the changes. MC reboot
1445 * will be handled in a usual way (MC reboot
1446 * event on management event queue and adapter
1450 } else if (rc != 0) {
1451 goto fail_reconfigure;
1455 sfc_adapter_unlock(sa);
1459 /* Remove/restore entry since the change makes the trouble */
1461 case SFC_UDP_TUNNEL_ADD_PORT:
1462 (void)efx_tunnel_config_udp_remove(sa->nic,
1463 tunnel_udp->udp_port,
1466 case SFC_UDP_TUNNEL_DEL_PORT:
1467 (void)efx_tunnel_config_udp_add(sa->nic,
1468 tunnel_udp->udp_port,
1475 sfc_adapter_unlock(sa);
1483 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1484 struct rte_eth_udp_tunnel *tunnel_udp)
1486 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1490 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1491 struct rte_eth_udp_tunnel *tunnel_udp)
1493 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1497 * The function is used by the secondary process as well. It must not
1498 * use any process-local pointers from the adapter data.
1501 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1502 struct rte_eth_rss_conf *rss_conf)
1504 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1505 struct sfc_rss *rss = &sas->rss;
1507 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1511 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1512 * hence, conversion is done here to derive a correct set of ETH_RSS
1513 * flags which corresponds to the active EFX configuration stored
1514 * locally in 'sfc_adapter' and kept up-to-date
1516 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1517 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1518 if (rss_conf->rss_key != NULL)
1519 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1525 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1526 struct rte_eth_rss_conf *rss_conf)
1528 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1529 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1530 unsigned int efx_hash_types;
1533 if (sfc_sa2shared(sa)->isolated)
1536 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1537 sfc_err(sa, "RSS is not available");
1541 if (rss->channels == 0) {
1542 sfc_err(sa, "RSS is not configured");
1546 if ((rss_conf->rss_key != NULL) &&
1547 (rss_conf->rss_key_len != sizeof(rss->key))) {
1548 sfc_err(sa, "RSS key size is wrong (should be %zu)",
1553 sfc_adapter_lock(sa);
1555 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1557 goto fail_rx_hf_rte_to_efx;
1559 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1560 rss->hash_alg, efx_hash_types, B_TRUE);
1562 goto fail_scale_mode_set;
1564 if (rss_conf->rss_key != NULL) {
1565 if (sa->state == SFC_ADAPTER_STARTED) {
1566 rc = efx_rx_scale_key_set(sa->nic,
1567 EFX_RSS_CONTEXT_DEFAULT,
1571 goto fail_scale_key_set;
1574 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1577 rss->hash_types = efx_hash_types;
1579 sfc_adapter_unlock(sa);
1584 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1585 EFX_RX_HASHALG_TOEPLITZ,
1586 rss->hash_types, B_TRUE) != 0)
1587 sfc_err(sa, "failed to restore RSS mode");
1589 fail_scale_mode_set:
1590 fail_rx_hf_rte_to_efx:
1591 sfc_adapter_unlock(sa);
1596 * The function is used by the secondary process as well. It must not
1597 * use any process-local pointers from the adapter data.
1600 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1601 struct rte_eth_rss_reta_entry64 *reta_conf,
1604 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1605 struct sfc_rss *rss = &sas->rss;
1608 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1611 if (rss->channels == 0)
1614 if (reta_size != EFX_RSS_TBL_SIZE)
1617 for (entry = 0; entry < reta_size; entry++) {
1618 int grp = entry / RTE_RETA_GROUP_SIZE;
1619 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1621 if ((reta_conf[grp].mask >> grp_idx) & 1)
1622 reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1629 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1630 struct rte_eth_rss_reta_entry64 *reta_conf,
1633 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1634 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1635 unsigned int *rss_tbl_new;
1640 if (sfc_sa2shared(sa)->isolated)
1643 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1644 sfc_err(sa, "RSS is not available");
1648 if (rss->channels == 0) {
1649 sfc_err(sa, "RSS is not configured");
1653 if (reta_size != EFX_RSS_TBL_SIZE) {
1654 sfc_err(sa, "RETA size is wrong (should be %u)",
1659 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1660 if (rss_tbl_new == NULL)
1663 sfc_adapter_lock(sa);
1665 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1667 for (entry = 0; entry < reta_size; entry++) {
1668 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1669 struct rte_eth_rss_reta_entry64 *grp;
1671 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1673 if (grp->mask & (1ull << grp_idx)) {
1674 if (grp->reta[grp_idx] >= rss->channels) {
1676 goto bad_reta_entry;
1678 rss_tbl_new[entry] = grp->reta[grp_idx];
1682 if (sa->state == SFC_ADAPTER_STARTED) {
1683 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1684 rss_tbl_new, EFX_RSS_TBL_SIZE);
1686 goto fail_scale_tbl_set;
1689 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1693 sfc_adapter_unlock(sa);
1695 rte_free(rss_tbl_new);
1697 SFC_ASSERT(rc >= 0);
1702 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1703 enum rte_filter_op filter_op,
1706 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1709 sfc_log_init(sa, "entry");
1711 switch (filter_type) {
1712 case RTE_ETH_FILTER_NONE:
1713 sfc_err(sa, "Global filters configuration not supported");
1715 case RTE_ETH_FILTER_MACVLAN:
1716 sfc_err(sa, "MACVLAN filters not supported");
1718 case RTE_ETH_FILTER_ETHERTYPE:
1719 sfc_err(sa, "EtherType filters not supported");
1721 case RTE_ETH_FILTER_FLEXIBLE:
1722 sfc_err(sa, "Flexible filters not supported");
1724 case RTE_ETH_FILTER_SYN:
1725 sfc_err(sa, "SYN filters not supported");
1727 case RTE_ETH_FILTER_NTUPLE:
1728 sfc_err(sa, "NTUPLE filters not supported");
1730 case RTE_ETH_FILTER_TUNNEL:
1731 sfc_err(sa, "Tunnel filters not supported");
1733 case RTE_ETH_FILTER_FDIR:
1734 sfc_err(sa, "Flow Director filters not supported");
1736 case RTE_ETH_FILTER_HASH:
1737 sfc_err(sa, "Hash filters not supported");
1739 case RTE_ETH_FILTER_GENERIC:
1740 if (filter_op != RTE_ETH_FILTER_GET) {
1743 *(const void **)arg = &sfc_flow_ops;
1748 sfc_err(sa, "Unknown filter type %u", filter_type);
1752 sfc_log_init(sa, "exit: %d", -rc);
1753 SFC_ASSERT(rc >= 0);
1758 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1760 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1763 * If Rx datapath does not provide callback to check mempool,
1764 * all pools are supported.
1766 if (sap->dp_rx->pool_ops_supported == NULL)
1769 return sap->dp_rx->pool_ops_supported(pool);
1773 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1775 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1776 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1777 struct sfc_rxq_info *rxq_info;
1779 SFC_ASSERT(queue_id < sas->rxq_count);
1780 rxq_info = &sas->rxq_info[queue_id];
1782 return sap->dp_rx->intr_enable(rxq_info->dp);
1786 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1788 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1789 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1790 struct sfc_rxq_info *rxq_info;
1792 SFC_ASSERT(queue_id < sas->rxq_count);
1793 rxq_info = &sas->rxq_info[queue_id];
1795 return sap->dp_rx->intr_disable(rxq_info->dp);
1798 static const struct eth_dev_ops sfc_eth_dev_ops = {
1799 .dev_configure = sfc_dev_configure,
1800 .dev_start = sfc_dev_start,
1801 .dev_stop = sfc_dev_stop,
1802 .dev_set_link_up = sfc_dev_set_link_up,
1803 .dev_set_link_down = sfc_dev_set_link_down,
1804 .dev_close = sfc_dev_close,
1805 .promiscuous_enable = sfc_dev_promisc_enable,
1806 .promiscuous_disable = sfc_dev_promisc_disable,
1807 .allmulticast_enable = sfc_dev_allmulti_enable,
1808 .allmulticast_disable = sfc_dev_allmulti_disable,
1809 .link_update = sfc_dev_link_update,
1810 .stats_get = sfc_stats_get,
1811 .stats_reset = sfc_stats_reset,
1812 .xstats_get = sfc_xstats_get,
1813 .xstats_reset = sfc_stats_reset,
1814 .xstats_get_names = sfc_xstats_get_names,
1815 .dev_infos_get = sfc_dev_infos_get,
1816 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get,
1817 .mtu_set = sfc_dev_set_mtu,
1818 .rx_queue_start = sfc_rx_queue_start,
1819 .rx_queue_stop = sfc_rx_queue_stop,
1820 .tx_queue_start = sfc_tx_queue_start,
1821 .tx_queue_stop = sfc_tx_queue_stop,
1822 .rx_queue_setup = sfc_rx_queue_setup,
1823 .rx_queue_release = sfc_rx_queue_release,
1824 .rx_queue_intr_enable = sfc_rx_queue_intr_enable,
1825 .rx_queue_intr_disable = sfc_rx_queue_intr_disable,
1826 .tx_queue_setup = sfc_tx_queue_setup,
1827 .tx_queue_release = sfc_tx_queue_release,
1828 .flow_ctrl_get = sfc_flow_ctrl_get,
1829 .flow_ctrl_set = sfc_flow_ctrl_set,
1830 .mac_addr_set = sfc_mac_addr_set,
1831 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add,
1832 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del,
1833 .reta_update = sfc_dev_rss_reta_update,
1834 .reta_query = sfc_dev_rss_reta_query,
1835 .rss_hash_update = sfc_dev_rss_hash_update,
1836 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get,
1837 .filter_ctrl = sfc_dev_filter_ctrl,
1838 .set_mc_addr_list = sfc_set_mc_addr_list,
1839 .rxq_info_get = sfc_rx_queue_info_get,
1840 .txq_info_get = sfc_tx_queue_info_get,
1841 .fw_version_get = sfc_fw_version_get,
1842 .xstats_get_by_id = sfc_xstats_get_by_id,
1843 .xstats_get_names_by_id = sfc_xstats_get_names_by_id,
1844 .pool_ops_supported = sfc_pool_ops_supported,
1848 * Duplicate a string in potentially shared memory required for
1849 * multi-process support.
1851 * strdup() allocates from process-local heap/memory.
1854 sfc_strdup(const char *str)
1862 size = strlen(str) + 1;
1863 copy = rte_malloc(__func__, size, 0);
1865 rte_memcpy(copy, str, size);
1871 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1873 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1874 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1875 const struct sfc_dp_rx *dp_rx;
1876 const struct sfc_dp_tx *dp_tx;
1877 const efx_nic_cfg_t *encp;
1878 unsigned int avail_caps = 0;
1879 const char *rx_name = NULL;
1880 const char *tx_name = NULL;
1883 switch (sa->family) {
1884 case EFX_FAMILY_HUNTINGTON:
1885 case EFX_FAMILY_MEDFORD:
1886 case EFX_FAMILY_MEDFORD2:
1887 avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1893 encp = efx_nic_cfg_get(sa->nic);
1894 if (encp->enc_rx_es_super_buffer_supported)
1895 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1897 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1898 sfc_kvarg_string_handler, &rx_name);
1900 goto fail_kvarg_rx_datapath;
1902 if (rx_name != NULL) {
1903 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1904 if (dp_rx == NULL) {
1905 sfc_err(sa, "Rx datapath %s not found", rx_name);
1909 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1911 "Insufficient Hw/FW capabilities to use Rx datapath %s",
1914 goto fail_dp_rx_caps;
1917 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1918 if (dp_rx == NULL) {
1919 sfc_err(sa, "Rx datapath by caps %#x not found",
1926 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1927 if (sas->dp_rx_name == NULL) {
1929 goto fail_dp_rx_name;
1932 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1934 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1935 sfc_kvarg_string_handler, &tx_name);
1937 goto fail_kvarg_tx_datapath;
1939 if (tx_name != NULL) {
1940 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1941 if (dp_tx == NULL) {
1942 sfc_err(sa, "Tx datapath %s not found", tx_name);
1946 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
1948 "Insufficient Hw/FW capabilities to use Tx datapath %s",
1951 goto fail_dp_tx_caps;
1954 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1955 if (dp_tx == NULL) {
1956 sfc_err(sa, "Tx datapath by caps %#x not found",
1963 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
1964 if (sas->dp_tx_name == NULL) {
1966 goto fail_dp_tx_name;
1969 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
1971 sa->priv.dp_rx = dp_rx;
1972 sa->priv.dp_tx = dp_tx;
1974 dev->rx_pkt_burst = dp_rx->pkt_burst;
1975 dev->tx_pkt_prepare = dp_tx->pkt_prepare;
1976 dev->tx_pkt_burst = dp_tx->pkt_burst;
1978 dev->rx_queue_count = sfc_rx_queue_count;
1979 dev->rx_descriptor_done = sfc_rx_descriptor_done;
1980 dev->rx_descriptor_status = sfc_rx_descriptor_status;
1981 dev->tx_descriptor_status = sfc_tx_descriptor_status;
1982 dev->dev_ops = &sfc_eth_dev_ops;
1989 fail_kvarg_tx_datapath:
1990 rte_free(sas->dp_rx_name);
1991 sas->dp_rx_name = NULL;
1996 fail_kvarg_rx_datapath:
2001 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2003 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2004 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2006 dev->dev_ops = NULL;
2007 dev->tx_pkt_prepare = NULL;
2008 dev->rx_pkt_burst = NULL;
2009 dev->tx_pkt_burst = NULL;
2011 rte_free(sas->dp_tx_name);
2012 sas->dp_tx_name = NULL;
2013 sa->priv.dp_tx = NULL;
2015 rte_free(sas->dp_rx_name);
2016 sas->dp_rx_name = NULL;
2017 sa->priv.dp_rx = NULL;
2020 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2021 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get,
2022 .reta_query = sfc_dev_rss_reta_query,
2023 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get,
2024 .rxq_info_get = sfc_rx_queue_info_get,
2025 .txq_info_get = sfc_tx_queue_info_get,
2029 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2031 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2032 struct sfc_adapter_priv *sap;
2033 const struct sfc_dp_rx *dp_rx;
2034 const struct sfc_dp_tx *dp_tx;
2038 * Allocate process private data from heap, since it should not
2039 * be located in shared memory allocated using rte_malloc() API.
2041 sap = calloc(1, sizeof(*sap));
2044 goto fail_alloc_priv;
2047 sap->logtype_main = logtype_main;
2049 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2050 if (dp_rx == NULL) {
2051 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2052 "cannot find %s Rx datapath", sas->dp_rx_name);
2056 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2057 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2058 "%s Rx datapath does not support multi-process",
2061 goto fail_dp_rx_multi_process;
2064 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2065 if (dp_tx == NULL) {
2066 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2067 "cannot find %s Tx datapath", sas->dp_tx_name);
2071 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2072 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2073 "%s Tx datapath does not support multi-process",
2076 goto fail_dp_tx_multi_process;
2082 dev->process_private = sap;
2083 dev->rx_pkt_burst = dp_rx->pkt_burst;
2084 dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2085 dev->tx_pkt_burst = dp_tx->pkt_burst;
2086 dev->rx_queue_count = sfc_rx_queue_count;
2087 dev->rx_descriptor_done = sfc_rx_descriptor_done;
2088 dev->rx_descriptor_status = sfc_rx_descriptor_status;
2089 dev->tx_descriptor_status = sfc_tx_descriptor_status;
2090 dev->dev_ops = &sfc_eth_dev_secondary_ops;
2094 fail_dp_tx_multi_process:
2096 fail_dp_rx_multi_process:
2105 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
2107 free(dev->process_private);
2108 dev->process_private = NULL;
2109 dev->dev_ops = NULL;
2110 dev->tx_pkt_prepare = NULL;
2111 dev->tx_pkt_burst = NULL;
2112 dev->rx_pkt_burst = NULL;
2116 sfc_register_dp(void)
2119 if (TAILQ_EMPTY(&sfc_dp_head)) {
2120 /* Prefer EF10 datapath */
2121 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2122 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2123 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2125 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2126 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2127 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2132 sfc_eth_dev_init(struct rte_eth_dev *dev)
2134 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2135 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2136 uint32_t logtype_main;
2137 struct sfc_adapter *sa;
2139 const efx_nic_cfg_t *encp;
2140 const struct rte_ether_addr *from;
2145 logtype_main = sfc_register_logtype(&pci_dev->addr,
2146 SFC_LOGTYPE_MAIN_STR,
2149 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2150 return -sfc_eth_dev_secondary_init(dev, logtype_main);
2152 /* Required for logging */
2153 ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2154 "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2155 pci_dev->addr.domain, pci_dev->addr.bus,
2156 pci_dev->addr.devid, pci_dev->addr.function,
2157 dev->data->port_id);
2158 if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2159 SFC_GENERIC_LOG(ERR,
2160 "reserved log prefix is too short for " PCI_PRI_FMT,
2161 pci_dev->addr.domain, pci_dev->addr.bus,
2162 pci_dev->addr.devid, pci_dev->addr.function);
2165 sas->pci_addr = pci_dev->addr;
2166 sas->port_id = dev->data->port_id;
2169 * Allocate process private data from heap, since it should not
2170 * be located in shared memory allocated using rte_malloc() API.
2172 sa = calloc(1, sizeof(*sa));
2178 dev->process_private = sa;
2180 /* Required for logging */
2181 sa->priv.shared = sas;
2182 sa->priv.logtype_main = logtype_main;
2186 /* Copy PCI device info to the dev->data */
2187 rte_eth_copy_pci_info(dev, pci_dev);
2189 rc = sfc_kvargs_parse(sa);
2191 goto fail_kvargs_parse;
2193 sfc_log_init(sa, "entry");
2195 dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2197 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2198 if (dev->data->mac_addrs == NULL) {
2200 goto fail_mac_addrs;
2203 sfc_adapter_lock_init(sa);
2204 sfc_adapter_lock(sa);
2206 sfc_log_init(sa, "probing");
2211 sfc_log_init(sa, "set device ops");
2212 rc = sfc_eth_dev_set_ops(dev);
2216 sfc_log_init(sa, "attaching");
2217 rc = sfc_attach(sa);
2221 encp = efx_nic_cfg_get(sa->nic);
2224 * The arguments are really reverse order in comparison to
2225 * Linux kernel. Copy from NIC config to Ethernet device data.
2227 from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2228 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2230 sfc_adapter_unlock(sa);
2232 sfc_log_init(sa, "done");
2236 sfc_eth_dev_clear_ops(dev);
2242 sfc_adapter_unlock(sa);
2243 sfc_adapter_lock_fini(sa);
2244 rte_free(dev->data->mac_addrs);
2245 dev->data->mac_addrs = NULL;
2248 sfc_kvargs_cleanup(sa);
2251 sfc_log_init(sa, "failed %d", rc);
2252 dev->process_private = NULL;
2261 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2263 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2264 sfc_eth_dev_secondary_clear_ops(dev);
2273 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2274 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2275 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2276 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2277 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2278 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2279 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2280 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2281 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2282 { .vendor_id = 0 /* sentinel */ }
2285 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2286 struct rte_pci_device *pci_dev)
2288 return rte_eth_dev_pci_generic_probe(pci_dev,
2289 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2292 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2294 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2297 static struct rte_pci_driver sfc_efx_pmd = {
2298 .id_table = pci_id_sfc_efx_map,
2300 RTE_PCI_DRV_INTR_LSC |
2301 RTE_PCI_DRV_NEED_MAPPING,
2302 .probe = sfc_eth_dev_pci_probe,
2303 .remove = sfc_eth_dev_pci_remove,
2306 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2307 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2308 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2309 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2310 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2311 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2312 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2313 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2314 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2315 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2317 RTE_INIT(sfc_driver_register_logtype)
2321 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2323 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;