ethdev: make driver-only headers private
[dpdk.git] / drivers / net / sfc / sfc_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2017-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_byteorder.h>
11 #include <rte_tailq.h>
12 #include <rte_common.h>
13 #include <ethdev_driver.h>
14 #include <rte_ether.h>
15 #include <rte_flow.h>
16 #include <rte_flow_driver.h>
17
18 #include "efx.h"
19
20 #include "sfc.h"
21 #include "sfc_debug.h"
22 #include "sfc_rx.h"
23 #include "sfc_filter.h"
24 #include "sfc_flow.h"
25 #include "sfc_log.h"
26 #include "sfc_dp_rx.h"
27
28 struct sfc_flow_ops_by_spec {
29         sfc_flow_parse_cb_t     *parse;
30         sfc_flow_verify_cb_t    *verify;
31         sfc_flow_cleanup_cb_t   *cleanup;
32         sfc_flow_insert_cb_t    *insert;
33         sfc_flow_remove_cb_t    *remove;
34 };
35
36 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter;
37 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_mae;
38 static sfc_flow_insert_cb_t sfc_flow_filter_insert;
39 static sfc_flow_remove_cb_t sfc_flow_filter_remove;
40
41 static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = {
42         .parse = sfc_flow_parse_rte_to_filter,
43         .verify = NULL,
44         .cleanup = NULL,
45         .insert = sfc_flow_filter_insert,
46         .remove = sfc_flow_filter_remove,
47 };
48
49 static const struct sfc_flow_ops_by_spec sfc_flow_ops_mae = {
50         .parse = sfc_flow_parse_rte_to_mae,
51         .verify = sfc_mae_flow_verify,
52         .cleanup = sfc_mae_flow_cleanup,
53         .insert = sfc_mae_flow_insert,
54         .remove = sfc_mae_flow_remove,
55 };
56
57 static const struct sfc_flow_ops_by_spec *
58 sfc_flow_get_ops_by_spec(struct rte_flow *flow)
59 {
60         struct sfc_flow_spec *spec = &flow->spec;
61         const struct sfc_flow_ops_by_spec *ops = NULL;
62
63         switch (spec->type) {
64         case SFC_FLOW_SPEC_FILTER:
65                 ops = &sfc_flow_ops_filter;
66                 break;
67         case SFC_FLOW_SPEC_MAE:
68                 ops = &sfc_flow_ops_mae;
69                 break;
70         default:
71                 SFC_ASSERT(false);
72                 break;
73         }
74
75         return ops;
76 }
77
78 /*
79  * Currently, filter-based (VNIC) flow API is implemented in such a manner
80  * that each flow rule is converted to one or more hardware filters.
81  * All elements of flow rule (attributes, pattern items, actions)
82  * correspond to one or more fields in the efx_filter_spec_s structure
83  * that is responsible for the hardware filter.
84  * If some required field is unset in the flow rule, then a handful
85  * of filter copies will be created to cover all possible values
86  * of such a field.
87  */
88
89 static sfc_flow_item_parse sfc_flow_parse_void;
90 static sfc_flow_item_parse sfc_flow_parse_eth;
91 static sfc_flow_item_parse sfc_flow_parse_vlan;
92 static sfc_flow_item_parse sfc_flow_parse_ipv4;
93 static sfc_flow_item_parse sfc_flow_parse_ipv6;
94 static sfc_flow_item_parse sfc_flow_parse_tcp;
95 static sfc_flow_item_parse sfc_flow_parse_udp;
96 static sfc_flow_item_parse sfc_flow_parse_vxlan;
97 static sfc_flow_item_parse sfc_flow_parse_geneve;
98 static sfc_flow_item_parse sfc_flow_parse_nvgre;
99
100 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec,
101                                      unsigned int filters_count_for_one_val,
102                                      struct rte_flow_error *error);
103
104 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match,
105                                         efx_filter_spec_t *spec,
106                                         struct sfc_filter *filter);
107
108 struct sfc_flow_copy_flag {
109         /* EFX filter specification match flag */
110         efx_filter_match_flags_t flag;
111         /* Number of values of corresponding field */
112         unsigned int vals_count;
113         /* Function to set values in specifications */
114         sfc_flow_spec_set_vals *set_vals;
115         /*
116          * Function to check that the specification is suitable
117          * for adding this match flag
118          */
119         sfc_flow_spec_check *spec_check;
120 };
121
122 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags;
123 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags;
124 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes;
125 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags;
126 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags;
127 static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag;
128 static sfc_flow_spec_check sfc_flow_check_outer_vid_flag;
129
130 static boolean_t
131 sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
132 {
133         uint8_t sum = 0;
134         unsigned int i;
135
136         for (i = 0; i < size; i++)
137                 sum |= buf[i];
138
139         return (sum == 0) ? B_TRUE : B_FALSE;
140 }
141
142 /*
143  * Validate item and prepare structures spec and mask for parsing
144  */
145 int
146 sfc_flow_parse_init(const struct rte_flow_item *item,
147                     const void **spec_ptr,
148                     const void **mask_ptr,
149                     const void *supp_mask,
150                     const void *def_mask,
151                     unsigned int size,
152                     struct rte_flow_error *error)
153 {
154         const uint8_t *spec;
155         const uint8_t *mask;
156         const uint8_t *last;
157         uint8_t supp;
158         unsigned int i;
159
160         if (item == NULL) {
161                 rte_flow_error_set(error, EINVAL,
162                                    RTE_FLOW_ERROR_TYPE_ITEM, NULL,
163                                    "NULL item");
164                 return -rte_errno;
165         }
166
167         if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
168                 rte_flow_error_set(error, EINVAL,
169                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
170                                    "Mask or last is set without spec");
171                 return -rte_errno;
172         }
173
174         /*
175          * If "mask" is not set, default mask is used,
176          * but if default mask is NULL, "mask" should be set
177          */
178         if (item->mask == NULL) {
179                 if (def_mask == NULL) {
180                         rte_flow_error_set(error, EINVAL,
181                                 RTE_FLOW_ERROR_TYPE_ITEM, NULL,
182                                 "Mask should be specified");
183                         return -rte_errno;
184                 }
185
186                 mask = def_mask;
187         } else {
188                 mask = item->mask;
189         }
190
191         spec = item->spec;
192         last = item->last;
193
194         if (spec == NULL)
195                 goto exit;
196
197         /*
198          * If field values in "last" are either 0 or equal to the corresponding
199          * values in "spec" then they are ignored
200          */
201         if (last != NULL &&
202             !sfc_flow_is_zero(last, size) &&
203             memcmp(last, spec, size) != 0) {
204                 rte_flow_error_set(error, ENOTSUP,
205                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
206                                    "Ranging is not supported");
207                 return -rte_errno;
208         }
209
210         if (supp_mask == NULL) {
211                 rte_flow_error_set(error, EINVAL,
212                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
213                         "Supported mask for item should be specified");
214                 return -rte_errno;
215         }
216
217         /* Check that mask does not ask for more match than supp_mask */
218         for (i = 0; i < size; i++) {
219                 supp = ((const uint8_t *)supp_mask)[i];
220
221                 if (~supp & mask[i]) {
222                         rte_flow_error_set(error, ENOTSUP,
223                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
224                                            "Item's field is not supported");
225                         return -rte_errno;
226                 }
227         }
228
229 exit:
230         *spec_ptr = spec;
231         *mask_ptr = mask;
232         return 0;
233 }
234
235 /*
236  * Protocol parsers.
237  * Masking is not supported, so masks in items should be either
238  * full or empty (zeroed) and set only for supported fields which
239  * are specified in the supp_mask.
240  */
241
242 static int
243 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
244                     __rte_unused struct sfc_flow_parse_ctx *parse_ctx,
245                     __rte_unused struct rte_flow_error *error)
246 {
247         return 0;
248 }
249
250 /**
251  * Convert Ethernet item to EFX filter specification.
252  *
253  * @param item[in]
254  *   Item specification. Outer frame specification may only comprise
255  *   source/destination addresses and Ethertype field.
256  *   Inner frame specification may contain destination address only.
257  *   There is support for individual/group mask as well as for empty and full.
258  *   If the mask is NULL, default mask will be used. Ranging is not supported.
259  * @param efx_spec[in, out]
260  *   EFX filter specification to update.
261  * @param[out] error
262  *   Perform verbose error reporting if not NULL.
263  */
264 static int
265 sfc_flow_parse_eth(const struct rte_flow_item *item,
266                    struct sfc_flow_parse_ctx *parse_ctx,
267                    struct rte_flow_error *error)
268 {
269         int rc;
270         efx_filter_spec_t *efx_spec = parse_ctx->filter;
271         const struct rte_flow_item_eth *spec = NULL;
272         const struct rte_flow_item_eth *mask = NULL;
273         const struct rte_flow_item_eth supp_mask = {
274                 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
275                 .src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
276                 .type = 0xffff,
277         };
278         const struct rte_flow_item_eth ifrm_supp_mask = {
279                 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
280         };
281         const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
282                 0x01, 0x00, 0x00, 0x00, 0x00, 0x00
283         };
284         const struct rte_flow_item_eth *supp_mask_p;
285         const struct rte_flow_item_eth *def_mask_p;
286         uint8_t *loc_mac = NULL;
287         boolean_t is_ifrm = (efx_spec->efs_encap_type !=
288                 EFX_TUNNEL_PROTOCOL_NONE);
289
290         if (is_ifrm) {
291                 supp_mask_p = &ifrm_supp_mask;
292                 def_mask_p = &ifrm_supp_mask;
293                 loc_mac = efx_spec->efs_ifrm_loc_mac;
294         } else {
295                 supp_mask_p = &supp_mask;
296                 def_mask_p = &rte_flow_item_eth_mask;
297                 loc_mac = efx_spec->efs_loc_mac;
298         }
299
300         rc = sfc_flow_parse_init(item,
301                                  (const void **)&spec,
302                                  (const void **)&mask,
303                                  supp_mask_p, def_mask_p,
304                                  sizeof(struct rte_flow_item_eth),
305                                  error);
306         if (rc != 0)
307                 return rc;
308
309         /* If "spec" is not set, could be any Ethernet */
310         if (spec == NULL)
311                 return 0;
312
313         if (rte_is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
314                 efx_spec->efs_match_flags |= is_ifrm ?
315                         EFX_FILTER_MATCH_IFRM_LOC_MAC :
316                         EFX_FILTER_MATCH_LOC_MAC;
317                 rte_memcpy(loc_mac, spec->dst.addr_bytes,
318                            EFX_MAC_ADDR_LEN);
319         } else if (memcmp(mask->dst.addr_bytes, ig_mask,
320                           EFX_MAC_ADDR_LEN) == 0) {
321                 if (rte_is_unicast_ether_addr(&spec->dst))
322                         efx_spec->efs_match_flags |= is_ifrm ?
323                                 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST :
324                                 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
325                 else
326                         efx_spec->efs_match_flags |= is_ifrm ?
327                                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST :
328                                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
329         } else if (!rte_is_zero_ether_addr(&mask->dst)) {
330                 goto fail_bad_mask;
331         }
332
333         /*
334          * ifrm_supp_mask ensures that the source address and
335          * ethertype masks are equal to zero in inner frame,
336          * so these fields are filled in only for the outer frame
337          */
338         if (rte_is_same_ether_addr(&mask->src, &supp_mask.src)) {
339                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
340                 rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
341                            EFX_MAC_ADDR_LEN);
342         } else if (!rte_is_zero_ether_addr(&mask->src)) {
343                 goto fail_bad_mask;
344         }
345
346         /*
347          * Ether type is in big-endian byte order in item and
348          * in little-endian in efx_spec, so byte swap is used
349          */
350         if (mask->type == supp_mask.type) {
351                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
352                 efx_spec->efs_ether_type = rte_bswap16(spec->type);
353         } else if (mask->type != 0) {
354                 goto fail_bad_mask;
355         }
356
357         return 0;
358
359 fail_bad_mask:
360         rte_flow_error_set(error, EINVAL,
361                            RTE_FLOW_ERROR_TYPE_ITEM, item,
362                            "Bad mask in the ETH pattern item");
363         return -rte_errno;
364 }
365
366 /**
367  * Convert VLAN item to EFX filter specification.
368  *
369  * @param item[in]
370  *   Item specification. Only VID field is supported.
371  *   The mask can not be NULL. Ranging is not supported.
372  * @param efx_spec[in, out]
373  *   EFX filter specification to update.
374  * @param[out] error
375  *   Perform verbose error reporting if not NULL.
376  */
377 static int
378 sfc_flow_parse_vlan(const struct rte_flow_item *item,
379                     struct sfc_flow_parse_ctx *parse_ctx,
380                     struct rte_flow_error *error)
381 {
382         int rc;
383         uint16_t vid;
384         efx_filter_spec_t *efx_spec = parse_ctx->filter;
385         const struct rte_flow_item_vlan *spec = NULL;
386         const struct rte_flow_item_vlan *mask = NULL;
387         const struct rte_flow_item_vlan supp_mask = {
388                 .tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
389                 .inner_type = RTE_BE16(0xffff),
390         };
391
392         rc = sfc_flow_parse_init(item,
393                                  (const void **)&spec,
394                                  (const void **)&mask,
395                                  &supp_mask,
396                                  NULL,
397                                  sizeof(struct rte_flow_item_vlan),
398                                  error);
399         if (rc != 0)
400                 return rc;
401
402         /*
403          * VID is in big-endian byte order in item and
404          * in little-endian in efx_spec, so byte swap is used.
405          * If two VLAN items are included, the first matches
406          * the outer tag and the next matches the inner tag.
407          */
408         if (mask->tci == supp_mask.tci) {
409                 /* Apply mask to keep VID only */
410                 vid = rte_bswap16(spec->tci & mask->tci);
411
412                 if (!(efx_spec->efs_match_flags &
413                       EFX_FILTER_MATCH_OUTER_VID)) {
414                         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
415                         efx_spec->efs_outer_vid = vid;
416                 } else if (!(efx_spec->efs_match_flags &
417                              EFX_FILTER_MATCH_INNER_VID)) {
418                         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
419                         efx_spec->efs_inner_vid = vid;
420                 } else {
421                         rte_flow_error_set(error, EINVAL,
422                                            RTE_FLOW_ERROR_TYPE_ITEM, item,
423                                            "More than two VLAN items");
424                         return -rte_errno;
425                 }
426         } else {
427                 rte_flow_error_set(error, EINVAL,
428                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
429                                    "VLAN ID in TCI match is required");
430                 return -rte_errno;
431         }
432
433         if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) {
434                 rte_flow_error_set(error, EINVAL,
435                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
436                                    "VLAN TPID matching is not supported");
437                 return -rte_errno;
438         }
439         if (mask->inner_type == supp_mask.inner_type) {
440                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
441                 efx_spec->efs_ether_type = rte_bswap16(spec->inner_type);
442         } else if (mask->inner_type) {
443                 rte_flow_error_set(error, EINVAL,
444                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
445                                    "Bad mask for VLAN inner_type");
446                 return -rte_errno;
447         }
448
449         return 0;
450 }
451
452 /**
453  * Convert IPv4 item to EFX filter specification.
454  *
455  * @param item[in]
456  *   Item specification. Only source and destination addresses and
457  *   protocol fields are supported. If the mask is NULL, default
458  *   mask will be used. Ranging is not supported.
459  * @param efx_spec[in, out]
460  *   EFX filter specification to update.
461  * @param[out] error
462  *   Perform verbose error reporting if not NULL.
463  */
464 static int
465 sfc_flow_parse_ipv4(const struct rte_flow_item *item,
466                     struct sfc_flow_parse_ctx *parse_ctx,
467                     struct rte_flow_error *error)
468 {
469         int rc;
470         efx_filter_spec_t *efx_spec = parse_ctx->filter;
471         const struct rte_flow_item_ipv4 *spec = NULL;
472         const struct rte_flow_item_ipv4 *mask = NULL;
473         const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
474         const struct rte_flow_item_ipv4 supp_mask = {
475                 .hdr = {
476                         .src_addr = 0xffffffff,
477                         .dst_addr = 0xffffffff,
478                         .next_proto_id = 0xff,
479                 }
480         };
481
482         rc = sfc_flow_parse_init(item,
483                                  (const void **)&spec,
484                                  (const void **)&mask,
485                                  &supp_mask,
486                                  &rte_flow_item_ipv4_mask,
487                                  sizeof(struct rte_flow_item_ipv4),
488                                  error);
489         if (rc != 0)
490                 return rc;
491
492         /*
493          * Filtering by IPv4 source and destination addresses requires
494          * the appropriate ETHER_TYPE in hardware filters
495          */
496         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
497                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
498                 efx_spec->efs_ether_type = ether_type_ipv4;
499         } else if (efx_spec->efs_ether_type != ether_type_ipv4) {
500                 rte_flow_error_set(error, EINVAL,
501                         RTE_FLOW_ERROR_TYPE_ITEM, item,
502                         "Ethertype in pattern with IPV4 item should be appropriate");
503                 return -rte_errno;
504         }
505
506         if (spec == NULL)
507                 return 0;
508
509         /*
510          * IPv4 addresses are in big-endian byte order in item and in
511          * efx_spec
512          */
513         if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
514                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
515                 efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
516         } else if (mask->hdr.src_addr != 0) {
517                 goto fail_bad_mask;
518         }
519
520         if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
521                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
522                 efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
523         } else if (mask->hdr.dst_addr != 0) {
524                 goto fail_bad_mask;
525         }
526
527         if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
528                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
529                 efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
530         } else if (mask->hdr.next_proto_id != 0) {
531                 goto fail_bad_mask;
532         }
533
534         return 0;
535
536 fail_bad_mask:
537         rte_flow_error_set(error, EINVAL,
538                            RTE_FLOW_ERROR_TYPE_ITEM, item,
539                            "Bad mask in the IPV4 pattern item");
540         return -rte_errno;
541 }
542
543 /**
544  * Convert IPv6 item to EFX filter specification.
545  *
546  * @param item[in]
547  *   Item specification. Only source and destination addresses and
548  *   next header fields are supported. If the mask is NULL, default
549  *   mask will be used. Ranging is not supported.
550  * @param efx_spec[in, out]
551  *   EFX filter specification to update.
552  * @param[out] error
553  *   Perform verbose error reporting if not NULL.
554  */
555 static int
556 sfc_flow_parse_ipv6(const struct rte_flow_item *item,
557                     struct sfc_flow_parse_ctx *parse_ctx,
558                     struct rte_flow_error *error)
559 {
560         int rc;
561         efx_filter_spec_t *efx_spec = parse_ctx->filter;
562         const struct rte_flow_item_ipv6 *spec = NULL;
563         const struct rte_flow_item_ipv6 *mask = NULL;
564         const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
565         const struct rte_flow_item_ipv6 supp_mask = {
566                 .hdr = {
567                         .src_addr = { 0xff, 0xff, 0xff, 0xff,
568                                       0xff, 0xff, 0xff, 0xff,
569                                       0xff, 0xff, 0xff, 0xff,
570                                       0xff, 0xff, 0xff, 0xff },
571                         .dst_addr = { 0xff, 0xff, 0xff, 0xff,
572                                       0xff, 0xff, 0xff, 0xff,
573                                       0xff, 0xff, 0xff, 0xff,
574                                       0xff, 0xff, 0xff, 0xff },
575                         .proto = 0xff,
576                 }
577         };
578
579         rc = sfc_flow_parse_init(item,
580                                  (const void **)&spec,
581                                  (const void **)&mask,
582                                  &supp_mask,
583                                  &rte_flow_item_ipv6_mask,
584                                  sizeof(struct rte_flow_item_ipv6),
585                                  error);
586         if (rc != 0)
587                 return rc;
588
589         /*
590          * Filtering by IPv6 source and destination addresses requires
591          * the appropriate ETHER_TYPE in hardware filters
592          */
593         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
594                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
595                 efx_spec->efs_ether_type = ether_type_ipv6;
596         } else if (efx_spec->efs_ether_type != ether_type_ipv6) {
597                 rte_flow_error_set(error, EINVAL,
598                         RTE_FLOW_ERROR_TYPE_ITEM, item,
599                         "Ethertype in pattern with IPV6 item should be appropriate");
600                 return -rte_errno;
601         }
602
603         if (spec == NULL)
604                 return 0;
605
606         /*
607          * IPv6 addresses are in big-endian byte order in item and in
608          * efx_spec
609          */
610         if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
611                    sizeof(mask->hdr.src_addr)) == 0) {
612                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
613
614                 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
615                                  sizeof(spec->hdr.src_addr));
616                 rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
617                            sizeof(efx_spec->efs_rem_host));
618         } else if (!sfc_flow_is_zero(mask->hdr.src_addr,
619                                      sizeof(mask->hdr.src_addr))) {
620                 goto fail_bad_mask;
621         }
622
623         if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
624                    sizeof(mask->hdr.dst_addr)) == 0) {
625                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
626
627                 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
628                                  sizeof(spec->hdr.dst_addr));
629                 rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
630                            sizeof(efx_spec->efs_loc_host));
631         } else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
632                                      sizeof(mask->hdr.dst_addr))) {
633                 goto fail_bad_mask;
634         }
635
636         if (mask->hdr.proto == supp_mask.hdr.proto) {
637                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
638                 efx_spec->efs_ip_proto = spec->hdr.proto;
639         } else if (mask->hdr.proto != 0) {
640                 goto fail_bad_mask;
641         }
642
643         return 0;
644
645 fail_bad_mask:
646         rte_flow_error_set(error, EINVAL,
647                            RTE_FLOW_ERROR_TYPE_ITEM, item,
648                            "Bad mask in the IPV6 pattern item");
649         return -rte_errno;
650 }
651
652 /**
653  * Convert TCP item to EFX filter specification.
654  *
655  * @param item[in]
656  *   Item specification. Only source and destination ports fields
657  *   are supported. If the mask is NULL, default mask will be used.
658  *   Ranging is not supported.
659  * @param efx_spec[in, out]
660  *   EFX filter specification to update.
661  * @param[out] error
662  *   Perform verbose error reporting if not NULL.
663  */
664 static int
665 sfc_flow_parse_tcp(const struct rte_flow_item *item,
666                    struct sfc_flow_parse_ctx *parse_ctx,
667                    struct rte_flow_error *error)
668 {
669         int rc;
670         efx_filter_spec_t *efx_spec = parse_ctx->filter;
671         const struct rte_flow_item_tcp *spec = NULL;
672         const struct rte_flow_item_tcp *mask = NULL;
673         const struct rte_flow_item_tcp supp_mask = {
674                 .hdr = {
675                         .src_port = 0xffff,
676                         .dst_port = 0xffff,
677                 }
678         };
679
680         rc = sfc_flow_parse_init(item,
681                                  (const void **)&spec,
682                                  (const void **)&mask,
683                                  &supp_mask,
684                                  &rte_flow_item_tcp_mask,
685                                  sizeof(struct rte_flow_item_tcp),
686                                  error);
687         if (rc != 0)
688                 return rc;
689
690         /*
691          * Filtering by TCP source and destination ports requires
692          * the appropriate IP_PROTO in hardware filters
693          */
694         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
695                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
696                 efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
697         } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
698                 rte_flow_error_set(error, EINVAL,
699                         RTE_FLOW_ERROR_TYPE_ITEM, item,
700                         "IP proto in pattern with TCP item should be appropriate");
701                 return -rte_errno;
702         }
703
704         if (spec == NULL)
705                 return 0;
706
707         /*
708          * Source and destination ports are in big-endian byte order in item and
709          * in little-endian in efx_spec, so byte swap is used
710          */
711         if (mask->hdr.src_port == supp_mask.hdr.src_port) {
712                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
713                 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
714         } else if (mask->hdr.src_port != 0) {
715                 goto fail_bad_mask;
716         }
717
718         if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
719                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
720                 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
721         } else if (mask->hdr.dst_port != 0) {
722                 goto fail_bad_mask;
723         }
724
725         return 0;
726
727 fail_bad_mask:
728         rte_flow_error_set(error, EINVAL,
729                            RTE_FLOW_ERROR_TYPE_ITEM, item,
730                            "Bad mask in the TCP pattern item");
731         return -rte_errno;
732 }
733
734 /**
735  * Convert UDP item to EFX filter specification.
736  *
737  * @param item[in]
738  *   Item specification. Only source and destination ports fields
739  *   are supported. If the mask is NULL, default mask will be used.
740  *   Ranging is not supported.
741  * @param efx_spec[in, out]
742  *   EFX filter specification to update.
743  * @param[out] error
744  *   Perform verbose error reporting if not NULL.
745  */
746 static int
747 sfc_flow_parse_udp(const struct rte_flow_item *item,
748                    struct sfc_flow_parse_ctx *parse_ctx,
749                    struct rte_flow_error *error)
750 {
751         int rc;
752         efx_filter_spec_t *efx_spec = parse_ctx->filter;
753         const struct rte_flow_item_udp *spec = NULL;
754         const struct rte_flow_item_udp *mask = NULL;
755         const struct rte_flow_item_udp supp_mask = {
756                 .hdr = {
757                         .src_port = 0xffff,
758                         .dst_port = 0xffff,
759                 }
760         };
761
762         rc = sfc_flow_parse_init(item,
763                                  (const void **)&spec,
764                                  (const void **)&mask,
765                                  &supp_mask,
766                                  &rte_flow_item_udp_mask,
767                                  sizeof(struct rte_flow_item_udp),
768                                  error);
769         if (rc != 0)
770                 return rc;
771
772         /*
773          * Filtering by UDP source and destination ports requires
774          * the appropriate IP_PROTO in hardware filters
775          */
776         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
777                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
778                 efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
779         } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
780                 rte_flow_error_set(error, EINVAL,
781                         RTE_FLOW_ERROR_TYPE_ITEM, item,
782                         "IP proto in pattern with UDP item should be appropriate");
783                 return -rte_errno;
784         }
785
786         if (spec == NULL)
787                 return 0;
788
789         /*
790          * Source and destination ports are in big-endian byte order in item and
791          * in little-endian in efx_spec, so byte swap is used
792          */
793         if (mask->hdr.src_port == supp_mask.hdr.src_port) {
794                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
795                 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
796         } else if (mask->hdr.src_port != 0) {
797                 goto fail_bad_mask;
798         }
799
800         if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
801                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
802                 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
803         } else if (mask->hdr.dst_port != 0) {
804                 goto fail_bad_mask;
805         }
806
807         return 0;
808
809 fail_bad_mask:
810         rte_flow_error_set(error, EINVAL,
811                            RTE_FLOW_ERROR_TYPE_ITEM, item,
812                            "Bad mask in the UDP pattern item");
813         return -rte_errno;
814 }
815
816 /*
817  * Filters for encapsulated packets match based on the EtherType and IP
818  * protocol in the outer frame.
819  */
820 static int
821 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item,
822                                         efx_filter_spec_t *efx_spec,
823                                         uint8_t ip_proto,
824                                         struct rte_flow_error *error)
825 {
826         if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
827                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
828                 efx_spec->efs_ip_proto = ip_proto;
829         } else if (efx_spec->efs_ip_proto != ip_proto) {
830                 switch (ip_proto) {
831                 case EFX_IPPROTO_UDP:
832                         rte_flow_error_set(error, EINVAL,
833                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
834                                 "Outer IP header protocol must be UDP "
835                                 "in VxLAN/GENEVE pattern");
836                         return -rte_errno;
837
838                 case EFX_IPPROTO_GRE:
839                         rte_flow_error_set(error, EINVAL,
840                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
841                                 "Outer IP header protocol must be GRE "
842                                 "in NVGRE pattern");
843                         return -rte_errno;
844
845                 default:
846                         rte_flow_error_set(error, EINVAL,
847                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
848                                 "Only VxLAN/GENEVE/NVGRE tunneling patterns "
849                                 "are supported");
850                         return -rte_errno;
851                 }
852         }
853
854         if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE &&
855             efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 &&
856             efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) {
857                 rte_flow_error_set(error, EINVAL,
858                         RTE_FLOW_ERROR_TYPE_ITEM, item,
859                         "Outer frame EtherType in pattern with tunneling "
860                         "must be IPv4 or IPv6");
861                 return -rte_errno;
862         }
863
864         return 0;
865 }
866
867 static int
868 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec,
869                                   const uint8_t *vni_or_vsid_val,
870                                   const uint8_t *vni_or_vsid_mask,
871                                   const struct rte_flow_item *item,
872                                   struct rte_flow_error *error)
873 {
874         const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = {
875                 0xff, 0xff, 0xff
876         };
877
878         if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask,
879                    EFX_VNI_OR_VSID_LEN) == 0) {
880                 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID;
881                 rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val,
882                            EFX_VNI_OR_VSID_LEN);
883         } else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) {
884                 rte_flow_error_set(error, EINVAL,
885                                    RTE_FLOW_ERROR_TYPE_ITEM, item,
886                                    "Unsupported VNI/VSID mask");
887                 return -rte_errno;
888         }
889
890         return 0;
891 }
892
893 /**
894  * Convert VXLAN item to EFX filter specification.
895  *
896  * @param item[in]
897  *   Item specification. Only VXLAN network identifier field is supported.
898  *   If the mask is NULL, default mask will be used.
899  *   Ranging is not supported.
900  * @param efx_spec[in, out]
901  *   EFX filter specification to update.
902  * @param[out] error
903  *   Perform verbose error reporting if not NULL.
904  */
905 static int
906 sfc_flow_parse_vxlan(const struct rte_flow_item *item,
907                      struct sfc_flow_parse_ctx *parse_ctx,
908                      struct rte_flow_error *error)
909 {
910         int rc;
911         efx_filter_spec_t *efx_spec = parse_ctx->filter;
912         const struct rte_flow_item_vxlan *spec = NULL;
913         const struct rte_flow_item_vxlan *mask = NULL;
914         const struct rte_flow_item_vxlan supp_mask = {
915                 .vni = { 0xff, 0xff, 0xff }
916         };
917
918         rc = sfc_flow_parse_init(item,
919                                  (const void **)&spec,
920                                  (const void **)&mask,
921                                  &supp_mask,
922                                  &rte_flow_item_vxlan_mask,
923                                  sizeof(struct rte_flow_item_vxlan),
924                                  error);
925         if (rc != 0)
926                 return rc;
927
928         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
929                                                      EFX_IPPROTO_UDP, error);
930         if (rc != 0)
931                 return rc;
932
933         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
934         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
935
936         if (spec == NULL)
937                 return 0;
938
939         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
940                                                mask->vni, item, error);
941
942         return rc;
943 }
944
945 /**
946  * Convert GENEVE item to EFX filter specification.
947  *
948  * @param item[in]
949  *   Item specification. Only Virtual Network Identifier and protocol type
950  *   fields are supported. But protocol type can be only Ethernet (0x6558).
951  *   If the mask is NULL, default mask will be used.
952  *   Ranging is not supported.
953  * @param efx_spec[in, out]
954  *   EFX filter specification to update.
955  * @param[out] error
956  *   Perform verbose error reporting if not NULL.
957  */
958 static int
959 sfc_flow_parse_geneve(const struct rte_flow_item *item,
960                       struct sfc_flow_parse_ctx *parse_ctx,
961                       struct rte_flow_error *error)
962 {
963         int rc;
964         efx_filter_spec_t *efx_spec = parse_ctx->filter;
965         const struct rte_flow_item_geneve *spec = NULL;
966         const struct rte_flow_item_geneve *mask = NULL;
967         const struct rte_flow_item_geneve supp_mask = {
968                 .protocol = RTE_BE16(0xffff),
969                 .vni = { 0xff, 0xff, 0xff }
970         };
971
972         rc = sfc_flow_parse_init(item,
973                                  (const void **)&spec,
974                                  (const void **)&mask,
975                                  &supp_mask,
976                                  &rte_flow_item_geneve_mask,
977                                  sizeof(struct rte_flow_item_geneve),
978                                  error);
979         if (rc != 0)
980                 return rc;
981
982         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
983                                                      EFX_IPPROTO_UDP, error);
984         if (rc != 0)
985                 return rc;
986
987         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
988         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
989
990         if (spec == NULL)
991                 return 0;
992
993         if (mask->protocol == supp_mask.protocol) {
994                 if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) {
995                         rte_flow_error_set(error, EINVAL,
996                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
997                                 "GENEVE encap. protocol must be Ethernet "
998                                 "(0x6558) in the GENEVE pattern item");
999                         return -rte_errno;
1000                 }
1001         } else if (mask->protocol != 0) {
1002                 rte_flow_error_set(error, EINVAL,
1003                         RTE_FLOW_ERROR_TYPE_ITEM, item,
1004                         "Unsupported mask for GENEVE encap. protocol");
1005                 return -rte_errno;
1006         }
1007
1008         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
1009                                                mask->vni, item, error);
1010
1011         return rc;
1012 }
1013
1014 /**
1015  * Convert NVGRE item to EFX filter specification.
1016  *
1017  * @param item[in]
1018  *   Item specification. Only virtual subnet ID field is supported.
1019  *   If the mask is NULL, default mask will be used.
1020  *   Ranging is not supported.
1021  * @param efx_spec[in, out]
1022  *   EFX filter specification to update.
1023  * @param[out] error
1024  *   Perform verbose error reporting if not NULL.
1025  */
1026 static int
1027 sfc_flow_parse_nvgre(const struct rte_flow_item *item,
1028                      struct sfc_flow_parse_ctx *parse_ctx,
1029                      struct rte_flow_error *error)
1030 {
1031         int rc;
1032         efx_filter_spec_t *efx_spec = parse_ctx->filter;
1033         const struct rte_flow_item_nvgre *spec = NULL;
1034         const struct rte_flow_item_nvgre *mask = NULL;
1035         const struct rte_flow_item_nvgre supp_mask = {
1036                 .tni = { 0xff, 0xff, 0xff }
1037         };
1038
1039         rc = sfc_flow_parse_init(item,
1040                                  (const void **)&spec,
1041                                  (const void **)&mask,
1042                                  &supp_mask,
1043                                  &rte_flow_item_nvgre_mask,
1044                                  sizeof(struct rte_flow_item_nvgre),
1045                                  error);
1046         if (rc != 0)
1047                 return rc;
1048
1049         rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
1050                                                      EFX_IPPROTO_GRE, error);
1051         if (rc != 0)
1052                 return rc;
1053
1054         efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
1055         efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
1056
1057         if (spec == NULL)
1058                 return 0;
1059
1060         rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni,
1061                                                mask->tni, item, error);
1062
1063         return rc;
1064 }
1065
1066 static const struct sfc_flow_item sfc_flow_items[] = {
1067         {
1068                 .type = RTE_FLOW_ITEM_TYPE_VOID,
1069                 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
1070                 .layer = SFC_FLOW_ITEM_ANY_LAYER,
1071                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1072                 .parse = sfc_flow_parse_void,
1073         },
1074         {
1075                 .type = RTE_FLOW_ITEM_TYPE_ETH,
1076                 .prev_layer = SFC_FLOW_ITEM_START_LAYER,
1077                 .layer = SFC_FLOW_ITEM_L2,
1078                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1079                 .parse = sfc_flow_parse_eth,
1080         },
1081         {
1082                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
1083                 .prev_layer = SFC_FLOW_ITEM_L2,
1084                 .layer = SFC_FLOW_ITEM_L2,
1085                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1086                 .parse = sfc_flow_parse_vlan,
1087         },
1088         {
1089                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
1090                 .prev_layer = SFC_FLOW_ITEM_L2,
1091                 .layer = SFC_FLOW_ITEM_L3,
1092                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1093                 .parse = sfc_flow_parse_ipv4,
1094         },
1095         {
1096                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
1097                 .prev_layer = SFC_FLOW_ITEM_L2,
1098                 .layer = SFC_FLOW_ITEM_L3,
1099                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1100                 .parse = sfc_flow_parse_ipv6,
1101         },
1102         {
1103                 .type = RTE_FLOW_ITEM_TYPE_TCP,
1104                 .prev_layer = SFC_FLOW_ITEM_L3,
1105                 .layer = SFC_FLOW_ITEM_L4,
1106                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1107                 .parse = sfc_flow_parse_tcp,
1108         },
1109         {
1110                 .type = RTE_FLOW_ITEM_TYPE_UDP,
1111                 .prev_layer = SFC_FLOW_ITEM_L3,
1112                 .layer = SFC_FLOW_ITEM_L4,
1113                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1114                 .parse = sfc_flow_parse_udp,
1115         },
1116         {
1117                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
1118                 .prev_layer = SFC_FLOW_ITEM_L4,
1119                 .layer = SFC_FLOW_ITEM_START_LAYER,
1120                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1121                 .parse = sfc_flow_parse_vxlan,
1122         },
1123         {
1124                 .type = RTE_FLOW_ITEM_TYPE_GENEVE,
1125                 .prev_layer = SFC_FLOW_ITEM_L4,
1126                 .layer = SFC_FLOW_ITEM_START_LAYER,
1127                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1128                 .parse = sfc_flow_parse_geneve,
1129         },
1130         {
1131                 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
1132                 .prev_layer = SFC_FLOW_ITEM_L3,
1133                 .layer = SFC_FLOW_ITEM_START_LAYER,
1134                 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1135                 .parse = sfc_flow_parse_nvgre,
1136         },
1137 };
1138
1139 /*
1140  * Protocol-independent flow API support
1141  */
1142 static int
1143 sfc_flow_parse_attr(struct sfc_adapter *sa,
1144                     const struct rte_flow_attr *attr,
1145                     struct rte_flow *flow,
1146                     struct rte_flow_error *error)
1147 {
1148         struct sfc_flow_spec *spec = &flow->spec;
1149         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1150         struct sfc_flow_spec_mae *spec_mae = &spec->mae;
1151         struct sfc_mae *mae = &sa->mae;
1152
1153         if (attr == NULL) {
1154                 rte_flow_error_set(error, EINVAL,
1155                                    RTE_FLOW_ERROR_TYPE_ATTR, NULL,
1156                                    "NULL attribute");
1157                 return -rte_errno;
1158         }
1159         if (attr->group != 0) {
1160                 rte_flow_error_set(error, ENOTSUP,
1161                                    RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
1162                                    "Groups are not supported");
1163                 return -rte_errno;
1164         }
1165         if (attr->egress != 0) {
1166                 rte_flow_error_set(error, ENOTSUP,
1167                                    RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
1168                                    "Egress is not supported");
1169                 return -rte_errno;
1170         }
1171         if (attr->ingress == 0) {
1172                 rte_flow_error_set(error, ENOTSUP,
1173                                    RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
1174                                    "Ingress is compulsory");
1175                 return -rte_errno;
1176         }
1177         if (attr->transfer == 0) {
1178                 if (attr->priority != 0) {
1179                         rte_flow_error_set(error, ENOTSUP,
1180                                            RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1181                                            attr, "Priorities are unsupported");
1182                         return -rte_errno;
1183                 }
1184                 spec->type = SFC_FLOW_SPEC_FILTER;
1185                 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX;
1186                 spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1187                 spec_filter->template.efs_priority = EFX_FILTER_PRI_MANUAL;
1188         } else {
1189                 if (mae->status != SFC_MAE_STATUS_SUPPORTED) {
1190                         rte_flow_error_set(error, ENOTSUP,
1191                                            RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1192                                            attr, "Transfer is not supported");
1193                         return -rte_errno;
1194                 }
1195                 if (attr->priority > mae->nb_action_rule_prios_max) {
1196                         rte_flow_error_set(error, ENOTSUP,
1197                                            RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1198                                            attr, "Unsupported priority level");
1199                         return -rte_errno;
1200                 }
1201                 spec->type = SFC_FLOW_SPEC_MAE;
1202                 spec_mae->priority = attr->priority;
1203                 spec_mae->match_spec = NULL;
1204                 spec_mae->action_set = NULL;
1205                 spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
1206         }
1207
1208         return 0;
1209 }
1210
1211 /* Get item from array sfc_flow_items */
1212 static const struct sfc_flow_item *
1213 sfc_flow_get_item(const struct sfc_flow_item *items,
1214                   unsigned int nb_items,
1215                   enum rte_flow_item_type type)
1216 {
1217         unsigned int i;
1218
1219         for (i = 0; i < nb_items; i++)
1220                 if (items[i].type == type)
1221                         return &items[i];
1222
1223         return NULL;
1224 }
1225
1226 int
1227 sfc_flow_parse_pattern(const struct sfc_flow_item *flow_items,
1228                        unsigned int nb_flow_items,
1229                        const struct rte_flow_item pattern[],
1230                        struct sfc_flow_parse_ctx *parse_ctx,
1231                        struct rte_flow_error *error)
1232 {
1233         int rc;
1234         unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
1235         boolean_t is_ifrm = B_FALSE;
1236         const struct sfc_flow_item *item;
1237
1238         if (pattern == NULL) {
1239                 rte_flow_error_set(error, EINVAL,
1240                                    RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
1241                                    "NULL pattern");
1242                 return -rte_errno;
1243         }
1244
1245         for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
1246                 item = sfc_flow_get_item(flow_items, nb_flow_items,
1247                                          pattern->type);
1248                 if (item == NULL) {
1249                         rte_flow_error_set(error, ENOTSUP,
1250                                            RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1251                                            "Unsupported pattern item");
1252                         return -rte_errno;
1253                 }
1254
1255                 /*
1256                  * Omitting one or several protocol layers at the beginning
1257                  * of pattern is supported
1258                  */
1259                 if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1260                     prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1261                     item->prev_layer != prev_layer) {
1262                         rte_flow_error_set(error, ENOTSUP,
1263                                            RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1264                                            "Unexpected sequence of pattern items");
1265                         return -rte_errno;
1266                 }
1267
1268                 /*
1269                  * Allow only VOID and ETH pattern items in the inner frame.
1270                  * Also check that there is only one tunneling protocol.
1271                  */
1272                 switch (item->type) {
1273                 case RTE_FLOW_ITEM_TYPE_VOID:
1274                 case RTE_FLOW_ITEM_TYPE_ETH:
1275                         break;
1276
1277                 case RTE_FLOW_ITEM_TYPE_VXLAN:
1278                 case RTE_FLOW_ITEM_TYPE_GENEVE:
1279                 case RTE_FLOW_ITEM_TYPE_NVGRE:
1280                         if (is_ifrm) {
1281                                 rte_flow_error_set(error, EINVAL,
1282                                         RTE_FLOW_ERROR_TYPE_ITEM,
1283                                         pattern,
1284                                         "More than one tunneling protocol");
1285                                 return -rte_errno;
1286                         }
1287                         is_ifrm = B_TRUE;
1288                         break;
1289
1290                 default:
1291                         if (parse_ctx->type == SFC_FLOW_PARSE_CTX_FILTER &&
1292                             is_ifrm) {
1293                                 rte_flow_error_set(error, EINVAL,
1294                                         RTE_FLOW_ERROR_TYPE_ITEM,
1295                                         pattern,
1296                                         "There is an unsupported pattern item "
1297                                         "in the inner frame");
1298                                 return -rte_errno;
1299                         }
1300                         break;
1301                 }
1302
1303                 if (parse_ctx->type != item->ctx_type) {
1304                         rte_flow_error_set(error, EINVAL,
1305                                         RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1306                                         "Parse context type mismatch");
1307                         return -rte_errno;
1308                 }
1309
1310                 rc = item->parse(pattern, parse_ctx, error);
1311                 if (rc != 0)
1312                         return rc;
1313
1314                 if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
1315                         prev_layer = item->layer;
1316         }
1317
1318         return 0;
1319 }
1320
1321 static int
1322 sfc_flow_parse_queue(struct sfc_adapter *sa,
1323                      const struct rte_flow_action_queue *queue,
1324                      struct rte_flow *flow)
1325 {
1326         struct sfc_flow_spec *spec = &flow->spec;
1327         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1328         struct sfc_rxq *rxq;
1329         struct sfc_rxq_info *rxq_info;
1330
1331         if (queue->index >= sfc_sa2shared(sa)->rxq_count)
1332                 return -EINVAL;
1333
1334         rxq = &sa->rxq_ctrl[queue->index];
1335         spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index;
1336
1337         rxq_info = &sfc_sa2shared(sa)->rxq_info[queue->index];
1338         spec_filter->rss_hash_required = !!(rxq_info->rxq_flags &
1339                                             SFC_RXQ_FLAG_RSS_HASH);
1340
1341         return 0;
1342 }
1343
1344 static int
1345 sfc_flow_parse_rss(struct sfc_adapter *sa,
1346                    const struct rte_flow_action_rss *action_rss,
1347                    struct rte_flow *flow)
1348 {
1349         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1350         struct sfc_rss *rss = &sas->rss;
1351         unsigned int rxq_sw_index;
1352         struct sfc_rxq *rxq;
1353         unsigned int rxq_hw_index_min;
1354         unsigned int rxq_hw_index_max;
1355         efx_rx_hash_type_t efx_hash_types;
1356         const uint8_t *rss_key;
1357         struct sfc_flow_spec *spec = &flow->spec;
1358         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1359         struct sfc_flow_rss *sfc_rss_conf = &spec_filter->rss_conf;
1360         unsigned int i;
1361
1362         if (action_rss->queue_num == 0)
1363                 return -EINVAL;
1364
1365         rxq_sw_index = sfc_sa2shared(sa)->rxq_count - 1;
1366         rxq = &sa->rxq_ctrl[rxq_sw_index];
1367         rxq_hw_index_min = rxq->hw_index;
1368         rxq_hw_index_max = 0;
1369
1370         for (i = 0; i < action_rss->queue_num; ++i) {
1371                 rxq_sw_index = action_rss->queue[i];
1372
1373                 if (rxq_sw_index >= sfc_sa2shared(sa)->rxq_count)
1374                         return -EINVAL;
1375
1376                 rxq = &sa->rxq_ctrl[rxq_sw_index];
1377
1378                 if (rxq->hw_index < rxq_hw_index_min)
1379                         rxq_hw_index_min = rxq->hw_index;
1380
1381                 if (rxq->hw_index > rxq_hw_index_max)
1382                         rxq_hw_index_max = rxq->hw_index;
1383         }
1384
1385         switch (action_rss->func) {
1386         case RTE_ETH_HASH_FUNCTION_DEFAULT:
1387         case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1388                 break;
1389         default:
1390                 return -EINVAL;
1391         }
1392
1393         if (action_rss->level)
1394                 return -EINVAL;
1395
1396         /*
1397          * Dummy RSS action with only one queue and no specific settings
1398          * for hash types and key does not require dedicated RSS context
1399          * and may be simplified to single queue action.
1400          */
1401         if (action_rss->queue_num == 1 && action_rss->types == 0 &&
1402             action_rss->key_len == 0) {
1403                 spec_filter->template.efs_dmaq_id = rxq_hw_index_min;
1404                 return 0;
1405         }
1406
1407         if (action_rss->types) {
1408                 int rc;
1409
1410                 rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types,
1411                                           &efx_hash_types);
1412                 if (rc != 0)
1413                         return -rc;
1414         } else {
1415                 unsigned int i;
1416
1417                 efx_hash_types = 0;
1418                 for (i = 0; i < rss->hf_map_nb_entries; ++i)
1419                         efx_hash_types |= rss->hf_map[i].efx;
1420         }
1421
1422         if (action_rss->key_len) {
1423                 if (action_rss->key_len != sizeof(rss->key))
1424                         return -EINVAL;
1425
1426                 rss_key = action_rss->key;
1427         } else {
1428                 rss_key = rss->key;
1429         }
1430
1431         spec_filter->rss = B_TRUE;
1432
1433         sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min;
1434         sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max;
1435         sfc_rss_conf->rss_hash_types = efx_hash_types;
1436         rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key));
1437
1438         for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) {
1439                 unsigned int nb_queues = action_rss->queue_num;
1440                 unsigned int rxq_sw_index = action_rss->queue[i % nb_queues];
1441                 struct sfc_rxq *rxq = &sa->rxq_ctrl[rxq_sw_index];
1442
1443                 sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min;
1444         }
1445
1446         return 0;
1447 }
1448
1449 static int
1450 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec,
1451                     unsigned int filters_count)
1452 {
1453         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1454         unsigned int i;
1455         int ret = 0;
1456
1457         for (i = 0; i < filters_count; i++) {
1458                 int rc;
1459
1460                 rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]);
1461                 if (ret == 0 && rc != 0) {
1462                         sfc_err(sa, "failed to remove filter specification "
1463                                 "(rc = %d)", rc);
1464                         ret = rc;
1465                 }
1466         }
1467
1468         return ret;
1469 }
1470
1471 static int
1472 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1473 {
1474         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1475         unsigned int i;
1476         int rc = 0;
1477
1478         for (i = 0; i < spec_filter->count; i++) {
1479                 rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]);
1480                 if (rc != 0) {
1481                         sfc_flow_spec_flush(sa, spec, i);
1482                         break;
1483                 }
1484         }
1485
1486         return rc;
1487 }
1488
1489 static int
1490 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1491 {
1492         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1493
1494         return sfc_flow_spec_flush(sa, spec, spec_filter->count);
1495 }
1496
1497 static int
1498 sfc_flow_filter_insert(struct sfc_adapter *sa,
1499                        struct rte_flow *flow)
1500 {
1501         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1502         struct sfc_rss *rss = &sas->rss;
1503         struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1504         struct sfc_flow_rss *flow_rss = &spec_filter->rss_conf;
1505         uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1506         boolean_t create_context;
1507         unsigned int i;
1508         int rc = 0;
1509
1510         create_context = spec_filter->rss || (spec_filter->rss_hash_required &&
1511                         rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT);
1512
1513         if (create_context) {
1514                 unsigned int rss_spread;
1515                 unsigned int rss_hash_types;
1516                 uint8_t *rss_key;
1517
1518                 if (spec_filter->rss) {
1519                         rss_spread = MIN(flow_rss->rxq_hw_index_max -
1520                                         flow_rss->rxq_hw_index_min + 1,
1521                                         EFX_MAXRSS);
1522                         rss_hash_types = flow_rss->rss_hash_types;
1523                         rss_key = flow_rss->rss_key;
1524                 } else {
1525                         /*
1526                          * Initialize dummy RSS context parameters to have
1527                          * valid RSS hash. Use default RSS hash function and
1528                          * key.
1529                          */
1530                         rss_spread = 1;
1531                         rss_hash_types = rss->hash_types;
1532                         rss_key = rss->key;
1533                 }
1534
1535                 rc = efx_rx_scale_context_alloc(sa->nic,
1536                                                 EFX_RX_SCALE_EXCLUSIVE,
1537                                                 rss_spread,
1538                                                 &efs_rss_context);
1539                 if (rc != 0)
1540                         goto fail_scale_context_alloc;
1541
1542                 rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context,
1543                                            rss->hash_alg,
1544                                            rss_hash_types, B_TRUE);
1545                 if (rc != 0)
1546                         goto fail_scale_mode_set;
1547
1548                 rc = efx_rx_scale_key_set(sa->nic, efs_rss_context,
1549                                           rss_key, sizeof(rss->key));
1550                 if (rc != 0)
1551                         goto fail_scale_key_set;
1552         } else {
1553                 efs_rss_context = rss->dummy_rss_context;
1554         }
1555
1556         if (spec_filter->rss || spec_filter->rss_hash_required) {
1557                 /*
1558                  * At this point, fully elaborated filter specifications
1559                  * have been produced from the template. To make sure that
1560                  * RSS behaviour is consistent between them, set the same
1561                  * RSS context value everywhere.
1562                  */
1563                 for (i = 0; i < spec_filter->count; i++) {
1564                         efx_filter_spec_t *spec = &spec_filter->filters[i];
1565
1566                         spec->efs_rss_context = efs_rss_context;
1567                         spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS;
1568                         if (spec_filter->rss)
1569                                 spec->efs_dmaq_id = flow_rss->rxq_hw_index_min;
1570                 }
1571         }
1572
1573         rc = sfc_flow_spec_insert(sa, &flow->spec);
1574         if (rc != 0)
1575                 goto fail_filter_insert;
1576
1577         if (create_context) {
1578                 unsigned int dummy_tbl[RTE_DIM(flow_rss->rss_tbl)] = {0};
1579                 unsigned int *tbl;
1580
1581                 tbl = spec_filter->rss ? flow_rss->rss_tbl : dummy_tbl;
1582
1583                 /*
1584                  * Scale table is set after filter insertion because
1585                  * the table entries are relative to the base RxQ ID
1586                  * and the latter is submitted to the HW by means of
1587                  * inserting a filter, so by the time of the request
1588                  * the HW knows all the information needed to verify
1589                  * the table entries, and the operation will succeed
1590                  */
1591                 rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context,
1592                                           tbl, RTE_DIM(flow_rss->rss_tbl));
1593                 if (rc != 0)
1594                         goto fail_scale_tbl_set;
1595
1596                 /* Remember created dummy RSS context */
1597                 if (!spec_filter->rss)
1598                         rss->dummy_rss_context = efs_rss_context;
1599         }
1600
1601         return 0;
1602
1603 fail_scale_tbl_set:
1604         sfc_flow_spec_remove(sa, &flow->spec);
1605
1606 fail_filter_insert:
1607 fail_scale_key_set:
1608 fail_scale_mode_set:
1609         if (create_context)
1610                 efx_rx_scale_context_free(sa->nic, efs_rss_context);
1611
1612 fail_scale_context_alloc:
1613         return rc;
1614 }
1615
1616 static int
1617 sfc_flow_filter_remove(struct sfc_adapter *sa,
1618                        struct rte_flow *flow)
1619 {
1620         struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1621         int rc = 0;
1622
1623         rc = sfc_flow_spec_remove(sa, &flow->spec);
1624         if (rc != 0)
1625                 return rc;
1626
1627         if (spec_filter->rss) {
1628                 /*
1629                  * All specifications for a given flow rule have the same RSS
1630                  * context, so that RSS context value is taken from the first
1631                  * filter specification
1632                  */
1633                 efx_filter_spec_t *spec = &spec_filter->filters[0];
1634
1635                 rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context);
1636         }
1637
1638         return rc;
1639 }
1640
1641 static int
1642 sfc_flow_parse_mark(struct sfc_adapter *sa,
1643                     const struct rte_flow_action_mark *mark,
1644                     struct rte_flow *flow)
1645 {
1646         struct sfc_flow_spec *spec = &flow->spec;
1647         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1648         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1649
1650         if (mark == NULL || mark->id > encp->enc_filter_action_mark_max)
1651                 return EINVAL;
1652
1653         spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK;
1654         spec_filter->template.efs_mark = mark->id;
1655
1656         return 0;
1657 }
1658
1659 static int
1660 sfc_flow_parse_actions(struct sfc_adapter *sa,
1661                        const struct rte_flow_action actions[],
1662                        struct rte_flow *flow,
1663                        struct rte_flow_error *error)
1664 {
1665         int rc;
1666         struct sfc_flow_spec *spec = &flow->spec;
1667         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1668         const unsigned int dp_rx_features = sa->priv.dp_rx->features;
1669         uint32_t actions_set = 0;
1670         const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) |
1671                                            (1UL << RTE_FLOW_ACTION_TYPE_RSS) |
1672                                            (1UL << RTE_FLOW_ACTION_TYPE_DROP);
1673         const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) |
1674                                            (1UL << RTE_FLOW_ACTION_TYPE_FLAG);
1675
1676         if (actions == NULL) {
1677                 rte_flow_error_set(error, EINVAL,
1678                                    RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
1679                                    "NULL actions");
1680                 return -rte_errno;
1681         }
1682
1683         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1684                 switch (actions->type) {
1685                 case RTE_FLOW_ACTION_TYPE_VOID:
1686                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID,
1687                                                actions_set);
1688                         break;
1689
1690                 case RTE_FLOW_ACTION_TYPE_QUEUE:
1691                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE,
1692                                                actions_set);
1693                         if ((actions_set & fate_actions_mask) != 0)
1694                                 goto fail_fate_actions;
1695
1696                         rc = sfc_flow_parse_queue(sa, actions->conf, flow);
1697                         if (rc != 0) {
1698                                 rte_flow_error_set(error, EINVAL,
1699                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1700                                         "Bad QUEUE action");
1701                                 return -rte_errno;
1702                         }
1703                         break;
1704
1705                 case RTE_FLOW_ACTION_TYPE_RSS:
1706                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS,
1707                                                actions_set);
1708                         if ((actions_set & fate_actions_mask) != 0)
1709                                 goto fail_fate_actions;
1710
1711                         rc = sfc_flow_parse_rss(sa, actions->conf, flow);
1712                         if (rc != 0) {
1713                                 rte_flow_error_set(error, -rc,
1714                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1715                                         "Bad RSS action");
1716                                 return -rte_errno;
1717                         }
1718                         break;
1719
1720                 case RTE_FLOW_ACTION_TYPE_DROP:
1721                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
1722                                                actions_set);
1723                         if ((actions_set & fate_actions_mask) != 0)
1724                                 goto fail_fate_actions;
1725
1726                         spec_filter->template.efs_dmaq_id =
1727                                 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1728                         break;
1729
1730                 case RTE_FLOW_ACTION_TYPE_FLAG:
1731                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
1732                                                actions_set);
1733                         if ((actions_set & mark_actions_mask) != 0)
1734                                 goto fail_actions_overlap;
1735
1736                         if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) {
1737                                 rte_flow_error_set(error, ENOTSUP,
1738                                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1739                                         "FLAG action is not supported on the current Rx datapath");
1740                                 return -rte_errno;
1741                         }
1742
1743                         spec_filter->template.efs_flags |=
1744                                 EFX_FILTER_FLAG_ACTION_FLAG;
1745                         break;
1746
1747                 case RTE_FLOW_ACTION_TYPE_MARK:
1748                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
1749                                                actions_set);
1750                         if ((actions_set & mark_actions_mask) != 0)
1751                                 goto fail_actions_overlap;
1752
1753                         if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) {
1754                                 rte_flow_error_set(error, ENOTSUP,
1755                                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1756                                         "MARK action is not supported on the current Rx datapath");
1757                                 return -rte_errno;
1758                         }
1759
1760                         rc = sfc_flow_parse_mark(sa, actions->conf, flow);
1761                         if (rc != 0) {
1762                                 rte_flow_error_set(error, rc,
1763                                         RTE_FLOW_ERROR_TYPE_ACTION, actions,
1764                                         "Bad MARK action");
1765                                 return -rte_errno;
1766                         }
1767                         break;
1768
1769                 default:
1770                         rte_flow_error_set(error, ENOTSUP,
1771                                            RTE_FLOW_ERROR_TYPE_ACTION, actions,
1772                                            "Action is not supported");
1773                         return -rte_errno;
1774                 }
1775
1776                 actions_set |= (1UL << actions->type);
1777         }
1778
1779         /* When fate is unknown, drop traffic. */
1780         if ((actions_set & fate_actions_mask) == 0) {
1781                 spec_filter->template.efs_dmaq_id =
1782                         EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1783         }
1784
1785         return 0;
1786
1787 fail_fate_actions:
1788         rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1789                            "Cannot combine several fate-deciding actions, "
1790                            "choose between QUEUE, RSS or DROP");
1791         return -rte_errno;
1792
1793 fail_actions_overlap:
1794         rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1795                            "Overlapping actions are not supported");
1796         return -rte_errno;
1797 }
1798
1799 /**
1800  * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST
1801  * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same
1802  * specifications after copying.
1803  *
1804  * @param spec[in, out]
1805  *   SFC flow specification to update.
1806  * @param filters_count_for_one_val[in]
1807  *   How many specifications should have the same match flag, what is the
1808  *   number of specifications before copying.
1809  * @param error[out]
1810  *   Perform verbose error reporting if not NULL.
1811  */
1812 static int
1813 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec,
1814                                unsigned int filters_count_for_one_val,
1815                                struct rte_flow_error *error)
1816 {
1817         unsigned int i;
1818         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1819         static const efx_filter_match_flags_t vals[] = {
1820                 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1821                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST
1822         };
1823
1824         if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1825                 rte_flow_error_set(error, EINVAL,
1826                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1827                         "Number of specifications is incorrect while copying "
1828                         "by unknown destination flags");
1829                 return -rte_errno;
1830         }
1831
1832         for (i = 0; i < spec_filter->count; i++) {
1833                 /* The check above ensures that divisor can't be zero here */
1834                 spec_filter->filters[i].efs_match_flags |=
1835                         vals[i / filters_count_for_one_val];
1836         }
1837
1838         return 0;
1839 }
1840
1841 /**
1842  * Check that the following conditions are met:
1843  * - the list of supported filters has a filter
1844  *   with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of
1845  *   EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also
1846  *   be inserted.
1847  *
1848  * @param match[in]
1849  *   The match flags of filter.
1850  * @param spec[in]
1851  *   Specification to be supplemented.
1852  * @param filter[in]
1853  *   SFC filter with list of supported filters.
1854  */
1855 static boolean_t
1856 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match,
1857                                  __rte_unused efx_filter_spec_t *spec,
1858                                  struct sfc_filter *filter)
1859 {
1860         unsigned int i;
1861         efx_filter_match_flags_t match_mcast_dst;
1862
1863         match_mcast_dst =
1864                 (match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) |
1865                 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
1866         for (i = 0; i < filter->supported_match_num; i++) {
1867                 if (match_mcast_dst == filter->supported_match[i])
1868                         return B_TRUE;
1869         }
1870
1871         return B_FALSE;
1872 }
1873
1874 /**
1875  * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and
1876  * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same
1877  * specifications after copying.
1878  *
1879  * @param spec[in, out]
1880  *   SFC flow specification to update.
1881  * @param filters_count_for_one_val[in]
1882  *   How many specifications should have the same EtherType value, what is the
1883  *   number of specifications before copying.
1884  * @param error[out]
1885  *   Perform verbose error reporting if not NULL.
1886  */
1887 static int
1888 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec,
1889                         unsigned int filters_count_for_one_val,
1890                         struct rte_flow_error *error)
1891 {
1892         unsigned int i;
1893         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1894         static const uint16_t vals[] = {
1895                 EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6
1896         };
1897
1898         if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1899                 rte_flow_error_set(error, EINVAL,
1900                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1901                         "Number of specifications is incorrect "
1902                         "while copying by Ethertype");
1903                 return -rte_errno;
1904         }
1905
1906         for (i = 0; i < spec_filter->count; i++) {
1907                 spec_filter->filters[i].efs_match_flags |=
1908                         EFX_FILTER_MATCH_ETHER_TYPE;
1909
1910                 /*
1911                  * The check above ensures that
1912                  * filters_count_for_one_val is not 0
1913                  */
1914                 spec_filter->filters[i].efs_ether_type =
1915                         vals[i / filters_count_for_one_val];
1916         }
1917
1918         return 0;
1919 }
1920
1921 /**
1922  * Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0
1923  * in the same specifications after copying.
1924  *
1925  * @param spec[in, out]
1926  *   SFC flow specification to update.
1927  * @param filters_count_for_one_val[in]
1928  *   How many specifications should have the same match flag, what is the
1929  *   number of specifications before copying.
1930  * @param error[out]
1931  *   Perform verbose error reporting if not NULL.
1932  */
1933 static int
1934 sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec,
1935                             unsigned int filters_count_for_one_val,
1936                             struct rte_flow_error *error)
1937 {
1938         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1939         unsigned int i;
1940
1941         if (filters_count_for_one_val != spec_filter->count) {
1942                 rte_flow_error_set(error, EINVAL,
1943                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1944                         "Number of specifications is incorrect "
1945                         "while copying by outer VLAN ID");
1946                 return -rte_errno;
1947         }
1948
1949         for (i = 0; i < spec_filter->count; i++) {
1950                 spec_filter->filters[i].efs_match_flags |=
1951                         EFX_FILTER_MATCH_OUTER_VID;
1952
1953                 spec_filter->filters[i].efs_outer_vid = 0;
1954         }
1955
1956         return 0;
1957 }
1958
1959 /**
1960  * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and
1961  * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same
1962  * specifications after copying.
1963  *
1964  * @param spec[in, out]
1965  *   SFC flow specification to update.
1966  * @param filters_count_for_one_val[in]
1967  *   How many specifications should have the same match flag, what is the
1968  *   number of specifications before copying.
1969  * @param error[out]
1970  *   Perform verbose error reporting if not NULL.
1971  */
1972 static int
1973 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec,
1974                                     unsigned int filters_count_for_one_val,
1975                                     struct rte_flow_error *error)
1976 {
1977         unsigned int i;
1978         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1979         static const efx_filter_match_flags_t vals[] = {
1980                 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
1981                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST
1982         };
1983
1984         if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1985                 rte_flow_error_set(error, EINVAL,
1986                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1987                         "Number of specifications is incorrect while copying "
1988                         "by inner frame unknown destination flags");
1989                 return -rte_errno;
1990         }
1991
1992         for (i = 0; i < spec_filter->count; i++) {
1993                 /* The check above ensures that divisor can't be zero here */
1994                 spec_filter->filters[i].efs_match_flags |=
1995                         vals[i / filters_count_for_one_val];
1996         }
1997
1998         return 0;
1999 }
2000
2001 /**
2002  * Check that the following conditions are met:
2003  * - the specification corresponds to a filter for encapsulated traffic
2004  * - the list of supported filters has a filter
2005  *   with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of
2006  *   EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also
2007  *   be inserted.
2008  *
2009  * @param match[in]
2010  *   The match flags of filter.
2011  * @param spec[in]
2012  *   Specification to be supplemented.
2013  * @param filter[in]
2014  *   SFC filter with list of supported filters.
2015  */
2016 static boolean_t
2017 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match,
2018                                       efx_filter_spec_t *spec,
2019                                       struct sfc_filter *filter)
2020 {
2021         unsigned int i;
2022         efx_tunnel_protocol_t encap_type = spec->efs_encap_type;
2023         efx_filter_match_flags_t match_mcast_dst;
2024
2025         if (encap_type == EFX_TUNNEL_PROTOCOL_NONE)
2026                 return B_FALSE;
2027
2028         match_mcast_dst =
2029                 (match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) |
2030                 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST;
2031         for (i = 0; i < filter->supported_match_num; i++) {
2032                 if (match_mcast_dst == filter->supported_match[i])
2033                         return B_TRUE;
2034         }
2035
2036         return B_FALSE;
2037 }
2038
2039 /**
2040  * Check that the list of supported filters has a filter that differs
2041  * from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID
2042  * in this case that filter will be used and the flag
2043  * EFX_FILTER_MATCH_OUTER_VID is not needed.
2044  *
2045  * @param match[in]
2046  *   The match flags of filter.
2047  * @param spec[in]
2048  *   Specification to be supplemented.
2049  * @param filter[in]
2050  *   SFC filter with list of supported filters.
2051  */
2052 static boolean_t
2053 sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match,
2054                               __rte_unused efx_filter_spec_t *spec,
2055                               struct sfc_filter *filter)
2056 {
2057         unsigned int i;
2058         efx_filter_match_flags_t match_without_vid =
2059                 match & ~EFX_FILTER_MATCH_OUTER_VID;
2060
2061         for (i = 0; i < filter->supported_match_num; i++) {
2062                 if (match_without_vid == filter->supported_match[i])
2063                         return B_FALSE;
2064         }
2065
2066         return B_TRUE;
2067 }
2068
2069 /*
2070  * Match flags that can be automatically added to filters.
2071  * Selecting the last minimum when searching for the copy flag ensures that the
2072  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than
2073  * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter
2074  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported
2075  * filters.
2076  */
2077 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = {
2078         {
2079                 .flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
2080                 .vals_count = 2,
2081                 .set_vals = sfc_flow_set_unknown_dst_flags,
2082                 .spec_check = sfc_flow_check_unknown_dst_flags,
2083         },
2084         {
2085                 .flag = EFX_FILTER_MATCH_ETHER_TYPE,
2086                 .vals_count = 2,
2087                 .set_vals = sfc_flow_set_ethertypes,
2088                 .spec_check = NULL,
2089         },
2090         {
2091                 .flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
2092                 .vals_count = 2,
2093                 .set_vals = sfc_flow_set_ifrm_unknown_dst_flags,
2094                 .spec_check = sfc_flow_check_ifrm_unknown_dst_flags,
2095         },
2096         {
2097                 .flag = EFX_FILTER_MATCH_OUTER_VID,
2098                 .vals_count = 1,
2099                 .set_vals = sfc_flow_set_outer_vid_flag,
2100                 .spec_check = sfc_flow_check_outer_vid_flag,
2101         },
2102 };
2103
2104 /* Get item from array sfc_flow_copy_flags */
2105 static const struct sfc_flow_copy_flag *
2106 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag)
2107 {
2108         unsigned int i;
2109
2110         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2111                 if (sfc_flow_copy_flags[i].flag == flag)
2112                         return &sfc_flow_copy_flags[i];
2113         }
2114
2115         return NULL;
2116 }
2117
2118 /**
2119  * Make copies of the specifications, set match flag and values
2120  * of the field that corresponds to it.
2121  *
2122  * @param spec[in, out]
2123  *   SFC flow specification to update.
2124  * @param flag[in]
2125  *   The match flag to add.
2126  * @param error[out]
2127  *   Perform verbose error reporting if not NULL.
2128  */
2129 static int
2130 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec,
2131                              efx_filter_match_flags_t flag,
2132                              struct rte_flow_error *error)
2133 {
2134         unsigned int i;
2135         unsigned int new_filters_count;
2136         unsigned int filters_count_for_one_val;
2137         const struct sfc_flow_copy_flag *copy_flag;
2138         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2139         int rc;
2140
2141         copy_flag = sfc_flow_get_copy_flag(flag);
2142         if (copy_flag == NULL) {
2143                 rte_flow_error_set(error, ENOTSUP,
2144                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2145                                    "Unsupported spec field for copying");
2146                 return -rte_errno;
2147         }
2148
2149         new_filters_count = spec_filter->count * copy_flag->vals_count;
2150         if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) {
2151                 rte_flow_error_set(error, EINVAL,
2152                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2153                         "Too much EFX specifications in the flow rule");
2154                 return -rte_errno;
2155         }
2156
2157         /* Copy filters specifications */
2158         for (i = spec_filter->count; i < new_filters_count; i++) {
2159                 spec_filter->filters[i] =
2160                         spec_filter->filters[i - spec_filter->count];
2161         }
2162
2163         filters_count_for_one_val = spec_filter->count;
2164         spec_filter->count = new_filters_count;
2165
2166         rc = copy_flag->set_vals(spec, filters_count_for_one_val, error);
2167         if (rc != 0)
2168                 return rc;
2169
2170         return 0;
2171 }
2172
2173 /**
2174  * Check that the given set of match flags missing in the original filter spec
2175  * could be covered by adding spec copies which specify the corresponding
2176  * flags and packet field values to match.
2177  *
2178  * @param miss_flags[in]
2179  *   Flags that are missing until the supported filter.
2180  * @param spec[in]
2181  *   Specification to be supplemented.
2182  * @param filter[in]
2183  *   SFC filter.
2184  *
2185  * @return
2186  *   Number of specifications after copy or 0, if the flags can not be added.
2187  */
2188 static unsigned int
2189 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags,
2190                              efx_filter_spec_t *spec,
2191                              struct sfc_filter *filter)
2192 {
2193         unsigned int i;
2194         efx_filter_match_flags_t copy_flags = 0;
2195         efx_filter_match_flags_t flag;
2196         efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags;
2197         sfc_flow_spec_check *check;
2198         unsigned int multiplier = 1;
2199
2200         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2201                 flag = sfc_flow_copy_flags[i].flag;
2202                 check = sfc_flow_copy_flags[i].spec_check;
2203                 if ((flag & miss_flags) == flag) {
2204                         if (check != NULL && (!check(match, spec, filter)))
2205                                 continue;
2206
2207                         copy_flags |= flag;
2208                         multiplier *= sfc_flow_copy_flags[i].vals_count;
2209                 }
2210         }
2211
2212         if (copy_flags == miss_flags)
2213                 return multiplier;
2214
2215         return 0;
2216 }
2217
2218 /**
2219  * Attempt to supplement the specification template to the minimally
2220  * supported set of match flags. To do this, it is necessary to copy
2221  * the specifications, filling them with the values of fields that
2222  * correspond to the missing flags.
2223  * The necessary and sufficient filter is built from the fewest number
2224  * of copies which could be made to cover the minimally required set
2225  * of flags.
2226  *
2227  * @param sa[in]
2228  *   SFC adapter.
2229  * @param spec[in, out]
2230  *   SFC flow specification to update.
2231  * @param error[out]
2232  *   Perform verbose error reporting if not NULL.
2233  */
2234 static int
2235 sfc_flow_spec_filters_complete(struct sfc_adapter *sa,
2236                                struct sfc_flow_spec *spec,
2237                                struct rte_flow_error *error)
2238 {
2239         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2240         struct sfc_filter *filter = &sa->filter;
2241         efx_filter_match_flags_t miss_flags;
2242         efx_filter_match_flags_t min_miss_flags = 0;
2243         efx_filter_match_flags_t match;
2244         unsigned int min_multiplier = UINT_MAX;
2245         unsigned int multiplier;
2246         unsigned int i;
2247         int rc;
2248
2249         match = spec_filter->template.efs_match_flags;
2250         for (i = 0; i < filter->supported_match_num; i++) {
2251                 if ((match & filter->supported_match[i]) == match) {
2252                         miss_flags = filter->supported_match[i] & (~match);
2253                         multiplier = sfc_flow_check_missing_flags(miss_flags,
2254                                 &spec_filter->template, filter);
2255                         if (multiplier > 0) {
2256                                 if (multiplier <= min_multiplier) {
2257                                         min_multiplier = multiplier;
2258                                         min_miss_flags = miss_flags;
2259                                 }
2260                         }
2261                 }
2262         }
2263
2264         if (min_multiplier == UINT_MAX) {
2265                 rte_flow_error_set(error, ENOTSUP,
2266                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2267                                    "The flow rule pattern is unsupported");
2268                 return -rte_errno;
2269         }
2270
2271         for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2272                 efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag;
2273
2274                 if ((flag & min_miss_flags) == flag) {
2275                         rc = sfc_flow_spec_add_match_flag(spec, flag, error);
2276                         if (rc != 0)
2277                                 return rc;
2278                 }
2279         }
2280
2281         return 0;
2282 }
2283
2284 /**
2285  * Check that set of match flags is referred to by a filter. Filter is
2286  * described by match flags with the ability to add OUTER_VID and INNER_VID
2287  * flags.
2288  *
2289  * @param match_flags[in]
2290  *   Set of match flags.
2291  * @param flags_pattern[in]
2292  *   Pattern of filter match flags.
2293  */
2294 static boolean_t
2295 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags,
2296                             efx_filter_match_flags_t flags_pattern)
2297 {
2298         if ((match_flags & flags_pattern) != flags_pattern)
2299                 return B_FALSE;
2300
2301         switch (match_flags & ~flags_pattern) {
2302         case 0:
2303         case EFX_FILTER_MATCH_OUTER_VID:
2304         case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID:
2305                 return B_TRUE;
2306         default:
2307                 return B_FALSE;
2308         }
2309 }
2310
2311 /**
2312  * Check whether the spec maps to a hardware filter which is known to be
2313  * ineffective despite being valid.
2314  *
2315  * @param filter[in]
2316  *   SFC filter with list of supported filters.
2317  * @param spec[in]
2318  *   SFC flow specification.
2319  */
2320 static boolean_t
2321 sfc_flow_is_match_flags_exception(struct sfc_filter *filter,
2322                                   struct sfc_flow_spec *spec)
2323 {
2324         unsigned int i;
2325         uint16_t ether_type;
2326         uint8_t ip_proto;
2327         efx_filter_match_flags_t match_flags;
2328         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2329
2330         for (i = 0; i < spec_filter->count; i++) {
2331                 match_flags = spec_filter->filters[i].efs_match_flags;
2332
2333                 if (sfc_flow_is_match_with_vids(match_flags,
2334                                                 EFX_FILTER_MATCH_ETHER_TYPE) ||
2335                     sfc_flow_is_match_with_vids(match_flags,
2336                                                 EFX_FILTER_MATCH_ETHER_TYPE |
2337                                                 EFX_FILTER_MATCH_LOC_MAC)) {
2338                         ether_type = spec_filter->filters[i].efs_ether_type;
2339                         if (filter->supports_ip_proto_or_addr_filter &&
2340                             (ether_type == EFX_ETHER_TYPE_IPV4 ||
2341                              ether_type == EFX_ETHER_TYPE_IPV6))
2342                                 return B_TRUE;
2343                 } else if (sfc_flow_is_match_with_vids(match_flags,
2344                                 EFX_FILTER_MATCH_ETHER_TYPE |
2345                                 EFX_FILTER_MATCH_IP_PROTO) ||
2346                            sfc_flow_is_match_with_vids(match_flags,
2347                                 EFX_FILTER_MATCH_ETHER_TYPE |
2348                                 EFX_FILTER_MATCH_IP_PROTO |
2349                                 EFX_FILTER_MATCH_LOC_MAC)) {
2350                         ip_proto = spec_filter->filters[i].efs_ip_proto;
2351                         if (filter->supports_rem_or_local_port_filter &&
2352                             (ip_proto == EFX_IPPROTO_TCP ||
2353                              ip_proto == EFX_IPPROTO_UDP))
2354                                 return B_TRUE;
2355                 }
2356         }
2357
2358         return B_FALSE;
2359 }
2360
2361 static int
2362 sfc_flow_validate_match_flags(struct sfc_adapter *sa,
2363                               struct rte_flow *flow,
2364                               struct rte_flow_error *error)
2365 {
2366         struct sfc_flow_spec *spec = &flow->spec;
2367         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2368         efx_filter_spec_t *spec_tmpl = &spec_filter->template;
2369         efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags;
2370         int rc;
2371
2372         /* Initialize the first filter spec with template */
2373         spec_filter->filters[0] = *spec_tmpl;
2374         spec_filter->count = 1;
2375
2376         if (!sfc_filter_is_match_supported(sa, match_flags)) {
2377                 rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error);
2378                 if (rc != 0)
2379                         return rc;
2380         }
2381
2382         if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) {
2383                 rte_flow_error_set(error, ENOTSUP,
2384                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2385                         "The flow rule pattern is unsupported");
2386                 return -rte_errno;
2387         }
2388
2389         return 0;
2390 }
2391
2392 static int
2393 sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev,
2394                              const struct rte_flow_item pattern[],
2395                              const struct rte_flow_action actions[],
2396                              struct rte_flow *flow,
2397                              struct rte_flow_error *error)
2398 {
2399         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2400         struct sfc_flow_spec *spec = &flow->spec;
2401         struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2402         struct sfc_flow_parse_ctx ctx;
2403         int rc;
2404
2405         ctx.type = SFC_FLOW_PARSE_CTX_FILTER;
2406         ctx.filter = &spec_filter->template;
2407
2408         rc = sfc_flow_parse_pattern(sfc_flow_items, RTE_DIM(sfc_flow_items),
2409                                     pattern, &ctx, error);
2410         if (rc != 0)
2411                 goto fail_bad_value;
2412
2413         rc = sfc_flow_parse_actions(sa, actions, flow, error);
2414         if (rc != 0)
2415                 goto fail_bad_value;
2416
2417         rc = sfc_flow_validate_match_flags(sa, flow, error);
2418         if (rc != 0)
2419                 goto fail_bad_value;
2420
2421         return 0;
2422
2423 fail_bad_value:
2424         return rc;
2425 }
2426
2427 static int
2428 sfc_flow_parse_rte_to_mae(struct rte_eth_dev *dev,
2429                           const struct rte_flow_item pattern[],
2430                           const struct rte_flow_action actions[],
2431                           struct rte_flow *flow,
2432                           struct rte_flow_error *error)
2433 {
2434         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2435         struct sfc_flow_spec *spec = &flow->spec;
2436         struct sfc_flow_spec_mae *spec_mae = &spec->mae;
2437         int rc;
2438
2439         rc = sfc_mae_rule_parse_pattern(sa, pattern, spec_mae, error);
2440         if (rc != 0)
2441                 return rc;
2442
2443         rc = sfc_mae_rule_parse_actions(sa, actions, &spec_mae->action_set,
2444                                         error);
2445         if (rc != 0)
2446                 return rc;
2447
2448         return 0;
2449 }
2450
2451 static int
2452 sfc_flow_parse(struct rte_eth_dev *dev,
2453                const struct rte_flow_attr *attr,
2454                const struct rte_flow_item pattern[],
2455                const struct rte_flow_action actions[],
2456                struct rte_flow *flow,
2457                struct rte_flow_error *error)
2458 {
2459         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2460         const struct sfc_flow_ops_by_spec *ops;
2461         int rc;
2462
2463         rc = sfc_flow_parse_attr(sa, attr, flow, error);
2464         if (rc != 0)
2465                 return rc;
2466
2467         ops = sfc_flow_get_ops_by_spec(flow);
2468         if (ops == NULL || ops->parse == NULL) {
2469                 rte_flow_error_set(error, ENOTSUP,
2470                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2471                                    "No backend to handle this flow");
2472                 return -rte_errno;
2473         }
2474
2475         return ops->parse(dev, pattern, actions, flow, error);
2476 }
2477
2478 static struct rte_flow *
2479 sfc_flow_zmalloc(struct rte_flow_error *error)
2480 {
2481         struct rte_flow *flow;
2482
2483         flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
2484         if (flow == NULL) {
2485                 rte_flow_error_set(error, ENOMEM,
2486                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2487                                    "Failed to allocate memory");
2488         }
2489
2490         return flow;
2491 }
2492
2493 static void
2494 sfc_flow_free(struct sfc_adapter *sa, struct rte_flow *flow)
2495 {
2496         const struct sfc_flow_ops_by_spec *ops;
2497
2498         ops = sfc_flow_get_ops_by_spec(flow);
2499         if (ops != NULL && ops->cleanup != NULL)
2500                 ops->cleanup(sa, flow);
2501
2502         rte_free(flow);
2503 }
2504
2505 static int
2506 sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow,
2507                 struct rte_flow_error *error)
2508 {
2509         const struct sfc_flow_ops_by_spec *ops;
2510         int rc;
2511
2512         ops = sfc_flow_get_ops_by_spec(flow);
2513         if (ops == NULL || ops->insert == NULL) {
2514                 rte_flow_error_set(error, ENOTSUP,
2515                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2516                                    "No backend to handle this flow");
2517                 return rte_errno;
2518         }
2519
2520         rc = ops->insert(sa, flow);
2521         if (rc != 0) {
2522                 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2523                                    NULL, "Failed to insert the flow rule");
2524         }
2525
2526         return rc;
2527 }
2528
2529 static int
2530 sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow,
2531                 struct rte_flow_error *error)
2532 {
2533         const struct sfc_flow_ops_by_spec *ops;
2534         int rc;
2535
2536         ops = sfc_flow_get_ops_by_spec(flow);
2537         if (ops == NULL || ops->remove == NULL) {
2538                 rte_flow_error_set(error, ENOTSUP,
2539                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2540                                    "No backend to handle this flow");
2541                 return rte_errno;
2542         }
2543
2544         rc = ops->remove(sa, flow);
2545         if (rc != 0) {
2546                 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2547                                    NULL, "Failed to remove the flow rule");
2548         }
2549
2550         return rc;
2551 }
2552
2553 static int
2554 sfc_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow,
2555                 struct rte_flow_error *error)
2556 {
2557         const struct sfc_flow_ops_by_spec *ops;
2558         int rc = 0;
2559
2560         ops = sfc_flow_get_ops_by_spec(flow);
2561         if (ops == NULL) {
2562                 rte_flow_error_set(error, ENOTSUP,
2563                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2564                                    "No backend to handle this flow");
2565                 return -rte_errno;
2566         }
2567
2568         if (ops->verify != NULL) {
2569                 SFC_ASSERT(sfc_adapter_is_locked(sa));
2570                 rc = ops->verify(sa, flow);
2571         }
2572
2573         if (rc != 0) {
2574                 rte_flow_error_set(error, rc,
2575                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2576                         "Failed to verify flow validity with FW");
2577                 return -rte_errno;
2578         }
2579
2580         return 0;
2581 }
2582
2583 static int
2584 sfc_flow_validate(struct rte_eth_dev *dev,
2585                   const struct rte_flow_attr *attr,
2586                   const struct rte_flow_item pattern[],
2587                   const struct rte_flow_action actions[],
2588                   struct rte_flow_error *error)
2589 {
2590         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2591         struct rte_flow *flow;
2592         int rc;
2593
2594         flow = sfc_flow_zmalloc(error);
2595         if (flow == NULL)
2596                 return -rte_errno;
2597
2598         sfc_adapter_lock(sa);
2599
2600         rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2601         if (rc == 0)
2602                 rc = sfc_flow_verify(sa, flow, error);
2603
2604         sfc_flow_free(sa, flow);
2605
2606         sfc_adapter_unlock(sa);
2607
2608         return rc;
2609 }
2610
2611 static struct rte_flow *
2612 sfc_flow_create(struct rte_eth_dev *dev,
2613                 const struct rte_flow_attr *attr,
2614                 const struct rte_flow_item pattern[],
2615                 const struct rte_flow_action actions[],
2616                 struct rte_flow_error *error)
2617 {
2618         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2619         struct rte_flow *flow = NULL;
2620         int rc;
2621
2622         flow = sfc_flow_zmalloc(error);
2623         if (flow == NULL)
2624                 goto fail_no_mem;
2625
2626         sfc_adapter_lock(sa);
2627
2628         rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2629         if (rc != 0)
2630                 goto fail_bad_value;
2631
2632         TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries);
2633
2634         if (sa->state == SFC_ADAPTER_STARTED) {
2635                 rc = sfc_flow_insert(sa, flow, error);
2636                 if (rc != 0)
2637                         goto fail_flow_insert;
2638         }
2639
2640         sfc_adapter_unlock(sa);
2641
2642         return flow;
2643
2644 fail_flow_insert:
2645         TAILQ_REMOVE(&sa->flow_list, flow, entries);
2646
2647 fail_bad_value:
2648         sfc_flow_free(sa, flow);
2649         sfc_adapter_unlock(sa);
2650
2651 fail_no_mem:
2652         return NULL;
2653 }
2654
2655 static int
2656 sfc_flow_destroy(struct rte_eth_dev *dev,
2657                  struct rte_flow *flow,
2658                  struct rte_flow_error *error)
2659 {
2660         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2661         struct rte_flow *flow_ptr;
2662         int rc = EINVAL;
2663
2664         sfc_adapter_lock(sa);
2665
2666         TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) {
2667                 if (flow_ptr == flow)
2668                         rc = 0;
2669         }
2670         if (rc != 0) {
2671                 rte_flow_error_set(error, rc,
2672                                    RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
2673                                    "Failed to find flow rule to destroy");
2674                 goto fail_bad_value;
2675         }
2676
2677         if (sa->state == SFC_ADAPTER_STARTED)
2678                 rc = sfc_flow_remove(sa, flow, error);
2679
2680         TAILQ_REMOVE(&sa->flow_list, flow, entries);
2681         sfc_flow_free(sa, flow);
2682
2683 fail_bad_value:
2684         sfc_adapter_unlock(sa);
2685
2686         return -rc;
2687 }
2688
2689 static int
2690 sfc_flow_flush(struct rte_eth_dev *dev,
2691                struct rte_flow_error *error)
2692 {
2693         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2694         struct rte_flow *flow;
2695         int ret = 0;
2696
2697         sfc_adapter_lock(sa);
2698
2699         while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2700                 if (sa->state == SFC_ADAPTER_STARTED) {
2701                         int rc;
2702
2703                         rc = sfc_flow_remove(sa, flow, error);
2704                         if (rc != 0)
2705                                 ret = rc;
2706                 }
2707
2708                 TAILQ_REMOVE(&sa->flow_list, flow, entries);
2709                 sfc_flow_free(sa, flow);
2710         }
2711
2712         sfc_adapter_unlock(sa);
2713
2714         return -ret;
2715 }
2716
2717 static int
2718 sfc_flow_isolate(struct rte_eth_dev *dev, int enable,
2719                  struct rte_flow_error *error)
2720 {
2721         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2722         int ret = 0;
2723
2724         sfc_adapter_lock(sa);
2725         if (sa->state != SFC_ADAPTER_INITIALIZED) {
2726                 rte_flow_error_set(error, EBUSY,
2727                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2728                                    NULL, "please close the port first");
2729                 ret = -rte_errno;
2730         } else {
2731                 sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE;
2732         }
2733         sfc_adapter_unlock(sa);
2734
2735         return ret;
2736 }
2737
2738 const struct rte_flow_ops sfc_flow_ops = {
2739         .validate = sfc_flow_validate,
2740         .create = sfc_flow_create,
2741         .destroy = sfc_flow_destroy,
2742         .flush = sfc_flow_flush,
2743         .query = NULL,
2744         .isolate = sfc_flow_isolate,
2745 };
2746
2747 void
2748 sfc_flow_init(struct sfc_adapter *sa)
2749 {
2750         SFC_ASSERT(sfc_adapter_is_locked(sa));
2751
2752         TAILQ_INIT(&sa->flow_list);
2753 }
2754
2755 void
2756 sfc_flow_fini(struct sfc_adapter *sa)
2757 {
2758         struct rte_flow *flow;
2759
2760         SFC_ASSERT(sfc_adapter_is_locked(sa));
2761
2762         while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2763                 TAILQ_REMOVE(&sa->flow_list, flow, entries);
2764                 sfc_flow_free(sa, flow);
2765         }
2766 }
2767
2768 void
2769 sfc_flow_stop(struct sfc_adapter *sa)
2770 {
2771         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
2772         struct sfc_rss *rss = &sas->rss;
2773         struct rte_flow *flow;
2774
2775         SFC_ASSERT(sfc_adapter_is_locked(sa));
2776
2777         TAILQ_FOREACH(flow, &sa->flow_list, entries)
2778                 sfc_flow_remove(sa, flow, NULL);
2779
2780         if (rss->dummy_rss_context != EFX_RSS_CONTEXT_DEFAULT) {
2781                 efx_rx_scale_context_free(sa->nic, rss->dummy_rss_context);
2782                 rss->dummy_rss_context = EFX_RSS_CONTEXT_DEFAULT;
2783         }
2784 }
2785
2786 int
2787 sfc_flow_start(struct sfc_adapter *sa)
2788 {
2789         struct rte_flow *flow;
2790         int rc = 0;
2791
2792         sfc_log_init(sa, "entry");
2793
2794         SFC_ASSERT(sfc_adapter_is_locked(sa));
2795
2796         TAILQ_FOREACH(flow, &sa->flow_list, entries) {
2797                 rc = sfc_flow_insert(sa, flow, NULL);
2798                 if (rc != 0)
2799                         goto fail_bad_flow;
2800         }
2801
2802         sfc_log_init(sa, "done");
2803
2804 fail_bad_flow:
2805         return rc;
2806 }