ethdev: move jumbo frame offload check to library
[dpdk.git] / drivers / net / sfc / sfc_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_dev.h>
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18
19 #include "efx.h"
20
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_flow_tunnel.h"
30 #include "sfc_dp.h"
31 #include "sfc_dp_rx.h"
32 #include "sfc_repr.h"
33 #include "sfc_sw_stats.h"
34 #include "sfc_switch.h"
35
36 #define SFC_XSTAT_ID_INVALID_VAL  UINT64_MAX
37 #define SFC_XSTAT_ID_INVALID_NAME '\0'
38
39 uint32_t sfc_logtype_driver;
40
41 static struct sfc_dp_list sfc_dp_head =
42         TAILQ_HEAD_INITIALIZER(sfc_dp_head);
43
44
45 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
46
47
48 static int
49 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
50 {
51         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
52         efx_nic_fw_info_t enfi;
53         int ret;
54         int rc;
55
56         rc = efx_nic_get_fw_version(sa->nic, &enfi);
57         if (rc != 0)
58                 return -rc;
59
60         ret = snprintf(fw_version, fw_size,
61                        "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
62                        enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
63                        enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
64         if (ret < 0)
65                 return ret;
66
67         if (enfi.enfi_dpcpu_fw_ids_valid) {
68                 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
69                 int ret_extra;
70
71                 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
72                                      fw_size - dpcpu_fw_ids_offset,
73                                      " rx%" PRIx16 " tx%" PRIx16,
74                                      enfi.enfi_rx_dpcpu_fw_id,
75                                      enfi.enfi_tx_dpcpu_fw_id);
76                 if (ret_extra < 0)
77                         return ret_extra;
78
79                 ret += ret_extra;
80         }
81
82         if (fw_size < (size_t)(++ret))
83                 return ret;
84         else
85                 return 0;
86 }
87
88 static int
89 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
90 {
91         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
92         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
93         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
94         struct sfc_rss *rss = &sas->rss;
95         struct sfc_mae *mae = &sa->mae;
96         uint64_t txq_offloads_def = 0;
97
98         sfc_log_init(sa, "entry");
99
100         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
101         dev_info->max_mtu = EFX_MAC_SDU_MAX;
102
103         dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
104
105         dev_info->max_vfs = sa->sriov.num_vfs;
106
107         /* Autonegotiation may be disabled */
108         dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
109         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
110                 dev_info->speed_capa |= ETH_LINK_SPEED_1G;
111         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
112                 dev_info->speed_capa |= ETH_LINK_SPEED_10G;
113         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
114                 dev_info->speed_capa |= ETH_LINK_SPEED_25G;
115         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
116                 dev_info->speed_capa |= ETH_LINK_SPEED_40G;
117         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
118                 dev_info->speed_capa |= ETH_LINK_SPEED_50G;
119         if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
120                 dev_info->speed_capa |= ETH_LINK_SPEED_100G;
121
122         dev_info->max_rx_queues = sa->rxq_max;
123         dev_info->max_tx_queues = sa->txq_max;
124
125         /* By default packets are dropped if no descriptors are available */
126         dev_info->default_rxconf.rx_drop_en = 1;
127
128         dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
129
130         /*
131          * rx_offload_capa includes both device and queue offloads since
132          * the latter may be requested on a per device basis which makes
133          * sense when some offloads are needed to be set on all queues.
134          */
135         dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
136                                     dev_info->rx_queue_offload_capa;
137
138         dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
139
140         /*
141          * tx_offload_capa includes both device and queue offloads since
142          * the latter may be requested on a per device basis which makes
143          * sense when some offloads are needed to be set on all queues.
144          */
145         dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
146                                     dev_info->tx_queue_offload_capa;
147
148         if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
149                 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
150
151         dev_info->default_txconf.offloads |= txq_offloads_def;
152
153         if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
154                 uint64_t rte_hf = 0;
155                 unsigned int i;
156
157                 for (i = 0; i < rss->hf_map_nb_entries; ++i)
158                         rte_hf |= rss->hf_map[i].rte;
159
160                 dev_info->reta_size = EFX_RSS_TBL_SIZE;
161                 dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
162                 dev_info->flow_type_rss_offloads = rte_hf;
163         }
164
165         /* Initialize to hardware limits */
166         dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
167         dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
168         /* The RXQ hardware requires that the descriptor count is a power
169          * of 2, but rx_desc_lim cannot properly describe that constraint.
170          */
171         dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
172
173         /* Initialize to hardware limits */
174         dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
175         dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
176         /*
177          * The TXQ hardware requires that the descriptor count is a power
178          * of 2, but tx_desc_lim cannot properly describe that constraint
179          */
180         dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
181
182         if (sap->dp_rx->get_dev_info != NULL)
183                 sap->dp_rx->get_dev_info(dev_info);
184         if (sap->dp_tx->get_dev_info != NULL)
185                 sap->dp_tx->get_dev_info(dev_info);
186
187         dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
188                              RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
189
190         if (mae->status == SFC_MAE_STATUS_SUPPORTED) {
191                 dev_info->switch_info.name = dev->device->driver->name;
192                 dev_info->switch_info.domain_id = mae->switch_domain_id;
193                 dev_info->switch_info.port_id = mae->switch_port_id;
194         }
195
196         return 0;
197 }
198
199 static const uint32_t *
200 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
201 {
202         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
203
204         return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
205 }
206
207 static int
208 sfc_dev_configure(struct rte_eth_dev *dev)
209 {
210         struct rte_eth_dev_data *dev_data = dev->data;
211         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
212         int rc;
213
214         sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
215                      dev_data->nb_rx_queues, dev_data->nb_tx_queues);
216
217         sfc_adapter_lock(sa);
218         switch (sa->state) {
219         case SFC_ETHDEV_CONFIGURED:
220                 /* FALLTHROUGH */
221         case SFC_ETHDEV_INITIALIZED:
222                 rc = sfc_configure(sa);
223                 break;
224         default:
225                 sfc_err(sa, "unexpected adapter state %u to configure",
226                         sa->state);
227                 rc = EINVAL;
228                 break;
229         }
230         sfc_adapter_unlock(sa);
231
232         sfc_log_init(sa, "done %d", rc);
233         SFC_ASSERT(rc >= 0);
234         return -rc;
235 }
236
237 static int
238 sfc_dev_start(struct rte_eth_dev *dev)
239 {
240         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
241         int rc;
242
243         sfc_log_init(sa, "entry");
244
245         sfc_adapter_lock(sa);
246         rc = sfc_start(sa);
247         sfc_adapter_unlock(sa);
248
249         sfc_log_init(sa, "done %d", rc);
250         SFC_ASSERT(rc >= 0);
251         return -rc;
252 }
253
254 static int
255 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
256 {
257         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
258         struct rte_eth_link current_link;
259         int ret;
260
261         sfc_log_init(sa, "entry");
262
263         if (sa->state != SFC_ETHDEV_STARTED) {
264                 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
265         } else if (wait_to_complete) {
266                 efx_link_mode_t link_mode;
267
268                 if (efx_port_poll(sa->nic, &link_mode) != 0)
269                         link_mode = EFX_LINK_UNKNOWN;
270                 sfc_port_link_mode_to_info(link_mode, &current_link);
271
272         } else {
273                 sfc_ev_mgmt_qpoll(sa);
274                 rte_eth_linkstatus_get(dev, &current_link);
275         }
276
277         ret = rte_eth_linkstatus_set(dev, &current_link);
278         if (ret == 0)
279                 sfc_notice(sa, "Link status is %s",
280                            current_link.link_status ? "UP" : "DOWN");
281
282         return ret;
283 }
284
285 static int
286 sfc_dev_stop(struct rte_eth_dev *dev)
287 {
288         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
289
290         sfc_log_init(sa, "entry");
291
292         sfc_adapter_lock(sa);
293         sfc_stop(sa);
294         sfc_adapter_unlock(sa);
295
296         sfc_log_init(sa, "done");
297
298         return 0;
299 }
300
301 static int
302 sfc_dev_set_link_up(struct rte_eth_dev *dev)
303 {
304         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
305         int rc;
306
307         sfc_log_init(sa, "entry");
308
309         sfc_adapter_lock(sa);
310         rc = sfc_start(sa);
311         sfc_adapter_unlock(sa);
312
313         SFC_ASSERT(rc >= 0);
314         return -rc;
315 }
316
317 static int
318 sfc_dev_set_link_down(struct rte_eth_dev *dev)
319 {
320         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
321
322         sfc_log_init(sa, "entry");
323
324         sfc_adapter_lock(sa);
325         sfc_stop(sa);
326         sfc_adapter_unlock(sa);
327
328         return 0;
329 }
330
331 static void
332 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
333 {
334         free(dev->process_private);
335         rte_eth_dev_release_port(dev);
336 }
337
338 static int
339 sfc_dev_close(struct rte_eth_dev *dev)
340 {
341         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
342
343         sfc_log_init(sa, "entry");
344
345         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
346                 sfc_eth_dev_secondary_clear_ops(dev);
347                 return 0;
348         }
349
350         sfc_pre_detach(sa);
351
352         sfc_adapter_lock(sa);
353         switch (sa->state) {
354         case SFC_ETHDEV_STARTED:
355                 sfc_stop(sa);
356                 SFC_ASSERT(sa->state == SFC_ETHDEV_CONFIGURED);
357                 /* FALLTHROUGH */
358         case SFC_ETHDEV_CONFIGURED:
359                 sfc_close(sa);
360                 SFC_ASSERT(sa->state == SFC_ETHDEV_INITIALIZED);
361                 /* FALLTHROUGH */
362         case SFC_ETHDEV_INITIALIZED:
363                 break;
364         default:
365                 sfc_err(sa, "unexpected adapter state %u on close", sa->state);
366                 break;
367         }
368
369         /*
370          * Cleanup all resources.
371          * Rollback primary process sfc_eth_dev_init() below.
372          */
373
374         sfc_eth_dev_clear_ops(dev);
375
376         sfc_detach(sa);
377         sfc_unprobe(sa);
378
379         sfc_kvargs_cleanup(sa);
380
381         sfc_adapter_unlock(sa);
382         sfc_adapter_lock_fini(sa);
383
384         sfc_log_init(sa, "done");
385
386         /* Required for logging, so cleanup last */
387         sa->eth_dev = NULL;
388
389         free(sa);
390
391         return 0;
392 }
393
394 static int
395 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
396                    boolean_t enabled)
397 {
398         struct sfc_port *port;
399         boolean_t *toggle;
400         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
401         boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
402         const char *desc = (allmulti) ? "all-multi" : "promiscuous";
403         int rc = 0;
404
405         sfc_adapter_lock(sa);
406
407         port = &sa->port;
408         toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
409
410         if (*toggle != enabled) {
411                 *toggle = enabled;
412
413                 if (sfc_sa2shared(sa)->isolated) {
414                         sfc_warn(sa, "isolated mode is active on the port");
415                         sfc_warn(sa, "the change is to be applied on the next "
416                                      "start provided that isolated mode is "
417                                      "disabled prior the next start");
418                 } else if ((sa->state == SFC_ETHDEV_STARTED) &&
419                            ((rc = sfc_set_rx_mode(sa)) != 0)) {
420                         *toggle = !(enabled);
421                         sfc_warn(sa, "Failed to %s %s mode, rc = %d",
422                                  ((enabled) ? "enable" : "disable"), desc, rc);
423
424                         /*
425                          * For promiscuous and all-multicast filters a
426                          * permission failure should be reported as an
427                          * unsupported filter.
428                          */
429                         if (rc == EPERM)
430                                 rc = ENOTSUP;
431                 }
432         }
433
434         sfc_adapter_unlock(sa);
435         return rc;
436 }
437
438 static int
439 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
440 {
441         int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
442
443         SFC_ASSERT(rc >= 0);
444         return -rc;
445 }
446
447 static int
448 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
449 {
450         int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
451
452         SFC_ASSERT(rc >= 0);
453         return -rc;
454 }
455
456 static int
457 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
458 {
459         int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
460
461         SFC_ASSERT(rc >= 0);
462         return -rc;
463 }
464
465 static int
466 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
467 {
468         int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
469
470         SFC_ASSERT(rc >= 0);
471         return -rc;
472 }
473
474 static int
475 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
476                    uint16_t nb_rx_desc, unsigned int socket_id,
477                    const struct rte_eth_rxconf *rx_conf,
478                    struct rte_mempool *mb_pool)
479 {
480         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
481         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
482         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
483         struct sfc_rxq_info *rxq_info;
484         sfc_sw_index_t sw_index;
485         int rc;
486
487         sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
488                      ethdev_qid, nb_rx_desc, socket_id);
489
490         sfc_adapter_lock(sa);
491
492         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
493         rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id,
494                           rx_conf, mb_pool);
495         if (rc != 0)
496                 goto fail_rx_qinit;
497
498         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
499         dev->data->rx_queues[ethdev_qid] = rxq_info->dp;
500
501         sfc_adapter_unlock(sa);
502
503         return 0;
504
505 fail_rx_qinit:
506         sfc_adapter_unlock(sa);
507         SFC_ASSERT(rc > 0);
508         return -rc;
509 }
510
511 static void
512 sfc_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
513 {
514         struct sfc_dp_rxq *dp_rxq = dev->data->rx_queues[qid];
515         struct sfc_rxq *rxq;
516         struct sfc_adapter *sa;
517         sfc_sw_index_t sw_index;
518
519         if (dp_rxq == NULL)
520                 return;
521
522         rxq = sfc_rxq_by_dp_rxq(dp_rxq);
523         sa = rxq->evq->sa;
524         sfc_adapter_lock(sa);
525
526         sw_index = dp_rxq->dpq.queue_id;
527
528         sfc_log_init(sa, "RxQ=%u", sw_index);
529
530         sfc_rx_qfini(sa, sw_index);
531
532         sfc_adapter_unlock(sa);
533 }
534
535 static int
536 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
537                    uint16_t nb_tx_desc, unsigned int socket_id,
538                    const struct rte_eth_txconf *tx_conf)
539 {
540         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
541         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
542         struct sfc_txq_info *txq_info;
543         sfc_sw_index_t sw_index;
544         int rc;
545
546         sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
547                      ethdev_qid, nb_tx_desc, socket_id);
548
549         sfc_adapter_lock(sa);
550
551         sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
552         rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf);
553         if (rc != 0)
554                 goto fail_tx_qinit;
555
556         txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
557         dev->data->tx_queues[ethdev_qid] = txq_info->dp;
558
559         sfc_adapter_unlock(sa);
560         return 0;
561
562 fail_tx_qinit:
563         sfc_adapter_unlock(sa);
564         SFC_ASSERT(rc > 0);
565         return -rc;
566 }
567
568 static void
569 sfc_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
570 {
571         struct sfc_dp_txq *dp_txq = dev->data->tx_queues[qid];
572         struct sfc_txq *txq;
573         sfc_sw_index_t sw_index;
574         struct sfc_adapter *sa;
575
576         if (dp_txq == NULL)
577                 return;
578
579         txq = sfc_txq_by_dp_txq(dp_txq);
580         sw_index = dp_txq->dpq.queue_id;
581
582         SFC_ASSERT(txq->evq != NULL);
583         sa = txq->evq->sa;
584
585         sfc_log_init(sa, "TxQ = %u", sw_index);
586
587         sfc_adapter_lock(sa);
588
589         sfc_tx_qfini(sa, sw_index);
590
591         sfc_adapter_unlock(sa);
592 }
593
594 static void
595 sfc_stats_get_dp_rx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
596 {
597         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
598         uint64_t pkts_sum = 0;
599         uint64_t bytes_sum = 0;
600         unsigned int i;
601
602         for (i = 0; i < sas->ethdev_rxq_count; ++i) {
603                 struct sfc_rxq_info *rxq_info;
604
605                 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, i);
606                 if (rxq_info->state & SFC_RXQ_INITIALIZED) {
607                         union sfc_pkts_bytes qstats;
608
609                         sfc_pkts_bytes_get(&rxq_info->dp->dpq.stats, &qstats);
610                         pkts_sum += qstats.pkts -
611                                         sa->sw_stats.reset_rx_pkts[i];
612                         bytes_sum += qstats.bytes -
613                                         sa->sw_stats.reset_rx_bytes[i];
614                 }
615         }
616
617         *pkts = pkts_sum;
618         *bytes = bytes_sum;
619 }
620
621 static void
622 sfc_stats_get_dp_tx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
623 {
624         struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
625         uint64_t pkts_sum = 0;
626         uint64_t bytes_sum = 0;
627         unsigned int i;
628
629         for (i = 0; i < sas->ethdev_txq_count; ++i) {
630                 struct sfc_txq_info *txq_info;
631
632                 txq_info = sfc_txq_info_by_ethdev_qid(sas, i);
633                 if (txq_info->state & SFC_TXQ_INITIALIZED) {
634                         union sfc_pkts_bytes qstats;
635
636                         sfc_pkts_bytes_get(&txq_info->dp->dpq.stats, &qstats);
637                         pkts_sum += qstats.pkts -
638                                         sa->sw_stats.reset_tx_pkts[i];
639                         bytes_sum += qstats.bytes -
640                                         sa->sw_stats.reset_tx_bytes[i];
641                 }
642         }
643
644         *pkts = pkts_sum;
645         *bytes = bytes_sum;
646 }
647
648 /*
649  * Some statistics are computed as A - B where A and B each increase
650  * monotonically with some hardware counter(s) and the counters are read
651  * asynchronously.
652  *
653  * If packet X is counted in A, but not counted in B yet, computed value is
654  * greater than real.
655  *
656  * If packet X is not counted in A at the moment of reading the counter,
657  * but counted in B at the moment of reading the counter, computed value
658  * is less than real.
659  *
660  * However, counter which grows backward is worse evil than slightly wrong
661  * value. So, let's try to guarantee that it never happens except may be
662  * the case when the MAC stats are zeroed as a result of a NIC reset.
663  */
664 static void
665 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
666 {
667         if ((int64_t)(newval - *stat) > 0 || newval == 0)
668                 *stat = newval;
669 }
670
671 static int
672 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
673 {
674         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
675         bool have_dp_rx_stats = sap->dp_rx->features & SFC_DP_RX_FEAT_STATS;
676         bool have_dp_tx_stats = sap->dp_tx->features & SFC_DP_TX_FEAT_STATS;
677         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
678         struct sfc_port *port = &sa->port;
679         uint64_t *mac_stats;
680         int ret;
681
682         sfc_adapter_lock(sa);
683
684         if (have_dp_rx_stats)
685                 sfc_stats_get_dp_rx(sa, &stats->ipackets, &stats->ibytes);
686         if (have_dp_tx_stats)
687                 sfc_stats_get_dp_tx(sa, &stats->opackets, &stats->obytes);
688
689         ret = sfc_port_update_mac_stats(sa, B_FALSE);
690         if (ret != 0)
691                 goto unlock;
692
693         mac_stats = port->mac_stats_buf;
694
695         if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
696                                    EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
697                 if (!have_dp_rx_stats) {
698                         stats->ipackets =
699                                 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
700                                 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
701                                 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
702                         stats->ibytes =
703                                 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
704                                 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
705                                 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
706
707                         /* CRC is included in these stats, but shouldn't be */
708                         stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
709                 }
710                 if (!have_dp_tx_stats) {
711                         stats->opackets =
712                                 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
713                                 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
714                                 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
715                         stats->obytes =
716                                 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
717                                 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
718                                 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
719
720                         /* CRC is included in these stats, but shouldn't be */
721                         stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
722                 }
723                 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
724                 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
725         } else {
726                 if (!have_dp_tx_stats) {
727                         stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
728                         stats->obytes = mac_stats[EFX_MAC_TX_OCTETS] -
729                                 mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
730                 }
731
732                 /*
733                  * Take into account stats which are whenever supported
734                  * on EF10. If some stat is not supported by current
735                  * firmware variant or HW revision, it is guaranteed
736                  * to be zero in mac_stats.
737                  */
738                 stats->imissed =
739                         mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
740                         mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
741                         mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
742                         mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
743                         mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
744                         mac_stats[EFX_MAC_PM_TRUNC_QBB] +
745                         mac_stats[EFX_MAC_PM_DISCARD_QBB] +
746                         mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
747                         mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
748                         mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
749                 stats->ierrors =
750                         mac_stats[EFX_MAC_RX_FCS_ERRORS] +
751                         mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
752                         mac_stats[EFX_MAC_RX_JABBER_PKTS];
753                 /* no oerrors counters supported on EF10 */
754
755                 if (!have_dp_rx_stats) {
756                         /* Exclude missed, errors and pauses from Rx packets */
757                         sfc_update_diff_stat(&port->ipackets,
758                                 mac_stats[EFX_MAC_RX_PKTS] -
759                                 mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
760                                 stats->imissed - stats->ierrors);
761                         stats->ipackets = port->ipackets;
762                         stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS] -
763                                 mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
764                 }
765         }
766
767 unlock:
768         sfc_adapter_unlock(sa);
769         SFC_ASSERT(ret >= 0);
770         return -ret;
771 }
772
773 static int
774 sfc_stats_reset(struct rte_eth_dev *dev)
775 {
776         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
777         struct sfc_port *port = &sa->port;
778         int rc;
779
780         sfc_adapter_lock(sa);
781
782         if (sa->state != SFC_ETHDEV_STARTED) {
783                 /*
784                  * The operation cannot be done if port is not started; it
785                  * will be scheduled to be done during the next port start
786                  */
787                 port->mac_stats_reset_pending = B_TRUE;
788                 sfc_adapter_unlock(sa);
789                 return 0;
790         }
791
792         rc = sfc_port_reset_mac_stats(sa);
793         if (rc != 0)
794                 sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
795
796         sfc_sw_xstats_reset(sa);
797
798         sfc_adapter_unlock(sa);
799
800         SFC_ASSERT(rc >= 0);
801         return -rc;
802 }
803
804 static unsigned int
805 sfc_xstats_get_nb_supported(struct sfc_adapter *sa)
806 {
807         struct sfc_port *port = &sa->port;
808         unsigned int nb_supported;
809
810         sfc_adapter_lock(sa);
811         nb_supported = port->mac_stats_nb_supported +
812                        sfc_sw_xstats_get_nb_supported(sa);
813         sfc_adapter_unlock(sa);
814
815         return nb_supported;
816 }
817
818 static int
819 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
820                unsigned int xstats_count)
821 {
822         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
823         unsigned int nb_written = 0;
824         unsigned int nb_supported = 0;
825         int rc;
826
827         if (unlikely(xstats == NULL))
828                 return sfc_xstats_get_nb_supported(sa);
829
830         rc = sfc_port_get_mac_stats(sa, xstats, xstats_count, &nb_written);
831         if (rc < 0)
832                 return rc;
833
834         nb_supported = rc;
835         sfc_sw_xstats_get_vals(sa, xstats, xstats_count, &nb_written,
836                                &nb_supported);
837
838         return nb_supported;
839 }
840
841 static int
842 sfc_xstats_get_names(struct rte_eth_dev *dev,
843                      struct rte_eth_xstat_name *xstats_names,
844                      unsigned int xstats_count)
845 {
846         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
847         struct sfc_port *port = &sa->port;
848         unsigned int i;
849         unsigned int nstats = 0;
850         unsigned int nb_written = 0;
851         int ret;
852
853         if (unlikely(xstats_names == NULL))
854                 return sfc_xstats_get_nb_supported(sa);
855
856         for (i = 0; i < EFX_MAC_NSTATS; ++i) {
857                 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
858                         if (nstats < xstats_count) {
859                                 strlcpy(xstats_names[nstats].name,
860                                         efx_mac_stat_name(sa->nic, i),
861                                         sizeof(xstats_names[0].name));
862                                 nb_written++;
863                         }
864                         nstats++;
865                 }
866         }
867
868         ret = sfc_sw_xstats_get_names(sa, xstats_names, xstats_count,
869                                       &nb_written, &nstats);
870         if (ret != 0) {
871                 SFC_ASSERT(ret < 0);
872                 return ret;
873         }
874
875         return nstats;
876 }
877
878 static int
879 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
880                      uint64_t *values, unsigned int n)
881 {
882         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
883         struct sfc_port *port = &sa->port;
884         unsigned int nb_supported;
885         unsigned int i;
886         int rc;
887
888         if (unlikely(ids == NULL || values == NULL))
889                 return -EINVAL;
890
891         /*
892          * Values array could be filled in nonsequential order. Fill values with
893          * constant indicating invalid ID first.
894          */
895         for (i = 0; i < n; i++)
896                 values[i] = SFC_XSTAT_ID_INVALID_VAL;
897
898         rc = sfc_port_get_mac_stats_by_id(sa, ids, values, n);
899         if (rc != 0)
900                 return rc;
901
902         nb_supported = port->mac_stats_nb_supported;
903         sfc_sw_xstats_get_vals_by_id(sa, ids, values, n, &nb_supported);
904
905         /* Return number of written stats before invalid ID is encountered. */
906         for (i = 0; i < n; i++) {
907                 if (values[i] == SFC_XSTAT_ID_INVALID_VAL)
908                         return i;
909         }
910
911         return n;
912 }
913
914 static int
915 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
916                            const uint64_t *ids,
917                            struct rte_eth_xstat_name *xstats_names,
918                            unsigned int size)
919 {
920         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
921         struct sfc_port *port = &sa->port;
922         unsigned int nb_supported;
923         unsigned int i;
924         int ret;
925
926         if (unlikely(xstats_names == NULL && ids != NULL) ||
927             unlikely(xstats_names != NULL && ids == NULL))
928                 return -EINVAL;
929
930         if (unlikely(xstats_names == NULL && ids == NULL))
931                 return sfc_xstats_get_nb_supported(sa);
932
933         /*
934          * Names array could be filled in nonsequential order. Fill names with
935          * string indicating invalid ID first.
936          */
937         for (i = 0; i < size; i++)
938                 xstats_names[i].name[0] = SFC_XSTAT_ID_INVALID_NAME;
939
940         sfc_adapter_lock(sa);
941
942         SFC_ASSERT(port->mac_stats_nb_supported <=
943                    RTE_DIM(port->mac_stats_by_id));
944
945         for (i = 0; i < size; i++) {
946                 if (ids[i] < port->mac_stats_nb_supported) {
947                         strlcpy(xstats_names[i].name,
948                                 efx_mac_stat_name(sa->nic,
949                                                  port->mac_stats_by_id[ids[i]]),
950                                 sizeof(xstats_names[0].name));
951                 }
952         }
953
954         nb_supported = port->mac_stats_nb_supported;
955
956         sfc_adapter_unlock(sa);
957
958         ret = sfc_sw_xstats_get_names_by_id(sa, ids, xstats_names, size,
959                                             &nb_supported);
960         if (ret != 0) {
961                 SFC_ASSERT(ret < 0);
962                 return ret;
963         }
964
965         /* Return number of written names before invalid ID is encountered. */
966         for (i = 0; i < size; i++) {
967                 if (xstats_names[i].name[0] == SFC_XSTAT_ID_INVALID_NAME)
968                         return i;
969         }
970
971         return size;
972 }
973
974 static int
975 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
976 {
977         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
978         unsigned int wanted_fc, link_fc;
979
980         memset(fc_conf, 0, sizeof(*fc_conf));
981
982         sfc_adapter_lock(sa);
983
984         if (sa->state == SFC_ETHDEV_STARTED)
985                 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
986         else
987                 link_fc = sa->port.flow_ctrl;
988
989         switch (link_fc) {
990         case 0:
991                 fc_conf->mode = RTE_FC_NONE;
992                 break;
993         case EFX_FCNTL_RESPOND:
994                 fc_conf->mode = RTE_FC_RX_PAUSE;
995                 break;
996         case EFX_FCNTL_GENERATE:
997                 fc_conf->mode = RTE_FC_TX_PAUSE;
998                 break;
999         case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
1000                 fc_conf->mode = RTE_FC_FULL;
1001                 break;
1002         default:
1003                 sfc_err(sa, "%s: unexpected flow control value %#x",
1004                         __func__, link_fc);
1005         }
1006
1007         fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
1008
1009         sfc_adapter_unlock(sa);
1010
1011         return 0;
1012 }
1013
1014 static int
1015 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1016 {
1017         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1018         struct sfc_port *port = &sa->port;
1019         unsigned int fcntl;
1020         int rc;
1021
1022         if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
1023             fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
1024             fc_conf->mac_ctrl_frame_fwd != 0) {
1025                 sfc_err(sa, "unsupported flow control settings specified");
1026                 rc = EINVAL;
1027                 goto fail_inval;
1028         }
1029
1030         switch (fc_conf->mode) {
1031         case RTE_FC_NONE:
1032                 fcntl = 0;
1033                 break;
1034         case RTE_FC_RX_PAUSE:
1035                 fcntl = EFX_FCNTL_RESPOND;
1036                 break;
1037         case RTE_FC_TX_PAUSE:
1038                 fcntl = EFX_FCNTL_GENERATE;
1039                 break;
1040         case RTE_FC_FULL:
1041                 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
1042                 break;
1043         default:
1044                 rc = EINVAL;
1045                 goto fail_inval;
1046         }
1047
1048         sfc_adapter_lock(sa);
1049
1050         if (sa->state == SFC_ETHDEV_STARTED) {
1051                 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
1052                 if (rc != 0)
1053                         goto fail_mac_fcntl_set;
1054         }
1055
1056         port->flow_ctrl = fcntl;
1057         port->flow_ctrl_autoneg = fc_conf->autoneg;
1058
1059         sfc_adapter_unlock(sa);
1060
1061         return 0;
1062
1063 fail_mac_fcntl_set:
1064         sfc_adapter_unlock(sa);
1065 fail_inval:
1066         SFC_ASSERT(rc > 0);
1067         return -rc;
1068 }
1069
1070 static int
1071 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
1072 {
1073         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1074         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1075         boolean_t scatter_enabled;
1076         const char *error;
1077         unsigned int i;
1078
1079         for (i = 0; i < sas->rxq_count; i++) {
1080                 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
1081                         continue;
1082
1083                 scatter_enabled = (sas->rxq_info[i].type_flags &
1084                                    EFX_RXQ_FLAG_SCATTER);
1085
1086                 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
1087                                           encp->enc_rx_prefix_size,
1088                                           scatter_enabled,
1089                                           encp->enc_rx_scatter_max, &error)) {
1090                         sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
1091                                 error);
1092                         return EINVAL;
1093                 }
1094         }
1095
1096         return 0;
1097 }
1098
1099 static int
1100 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
1101 {
1102         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1103         size_t pdu = EFX_MAC_PDU(mtu);
1104         size_t old_pdu;
1105         int rc;
1106
1107         sfc_log_init(sa, "mtu=%u", mtu);
1108
1109         rc = EINVAL;
1110         if (pdu < EFX_MAC_PDU_MIN) {
1111                 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
1112                         (unsigned int)mtu, (unsigned int)pdu,
1113                         EFX_MAC_PDU_MIN);
1114                 goto fail_inval;
1115         }
1116         if (pdu > EFX_MAC_PDU_MAX) {
1117                 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
1118                         (unsigned int)mtu, (unsigned int)pdu,
1119                         (unsigned int)EFX_MAC_PDU_MAX);
1120                 goto fail_inval;
1121         }
1122
1123         sfc_adapter_lock(sa);
1124
1125         rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
1126         if (rc != 0)
1127                 goto fail_check_scatter;
1128
1129         if (pdu != sa->port.pdu) {
1130                 if (sa->state == SFC_ETHDEV_STARTED) {
1131                         sfc_stop(sa);
1132
1133                         old_pdu = sa->port.pdu;
1134                         sa->port.pdu = pdu;
1135                         rc = sfc_start(sa);
1136                         if (rc != 0)
1137                                 goto fail_start;
1138                 } else {
1139                         sa->port.pdu = pdu;
1140                 }
1141         }
1142
1143         sfc_adapter_unlock(sa);
1144
1145         sfc_log_init(sa, "done");
1146         return 0;
1147
1148 fail_start:
1149         sa->port.pdu = old_pdu;
1150         if (sfc_start(sa) != 0)
1151                 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1152                         "PDU max size - port is stopped",
1153                         (unsigned int)pdu, (unsigned int)old_pdu);
1154
1155 fail_check_scatter:
1156         sfc_adapter_unlock(sa);
1157
1158 fail_inval:
1159         sfc_log_init(sa, "failed %d", rc);
1160         SFC_ASSERT(rc > 0);
1161         return -rc;
1162 }
1163 static int
1164 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1165 {
1166         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1167         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1168         struct sfc_port *port = &sa->port;
1169         struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1170         int rc = 0;
1171
1172         sfc_adapter_lock(sa);
1173
1174         if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1175                 goto unlock;
1176
1177         /*
1178          * Copy the address to the device private data so that
1179          * it could be recalled in the case of adapter restart.
1180          */
1181         rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1182
1183         /*
1184          * Neither of the two following checks can return
1185          * an error. The new MAC address is preserved in
1186          * the device private data and can be activated
1187          * on the next port start if the user prevents
1188          * isolated mode from being enabled.
1189          */
1190         if (sfc_sa2shared(sa)->isolated) {
1191                 sfc_warn(sa, "isolated mode is active on the port");
1192                 sfc_warn(sa, "will not set MAC address");
1193                 goto unlock;
1194         }
1195
1196         if (sa->state != SFC_ETHDEV_STARTED) {
1197                 sfc_notice(sa, "the port is not started");
1198                 sfc_notice(sa, "the new MAC address will be set on port start");
1199
1200                 goto unlock;
1201         }
1202
1203         if (encp->enc_allow_set_mac_with_installed_filters) {
1204                 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1205                 if (rc != 0) {
1206                         sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1207                         goto unlock;
1208                 }
1209
1210                 /*
1211                  * Changing the MAC address by means of MCDI request
1212                  * has no effect on received traffic, therefore
1213                  * we also need to update unicast filters
1214                  */
1215                 rc = sfc_set_rx_mode_unchecked(sa);
1216                 if (rc != 0) {
1217                         sfc_err(sa, "cannot set filter (rc = %u)", rc);
1218                         /* Rollback the old address */
1219                         (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1220                         (void)sfc_set_rx_mode_unchecked(sa);
1221                 }
1222         } else {
1223                 sfc_warn(sa, "cannot set MAC address with filters installed");
1224                 sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1225                 sfc_warn(sa, "(some traffic may be dropped)");
1226
1227                 /*
1228                  * Since setting MAC address with filters installed is not
1229                  * allowed on the adapter, the new MAC address will be set
1230                  * by means of adapter restart. sfc_start() shall retrieve
1231                  * the new address from the device private data and set it.
1232                  */
1233                 sfc_stop(sa);
1234                 rc = sfc_start(sa);
1235                 if (rc != 0)
1236                         sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1237         }
1238
1239 unlock:
1240         if (rc != 0)
1241                 rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1242
1243         sfc_adapter_unlock(sa);
1244
1245         SFC_ASSERT(rc >= 0);
1246         return -rc;
1247 }
1248
1249
1250 static int
1251 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1252                 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1253 {
1254         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1255         struct sfc_port *port = &sa->port;
1256         uint8_t *mc_addrs = port->mcast_addrs;
1257         int rc;
1258         unsigned int i;
1259
1260         if (sfc_sa2shared(sa)->isolated) {
1261                 sfc_err(sa, "isolated mode is active on the port");
1262                 sfc_err(sa, "will not set multicast address list");
1263                 return -ENOTSUP;
1264         }
1265
1266         if (mc_addrs == NULL)
1267                 return -ENOBUFS;
1268
1269         if (nb_mc_addr > port->max_mcast_addrs) {
1270                 sfc_err(sa, "too many multicast addresses: %u > %u",
1271                          nb_mc_addr, port->max_mcast_addrs);
1272                 return -EINVAL;
1273         }
1274
1275         for (i = 0; i < nb_mc_addr; ++i) {
1276                 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1277                                  EFX_MAC_ADDR_LEN);
1278                 mc_addrs += EFX_MAC_ADDR_LEN;
1279         }
1280
1281         port->nb_mcast_addrs = nb_mc_addr;
1282
1283         if (sa->state != SFC_ETHDEV_STARTED)
1284                 return 0;
1285
1286         rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1287                                         port->nb_mcast_addrs);
1288         if (rc != 0)
1289                 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1290
1291         SFC_ASSERT(rc >= 0);
1292         return -rc;
1293 }
1294
1295 /*
1296  * The function is used by the secondary process as well. It must not
1297  * use any process-local pointers from the adapter data.
1298  */
1299 static void
1300 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1301                       struct rte_eth_rxq_info *qinfo)
1302 {
1303         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1304         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1305         struct sfc_rxq_info *rxq_info;
1306
1307         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1308
1309         qinfo->mp = rxq_info->refill_mb_pool;
1310         qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1311         qinfo->conf.rx_drop_en = 1;
1312         qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1313         qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1314         if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1315                 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1316                 qinfo->scattered_rx = 1;
1317         }
1318         qinfo->nb_desc = rxq_info->entries;
1319 }
1320
1321 /*
1322  * The function is used by the secondary process as well. It must not
1323  * use any process-local pointers from the adapter data.
1324  */
1325 static void
1326 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1327                       struct rte_eth_txq_info *qinfo)
1328 {
1329         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1330         struct sfc_txq_info *txq_info;
1331
1332         SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count);
1333
1334         txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1335
1336         memset(qinfo, 0, sizeof(*qinfo));
1337
1338         qinfo->conf.offloads = txq_info->offloads;
1339         qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1340         qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1341         qinfo->nb_desc = txq_info->entries;
1342 }
1343
1344 /*
1345  * The function is used by the secondary process as well. It must not
1346  * use any process-local pointers from the adapter data.
1347  */
1348 static uint32_t
1349 sfc_rx_queue_count(void *rx_queue)
1350 {
1351         struct sfc_dp_rxq *dp_rxq = rx_queue;
1352         const struct sfc_dp_rx *dp_rx;
1353         struct sfc_rxq_info *rxq_info;
1354
1355         dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1356         rxq_info = sfc_rxq_info_by_dp_rxq(dp_rxq);
1357
1358         if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1359                 return 0;
1360
1361         return dp_rx->qdesc_npending(dp_rxq);
1362 }
1363
1364 /*
1365  * The function is used by the secondary process as well. It must not
1366  * use any process-local pointers from the adapter data.
1367  */
1368 static int
1369 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1370 {
1371         struct sfc_dp_rxq *dp_rxq = queue;
1372         const struct sfc_dp_rx *dp_rx;
1373
1374         dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1375
1376         return dp_rx->qdesc_status(dp_rxq, offset);
1377 }
1378
1379 /*
1380  * The function is used by the secondary process as well. It must not
1381  * use any process-local pointers from the adapter data.
1382  */
1383 static int
1384 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1385 {
1386         struct sfc_dp_txq *dp_txq = queue;
1387         const struct sfc_dp_tx *dp_tx;
1388
1389         dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1390
1391         return dp_tx->qdesc_status(dp_txq, offset);
1392 }
1393
1394 static int
1395 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1396 {
1397         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1398         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1399         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1400         struct sfc_rxq_info *rxq_info;
1401         sfc_sw_index_t sw_index;
1402         int rc;
1403
1404         sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1405
1406         sfc_adapter_lock(sa);
1407
1408         rc = EINVAL;
1409         if (sa->state != SFC_ETHDEV_STARTED)
1410                 goto fail_not_started;
1411
1412         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1413         if (rxq_info->state != SFC_RXQ_INITIALIZED)
1414                 goto fail_not_setup;
1415
1416         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1417         rc = sfc_rx_qstart(sa, sw_index);
1418         if (rc != 0)
1419                 goto fail_rx_qstart;
1420
1421         rxq_info->deferred_started = B_TRUE;
1422
1423         sfc_adapter_unlock(sa);
1424
1425         return 0;
1426
1427 fail_rx_qstart:
1428 fail_not_setup:
1429 fail_not_started:
1430         sfc_adapter_unlock(sa);
1431         SFC_ASSERT(rc > 0);
1432         return -rc;
1433 }
1434
1435 static int
1436 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1437 {
1438         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1439         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1440         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1441         struct sfc_rxq_info *rxq_info;
1442         sfc_sw_index_t sw_index;
1443
1444         sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1445
1446         sfc_adapter_lock(sa);
1447
1448         sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1449         sfc_rx_qstop(sa, sw_index);
1450
1451         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1452         rxq_info->deferred_started = B_FALSE;
1453
1454         sfc_adapter_unlock(sa);
1455
1456         return 0;
1457 }
1458
1459 static int
1460 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1461 {
1462         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1463         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1464         struct sfc_txq_info *txq_info;
1465         sfc_sw_index_t sw_index;
1466         int rc;
1467
1468         sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1469
1470         sfc_adapter_lock(sa);
1471
1472         rc = EINVAL;
1473         if (sa->state != SFC_ETHDEV_STARTED)
1474                 goto fail_not_started;
1475
1476         txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1477         if (txq_info->state != SFC_TXQ_INITIALIZED)
1478                 goto fail_not_setup;
1479
1480         sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1481         rc = sfc_tx_qstart(sa, sw_index);
1482         if (rc != 0)
1483                 goto fail_tx_qstart;
1484
1485         txq_info->deferred_started = B_TRUE;
1486
1487         sfc_adapter_unlock(sa);
1488         return 0;
1489
1490 fail_tx_qstart:
1491
1492 fail_not_setup:
1493 fail_not_started:
1494         sfc_adapter_unlock(sa);
1495         SFC_ASSERT(rc > 0);
1496         return -rc;
1497 }
1498
1499 static int
1500 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1501 {
1502         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1503         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1504         struct sfc_txq_info *txq_info;
1505         sfc_sw_index_t sw_index;
1506
1507         sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1508
1509         sfc_adapter_lock(sa);
1510
1511         sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1512         sfc_tx_qstop(sa, sw_index);
1513
1514         txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1515         txq_info->deferred_started = B_FALSE;
1516
1517         sfc_adapter_unlock(sa);
1518         return 0;
1519 }
1520
1521 static efx_tunnel_protocol_t
1522 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1523 {
1524         switch (rte_type) {
1525         case RTE_TUNNEL_TYPE_VXLAN:
1526                 return EFX_TUNNEL_PROTOCOL_VXLAN;
1527         case RTE_TUNNEL_TYPE_GENEVE:
1528                 return EFX_TUNNEL_PROTOCOL_GENEVE;
1529         default:
1530                 return EFX_TUNNEL_NPROTOS;
1531         }
1532 }
1533
1534 enum sfc_udp_tunnel_op_e {
1535         SFC_UDP_TUNNEL_ADD_PORT,
1536         SFC_UDP_TUNNEL_DEL_PORT,
1537 };
1538
1539 static int
1540 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1541                       struct rte_eth_udp_tunnel *tunnel_udp,
1542                       enum sfc_udp_tunnel_op_e op)
1543 {
1544         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1545         efx_tunnel_protocol_t tunnel_proto;
1546         int rc;
1547
1548         sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1549                      (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1550                      (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1551                      tunnel_udp->udp_port, tunnel_udp->prot_type);
1552
1553         tunnel_proto =
1554                 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1555         if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1556                 rc = ENOTSUP;
1557                 goto fail_bad_proto;
1558         }
1559
1560         sfc_adapter_lock(sa);
1561
1562         switch (op) {
1563         case SFC_UDP_TUNNEL_ADD_PORT:
1564                 rc = efx_tunnel_config_udp_add(sa->nic,
1565                                                tunnel_udp->udp_port,
1566                                                tunnel_proto);
1567                 break;
1568         case SFC_UDP_TUNNEL_DEL_PORT:
1569                 rc = efx_tunnel_config_udp_remove(sa->nic,
1570                                                   tunnel_udp->udp_port,
1571                                                   tunnel_proto);
1572                 break;
1573         default:
1574                 rc = EINVAL;
1575                 goto fail_bad_op;
1576         }
1577
1578         if (rc != 0)
1579                 goto fail_op;
1580
1581         if (sa->state == SFC_ETHDEV_STARTED) {
1582                 rc = efx_tunnel_reconfigure(sa->nic);
1583                 if (rc == EAGAIN) {
1584                         /*
1585                          * Configuration is accepted by FW and MC reboot
1586                          * is initiated to apply the changes. MC reboot
1587                          * will be handled in a usual way (MC reboot
1588                          * event on management event queue and adapter
1589                          * restart).
1590                          */
1591                         rc = 0;
1592                 } else if (rc != 0) {
1593                         goto fail_reconfigure;
1594                 }
1595         }
1596
1597         sfc_adapter_unlock(sa);
1598         return 0;
1599
1600 fail_reconfigure:
1601         /* Remove/restore entry since the change makes the trouble */
1602         switch (op) {
1603         case SFC_UDP_TUNNEL_ADD_PORT:
1604                 (void)efx_tunnel_config_udp_remove(sa->nic,
1605                                                    tunnel_udp->udp_port,
1606                                                    tunnel_proto);
1607                 break;
1608         case SFC_UDP_TUNNEL_DEL_PORT:
1609                 (void)efx_tunnel_config_udp_add(sa->nic,
1610                                                 tunnel_udp->udp_port,
1611                                                 tunnel_proto);
1612                 break;
1613         }
1614
1615 fail_op:
1616 fail_bad_op:
1617         sfc_adapter_unlock(sa);
1618
1619 fail_bad_proto:
1620         SFC_ASSERT(rc > 0);
1621         return -rc;
1622 }
1623
1624 static int
1625 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1626                             struct rte_eth_udp_tunnel *tunnel_udp)
1627 {
1628         return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1629 }
1630
1631 static int
1632 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1633                             struct rte_eth_udp_tunnel *tunnel_udp)
1634 {
1635         return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1636 }
1637
1638 /*
1639  * The function is used by the secondary process as well. It must not
1640  * use any process-local pointers from the adapter data.
1641  */
1642 static int
1643 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1644                           struct rte_eth_rss_conf *rss_conf)
1645 {
1646         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1647         struct sfc_rss *rss = &sas->rss;
1648
1649         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1650                 return -ENOTSUP;
1651
1652         /*
1653          * Mapping of hash configuration between RTE and EFX is not one-to-one,
1654          * hence, conversion is done here to derive a correct set of ETH_RSS
1655          * flags which corresponds to the active EFX configuration stored
1656          * locally in 'sfc_adapter' and kept up-to-date
1657          */
1658         rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1659         rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1660         if (rss_conf->rss_key != NULL)
1661                 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1662
1663         return 0;
1664 }
1665
1666 static int
1667 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1668                         struct rte_eth_rss_conf *rss_conf)
1669 {
1670         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1671         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1672         unsigned int efx_hash_types;
1673         uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1674         unsigned int n_contexts;
1675         unsigned int mode_i = 0;
1676         unsigned int key_i = 0;
1677         unsigned int i = 0;
1678         int rc = 0;
1679
1680         n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1681
1682         if (sfc_sa2shared(sa)->isolated)
1683                 return -ENOTSUP;
1684
1685         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1686                 sfc_err(sa, "RSS is not available");
1687                 return -ENOTSUP;
1688         }
1689
1690         if (rss->channels == 0) {
1691                 sfc_err(sa, "RSS is not configured");
1692                 return -EINVAL;
1693         }
1694
1695         if ((rss_conf->rss_key != NULL) &&
1696             (rss_conf->rss_key_len != sizeof(rss->key))) {
1697                 sfc_err(sa, "RSS key size is wrong (should be %zu)",
1698                         sizeof(rss->key));
1699                 return -EINVAL;
1700         }
1701
1702         sfc_adapter_lock(sa);
1703
1704         rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1705         if (rc != 0)
1706                 goto fail_rx_hf_rte_to_efx;
1707
1708         for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1709                 rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1710                                            rss->hash_alg, efx_hash_types,
1711                                            B_TRUE);
1712                 if (rc != 0)
1713                         goto fail_scale_mode_set;
1714         }
1715
1716         if (rss_conf->rss_key != NULL) {
1717                 if (sa->state == SFC_ETHDEV_STARTED) {
1718                         for (key_i = 0; key_i < n_contexts; key_i++) {
1719                                 rc = efx_rx_scale_key_set(sa->nic,
1720                                                           contexts[key_i],
1721                                                           rss_conf->rss_key,
1722                                                           sizeof(rss->key));
1723                                 if (rc != 0)
1724                                         goto fail_scale_key_set;
1725                         }
1726                 }
1727
1728                 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1729         }
1730
1731         rss->hash_types = efx_hash_types;
1732
1733         sfc_adapter_unlock(sa);
1734
1735         return 0;
1736
1737 fail_scale_key_set:
1738         for (i = 0; i < key_i; i++) {
1739                 if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1740                                          sizeof(rss->key)) != 0)
1741                         sfc_err(sa, "failed to restore RSS key");
1742         }
1743
1744 fail_scale_mode_set:
1745         for (i = 0; i < mode_i; i++) {
1746                 if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1747                                           EFX_RX_HASHALG_TOEPLITZ,
1748                                           rss->hash_types, B_TRUE) != 0)
1749                         sfc_err(sa, "failed to restore RSS mode");
1750         }
1751
1752 fail_rx_hf_rte_to_efx:
1753         sfc_adapter_unlock(sa);
1754         return -rc;
1755 }
1756
1757 /*
1758  * The function is used by the secondary process as well. It must not
1759  * use any process-local pointers from the adapter data.
1760  */
1761 static int
1762 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1763                        struct rte_eth_rss_reta_entry64 *reta_conf,
1764                        uint16_t reta_size)
1765 {
1766         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1767         struct sfc_rss *rss = &sas->rss;
1768         int entry;
1769
1770         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1771                 return -ENOTSUP;
1772
1773         if (rss->channels == 0)
1774                 return -EINVAL;
1775
1776         if (reta_size != EFX_RSS_TBL_SIZE)
1777                 return -EINVAL;
1778
1779         for (entry = 0; entry < reta_size; entry++) {
1780                 int grp = entry / RTE_RETA_GROUP_SIZE;
1781                 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1782
1783                 if ((reta_conf[grp].mask >> grp_idx) & 1)
1784                         reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1785         }
1786
1787         return 0;
1788 }
1789
1790 static int
1791 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1792                         struct rte_eth_rss_reta_entry64 *reta_conf,
1793                         uint16_t reta_size)
1794 {
1795         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1796         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1797         unsigned int *rss_tbl_new;
1798         uint16_t entry;
1799         int rc = 0;
1800
1801
1802         if (sfc_sa2shared(sa)->isolated)
1803                 return -ENOTSUP;
1804
1805         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1806                 sfc_err(sa, "RSS is not available");
1807                 return -ENOTSUP;
1808         }
1809
1810         if (rss->channels == 0) {
1811                 sfc_err(sa, "RSS is not configured");
1812                 return -EINVAL;
1813         }
1814
1815         if (reta_size != EFX_RSS_TBL_SIZE) {
1816                 sfc_err(sa, "RETA size is wrong (should be %u)",
1817                         EFX_RSS_TBL_SIZE);
1818                 return -EINVAL;
1819         }
1820
1821         rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1822         if (rss_tbl_new == NULL)
1823                 return -ENOMEM;
1824
1825         sfc_adapter_lock(sa);
1826
1827         rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1828
1829         for (entry = 0; entry < reta_size; entry++) {
1830                 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1831                 struct rte_eth_rss_reta_entry64 *grp;
1832
1833                 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1834
1835                 if (grp->mask & (1ull << grp_idx)) {
1836                         if (grp->reta[grp_idx] >= rss->channels) {
1837                                 rc = EINVAL;
1838                                 goto bad_reta_entry;
1839                         }
1840                         rss_tbl_new[entry] = grp->reta[grp_idx];
1841                 }
1842         }
1843
1844         if (sa->state == SFC_ETHDEV_STARTED) {
1845                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1846                                           rss_tbl_new, EFX_RSS_TBL_SIZE);
1847                 if (rc != 0)
1848                         goto fail_scale_tbl_set;
1849         }
1850
1851         rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1852
1853 fail_scale_tbl_set:
1854 bad_reta_entry:
1855         sfc_adapter_unlock(sa);
1856
1857         rte_free(rss_tbl_new);
1858
1859         SFC_ASSERT(rc >= 0);
1860         return -rc;
1861 }
1862
1863 static int
1864 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1865                      const struct rte_flow_ops **ops)
1866 {
1867         *ops = &sfc_flow_ops;
1868         return 0;
1869 }
1870
1871 static int
1872 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1873 {
1874         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1875
1876         /*
1877          * If Rx datapath does not provide callback to check mempool,
1878          * all pools are supported.
1879          */
1880         if (sap->dp_rx->pool_ops_supported == NULL)
1881                 return 1;
1882
1883         return sap->dp_rx->pool_ops_supported(pool);
1884 }
1885
1886 static int
1887 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1888 {
1889         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1890         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1891         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1892         struct sfc_rxq_info *rxq_info;
1893
1894         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1895
1896         return sap->dp_rx->intr_enable(rxq_info->dp);
1897 }
1898
1899 static int
1900 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1901 {
1902         const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1903         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1904         sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1905         struct sfc_rxq_info *rxq_info;
1906
1907         rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1908
1909         return sap->dp_rx->intr_disable(rxq_info->dp);
1910 }
1911
1912 struct sfc_mport_journal_ctx {
1913         struct sfc_adapter              *sa;
1914         uint16_t                        switch_domain_id;
1915         uint32_t                        mcdi_handle;
1916         bool                            controllers_assigned;
1917         efx_pcie_interface_t            *controllers;
1918         size_t                          nb_controllers;
1919 };
1920
1921 static int
1922 sfc_journal_ctx_add_controller(struct sfc_mport_journal_ctx *ctx,
1923                                efx_pcie_interface_t intf)
1924 {
1925         efx_pcie_interface_t *new_controllers;
1926         size_t i, target;
1927         size_t new_size;
1928
1929         if (ctx->controllers == NULL) {
1930                 ctx->controllers = rte_malloc("sfc_controller_mapping",
1931                                               sizeof(ctx->controllers[0]), 0);
1932                 if (ctx->controllers == NULL)
1933                         return ENOMEM;
1934
1935                 ctx->controllers[0] = intf;
1936                 ctx->nb_controllers = 1;
1937
1938                 return 0;
1939         }
1940
1941         for (i = 0; i < ctx->nb_controllers; i++) {
1942                 if (ctx->controllers[i] == intf)
1943                         return 0;
1944                 if (ctx->controllers[i] > intf)
1945                         break;
1946         }
1947         target = i;
1948
1949         ctx->nb_controllers += 1;
1950         new_size = ctx->nb_controllers * sizeof(ctx->controllers[0]);
1951
1952         new_controllers = rte_realloc(ctx->controllers, new_size, 0);
1953         if (new_controllers == NULL) {
1954                 rte_free(ctx->controllers);
1955                 return ENOMEM;
1956         }
1957         ctx->controllers = new_controllers;
1958
1959         for (i = target + 1; i < ctx->nb_controllers; i++)
1960                 ctx->controllers[i] = ctx->controllers[i - 1];
1961
1962         ctx->controllers[target] = intf;
1963
1964         return 0;
1965 }
1966
1967 static efx_rc_t
1968 sfc_process_mport_journal_entry(struct sfc_mport_journal_ctx *ctx,
1969                                 efx_mport_desc_t *mport)
1970 {
1971         struct sfc_mae_switch_port_request req;
1972         efx_mport_sel_t entity_selector;
1973         efx_mport_sel_t ethdev_mport;
1974         uint16_t switch_port_id;
1975         efx_rc_t efx_rc;
1976         int rc;
1977
1978         sfc_dbg(ctx->sa,
1979                 "processing mport id %u (controller %u pf %u vf %u)",
1980                 mport->emd_id.id, mport->emd_vnic.ev_intf,
1981                 mport->emd_vnic.ev_pf, mport->emd_vnic.ev_vf);
1982         efx_mae_mport_invalid(&ethdev_mport);
1983
1984         if (!ctx->controllers_assigned) {
1985                 rc = sfc_journal_ctx_add_controller(ctx,
1986                                                     mport->emd_vnic.ev_intf);
1987                 if (rc != 0)
1988                         return rc;
1989         }
1990
1991         /* Build Mport selector */
1992         efx_rc = efx_mae_mport_by_pcie_mh_function(mport->emd_vnic.ev_intf,
1993                                                 mport->emd_vnic.ev_pf,
1994                                                 mport->emd_vnic.ev_vf,
1995                                                 &entity_selector);
1996         if (efx_rc != 0) {
1997                 sfc_err(ctx->sa, "failed to build entity mport selector for c%upf%uvf%u",
1998                         mport->emd_vnic.ev_intf,
1999                         mport->emd_vnic.ev_pf,
2000                         mport->emd_vnic.ev_vf);
2001                 return efx_rc;
2002         }
2003
2004         rc = sfc_mae_switch_port_id_by_entity(ctx->switch_domain_id,
2005                                               &entity_selector,
2006                                               SFC_MAE_SWITCH_PORT_REPRESENTOR,
2007                                               &switch_port_id);
2008         switch (rc) {
2009         case 0:
2010                 /* Already registered */
2011                 break;
2012         case ENOENT:
2013                 /*
2014                  * No representor has been created for this entity.
2015                  * Create a dummy switch registry entry with an invalid ethdev
2016                  * mport selector. When a corresponding representor is created,
2017                  * this entry will be updated.
2018                  */
2019                 req.type = SFC_MAE_SWITCH_PORT_REPRESENTOR;
2020                 req.entity_mportp = &entity_selector;
2021                 req.ethdev_mportp = &ethdev_mport;
2022                 req.ethdev_port_id = RTE_MAX_ETHPORTS;
2023                 req.port_data.repr.intf = mport->emd_vnic.ev_intf;
2024                 req.port_data.repr.pf = mport->emd_vnic.ev_pf;
2025                 req.port_data.repr.vf = mport->emd_vnic.ev_vf;
2026
2027                 rc = sfc_mae_assign_switch_port(ctx->switch_domain_id,
2028                                                 &req, &switch_port_id);
2029                 if (rc != 0) {
2030                         sfc_err(ctx->sa,
2031                                 "failed to assign MAE switch port for c%upf%uvf%u: %s",
2032                                 mport->emd_vnic.ev_intf,
2033                                 mport->emd_vnic.ev_pf,
2034                                 mport->emd_vnic.ev_vf,
2035                                 rte_strerror(rc));
2036                         return rc;
2037                 }
2038                 break;
2039         default:
2040                 sfc_err(ctx->sa, "failed to find MAE switch port for c%upf%uvf%u: %s",
2041                         mport->emd_vnic.ev_intf,
2042                         mport->emd_vnic.ev_pf,
2043                         mport->emd_vnic.ev_vf,
2044                         rte_strerror(rc));
2045                 return rc;
2046         }
2047
2048         return 0;
2049 }
2050
2051 static efx_rc_t
2052 sfc_process_mport_journal_cb(void *data, efx_mport_desc_t *mport,
2053                              size_t mport_len)
2054 {
2055         struct sfc_mport_journal_ctx *ctx = data;
2056
2057         if (ctx == NULL || ctx->sa == NULL) {
2058                 sfc_err(ctx->sa, "received NULL context or SFC adapter");
2059                 return EINVAL;
2060         }
2061
2062         if (mport_len != sizeof(*mport)) {
2063                 sfc_err(ctx->sa, "actual and expected mport buffer sizes differ");
2064                 return EINVAL;
2065         }
2066
2067         SFC_ASSERT(sfc_adapter_is_locked(ctx->sa));
2068
2069         /*
2070          * If a zombie flag is set, it means the mport has been marked for
2071          * deletion and cannot be used for any new operations. The mport will
2072          * be destroyed completely once all references to it are released.
2073          */
2074         if (mport->emd_zombie) {
2075                 sfc_dbg(ctx->sa, "mport is a zombie, skipping");
2076                 return 0;
2077         }
2078         if (mport->emd_type != EFX_MPORT_TYPE_VNIC) {
2079                 sfc_dbg(ctx->sa, "mport is not a VNIC, skipping");
2080                 return 0;
2081         }
2082         if (mport->emd_vnic.ev_client_type != EFX_MPORT_VNIC_CLIENT_FUNCTION) {
2083                 sfc_dbg(ctx->sa, "mport is not a function, skipping");
2084                 return 0;
2085         }
2086         if (mport->emd_vnic.ev_handle == ctx->mcdi_handle) {
2087                 sfc_dbg(ctx->sa, "mport is this driver instance, skipping");
2088                 return 0;
2089         }
2090
2091         return sfc_process_mport_journal_entry(ctx, mport);
2092 }
2093
2094 static int
2095 sfc_process_mport_journal(struct sfc_adapter *sa)
2096 {
2097         struct sfc_mport_journal_ctx ctx;
2098         const efx_pcie_interface_t *controllers;
2099         size_t nb_controllers;
2100         efx_rc_t efx_rc;
2101         int rc;
2102
2103         memset(&ctx, 0, sizeof(ctx));
2104         ctx.sa = sa;
2105         ctx.switch_domain_id = sa->mae.switch_domain_id;
2106
2107         efx_rc = efx_mcdi_get_own_client_handle(sa->nic, &ctx.mcdi_handle);
2108         if (efx_rc != 0) {
2109                 sfc_err(sa, "failed to get own MCDI handle");
2110                 SFC_ASSERT(efx_rc > 0);
2111                 return efx_rc;
2112         }
2113
2114         rc = sfc_mae_switch_domain_controllers(ctx.switch_domain_id,
2115                                                &controllers, &nb_controllers);
2116         if (rc != 0) {
2117                 sfc_err(sa, "failed to get controller mapping");
2118                 return rc;
2119         }
2120
2121         ctx.controllers_assigned = controllers != NULL;
2122         ctx.controllers = NULL;
2123         ctx.nb_controllers = 0;
2124
2125         efx_rc = efx_mae_read_mport_journal(sa->nic,
2126                                             sfc_process_mport_journal_cb, &ctx);
2127         if (efx_rc != 0) {
2128                 sfc_err(sa, "failed to process MAE mport journal");
2129                 SFC_ASSERT(efx_rc > 0);
2130                 return efx_rc;
2131         }
2132
2133         if (controllers == NULL) {
2134                 rc = sfc_mae_switch_domain_map_controllers(ctx.switch_domain_id,
2135                                                            ctx.controllers,
2136                                                            ctx.nb_controllers);
2137                 if (rc != 0)
2138                         return rc;
2139         }
2140
2141         return 0;
2142 }
2143
2144 static void
2145 sfc_count_representors_cb(enum sfc_mae_switch_port_type type,
2146                           const efx_mport_sel_t *ethdev_mportp __rte_unused,
2147                           uint16_t ethdev_port_id __rte_unused,
2148                           const efx_mport_sel_t *entity_mportp __rte_unused,
2149                           uint16_t switch_port_id __rte_unused,
2150                           union sfc_mae_switch_port_data *port_datap
2151                                 __rte_unused,
2152                           void *user_datap)
2153 {
2154         int *counter = user_datap;
2155
2156         SFC_ASSERT(counter != NULL);
2157
2158         if (type == SFC_MAE_SWITCH_PORT_REPRESENTOR)
2159                 (*counter)++;
2160 }
2161
2162 struct sfc_get_representors_ctx {
2163         struct rte_eth_representor_info *info;
2164         struct sfc_adapter              *sa;
2165         uint16_t                        switch_domain_id;
2166         const efx_pcie_interface_t      *controllers;
2167         size_t                          nb_controllers;
2168 };
2169
2170 static void
2171 sfc_get_representors_cb(enum sfc_mae_switch_port_type type,
2172                         const efx_mport_sel_t *ethdev_mportp __rte_unused,
2173                         uint16_t ethdev_port_id __rte_unused,
2174                         const efx_mport_sel_t *entity_mportp __rte_unused,
2175                         uint16_t switch_port_id,
2176                         union sfc_mae_switch_port_data *port_datap,
2177                         void *user_datap)
2178 {
2179         struct sfc_get_representors_ctx *ctx = user_datap;
2180         struct rte_eth_representor_range *range;
2181         int ret;
2182         int rc;
2183
2184         SFC_ASSERT(ctx != NULL);
2185         SFC_ASSERT(ctx->info != NULL);
2186         SFC_ASSERT(ctx->sa != NULL);
2187
2188         if (type != SFC_MAE_SWITCH_PORT_REPRESENTOR) {
2189                 sfc_dbg(ctx->sa, "not a representor, skipping");
2190                 return;
2191         }
2192         if (ctx->info->nb_ranges >= ctx->info->nb_ranges_alloc) {
2193                 sfc_dbg(ctx->sa, "info structure is full already");
2194                 return;
2195         }
2196
2197         range = &ctx->info->ranges[ctx->info->nb_ranges];
2198         rc = sfc_mae_switch_controller_from_mapping(ctx->controllers,
2199                                                     ctx->nb_controllers,
2200                                                     port_datap->repr.intf,
2201                                                     &range->controller);
2202         if (rc != 0) {
2203                 sfc_err(ctx->sa, "invalid representor controller: %d",
2204                         port_datap->repr.intf);
2205                 range->controller = -1;
2206         }
2207         range->pf = port_datap->repr.pf;
2208         range->id_base = switch_port_id;
2209         range->id_end = switch_port_id;
2210
2211         if (port_datap->repr.vf != EFX_PCI_VF_INVALID) {
2212                 range->type = RTE_ETH_REPRESENTOR_VF;
2213                 range->vf = port_datap->repr.vf;
2214                 ret = snprintf(range->name, RTE_DEV_NAME_MAX_LEN,
2215                                "c%dpf%dvf%d", range->controller, range->pf,
2216                                range->vf);
2217         } else {
2218                 range->type = RTE_ETH_REPRESENTOR_PF;
2219                 ret = snprintf(range->name, RTE_DEV_NAME_MAX_LEN,
2220                          "c%dpf%d", range->controller, range->pf);
2221         }
2222         if (ret >= RTE_DEV_NAME_MAX_LEN) {
2223                 sfc_err(ctx->sa, "representor name has been truncated: %s",
2224                         range->name);
2225         }
2226
2227         ctx->info->nb_ranges++;
2228 }
2229
2230 static int
2231 sfc_representor_info_get(struct rte_eth_dev *dev,
2232                          struct rte_eth_representor_info *info)
2233 {
2234         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2235         struct sfc_get_representors_ctx get_repr_ctx;
2236         const efx_nic_cfg_t *nic_cfg;
2237         uint16_t switch_domain_id;
2238         uint32_t nb_repr;
2239         int controller;
2240         int rc;
2241
2242         sfc_adapter_lock(sa);
2243
2244         if (sa->mae.status != SFC_MAE_STATUS_SUPPORTED) {
2245                 sfc_adapter_unlock(sa);
2246                 return -ENOTSUP;
2247         }
2248
2249         rc = sfc_process_mport_journal(sa);
2250         if (rc != 0) {
2251                 sfc_adapter_unlock(sa);
2252                 SFC_ASSERT(rc > 0);
2253                 return -rc;
2254         }
2255
2256         switch_domain_id = sa->mae.switch_domain_id;
2257
2258         nb_repr = 0;
2259         rc = sfc_mae_switch_ports_iterate(switch_domain_id,
2260                                           sfc_count_representors_cb,
2261                                           &nb_repr);
2262         if (rc != 0) {
2263                 sfc_adapter_unlock(sa);
2264                 SFC_ASSERT(rc > 0);
2265                 return -rc;
2266         }
2267
2268         if (info == NULL) {
2269                 sfc_adapter_unlock(sa);
2270                 return nb_repr;
2271         }
2272
2273         rc = sfc_mae_switch_domain_controllers(switch_domain_id,
2274                                                &get_repr_ctx.controllers,
2275                                                &get_repr_ctx.nb_controllers);
2276         if (rc != 0) {
2277                 sfc_adapter_unlock(sa);
2278                 SFC_ASSERT(rc > 0);
2279                 return -rc;
2280         }
2281
2282         nic_cfg = efx_nic_cfg_get(sa->nic);
2283
2284         rc = sfc_mae_switch_domain_get_controller(switch_domain_id,
2285                                                   nic_cfg->enc_intf,
2286                                                   &controller);
2287         if (rc != 0) {
2288                 sfc_err(sa, "invalid controller: %d", nic_cfg->enc_intf);
2289                 controller = -1;
2290         }
2291
2292         info->controller = controller;
2293         info->pf = nic_cfg->enc_pf;
2294
2295         get_repr_ctx.info = info;
2296         get_repr_ctx.sa = sa;
2297         get_repr_ctx.switch_domain_id = switch_domain_id;
2298         rc = sfc_mae_switch_ports_iterate(switch_domain_id,
2299                                           sfc_get_representors_cb,
2300                                           &get_repr_ctx);
2301         if (rc != 0) {
2302                 sfc_adapter_unlock(sa);
2303                 SFC_ASSERT(rc > 0);
2304                 return -rc;
2305         }
2306
2307         sfc_adapter_unlock(sa);
2308         return nb_repr;
2309 }
2310
2311 static int
2312 sfc_rx_metadata_negotiate(struct rte_eth_dev *dev, uint64_t *features)
2313 {
2314         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2315         uint64_t supported = 0;
2316
2317         sfc_adapter_lock(sa);
2318
2319         if ((sa->priv.dp_rx->features & SFC_DP_RX_FEAT_FLOW_FLAG) != 0)
2320                 supported |= RTE_ETH_RX_METADATA_USER_FLAG;
2321
2322         if ((sa->priv.dp_rx->features & SFC_DP_RX_FEAT_FLOW_MARK) != 0)
2323                 supported |= RTE_ETH_RX_METADATA_USER_MARK;
2324
2325         if (sfc_flow_tunnel_is_supported(sa))
2326                 supported |= RTE_ETH_RX_METADATA_TUNNEL_ID;
2327
2328         sa->negotiated_rx_metadata = supported & *features;
2329         *features = sa->negotiated_rx_metadata;
2330
2331         sfc_adapter_unlock(sa);
2332
2333         return 0;
2334 }
2335
2336 static const struct eth_dev_ops sfc_eth_dev_ops = {
2337         .dev_configure                  = sfc_dev_configure,
2338         .dev_start                      = sfc_dev_start,
2339         .dev_stop                       = sfc_dev_stop,
2340         .dev_set_link_up                = sfc_dev_set_link_up,
2341         .dev_set_link_down              = sfc_dev_set_link_down,
2342         .dev_close                      = sfc_dev_close,
2343         .promiscuous_enable             = sfc_dev_promisc_enable,
2344         .promiscuous_disable            = sfc_dev_promisc_disable,
2345         .allmulticast_enable            = sfc_dev_allmulti_enable,
2346         .allmulticast_disable           = sfc_dev_allmulti_disable,
2347         .link_update                    = sfc_dev_link_update,
2348         .stats_get                      = sfc_stats_get,
2349         .stats_reset                    = sfc_stats_reset,
2350         .xstats_get                     = sfc_xstats_get,
2351         .xstats_reset                   = sfc_stats_reset,
2352         .xstats_get_names               = sfc_xstats_get_names,
2353         .dev_infos_get                  = sfc_dev_infos_get,
2354         .dev_supported_ptypes_get       = sfc_dev_supported_ptypes_get,
2355         .mtu_set                        = sfc_dev_set_mtu,
2356         .rx_queue_start                 = sfc_rx_queue_start,
2357         .rx_queue_stop                  = sfc_rx_queue_stop,
2358         .tx_queue_start                 = sfc_tx_queue_start,
2359         .tx_queue_stop                  = sfc_tx_queue_stop,
2360         .rx_queue_setup                 = sfc_rx_queue_setup,
2361         .rx_queue_release               = sfc_rx_queue_release,
2362         .rx_queue_intr_enable           = sfc_rx_queue_intr_enable,
2363         .rx_queue_intr_disable          = sfc_rx_queue_intr_disable,
2364         .tx_queue_setup                 = sfc_tx_queue_setup,
2365         .tx_queue_release               = sfc_tx_queue_release,
2366         .flow_ctrl_get                  = sfc_flow_ctrl_get,
2367         .flow_ctrl_set                  = sfc_flow_ctrl_set,
2368         .mac_addr_set                   = sfc_mac_addr_set,
2369         .udp_tunnel_port_add            = sfc_dev_udp_tunnel_port_add,
2370         .udp_tunnel_port_del            = sfc_dev_udp_tunnel_port_del,
2371         .reta_update                    = sfc_dev_rss_reta_update,
2372         .reta_query                     = sfc_dev_rss_reta_query,
2373         .rss_hash_update                = sfc_dev_rss_hash_update,
2374         .rss_hash_conf_get              = sfc_dev_rss_hash_conf_get,
2375         .flow_ops_get                   = sfc_dev_flow_ops_get,
2376         .set_mc_addr_list               = sfc_set_mc_addr_list,
2377         .rxq_info_get                   = sfc_rx_queue_info_get,
2378         .txq_info_get                   = sfc_tx_queue_info_get,
2379         .fw_version_get                 = sfc_fw_version_get,
2380         .xstats_get_by_id               = sfc_xstats_get_by_id,
2381         .xstats_get_names_by_id         = sfc_xstats_get_names_by_id,
2382         .pool_ops_supported             = sfc_pool_ops_supported,
2383         .representor_info_get           = sfc_representor_info_get,
2384         .rx_metadata_negotiate          = sfc_rx_metadata_negotiate,
2385 };
2386
2387 struct sfc_ethdev_init_data {
2388         uint16_t                nb_representors;
2389 };
2390
2391 /**
2392  * Duplicate a string in potentially shared memory required for
2393  * multi-process support.
2394  *
2395  * strdup() allocates from process-local heap/memory.
2396  */
2397 static char *
2398 sfc_strdup(const char *str)
2399 {
2400         size_t size;
2401         char *copy;
2402
2403         if (str == NULL)
2404                 return NULL;
2405
2406         size = strlen(str) + 1;
2407         copy = rte_malloc(__func__, size, 0);
2408         if (copy != NULL)
2409                 rte_memcpy(copy, str, size);
2410
2411         return copy;
2412 }
2413
2414 static int
2415 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
2416 {
2417         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2418         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2419         const struct sfc_dp_rx *dp_rx;
2420         const struct sfc_dp_tx *dp_tx;
2421         const efx_nic_cfg_t *encp;
2422         unsigned int avail_caps = 0;
2423         const char *rx_name = NULL;
2424         const char *tx_name = NULL;
2425         int rc;
2426
2427         switch (sa->family) {
2428         case EFX_FAMILY_HUNTINGTON:
2429         case EFX_FAMILY_MEDFORD:
2430         case EFX_FAMILY_MEDFORD2:
2431                 avail_caps |= SFC_DP_HW_FW_CAP_EF10;
2432                 avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
2433                 avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
2434                 break;
2435         case EFX_FAMILY_RIVERHEAD:
2436                 avail_caps |= SFC_DP_HW_FW_CAP_EF100;
2437                 break;
2438         default:
2439                 break;
2440         }
2441
2442         encp = efx_nic_cfg_get(sa->nic);
2443         if (encp->enc_rx_es_super_buffer_supported)
2444                 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
2445
2446         rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
2447                                 sfc_kvarg_string_handler, &rx_name);
2448         if (rc != 0)
2449                 goto fail_kvarg_rx_datapath;
2450
2451         if (rx_name != NULL) {
2452                 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
2453                 if (dp_rx == NULL) {
2454                         sfc_err(sa, "Rx datapath %s not found", rx_name);
2455                         rc = ENOENT;
2456                         goto fail_dp_rx;
2457                 }
2458                 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
2459                         sfc_err(sa,
2460                                 "Insufficient Hw/FW capabilities to use Rx datapath %s",
2461                                 rx_name);
2462                         rc = EINVAL;
2463                         goto fail_dp_rx_caps;
2464                 }
2465         } else {
2466                 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
2467                 if (dp_rx == NULL) {
2468                         sfc_err(sa, "Rx datapath by caps %#x not found",
2469                                 avail_caps);
2470                         rc = ENOENT;
2471                         goto fail_dp_rx;
2472                 }
2473         }
2474
2475         sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
2476         if (sas->dp_rx_name == NULL) {
2477                 rc = ENOMEM;
2478                 goto fail_dp_rx_name;
2479         }
2480
2481         if (strcmp(dp_rx->dp.name, SFC_KVARG_DATAPATH_EF10_ESSB) == 0) {
2482                 /* FLAG and MARK are always available from Rx prefix. */
2483                 sa->negotiated_rx_metadata |= RTE_ETH_RX_METADATA_USER_FLAG;
2484                 sa->negotiated_rx_metadata |= RTE_ETH_RX_METADATA_USER_MARK;
2485         }
2486
2487         sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
2488
2489         rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
2490                                 sfc_kvarg_string_handler, &tx_name);
2491         if (rc != 0)
2492                 goto fail_kvarg_tx_datapath;
2493
2494         if (tx_name != NULL) {
2495                 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
2496                 if (dp_tx == NULL) {
2497                         sfc_err(sa, "Tx datapath %s not found", tx_name);
2498                         rc = ENOENT;
2499                         goto fail_dp_tx;
2500                 }
2501                 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
2502                         sfc_err(sa,
2503                                 "Insufficient Hw/FW capabilities to use Tx datapath %s",
2504                                 tx_name);
2505                         rc = EINVAL;
2506                         goto fail_dp_tx_caps;
2507                 }
2508         } else {
2509                 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
2510                 if (dp_tx == NULL) {
2511                         sfc_err(sa, "Tx datapath by caps %#x not found",
2512                                 avail_caps);
2513                         rc = ENOENT;
2514                         goto fail_dp_tx;
2515                 }
2516         }
2517
2518         sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2519         if (sas->dp_tx_name == NULL) {
2520                 rc = ENOMEM;
2521                 goto fail_dp_tx_name;
2522         }
2523
2524         sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2525
2526         sa->priv.dp_rx = dp_rx;
2527         sa->priv.dp_tx = dp_tx;
2528
2529         dev->rx_pkt_burst = dp_rx->pkt_burst;
2530         dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2531         dev->tx_pkt_burst = dp_tx->pkt_burst;
2532
2533         dev->rx_queue_count = sfc_rx_queue_count;
2534         dev->rx_descriptor_status = sfc_rx_descriptor_status;
2535         dev->tx_descriptor_status = sfc_tx_descriptor_status;
2536         dev->dev_ops = &sfc_eth_dev_ops;
2537
2538         return 0;
2539
2540 fail_dp_tx_name:
2541 fail_dp_tx_caps:
2542 fail_dp_tx:
2543 fail_kvarg_tx_datapath:
2544         rte_free(sas->dp_rx_name);
2545         sas->dp_rx_name = NULL;
2546
2547 fail_dp_rx_name:
2548 fail_dp_rx_caps:
2549 fail_dp_rx:
2550 fail_kvarg_rx_datapath:
2551         return rc;
2552 }
2553
2554 static void
2555 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2556 {
2557         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2558         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2559
2560         dev->dev_ops = NULL;
2561         dev->tx_pkt_prepare = NULL;
2562         dev->rx_pkt_burst = NULL;
2563         dev->tx_pkt_burst = NULL;
2564
2565         rte_free(sas->dp_tx_name);
2566         sas->dp_tx_name = NULL;
2567         sa->priv.dp_tx = NULL;
2568
2569         rte_free(sas->dp_rx_name);
2570         sas->dp_rx_name = NULL;
2571         sa->priv.dp_rx = NULL;
2572 }
2573
2574 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2575         .dev_supported_ptypes_get       = sfc_dev_supported_ptypes_get,
2576         .reta_query                     = sfc_dev_rss_reta_query,
2577         .rss_hash_conf_get              = sfc_dev_rss_hash_conf_get,
2578         .rxq_info_get                   = sfc_rx_queue_info_get,
2579         .txq_info_get                   = sfc_tx_queue_info_get,
2580 };
2581
2582 static int
2583 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2584 {
2585         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2586         struct sfc_adapter_priv *sap;
2587         const struct sfc_dp_rx *dp_rx;
2588         const struct sfc_dp_tx *dp_tx;
2589         int rc;
2590
2591         /*
2592          * Allocate process private data from heap, since it should not
2593          * be located in shared memory allocated using rte_malloc() API.
2594          */
2595         sap = calloc(1, sizeof(*sap));
2596         if (sap == NULL) {
2597                 rc = ENOMEM;
2598                 goto fail_alloc_priv;
2599         }
2600
2601         sap->logtype_main = logtype_main;
2602
2603         dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2604         if (dp_rx == NULL) {
2605                 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2606                         "cannot find %s Rx datapath", sas->dp_rx_name);
2607                 rc = ENOENT;
2608                 goto fail_dp_rx;
2609         }
2610         if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2611                 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2612                         "%s Rx datapath does not support multi-process",
2613                         sas->dp_rx_name);
2614                 rc = EINVAL;
2615                 goto fail_dp_rx_multi_process;
2616         }
2617
2618         dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2619         if (dp_tx == NULL) {
2620                 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2621                         "cannot find %s Tx datapath", sas->dp_tx_name);
2622                 rc = ENOENT;
2623                 goto fail_dp_tx;
2624         }
2625         if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2626                 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2627                         "%s Tx datapath does not support multi-process",
2628                         sas->dp_tx_name);
2629                 rc = EINVAL;
2630                 goto fail_dp_tx_multi_process;
2631         }
2632
2633         sap->dp_rx = dp_rx;
2634         sap->dp_tx = dp_tx;
2635
2636         dev->process_private = sap;
2637         dev->rx_pkt_burst = dp_rx->pkt_burst;
2638         dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2639         dev->tx_pkt_burst = dp_tx->pkt_burst;
2640         dev->rx_queue_count = sfc_rx_queue_count;
2641         dev->rx_descriptor_status = sfc_rx_descriptor_status;
2642         dev->tx_descriptor_status = sfc_tx_descriptor_status;
2643         dev->dev_ops = &sfc_eth_dev_secondary_ops;
2644
2645         return 0;
2646
2647 fail_dp_tx_multi_process:
2648 fail_dp_tx:
2649 fail_dp_rx_multi_process:
2650 fail_dp_rx:
2651         free(sap);
2652
2653 fail_alloc_priv:
2654         return rc;
2655 }
2656
2657 static void
2658 sfc_register_dp(void)
2659 {
2660         /* Register once */
2661         if (TAILQ_EMPTY(&sfc_dp_head)) {
2662                 /* Prefer EF10 datapath */
2663                 sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2664                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2665                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2666                 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2667
2668                 sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2669                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2670                 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2671                 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2672         }
2673 }
2674
2675 static int
2676 sfc_parse_switch_mode(struct sfc_adapter *sa, bool has_representors)
2677 {
2678         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
2679         const char *switch_mode = NULL;
2680         int rc;
2681
2682         sfc_log_init(sa, "entry");
2683
2684         rc = sfc_kvargs_process(sa, SFC_KVARG_SWITCH_MODE,
2685                                 sfc_kvarg_string_handler, &switch_mode);
2686         if (rc != 0)
2687                 goto fail_kvargs;
2688
2689         if (switch_mode == NULL) {
2690                 sa->switchdev = encp->enc_mae_supported &&
2691                                 (!encp->enc_datapath_cap_evb ||
2692                                  has_representors);
2693         } else if (strcasecmp(switch_mode, SFC_KVARG_SWITCH_MODE_LEGACY) == 0) {
2694                 sa->switchdev = false;
2695         } else if (strcasecmp(switch_mode,
2696                               SFC_KVARG_SWITCH_MODE_SWITCHDEV) == 0) {
2697                 sa->switchdev = true;
2698         } else {
2699                 sfc_err(sa, "invalid switch mode device argument '%s'",
2700                         switch_mode);
2701                 rc = EINVAL;
2702                 goto fail_mode;
2703         }
2704
2705         sfc_log_init(sa, "done");
2706
2707         return 0;
2708
2709 fail_mode:
2710 fail_kvargs:
2711         sfc_log_init(sa, "failed: %s", rte_strerror(rc));
2712
2713         return rc;
2714 }
2715
2716 static int
2717 sfc_eth_dev_init(struct rte_eth_dev *dev, void *init_params)
2718 {
2719         struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2720         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2721         struct sfc_ethdev_init_data *init_data = init_params;
2722         uint32_t logtype_main;
2723         struct sfc_adapter *sa;
2724         int rc;
2725         const efx_nic_cfg_t *encp;
2726         const struct rte_ether_addr *from;
2727         int ret;
2728
2729         if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
2730                         SFC_EFX_DEV_CLASS_NET) {
2731                 SFC_GENERIC_LOG(DEBUG,
2732                         "Incompatible device class: skip probing, should be probed by other sfc driver.");
2733                 return 1;
2734         }
2735
2736         rc = sfc_dp_mport_register();
2737         if (rc != 0)
2738                 return rc;
2739
2740         sfc_register_dp();
2741
2742         logtype_main = sfc_register_logtype(&pci_dev->addr,
2743                                             SFC_LOGTYPE_MAIN_STR,
2744                                             RTE_LOG_NOTICE);
2745
2746         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2747                 return -sfc_eth_dev_secondary_init(dev, logtype_main);
2748
2749         /* Required for logging */
2750         ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2751                         "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2752                         pci_dev->addr.domain, pci_dev->addr.bus,
2753                         pci_dev->addr.devid, pci_dev->addr.function,
2754                         dev->data->port_id);
2755         if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2756                 SFC_GENERIC_LOG(ERR,
2757                         "reserved log prefix is too short for " PCI_PRI_FMT,
2758                         pci_dev->addr.domain, pci_dev->addr.bus,
2759                         pci_dev->addr.devid, pci_dev->addr.function);
2760                 return -EINVAL;
2761         }
2762         sas->pci_addr = pci_dev->addr;
2763         sas->port_id = dev->data->port_id;
2764
2765         /*
2766          * Allocate process private data from heap, since it should not
2767          * be located in shared memory allocated using rte_malloc() API.
2768          */
2769         sa = calloc(1, sizeof(*sa));
2770         if (sa == NULL) {
2771                 rc = ENOMEM;
2772                 goto fail_alloc_sa;
2773         }
2774
2775         dev->process_private = sa;
2776
2777         /* Required for logging */
2778         sa->priv.shared = sas;
2779         sa->priv.logtype_main = logtype_main;
2780
2781         sa->eth_dev = dev;
2782
2783         /* Copy PCI device info to the dev->data */
2784         rte_eth_copy_pci_info(dev, pci_dev);
2785         dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2786
2787         rc = sfc_kvargs_parse(sa);
2788         if (rc != 0)
2789                 goto fail_kvargs_parse;
2790
2791         sfc_log_init(sa, "entry");
2792
2793         dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2794         if (dev->data->mac_addrs == NULL) {
2795                 rc = ENOMEM;
2796                 goto fail_mac_addrs;
2797         }
2798
2799         sfc_adapter_lock_init(sa);
2800         sfc_adapter_lock(sa);
2801
2802         sfc_log_init(sa, "probing");
2803         rc = sfc_probe(sa);
2804         if (rc != 0)
2805                 goto fail_probe;
2806
2807         /*
2808          * Selecting a default switch mode requires the NIC to be probed and
2809          * to have its capabilities filled in.
2810          */
2811         rc = sfc_parse_switch_mode(sa, init_data->nb_representors > 0);
2812         if (rc != 0)
2813                 goto fail_switch_mode;
2814
2815         sfc_log_init(sa, "set device ops");
2816         rc = sfc_eth_dev_set_ops(dev);
2817         if (rc != 0)
2818                 goto fail_set_ops;
2819
2820         sfc_log_init(sa, "attaching");
2821         rc = sfc_attach(sa);
2822         if (rc != 0)
2823                 goto fail_attach;
2824
2825         if (sa->switchdev && sa->mae.status != SFC_MAE_STATUS_SUPPORTED) {
2826                 sfc_err(sa,
2827                         "failed to enable switchdev mode without MAE support");
2828                 rc = ENOTSUP;
2829                 goto fail_switchdev_no_mae;
2830         }
2831
2832         encp = efx_nic_cfg_get(sa->nic);
2833
2834         /*
2835          * The arguments are really reverse order in comparison to
2836          * Linux kernel. Copy from NIC config to Ethernet device data.
2837          */
2838         from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2839         rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2840
2841         sfc_adapter_unlock(sa);
2842
2843         sfc_log_init(sa, "done");
2844         return 0;
2845
2846 fail_switchdev_no_mae:
2847         sfc_detach(sa);
2848
2849 fail_attach:
2850         sfc_eth_dev_clear_ops(dev);
2851
2852 fail_set_ops:
2853 fail_switch_mode:
2854         sfc_unprobe(sa);
2855
2856 fail_probe:
2857         sfc_adapter_unlock(sa);
2858         sfc_adapter_lock_fini(sa);
2859         rte_free(dev->data->mac_addrs);
2860         dev->data->mac_addrs = NULL;
2861
2862 fail_mac_addrs:
2863         sfc_kvargs_cleanup(sa);
2864
2865 fail_kvargs_parse:
2866         sfc_log_init(sa, "failed %d", rc);
2867         dev->process_private = NULL;
2868         free(sa);
2869
2870 fail_alloc_sa:
2871         SFC_ASSERT(rc > 0);
2872         return -rc;
2873 }
2874
2875 static int
2876 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2877 {
2878         sfc_dev_close(dev);
2879
2880         return 0;
2881 }
2882
2883 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2884         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2885         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2886         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2887         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2888         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2889         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2890         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2891         { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2892         { RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2893         { .vendor_id = 0 /* sentinel */ }
2894 };
2895
2896 static int
2897 sfc_parse_rte_devargs(const char *args, struct rte_eth_devargs *devargs)
2898 {
2899         struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
2900         int rc;
2901
2902         if (args != NULL) {
2903                 rc = rte_eth_devargs_parse(args, &eth_da);
2904                 if (rc != 0) {
2905                         SFC_GENERIC_LOG(ERR,
2906                                         "Failed to parse generic devargs '%s'",
2907                                         args);
2908                         return rc;
2909                 }
2910         }
2911
2912         *devargs = eth_da;
2913
2914         return 0;
2915 }
2916
2917 static int
2918 sfc_eth_dev_find_or_create(struct rte_pci_device *pci_dev,
2919                            struct sfc_ethdev_init_data *init_data,
2920                            struct rte_eth_dev **devp,
2921                            bool *dev_created)
2922 {
2923         struct rte_eth_dev *dev;
2924         bool created = false;
2925         int rc;
2926
2927         dev = rte_eth_dev_allocated(pci_dev->device.name);
2928         if (dev == NULL) {
2929                 rc = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
2930                                         sizeof(struct sfc_adapter_shared),
2931                                         eth_dev_pci_specific_init, pci_dev,
2932                                         sfc_eth_dev_init, init_data);
2933                 if (rc != 0) {
2934                         SFC_GENERIC_LOG(ERR, "Failed to create sfc ethdev '%s'",
2935                                         pci_dev->device.name);
2936                         return rc;
2937                 }
2938
2939                 created = true;
2940
2941                 dev = rte_eth_dev_allocated(pci_dev->device.name);
2942                 if (dev == NULL) {
2943                         SFC_GENERIC_LOG(ERR,
2944                                 "Failed to find allocated sfc ethdev '%s'",
2945                                 pci_dev->device.name);
2946                         return -ENODEV;
2947                 }
2948         }
2949
2950         *devp = dev;
2951         *dev_created = created;
2952
2953         return 0;
2954 }
2955
2956 static int
2957 sfc_eth_dev_create_repr(struct sfc_adapter *sa,
2958                         efx_pcie_interface_t controller,
2959                         uint16_t port,
2960                         uint16_t repr_port,
2961                         enum rte_eth_representor_type type)
2962 {
2963         struct sfc_repr_entity_info entity;
2964         efx_mport_sel_t mport_sel;
2965         int rc;
2966
2967         switch (type) {
2968         case RTE_ETH_REPRESENTOR_NONE:
2969                 return 0;
2970         case RTE_ETH_REPRESENTOR_VF:
2971         case RTE_ETH_REPRESENTOR_PF:
2972                 break;
2973         case RTE_ETH_REPRESENTOR_SF:
2974                 sfc_err(sa, "SF representors are not supported");
2975                 return ENOTSUP;
2976         default:
2977                 sfc_err(sa, "unknown representor type: %d", type);
2978                 return ENOTSUP;
2979         }
2980
2981         rc = efx_mae_mport_by_pcie_mh_function(controller,
2982                                                port,
2983                                                repr_port,
2984                                                &mport_sel);
2985         if (rc != 0) {
2986                 sfc_err(sa,
2987                         "failed to get m-port selector for controller %u port %u repr_port %u: %s",
2988                         controller, port, repr_port, rte_strerror(-rc));
2989                 return rc;
2990         }
2991
2992         memset(&entity, 0, sizeof(entity));
2993         entity.type = type;
2994         entity.intf = controller;
2995         entity.pf = port;
2996         entity.vf = repr_port;
2997
2998         rc = sfc_repr_create(sa->eth_dev, &entity, sa->mae.switch_domain_id,
2999                              &mport_sel);
3000         if (rc != 0) {
3001                 sfc_err(sa,
3002                         "failed to create representor for controller %u port %u repr_port %u: %s",
3003                         controller, port, repr_port, rte_strerror(-rc));
3004                 return rc;
3005         }
3006
3007         return 0;
3008 }
3009
3010 static int
3011 sfc_eth_dev_create_repr_port(struct sfc_adapter *sa,
3012                              const struct rte_eth_devargs *eth_da,
3013                              efx_pcie_interface_t controller,
3014                              uint16_t port)
3015 {
3016         int first_error = 0;
3017         uint16_t i;
3018         int rc;
3019
3020         if (eth_da->type == RTE_ETH_REPRESENTOR_PF) {
3021                 return sfc_eth_dev_create_repr(sa, controller, port,
3022                                                EFX_PCI_VF_INVALID,
3023                                                eth_da->type);
3024         }
3025
3026         for (i = 0; i < eth_da->nb_representor_ports; i++) {
3027                 rc = sfc_eth_dev_create_repr(sa, controller, port,
3028                                              eth_da->representor_ports[i],
3029                                              eth_da->type);
3030                 if (rc != 0 && first_error == 0)
3031                         first_error = rc;
3032         }
3033
3034         return first_error;
3035 }
3036
3037 static int
3038 sfc_eth_dev_create_repr_controller(struct sfc_adapter *sa,
3039                                    const struct rte_eth_devargs *eth_da,
3040                                    efx_pcie_interface_t controller)
3041 {
3042         const efx_nic_cfg_t *encp;
3043         int first_error = 0;
3044         uint16_t default_port;
3045         uint16_t i;
3046         int rc;
3047
3048         if (eth_da->nb_ports == 0) {
3049                 encp = efx_nic_cfg_get(sa->nic);
3050                 default_port = encp->enc_intf == controller ? encp->enc_pf : 0;
3051                 return sfc_eth_dev_create_repr_port(sa, eth_da, controller,
3052                                                     default_port);
3053         }
3054
3055         for (i = 0; i < eth_da->nb_ports; i++) {
3056                 rc = sfc_eth_dev_create_repr_port(sa, eth_da, controller,
3057                                                   eth_da->ports[i]);
3058                 if (rc != 0 && first_error == 0)
3059                         first_error = rc;
3060         }
3061
3062         return first_error;
3063 }
3064
3065 static int
3066 sfc_eth_dev_create_representors(struct rte_eth_dev *dev,
3067                                 const struct rte_eth_devargs *eth_da)
3068 {
3069         efx_pcie_interface_t intf;
3070         const efx_nic_cfg_t *encp;
3071         struct sfc_adapter *sa;
3072         uint16_t switch_domain_id;
3073         uint16_t i;
3074         int rc;
3075
3076         sa = sfc_adapter_by_eth_dev(dev);
3077         switch_domain_id = sa->mae.switch_domain_id;
3078
3079         switch (eth_da->type) {
3080         case RTE_ETH_REPRESENTOR_NONE:
3081                 return 0;
3082         case RTE_ETH_REPRESENTOR_PF:
3083         case RTE_ETH_REPRESENTOR_VF:
3084                 break;
3085         case RTE_ETH_REPRESENTOR_SF:
3086                 sfc_err(sa, "SF representors are not supported");
3087                 return -ENOTSUP;
3088         default:
3089                 sfc_err(sa, "unknown representor type: %d",
3090                         eth_da->type);
3091                 return -ENOTSUP;
3092         }
3093
3094         if (!sa->switchdev) {
3095                 sfc_err(sa, "cannot create representors in non-switchdev mode");
3096                 return -EINVAL;
3097         }
3098
3099         if (!sfc_repr_available(sfc_sa2shared(sa))) {
3100                 sfc_err(sa, "cannot create representors: unsupported");
3101
3102                 return -ENOTSUP;
3103         }
3104
3105         /*
3106          * This is needed to construct the DPDK controller -> EFX interface
3107          * mapping.
3108          */
3109         sfc_adapter_lock(sa);
3110         rc = sfc_process_mport_journal(sa);
3111         sfc_adapter_unlock(sa);
3112         if (rc != 0) {
3113                 SFC_ASSERT(rc > 0);
3114                 return -rc;
3115         }
3116
3117         if (eth_da->nb_mh_controllers > 0) {
3118                 for (i = 0; i < eth_da->nb_mh_controllers; i++) {
3119                         rc = sfc_mae_switch_domain_get_intf(switch_domain_id,
3120                                                 eth_da->mh_controllers[i],
3121                                                 &intf);
3122                         if (rc != 0) {
3123                                 sfc_err(sa, "failed to get representor");
3124                                 continue;
3125                         }
3126                         sfc_eth_dev_create_repr_controller(sa, eth_da, intf);
3127                 }
3128         } else {
3129                 encp = efx_nic_cfg_get(sa->nic);
3130                 sfc_eth_dev_create_repr_controller(sa, eth_da, encp->enc_intf);
3131         }
3132
3133         return 0;
3134 }
3135
3136 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3137         struct rte_pci_device *pci_dev)
3138 {
3139         struct sfc_ethdev_init_data init_data;
3140         struct rte_eth_devargs eth_da;
3141         struct rte_eth_dev *dev;
3142         bool dev_created;
3143         int rc;
3144
3145         if (pci_dev->device.devargs != NULL) {
3146                 rc = sfc_parse_rte_devargs(pci_dev->device.devargs->args,
3147                                            &eth_da);
3148                 if (rc != 0)
3149                         return rc;
3150         } else {
3151                 memset(&eth_da, 0, sizeof(eth_da));
3152         }
3153
3154         /* If no VF representors specified, check for PF ones */
3155         if (eth_da.nb_representor_ports > 0)
3156                 init_data.nb_representors = eth_da.nb_representor_ports;
3157         else
3158                 init_data.nb_representors = eth_da.nb_ports;
3159
3160         if (init_data.nb_representors > 0 &&
3161             rte_eal_process_type() != RTE_PROC_PRIMARY) {
3162                 SFC_GENERIC_LOG(ERR,
3163                         "Create representors from secondary process not supported, dev '%s'",
3164                         pci_dev->device.name);
3165                 return -ENOTSUP;
3166         }
3167
3168         /*
3169          * Driver supports RTE_PCI_DRV_PROBE_AGAIN. Hence create device only
3170          * if it does not already exist. Re-probing an existing device is
3171          * expected to allow additional representors to be configured.
3172          */
3173         rc = sfc_eth_dev_find_or_create(pci_dev, &init_data, &dev,
3174                                         &dev_created);
3175         if (rc != 0)
3176                 return rc;
3177
3178         rc = sfc_eth_dev_create_representors(dev, &eth_da);
3179         if (rc != 0) {
3180                 if (dev_created)
3181                         (void)rte_eth_dev_destroy(dev, sfc_eth_dev_uninit);
3182
3183                 return rc;
3184         }
3185
3186         return 0;
3187 }
3188
3189 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
3190 {
3191         return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
3192 }
3193
3194 static struct rte_pci_driver sfc_efx_pmd = {
3195         .id_table = pci_id_sfc_efx_map,
3196         .drv_flags =
3197                 RTE_PCI_DRV_INTR_LSC |
3198                 RTE_PCI_DRV_NEED_MAPPING |
3199                 RTE_PCI_DRV_PROBE_AGAIN,
3200         .probe = sfc_eth_dev_pci_probe,
3201         .remove = sfc_eth_dev_pci_remove,
3202 };
3203
3204 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
3205 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
3206 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
3207 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
3208         SFC_KVARG_SWITCH_MODE "=" SFC_KVARG_VALUES_SWITCH_MODE " "
3209         SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
3210         SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
3211         SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
3212         SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
3213         SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
3214         SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
3215
3216 RTE_INIT(sfc_driver_register_logtype)
3217 {
3218         int ret;
3219
3220         ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
3221                                                    RTE_LOG_NOTICE);
3222         sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
3223 }