72ffbfd3d1f8a13d5777b826ae255ab48e242ebb
[dpdk.git] / drivers / net / sfc / sfc_mae.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <stdbool.h>
11
12 #include <rte_bitops.h>
13 #include <rte_common.h>
14 #include <rte_vxlan.h>
15
16 #include "efx.h"
17
18 #include "sfc.h"
19 #include "sfc_flow_tunnel.h"
20 #include "sfc_mae_counter.h"
21 #include "sfc_log.h"
22 #include "sfc_switch.h"
23 #include "sfc_service.h"
24
25 static int
26 sfc_mae_assign_entity_mport(struct sfc_adapter *sa,
27                             efx_mport_sel_t *mportp)
28 {
29         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
30
31         return efx_mae_mport_by_pcie_function(encp->enc_pf, encp->enc_vf,
32                                               mportp);
33 }
34
35 static int
36 sfc_mae_counter_registry_init(struct sfc_mae_counter_registry *registry,
37                               uint32_t nb_counters_max)
38 {
39         return sfc_mae_counters_init(&registry->counters, nb_counters_max);
40 }
41
42 static void
43 sfc_mae_counter_registry_fini(struct sfc_mae_counter_registry *registry)
44 {
45         sfc_mae_counters_fini(&registry->counters);
46 }
47
48 static int
49 sfc_mae_internal_rule_find_empty_slot(struct sfc_adapter *sa,
50                                       struct sfc_mae_rule **rule)
51 {
52         struct sfc_mae *mae = &sa->mae;
53         struct sfc_mae_internal_rules *internal_rules = &mae->internal_rules;
54         unsigned int entry;
55         int rc;
56
57         for (entry = 0; entry < SFC_MAE_NB_RULES_MAX; entry++) {
58                 if (internal_rules->rules[entry].spec == NULL)
59                         break;
60         }
61
62         if (entry == SFC_MAE_NB_RULES_MAX) {
63                 rc = ENOSPC;
64                 sfc_err(sa, "failed too many rules (%u rules used)", entry);
65                 goto fail_too_many_rules;
66         }
67
68         *rule = &internal_rules->rules[entry];
69
70         return 0;
71
72 fail_too_many_rules:
73         return rc;
74 }
75
76 int
77 sfc_mae_rule_add_mport_match_deliver(struct sfc_adapter *sa,
78                                      const efx_mport_sel_t *mport_match,
79                                      const efx_mport_sel_t *mport_deliver,
80                                      int prio, struct sfc_mae_rule **rulep)
81 {
82         struct sfc_mae *mae = &sa->mae;
83         struct sfc_mae_rule *rule;
84         int rc;
85
86         sfc_log_init(sa, "entry");
87
88         if (prio > 0 && (unsigned int)prio >= mae->nb_action_rule_prios_max) {
89                 rc = EINVAL;
90                 sfc_err(sa, "failed: invalid priority %d (max %u)", prio,
91                         mae->nb_action_rule_prios_max);
92                 goto fail_invalid_prio;
93         }
94         if (prio < 0)
95                 prio = mae->nb_action_rule_prios_max - 1;
96
97         rc = sfc_mae_internal_rule_find_empty_slot(sa, &rule);
98         if (rc != 0)
99                 goto fail_find_empty_slot;
100
101         sfc_log_init(sa, "init MAE match spec");
102         rc = efx_mae_match_spec_init(sa->nic, EFX_MAE_RULE_ACTION,
103                                      (uint32_t)prio, &rule->spec);
104         if (rc != 0) {
105                 sfc_err(sa, "failed to init MAE match spec");
106                 goto fail_match_init;
107         }
108
109         rc = efx_mae_match_spec_mport_set(rule->spec, mport_match, NULL);
110         if (rc != 0) {
111                 sfc_err(sa, "failed to get MAE match mport selector");
112                 goto fail_mport_set;
113         }
114
115         rc = efx_mae_action_set_spec_init(sa->nic, &rule->actions);
116         if (rc != 0) {
117                 sfc_err(sa, "failed to init MAE action set");
118                 goto fail_action_init;
119         }
120
121         rc = efx_mae_action_set_populate_deliver(rule->actions,
122                                                  mport_deliver);
123         if (rc != 0) {
124                 sfc_err(sa, "failed to populate deliver action");
125                 goto fail_populate_deliver;
126         }
127
128         rc = efx_mae_action_set_alloc(sa->nic, rule->actions,
129                                       &rule->action_set);
130         if (rc != 0) {
131                 sfc_err(sa, "failed to allocate action set");
132                 goto fail_action_set_alloc;
133         }
134
135         rc = efx_mae_action_rule_insert(sa->nic, rule->spec, NULL,
136                                         &rule->action_set,
137                                         &rule->rule_id);
138         if (rc != 0) {
139                 sfc_err(sa, "failed to insert action rule");
140                 goto fail_rule_insert;
141         }
142
143         *rulep = rule;
144
145         sfc_log_init(sa, "done");
146
147         return 0;
148
149 fail_rule_insert:
150         efx_mae_action_set_free(sa->nic, &rule->action_set);
151
152 fail_action_set_alloc:
153 fail_populate_deliver:
154         efx_mae_action_set_spec_fini(sa->nic, rule->actions);
155
156 fail_action_init:
157 fail_mport_set:
158         efx_mae_match_spec_fini(sa->nic, rule->spec);
159
160 fail_match_init:
161 fail_find_empty_slot:
162 fail_invalid_prio:
163         sfc_log_init(sa, "failed: %s", rte_strerror(rc));
164         return rc;
165 }
166
167 void
168 sfc_mae_rule_del(struct sfc_adapter *sa, struct sfc_mae_rule *rule)
169 {
170         if (rule == NULL || rule->spec == NULL)
171                 return;
172
173         efx_mae_action_rule_remove(sa->nic, &rule->rule_id);
174         efx_mae_action_set_free(sa->nic, &rule->action_set);
175         efx_mae_action_set_spec_fini(sa->nic, rule->actions);
176         efx_mae_match_spec_fini(sa->nic, rule->spec);
177
178         rule->spec = NULL;
179 }
180
181 int
182 sfc_mae_attach(struct sfc_adapter *sa)
183 {
184         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
185         struct sfc_mae_switch_port_request switch_port_request = {0};
186         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
187         efx_mport_sel_t entity_mport;
188         struct sfc_mae *mae = &sa->mae;
189         struct sfc_mae_bounce_eh *bounce_eh = &mae->bounce_eh;
190         efx_mae_limits_t limits;
191         int rc;
192
193         sfc_log_init(sa, "entry");
194
195         if (!encp->enc_mae_supported) {
196                 mae->status = SFC_MAE_STATUS_UNSUPPORTED;
197                 return 0;
198         }
199
200         sfc_log_init(sa, "init MAE");
201         rc = efx_mae_init(sa->nic);
202         if (rc != 0)
203                 goto fail_mae_init;
204
205         sfc_log_init(sa, "get MAE limits");
206         rc = efx_mae_get_limits(sa->nic, &limits);
207         if (rc != 0)
208                 goto fail_mae_get_limits;
209
210         sfc_log_init(sa, "init MAE counter registry");
211         rc = sfc_mae_counter_registry_init(&mae->counter_registry,
212                                            limits.eml_max_n_counters);
213         if (rc != 0) {
214                 sfc_err(sa, "failed to init MAE counters registry for %u entries: %s",
215                         limits.eml_max_n_counters, rte_strerror(rc));
216                 goto fail_counter_registry_init;
217         }
218
219         sfc_log_init(sa, "assign entity MPORT");
220         rc = sfc_mae_assign_entity_mport(sa, &entity_mport);
221         if (rc != 0)
222                 goto fail_mae_assign_entity_mport;
223
224         sfc_log_init(sa, "assign RTE switch domain");
225         rc = sfc_mae_assign_switch_domain(sa, &mae->switch_domain_id);
226         if (rc != 0)
227                 goto fail_mae_assign_switch_domain;
228
229         sfc_log_init(sa, "assign RTE switch port");
230         switch_port_request.type = SFC_MAE_SWITCH_PORT_INDEPENDENT;
231         switch_port_request.entity_mportp = &entity_mport;
232         /* RTE ethdev MPORT matches that of the entity for independent ports. */
233         switch_port_request.ethdev_mportp = &entity_mport;
234         switch_port_request.ethdev_port_id = sas->port_id;
235         rc = sfc_mae_assign_switch_port(mae->switch_domain_id,
236                                         &switch_port_request,
237                                         &mae->switch_port_id);
238         if (rc != 0)
239                 goto fail_mae_assign_switch_port;
240
241         sfc_log_init(sa, "allocate encap. header bounce buffer");
242         bounce_eh->buf_size = limits.eml_encap_header_size_limit;
243         bounce_eh->buf = rte_malloc("sfc_mae_bounce_eh",
244                                     bounce_eh->buf_size, 0);
245         if (bounce_eh->buf == NULL)
246                 goto fail_mae_alloc_bounce_eh;
247
248         mae->status = SFC_MAE_STATUS_SUPPORTED;
249         mae->nb_outer_rule_prios_max = limits.eml_max_n_outer_prios;
250         mae->nb_action_rule_prios_max = limits.eml_max_n_action_prios;
251         mae->encap_types_supported = limits.eml_encap_types_supported;
252         TAILQ_INIT(&mae->outer_rules);
253         TAILQ_INIT(&mae->encap_headers);
254         TAILQ_INIT(&mae->action_sets);
255
256         sfc_log_init(sa, "done");
257
258         return 0;
259
260 fail_mae_alloc_bounce_eh:
261 fail_mae_assign_switch_port:
262 fail_mae_assign_switch_domain:
263 fail_mae_assign_entity_mport:
264         sfc_mae_counter_registry_fini(&mae->counter_registry);
265
266 fail_counter_registry_init:
267 fail_mae_get_limits:
268         efx_mae_fini(sa->nic);
269
270 fail_mae_init:
271         sfc_log_init(sa, "failed %d", rc);
272
273         return rc;
274 }
275
276 void
277 sfc_mae_detach(struct sfc_adapter *sa)
278 {
279         struct sfc_mae *mae = &sa->mae;
280         enum sfc_mae_status status_prev = mae->status;
281
282         sfc_log_init(sa, "entry");
283
284         mae->nb_action_rule_prios_max = 0;
285         mae->status = SFC_MAE_STATUS_UNKNOWN;
286
287         if (status_prev != SFC_MAE_STATUS_SUPPORTED)
288                 return;
289
290         rte_free(mae->bounce_eh.buf);
291         sfc_mae_counter_registry_fini(&mae->counter_registry);
292
293         efx_mae_fini(sa->nic);
294
295         sfc_log_init(sa, "done");
296 }
297
298 static struct sfc_mae_outer_rule *
299 sfc_mae_outer_rule_attach(struct sfc_adapter *sa,
300                           const efx_mae_match_spec_t *match_spec,
301                           efx_tunnel_protocol_t encap_type)
302 {
303         struct sfc_mae_outer_rule *rule;
304         struct sfc_mae *mae = &sa->mae;
305
306         SFC_ASSERT(sfc_adapter_is_locked(sa));
307
308         TAILQ_FOREACH(rule, &mae->outer_rules, entries) {
309                 if (efx_mae_match_specs_equal(rule->match_spec, match_spec) &&
310                     rule->encap_type == encap_type) {
311                         sfc_dbg(sa, "attaching to outer_rule=%p", rule);
312                         ++(rule->refcnt);
313                         return rule;
314                 }
315         }
316
317         return NULL;
318 }
319
320 static int
321 sfc_mae_outer_rule_add(struct sfc_adapter *sa,
322                        efx_mae_match_spec_t *match_spec,
323                        efx_tunnel_protocol_t encap_type,
324                        struct sfc_mae_outer_rule **rulep)
325 {
326         struct sfc_mae_outer_rule *rule;
327         struct sfc_mae *mae = &sa->mae;
328
329         SFC_ASSERT(sfc_adapter_is_locked(sa));
330
331         rule = rte_zmalloc("sfc_mae_outer_rule", sizeof(*rule), 0);
332         if (rule == NULL)
333                 return ENOMEM;
334
335         rule->refcnt = 1;
336         rule->match_spec = match_spec;
337         rule->encap_type = encap_type;
338
339         rule->fw_rsrc.rule_id.id = EFX_MAE_RSRC_ID_INVALID;
340
341         TAILQ_INSERT_TAIL(&mae->outer_rules, rule, entries);
342
343         *rulep = rule;
344
345         sfc_dbg(sa, "added outer_rule=%p", rule);
346
347         return 0;
348 }
349
350 static void
351 sfc_mae_outer_rule_del(struct sfc_adapter *sa,
352                        struct sfc_mae_outer_rule *rule)
353 {
354         struct sfc_mae *mae = &sa->mae;
355
356         SFC_ASSERT(sfc_adapter_is_locked(sa));
357         SFC_ASSERT(rule->refcnt != 0);
358
359         --(rule->refcnt);
360
361         if (rule->refcnt != 0)
362                 return;
363
364         if (rule->fw_rsrc.rule_id.id != EFX_MAE_RSRC_ID_INVALID ||
365             rule->fw_rsrc.refcnt != 0) {
366                 sfc_err(sa, "deleting outer_rule=%p abandons its FW resource: OR_ID=0x%08x, refcnt=%u",
367                         rule, rule->fw_rsrc.rule_id.id, rule->fw_rsrc.refcnt);
368         }
369
370         efx_mae_match_spec_fini(sa->nic, rule->match_spec);
371
372         TAILQ_REMOVE(&mae->outer_rules, rule, entries);
373         rte_free(rule);
374
375         sfc_dbg(sa, "deleted outer_rule=%p", rule);
376 }
377
378 static int
379 sfc_mae_outer_rule_enable(struct sfc_adapter *sa,
380                           struct sfc_mae_outer_rule *rule,
381                           efx_mae_match_spec_t *match_spec_action)
382 {
383         struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc;
384         int rc;
385
386         SFC_ASSERT(sfc_adapter_is_locked(sa));
387
388         if (fw_rsrc->refcnt == 0) {
389                 SFC_ASSERT(fw_rsrc->rule_id.id == EFX_MAE_RSRC_ID_INVALID);
390                 SFC_ASSERT(rule->match_spec != NULL);
391
392                 rc = efx_mae_outer_rule_insert(sa->nic, rule->match_spec,
393                                                rule->encap_type,
394                                                &fw_rsrc->rule_id);
395                 if (rc != 0) {
396                         sfc_err(sa, "failed to enable outer_rule=%p: %s",
397                                 rule, strerror(rc));
398                         return rc;
399                 }
400         }
401
402         if (match_spec_action == NULL)
403                 goto skip_action_rule;
404
405         rc = efx_mae_match_spec_outer_rule_id_set(match_spec_action,
406                                                   &fw_rsrc->rule_id);
407         if (rc != 0) {
408                 if (fw_rsrc->refcnt == 0) {
409                         (void)efx_mae_outer_rule_remove(sa->nic,
410                                                         &fw_rsrc->rule_id);
411                         fw_rsrc->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
412                 }
413
414                 sfc_err(sa, "can't match on outer rule ID: %s", strerror(rc));
415
416                 return rc;
417         }
418
419 skip_action_rule:
420         if (fw_rsrc->refcnt == 0) {
421                 sfc_dbg(sa, "enabled outer_rule=%p: OR_ID=0x%08x",
422                         rule, fw_rsrc->rule_id.id);
423         }
424
425         ++(fw_rsrc->refcnt);
426
427         return 0;
428 }
429
430 static void
431 sfc_mae_outer_rule_disable(struct sfc_adapter *sa,
432                            struct sfc_mae_outer_rule *rule)
433 {
434         struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc;
435         int rc;
436
437         SFC_ASSERT(sfc_adapter_is_locked(sa));
438
439         if (fw_rsrc->rule_id.id == EFX_MAE_RSRC_ID_INVALID ||
440             fw_rsrc->refcnt == 0) {
441                 sfc_err(sa, "failed to disable outer_rule=%p: already disabled; OR_ID=0x%08x, refcnt=%u",
442                         rule, fw_rsrc->rule_id.id, fw_rsrc->refcnt);
443                 return;
444         }
445
446         if (fw_rsrc->refcnt == 1) {
447                 rc = efx_mae_outer_rule_remove(sa->nic, &fw_rsrc->rule_id);
448                 if (rc == 0) {
449                         sfc_dbg(sa, "disabled outer_rule=%p with OR_ID=0x%08x",
450                                 rule, fw_rsrc->rule_id.id);
451                 } else {
452                         sfc_err(sa, "failed to disable outer_rule=%p with OR_ID=0x%08x: %s",
453                                 rule, fw_rsrc->rule_id.id, strerror(rc));
454                 }
455                 fw_rsrc->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
456         }
457
458         --(fw_rsrc->refcnt);
459 }
460
461 static struct sfc_mae_encap_header *
462 sfc_mae_encap_header_attach(struct sfc_adapter *sa,
463                             const struct sfc_mae_bounce_eh *bounce_eh)
464 {
465         struct sfc_mae_encap_header *encap_header;
466         struct sfc_mae *mae = &sa->mae;
467
468         SFC_ASSERT(sfc_adapter_is_locked(sa));
469
470         TAILQ_FOREACH(encap_header, &mae->encap_headers, entries) {
471                 if (encap_header->size == bounce_eh->size &&
472                     memcmp(encap_header->buf, bounce_eh->buf,
473                            bounce_eh->size) == 0) {
474                         sfc_dbg(sa, "attaching to encap_header=%p",
475                                 encap_header);
476                         ++(encap_header->refcnt);
477                         return encap_header;
478                 }
479         }
480
481         return NULL;
482 }
483
484 static int
485 sfc_mae_encap_header_add(struct sfc_adapter *sa,
486                          const struct sfc_mae_bounce_eh *bounce_eh,
487                          struct sfc_mae_encap_header **encap_headerp)
488 {
489         struct sfc_mae_encap_header *encap_header;
490         struct sfc_mae *mae = &sa->mae;
491
492         SFC_ASSERT(sfc_adapter_is_locked(sa));
493
494         encap_header = rte_zmalloc("sfc_mae_encap_header",
495                                    sizeof(*encap_header), 0);
496         if (encap_header == NULL)
497                 return ENOMEM;
498
499         encap_header->size = bounce_eh->size;
500
501         encap_header->buf = rte_malloc("sfc_mae_encap_header_buf",
502                                        encap_header->size, 0);
503         if (encap_header->buf == NULL) {
504                 rte_free(encap_header);
505                 return ENOMEM;
506         }
507
508         rte_memcpy(encap_header->buf, bounce_eh->buf, bounce_eh->size);
509
510         encap_header->refcnt = 1;
511         encap_header->type = bounce_eh->type;
512         encap_header->fw_rsrc.eh_id.id = EFX_MAE_RSRC_ID_INVALID;
513
514         TAILQ_INSERT_TAIL(&mae->encap_headers, encap_header, entries);
515
516         *encap_headerp = encap_header;
517
518         sfc_dbg(sa, "added encap_header=%p", encap_header);
519
520         return 0;
521 }
522
523 static void
524 sfc_mae_encap_header_del(struct sfc_adapter *sa,
525                        struct sfc_mae_encap_header *encap_header)
526 {
527         struct sfc_mae *mae = &sa->mae;
528
529         if (encap_header == NULL)
530                 return;
531
532         SFC_ASSERT(sfc_adapter_is_locked(sa));
533         SFC_ASSERT(encap_header->refcnt != 0);
534
535         --(encap_header->refcnt);
536
537         if (encap_header->refcnt != 0)
538                 return;
539
540         if (encap_header->fw_rsrc.eh_id.id != EFX_MAE_RSRC_ID_INVALID ||
541             encap_header->fw_rsrc.refcnt != 0) {
542                 sfc_err(sa, "deleting encap_header=%p abandons its FW resource: EH_ID=0x%08x, refcnt=%u",
543                         encap_header, encap_header->fw_rsrc.eh_id.id,
544                         encap_header->fw_rsrc.refcnt);
545         }
546
547         TAILQ_REMOVE(&mae->encap_headers, encap_header, entries);
548         rte_free(encap_header->buf);
549         rte_free(encap_header);
550
551         sfc_dbg(sa, "deleted encap_header=%p", encap_header);
552 }
553
554 static int
555 sfc_mae_encap_header_enable(struct sfc_adapter *sa,
556                             struct sfc_mae_encap_header *encap_header,
557                             efx_mae_actions_t *action_set_spec)
558 {
559         struct sfc_mae_fw_rsrc *fw_rsrc;
560         int rc;
561
562         if (encap_header == NULL)
563                 return 0;
564
565         SFC_ASSERT(sfc_adapter_is_locked(sa));
566
567         fw_rsrc = &encap_header->fw_rsrc;
568
569         if (fw_rsrc->refcnt == 0) {
570                 SFC_ASSERT(fw_rsrc->eh_id.id == EFX_MAE_RSRC_ID_INVALID);
571                 SFC_ASSERT(encap_header->buf != NULL);
572                 SFC_ASSERT(encap_header->size != 0);
573
574                 rc = efx_mae_encap_header_alloc(sa->nic, encap_header->type,
575                                                 encap_header->buf,
576                                                 encap_header->size,
577                                                 &fw_rsrc->eh_id);
578                 if (rc != 0) {
579                         sfc_err(sa, "failed to enable encap_header=%p: %s",
580                                 encap_header, strerror(rc));
581                         return rc;
582                 }
583         }
584
585         rc = efx_mae_action_set_fill_in_eh_id(action_set_spec,
586                                               &fw_rsrc->eh_id);
587         if (rc != 0) {
588                 if (fw_rsrc->refcnt == 0) {
589                         (void)efx_mae_encap_header_free(sa->nic,
590                                                         &fw_rsrc->eh_id);
591                         fw_rsrc->eh_id.id = EFX_MAE_RSRC_ID_INVALID;
592                 }
593
594                 sfc_err(sa, "can't fill in encap. header ID: %s", strerror(rc));
595
596                 return rc;
597         }
598
599         if (fw_rsrc->refcnt == 0) {
600                 sfc_dbg(sa, "enabled encap_header=%p: EH_ID=0x%08x",
601                         encap_header, fw_rsrc->eh_id.id);
602         }
603
604         ++(fw_rsrc->refcnt);
605
606         return 0;
607 }
608
609 static void
610 sfc_mae_encap_header_disable(struct sfc_adapter *sa,
611                              struct sfc_mae_encap_header *encap_header)
612 {
613         struct sfc_mae_fw_rsrc *fw_rsrc;
614         int rc;
615
616         if (encap_header == NULL)
617                 return;
618
619         SFC_ASSERT(sfc_adapter_is_locked(sa));
620
621         fw_rsrc = &encap_header->fw_rsrc;
622
623         if (fw_rsrc->eh_id.id == EFX_MAE_RSRC_ID_INVALID ||
624             fw_rsrc->refcnt == 0) {
625                 sfc_err(sa, "failed to disable encap_header=%p: already disabled; EH_ID=0x%08x, refcnt=%u",
626                         encap_header, fw_rsrc->eh_id.id, fw_rsrc->refcnt);
627                 return;
628         }
629
630         if (fw_rsrc->refcnt == 1) {
631                 rc = efx_mae_encap_header_free(sa->nic, &fw_rsrc->eh_id);
632                 if (rc == 0) {
633                         sfc_dbg(sa, "disabled encap_header=%p with EH_ID=0x%08x",
634                                 encap_header, fw_rsrc->eh_id.id);
635                 } else {
636                         sfc_err(sa, "failed to disable encap_header=%p with EH_ID=0x%08x: %s",
637                                 encap_header, fw_rsrc->eh_id.id, strerror(rc));
638                 }
639                 fw_rsrc->eh_id.id = EFX_MAE_RSRC_ID_INVALID;
640         }
641
642         --(fw_rsrc->refcnt);
643 }
644
645 static int
646 sfc_mae_counters_enable(struct sfc_adapter *sa,
647                         struct sfc_mae_counter_id *counters,
648                         unsigned int n_counters,
649                         efx_mae_actions_t *action_set_spec)
650 {
651         int rc;
652
653         sfc_log_init(sa, "entry");
654
655         if (n_counters == 0) {
656                 sfc_log_init(sa, "no counters - skip");
657                 return 0;
658         }
659
660         SFC_ASSERT(sfc_adapter_is_locked(sa));
661         SFC_ASSERT(n_counters == 1);
662
663         rc = sfc_mae_counter_enable(sa, &counters[0]);
664         if (rc != 0) {
665                 sfc_err(sa, "failed to enable MAE counter %u: %s",
666                         counters[0].mae_id.id, rte_strerror(rc));
667                 goto fail_counter_add;
668         }
669
670         rc = efx_mae_action_set_fill_in_counter_id(action_set_spec,
671                                                    &counters[0].mae_id);
672         if (rc != 0) {
673                 sfc_err(sa, "failed to fill in MAE counter %u in action set: %s",
674                         counters[0].mae_id.id, rte_strerror(rc));
675                 goto fail_fill_in_id;
676         }
677
678         return 0;
679
680 fail_fill_in_id:
681         (void)sfc_mae_counter_disable(sa, &counters[0]);
682
683 fail_counter_add:
684         sfc_log_init(sa, "failed: %s", rte_strerror(rc));
685         return rc;
686 }
687
688 static int
689 sfc_mae_counters_disable(struct sfc_adapter *sa,
690                          struct sfc_mae_counter_id *counters,
691                          unsigned int n_counters)
692 {
693         if (n_counters == 0)
694                 return 0;
695
696         SFC_ASSERT(sfc_adapter_is_locked(sa));
697         SFC_ASSERT(n_counters == 1);
698
699         if (counters[0].mae_id.id == EFX_MAE_RSRC_ID_INVALID) {
700                 sfc_err(sa, "failed to disable: already disabled");
701                 return EALREADY;
702         }
703
704         return sfc_mae_counter_disable(sa, &counters[0]);
705 }
706
707 static struct sfc_mae_action_set *
708 sfc_mae_action_set_attach(struct sfc_adapter *sa,
709                           const struct sfc_mae_encap_header *encap_header,
710                           unsigned int n_count,
711                           const efx_mae_actions_t *spec)
712 {
713         struct sfc_mae_action_set *action_set;
714         struct sfc_mae *mae = &sa->mae;
715
716         SFC_ASSERT(sfc_adapter_is_locked(sa));
717
718         TAILQ_FOREACH(action_set, &mae->action_sets, entries) {
719                 /*
720                  * Shared counters are not supported, hence action sets with
721                  * COUNT are not attachable.
722                  */
723                 if (action_set->encap_header == encap_header &&
724                     n_count == 0 &&
725                     efx_mae_action_set_specs_equal(action_set->spec, spec)) {
726                         sfc_dbg(sa, "attaching to action_set=%p", action_set);
727                         ++(action_set->refcnt);
728                         return action_set;
729                 }
730         }
731
732         return NULL;
733 }
734
735 static int
736 sfc_mae_action_set_add(struct sfc_adapter *sa,
737                        const struct rte_flow_action actions[],
738                        efx_mae_actions_t *spec,
739                        struct sfc_mae_encap_header *encap_header,
740                        unsigned int n_counters,
741                        struct sfc_mae_action_set **action_setp)
742 {
743         struct sfc_mae_action_set *action_set;
744         struct sfc_mae *mae = &sa->mae;
745         unsigned int i;
746
747         SFC_ASSERT(sfc_adapter_is_locked(sa));
748
749         action_set = rte_zmalloc("sfc_mae_action_set", sizeof(*action_set), 0);
750         if (action_set == NULL) {
751                 sfc_err(sa, "failed to alloc action set");
752                 return ENOMEM;
753         }
754
755         if (n_counters > 0) {
756                 const struct rte_flow_action *action;
757
758                 action_set->counters = rte_malloc("sfc_mae_counter_ids",
759                         sizeof(action_set->counters[0]) * n_counters, 0);
760                 if (action_set->counters == NULL) {
761                         rte_free(action_set);
762                         sfc_err(sa, "failed to alloc counters");
763                         return ENOMEM;
764                 }
765
766                 for (action = actions, i = 0;
767                      action->type != RTE_FLOW_ACTION_TYPE_END && i < n_counters;
768                      ++action) {
769                         const struct rte_flow_action_count *conf;
770
771                         if (action->type != RTE_FLOW_ACTION_TYPE_COUNT)
772                                 continue;
773
774                         conf = action->conf;
775
776                         action_set->counters[i].mae_id.id =
777                                 EFX_MAE_RSRC_ID_INVALID;
778                         action_set->counters[i].rte_id = conf->id;
779                         i++;
780                 }
781                 action_set->n_counters = n_counters;
782         }
783
784         action_set->refcnt = 1;
785         action_set->spec = spec;
786         action_set->encap_header = encap_header;
787
788         action_set->fw_rsrc.aset_id.id = EFX_MAE_RSRC_ID_INVALID;
789
790         TAILQ_INSERT_TAIL(&mae->action_sets, action_set, entries);
791
792         *action_setp = action_set;
793
794         sfc_dbg(sa, "added action_set=%p", action_set);
795
796         return 0;
797 }
798
799 static void
800 sfc_mae_action_set_del(struct sfc_adapter *sa,
801                        struct sfc_mae_action_set *action_set)
802 {
803         struct sfc_mae *mae = &sa->mae;
804
805         SFC_ASSERT(sfc_adapter_is_locked(sa));
806         SFC_ASSERT(action_set->refcnt != 0);
807
808         --(action_set->refcnt);
809
810         if (action_set->refcnt != 0)
811                 return;
812
813         if (action_set->fw_rsrc.aset_id.id != EFX_MAE_RSRC_ID_INVALID ||
814             action_set->fw_rsrc.refcnt != 0) {
815                 sfc_err(sa, "deleting action_set=%p abandons its FW resource: AS_ID=0x%08x, refcnt=%u",
816                         action_set, action_set->fw_rsrc.aset_id.id,
817                         action_set->fw_rsrc.refcnt);
818         }
819
820         efx_mae_action_set_spec_fini(sa->nic, action_set->spec);
821         sfc_mae_encap_header_del(sa, action_set->encap_header);
822         if (action_set->n_counters > 0) {
823                 SFC_ASSERT(action_set->n_counters == 1);
824                 SFC_ASSERT(action_set->counters[0].mae_id.id ==
825                            EFX_MAE_RSRC_ID_INVALID);
826                 rte_free(action_set->counters);
827         }
828         TAILQ_REMOVE(&mae->action_sets, action_set, entries);
829         rte_free(action_set);
830
831         sfc_dbg(sa, "deleted action_set=%p", action_set);
832 }
833
834 static int
835 sfc_mae_action_set_enable(struct sfc_adapter *sa,
836                           struct sfc_mae_action_set *action_set)
837 {
838         struct sfc_mae_encap_header *encap_header = action_set->encap_header;
839         struct sfc_mae_counter_id *counters = action_set->counters;
840         struct sfc_mae_fw_rsrc *fw_rsrc = &action_set->fw_rsrc;
841         int rc;
842
843         SFC_ASSERT(sfc_adapter_is_locked(sa));
844
845         if (fw_rsrc->refcnt == 0) {
846                 SFC_ASSERT(fw_rsrc->aset_id.id == EFX_MAE_RSRC_ID_INVALID);
847                 SFC_ASSERT(action_set->spec != NULL);
848
849                 rc = sfc_mae_encap_header_enable(sa, encap_header,
850                                                  action_set->spec);
851                 if (rc != 0)
852                         return rc;
853
854                 rc = sfc_mae_counters_enable(sa, counters,
855                                              action_set->n_counters,
856                                              action_set->spec);
857                 if (rc != 0) {
858                         sfc_err(sa, "failed to enable %u MAE counters: %s",
859                                 action_set->n_counters, rte_strerror(rc));
860
861                         sfc_mae_encap_header_disable(sa, encap_header);
862                         return rc;
863                 }
864
865                 rc = efx_mae_action_set_alloc(sa->nic, action_set->spec,
866                                               &fw_rsrc->aset_id);
867                 if (rc != 0) {
868                         sfc_err(sa, "failed to enable action_set=%p: %s",
869                                 action_set, strerror(rc));
870
871                         (void)sfc_mae_counters_disable(sa, counters,
872                                                        action_set->n_counters);
873                         sfc_mae_encap_header_disable(sa, encap_header);
874                         return rc;
875                 }
876
877                 sfc_dbg(sa, "enabled action_set=%p: AS_ID=0x%08x",
878                         action_set, fw_rsrc->aset_id.id);
879         }
880
881         ++(fw_rsrc->refcnt);
882
883         return 0;
884 }
885
886 static void
887 sfc_mae_action_set_disable(struct sfc_adapter *sa,
888                            struct sfc_mae_action_set *action_set)
889 {
890         struct sfc_mae_fw_rsrc *fw_rsrc = &action_set->fw_rsrc;
891         int rc;
892
893         SFC_ASSERT(sfc_adapter_is_locked(sa));
894
895         if (fw_rsrc->aset_id.id == EFX_MAE_RSRC_ID_INVALID ||
896             fw_rsrc->refcnt == 0) {
897                 sfc_err(sa, "failed to disable action_set=%p: already disabled; AS_ID=0x%08x, refcnt=%u",
898                         action_set, fw_rsrc->aset_id.id, fw_rsrc->refcnt);
899                 return;
900         }
901
902         if (fw_rsrc->refcnt == 1) {
903                 rc = efx_mae_action_set_free(sa->nic, &fw_rsrc->aset_id);
904                 if (rc == 0) {
905                         sfc_dbg(sa, "disabled action_set=%p with AS_ID=0x%08x",
906                                 action_set, fw_rsrc->aset_id.id);
907                 } else {
908                         sfc_err(sa, "failed to disable action_set=%p with AS_ID=0x%08x: %s",
909                                 action_set, fw_rsrc->aset_id.id, strerror(rc));
910                 }
911                 fw_rsrc->aset_id.id = EFX_MAE_RSRC_ID_INVALID;
912
913                 rc = sfc_mae_counters_disable(sa, action_set->counters,
914                                               action_set->n_counters);
915                 if (rc != 0) {
916                         sfc_err(sa, "failed to disable %u MAE counters: %s",
917                                 action_set->n_counters, rte_strerror(rc));
918                 }
919
920                 sfc_mae_encap_header_disable(sa, action_set->encap_header);
921         }
922
923         --(fw_rsrc->refcnt);
924 }
925
926 void
927 sfc_mae_flow_cleanup(struct sfc_adapter *sa,
928                      struct rte_flow *flow)
929 {
930         struct sfc_flow_spec *spec;
931         struct sfc_flow_spec_mae *spec_mae;
932
933         if (flow == NULL)
934                 return;
935
936         spec = &flow->spec;
937
938         if (spec == NULL)
939                 return;
940
941         spec_mae = &spec->mae;
942
943         if (spec_mae->ft != NULL) {
944                 if (spec_mae->ft_rule_type == SFC_FT_RULE_JUMP)
945                         spec_mae->ft->jump_rule_is_set = B_FALSE;
946
947                 SFC_ASSERT(spec_mae->ft->refcnt != 0);
948                 --(spec_mae->ft->refcnt);
949         }
950
951         SFC_ASSERT(spec_mae->rule_id.id == EFX_MAE_RSRC_ID_INVALID);
952
953         if (spec_mae->outer_rule != NULL)
954                 sfc_mae_outer_rule_del(sa, spec_mae->outer_rule);
955
956         if (spec_mae->action_set != NULL)
957                 sfc_mae_action_set_del(sa, spec_mae->action_set);
958
959         if (spec_mae->match_spec != NULL)
960                 efx_mae_match_spec_fini(sa->nic, spec_mae->match_spec);
961 }
962
963 static int
964 sfc_mae_set_ethertypes(struct sfc_mae_parse_ctx *ctx)
965 {
966         struct sfc_mae_pattern_data *pdata = &ctx->pattern_data;
967         const efx_mae_field_id_t *fremap = ctx->field_ids_remap;
968         const efx_mae_field_id_t field_ids[] = {
969                 EFX_MAE_FIELD_VLAN0_PROTO_BE,
970                 EFX_MAE_FIELD_VLAN1_PROTO_BE,
971         };
972         const struct sfc_mae_ethertype *et;
973         unsigned int i;
974         int rc;
975
976         /*
977          * In accordance with RTE flow API convention, the innermost L2
978          * item's "type" ("inner_type") is a L3 EtherType. If there is
979          * no L3 item, it's 0x0000/0x0000.
980          */
981         et = &pdata->ethertypes[pdata->nb_vlan_tags];
982         rc = efx_mae_match_spec_field_set(ctx->match_spec,
983                                           fremap[EFX_MAE_FIELD_ETHER_TYPE_BE],
984                                           sizeof(et->value),
985                                           (const uint8_t *)&et->value,
986                                           sizeof(et->mask),
987                                           (const uint8_t *)&et->mask);
988         if (rc != 0)
989                 return rc;
990
991         /*
992          * sfc_mae_rule_parse_item_vlan() has already made sure
993          * that pdata->nb_vlan_tags does not exceed this figure.
994          */
995         RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2);
996
997         for (i = 0; i < pdata->nb_vlan_tags; ++i) {
998                 et = &pdata->ethertypes[i];
999
1000                 rc = efx_mae_match_spec_field_set(ctx->match_spec,
1001                                                   fremap[field_ids[i]],
1002                                                   sizeof(et->value),
1003                                                   (const uint8_t *)&et->value,
1004                                                   sizeof(et->mask),
1005                                                   (const uint8_t *)&et->mask);
1006                 if (rc != 0)
1007                         return rc;
1008         }
1009
1010         return 0;
1011 }
1012
1013 static int
1014 sfc_mae_rule_process_pattern_data(struct sfc_mae_parse_ctx *ctx,
1015                                   struct rte_flow_error *error)
1016 {
1017         const efx_mae_field_id_t *fremap = ctx->field_ids_remap;
1018         struct sfc_mae_pattern_data *pdata = &ctx->pattern_data;
1019         struct sfc_mae_ethertype *ethertypes = pdata->ethertypes;
1020         const rte_be16_t supported_tpids[] = {
1021                 /* VLAN standard TPID (always the first element) */
1022                 RTE_BE16(RTE_ETHER_TYPE_VLAN),
1023
1024                 /* Double-tagging TPIDs */
1025                 RTE_BE16(RTE_ETHER_TYPE_QINQ),
1026                 RTE_BE16(RTE_ETHER_TYPE_QINQ1),
1027                 RTE_BE16(RTE_ETHER_TYPE_QINQ2),
1028                 RTE_BE16(RTE_ETHER_TYPE_QINQ3),
1029         };
1030         bool enforce_tag_presence[SFC_MAE_MATCH_VLAN_MAX_NTAGS] = {0};
1031         unsigned int nb_supported_tpids = RTE_DIM(supported_tpids);
1032         unsigned int ethertype_idx;
1033         const uint8_t *valuep;
1034         const uint8_t *maskp;
1035         int rc;
1036
1037         if (pdata->innermost_ethertype_restriction.mask != 0 &&
1038             pdata->nb_vlan_tags < SFC_MAE_MATCH_VLAN_MAX_NTAGS) {
1039                 /*
1040                  * If a single item VLAN is followed by a L3 item, value
1041                  * of "type" in item ETH can't be a double-tagging TPID.
1042                  */
1043                 nb_supported_tpids = 1;
1044         }
1045
1046         /*
1047          * sfc_mae_rule_parse_item_vlan() has already made sure
1048          * that pdata->nb_vlan_tags does not exceed this figure.
1049          */
1050         RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2);
1051
1052         for (ethertype_idx = 0;
1053              ethertype_idx < pdata->nb_vlan_tags; ++ethertype_idx) {
1054                 rte_be16_t tpid_v = ethertypes[ethertype_idx].value;
1055                 rte_be16_t tpid_m = ethertypes[ethertype_idx].mask;
1056                 unsigned int tpid_idx;
1057
1058                 /*
1059                  * This loop can have only two iterations. On the second one,
1060                  * drop outer tag presence enforcement bit because the inner
1061                  * tag presence automatically assumes that for the outer tag.
1062                  */
1063                 enforce_tag_presence[0] = B_FALSE;
1064
1065                 if (tpid_m == RTE_BE16(0)) {
1066                         if (pdata->tci_masks[ethertype_idx] == RTE_BE16(0))
1067                                 enforce_tag_presence[ethertype_idx] = B_TRUE;
1068
1069                         /* No match on this field, and no value check. */
1070                         nb_supported_tpids = 1;
1071                         continue;
1072                 }
1073
1074                 /* Exact match is supported only. */
1075                 if (tpid_m != RTE_BE16(0xffff)) {
1076                         sfc_err(ctx->sa, "TPID mask must be 0x0 or 0xffff; got 0x%04x",
1077                                 rte_be_to_cpu_16(tpid_m));
1078                         rc = EINVAL;
1079                         goto fail;
1080                 }
1081
1082                 for (tpid_idx = pdata->nb_vlan_tags - ethertype_idx - 1;
1083                      tpid_idx < nb_supported_tpids; ++tpid_idx) {
1084                         if (tpid_v == supported_tpids[tpid_idx])
1085                                 break;
1086                 }
1087
1088                 if (tpid_idx == nb_supported_tpids) {
1089                         sfc_err(ctx->sa, "TPID 0x%04x is unsupported",
1090                                 rte_be_to_cpu_16(tpid_v));
1091                         rc = EINVAL;
1092                         goto fail;
1093                 }
1094
1095                 nb_supported_tpids = 1;
1096         }
1097
1098         if (pdata->innermost_ethertype_restriction.mask == RTE_BE16(0xffff)) {
1099                 struct sfc_mae_ethertype *et = &ethertypes[ethertype_idx];
1100                 rte_be16_t enforced_et;
1101
1102                 enforced_et = pdata->innermost_ethertype_restriction.value;
1103
1104                 if (et->mask == 0) {
1105                         et->mask = RTE_BE16(0xffff);
1106                         et->value = enforced_et;
1107                 } else if (et->mask != RTE_BE16(0xffff) ||
1108                            et->value != enforced_et) {
1109                         sfc_err(ctx->sa, "L3 EtherType must be 0x0/0x0 or 0x%04x/0xffff; got 0x%04x/0x%04x",
1110                                 rte_be_to_cpu_16(enforced_et),
1111                                 rte_be_to_cpu_16(et->value),
1112                                 rte_be_to_cpu_16(et->mask));
1113                         rc = EINVAL;
1114                         goto fail;
1115                 }
1116         }
1117
1118         /*
1119          * Now, when the number of VLAN tags is known, set fields
1120          * ETHER_TYPE, VLAN0_PROTO and VLAN1_PROTO so that the first
1121          * one is either a valid L3 EtherType (or 0x0000/0x0000),
1122          * and the last two are valid TPIDs (or 0x0000/0x0000).
1123          */
1124         rc = sfc_mae_set_ethertypes(ctx);
1125         if (rc != 0)
1126                 goto fail;
1127
1128         if (pdata->l3_next_proto_restriction_mask == 0xff) {
1129                 if (pdata->l3_next_proto_mask == 0) {
1130                         pdata->l3_next_proto_mask = 0xff;
1131                         pdata->l3_next_proto_value =
1132                                 pdata->l3_next_proto_restriction_value;
1133                 } else if (pdata->l3_next_proto_mask != 0xff ||
1134                            pdata->l3_next_proto_value !=
1135                            pdata->l3_next_proto_restriction_value) {
1136                         sfc_err(ctx->sa, "L3 next protocol must be 0x0/0x0 or 0x%02x/0xff; got 0x%02x/0x%02x",
1137                                 pdata->l3_next_proto_restriction_value,
1138                                 pdata->l3_next_proto_value,
1139                                 pdata->l3_next_proto_mask);
1140                         rc = EINVAL;
1141                         goto fail;
1142                 }
1143         }
1144
1145         if (enforce_tag_presence[0] || pdata->has_ovlan_mask) {
1146                 rc = efx_mae_match_spec_bit_set(ctx->match_spec,
1147                                                 fremap[EFX_MAE_FIELD_HAS_OVLAN],
1148                                                 enforce_tag_presence[0] ||
1149                                                 pdata->has_ovlan_value);
1150                 if (rc != 0)
1151                         goto fail;
1152         }
1153
1154         if (enforce_tag_presence[1] || pdata->has_ivlan_mask) {
1155                 rc = efx_mae_match_spec_bit_set(ctx->match_spec,
1156                                                 fremap[EFX_MAE_FIELD_HAS_IVLAN],
1157                                                 enforce_tag_presence[1] ||
1158                                                 pdata->has_ivlan_value);
1159                 if (rc != 0)
1160                         goto fail;
1161         }
1162
1163         valuep = (const uint8_t *)&pdata->l3_next_proto_value;
1164         maskp = (const uint8_t *)&pdata->l3_next_proto_mask;
1165         rc = efx_mae_match_spec_field_set(ctx->match_spec,
1166                                           fremap[EFX_MAE_FIELD_IP_PROTO],
1167                                           sizeof(pdata->l3_next_proto_value),
1168                                           valuep,
1169                                           sizeof(pdata->l3_next_proto_mask),
1170                                           maskp);
1171         if (rc != 0)
1172                 goto fail;
1173
1174         return 0;
1175
1176 fail:
1177         return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, NULL,
1178                                   "Failed to process pattern data");
1179 }
1180
1181 static int
1182 sfc_mae_rule_parse_item_mark(const struct rte_flow_item *item,
1183                              struct sfc_flow_parse_ctx *ctx,
1184                              struct rte_flow_error *error)
1185 {
1186         const struct rte_flow_item_mark *spec = item->spec;
1187         struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
1188
1189         if (spec == NULL) {
1190                 return rte_flow_error_set(error, EINVAL,
1191                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1192                                 "NULL spec in item MARK");
1193         }
1194
1195         /*
1196          * This item is used in tunnel offload support only.
1197          * It must go before any network header items. This
1198          * way, sfc_mae_rule_preparse_item_mark() must have
1199          * already parsed it. Only one item MARK is allowed.
1200          */
1201         if (ctx_mae->ft_rule_type != SFC_FT_RULE_GROUP ||
1202             spec->id != (uint32_t)SFC_FT_ID_TO_MARK(ctx_mae->ft->id)) {
1203                 return rte_flow_error_set(error, EINVAL,
1204                                           RTE_FLOW_ERROR_TYPE_ITEM,
1205                                           item, "invalid item MARK");
1206         }
1207
1208         return 0;
1209 }
1210
1211 static int
1212 sfc_mae_rule_parse_item_port_id(const struct rte_flow_item *item,
1213                                 struct sfc_flow_parse_ctx *ctx,
1214                                 struct rte_flow_error *error)
1215 {
1216         struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
1217         const struct rte_flow_item_port_id supp_mask = {
1218                 .id = 0xffffffff,
1219         };
1220         const void *def_mask = &rte_flow_item_port_id_mask;
1221         const struct rte_flow_item_port_id *spec = NULL;
1222         const struct rte_flow_item_port_id *mask = NULL;
1223         efx_mport_sel_t mport_sel;
1224         int rc;
1225
1226         if (ctx_mae->match_mport_set) {
1227                 return rte_flow_error_set(error, ENOTSUP,
1228                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1229                                 "Can't handle multiple traffic source items");
1230         }
1231
1232         rc = sfc_flow_parse_init(item,
1233                                  (const void **)&spec, (const void **)&mask,
1234                                  (const void *)&supp_mask, def_mask,
1235                                  sizeof(struct rte_flow_item_port_id), error);
1236         if (rc != 0)
1237                 return rc;
1238
1239         if (mask->id != supp_mask.id) {
1240                 return rte_flow_error_set(error, EINVAL,
1241                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1242                                 "Bad mask in the PORT_ID pattern item");
1243         }
1244
1245         /* If "spec" is not set, could be any port ID */
1246         if (spec == NULL)
1247                 return 0;
1248
1249         if (spec->id > UINT16_MAX) {
1250                 return rte_flow_error_set(error, EOVERFLOW,
1251                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1252                                           "The port ID is too large");
1253         }
1254
1255         rc = sfc_mae_switch_port_by_ethdev(ctx_mae->sa->mae.switch_domain_id,
1256                                            spec->id, &mport_sel);
1257         if (rc != 0) {
1258                 return rte_flow_error_set(error, rc,
1259                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1260                                 "Can't find RTE ethdev by the port ID");
1261         }
1262
1263         rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec,
1264                                           &mport_sel, NULL);
1265         if (rc != 0) {
1266                 return rte_flow_error_set(error, rc,
1267                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1268                                 "Failed to set MPORT for the port ID");
1269         }
1270
1271         ctx_mae->match_mport_set = B_TRUE;
1272
1273         return 0;
1274 }
1275
1276 static int
1277 sfc_mae_rule_parse_item_phy_port(const struct rte_flow_item *item,
1278                                  struct sfc_flow_parse_ctx *ctx,
1279                                  struct rte_flow_error *error)
1280 {
1281         struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
1282         const struct rte_flow_item_phy_port supp_mask = {
1283                 .index = 0xffffffff,
1284         };
1285         const void *def_mask = &rte_flow_item_phy_port_mask;
1286         const struct rte_flow_item_phy_port *spec = NULL;
1287         const struct rte_flow_item_phy_port *mask = NULL;
1288         efx_mport_sel_t mport_v;
1289         int rc;
1290
1291         if (ctx_mae->match_mport_set) {
1292                 return rte_flow_error_set(error, ENOTSUP,
1293                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1294                                 "Can't handle multiple traffic source items");
1295         }
1296
1297         rc = sfc_flow_parse_init(item,
1298                                  (const void **)&spec, (const void **)&mask,
1299                                  (const void *)&supp_mask, def_mask,
1300                                  sizeof(struct rte_flow_item_phy_port), error);
1301         if (rc != 0)
1302                 return rc;
1303
1304         if (mask->index != supp_mask.index) {
1305                 return rte_flow_error_set(error, EINVAL,
1306                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1307                                 "Bad mask in the PHY_PORT pattern item");
1308         }
1309
1310         /* If "spec" is not set, could be any physical port */
1311         if (spec == NULL)
1312                 return 0;
1313
1314         rc = efx_mae_mport_by_phy_port(spec->index, &mport_v);
1315         if (rc != 0) {
1316                 return rte_flow_error_set(error, rc,
1317                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1318                                 "Failed to convert the PHY_PORT index");
1319         }
1320
1321         rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL);
1322         if (rc != 0) {
1323                 return rte_flow_error_set(error, rc,
1324                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1325                                 "Failed to set MPORT for the PHY_PORT");
1326         }
1327
1328         ctx_mae->match_mport_set = B_TRUE;
1329
1330         return 0;
1331 }
1332
1333 static int
1334 sfc_mae_rule_parse_item_pf(const struct rte_flow_item *item,
1335                            struct sfc_flow_parse_ctx *ctx,
1336                            struct rte_flow_error *error)
1337 {
1338         struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
1339         const efx_nic_cfg_t *encp = efx_nic_cfg_get(ctx_mae->sa->nic);
1340         efx_mport_sel_t mport_v;
1341         int rc;
1342
1343         if (ctx_mae->match_mport_set) {
1344                 return rte_flow_error_set(error, ENOTSUP,
1345                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1346                                 "Can't handle multiple traffic source items");
1347         }
1348
1349         rc = efx_mae_mport_by_pcie_function(encp->enc_pf, EFX_PCI_VF_INVALID,
1350                                             &mport_v);
1351         if (rc != 0) {
1352                 return rte_flow_error_set(error, rc,
1353                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1354                                 "Failed to convert the PF ID");
1355         }
1356
1357         rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL);
1358         if (rc != 0) {
1359                 return rte_flow_error_set(error, rc,
1360                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1361                                 "Failed to set MPORT for the PF");
1362         }
1363
1364         ctx_mae->match_mport_set = B_TRUE;
1365
1366         return 0;
1367 }
1368
1369 static int
1370 sfc_mae_rule_parse_item_vf(const struct rte_flow_item *item,
1371                            struct sfc_flow_parse_ctx *ctx,
1372                            struct rte_flow_error *error)
1373 {
1374         struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
1375         const efx_nic_cfg_t *encp = efx_nic_cfg_get(ctx_mae->sa->nic);
1376         const struct rte_flow_item_vf supp_mask = {
1377                 .id = 0xffffffff,
1378         };
1379         const void *def_mask = &rte_flow_item_vf_mask;
1380         const struct rte_flow_item_vf *spec = NULL;
1381         const struct rte_flow_item_vf *mask = NULL;
1382         efx_mport_sel_t mport_v;
1383         int rc;
1384
1385         if (ctx_mae->match_mport_set) {
1386                 return rte_flow_error_set(error, ENOTSUP,
1387                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1388                                 "Can't handle multiple traffic source items");
1389         }
1390
1391         rc = sfc_flow_parse_init(item,
1392                                  (const void **)&spec, (const void **)&mask,
1393                                  (const void *)&supp_mask, def_mask,
1394                                  sizeof(struct rte_flow_item_vf), error);
1395         if (rc != 0)
1396                 return rc;
1397
1398         if (mask->id != supp_mask.id) {
1399                 return rte_flow_error_set(error, EINVAL,
1400                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1401                                 "Bad mask in the VF pattern item");
1402         }
1403
1404         /*
1405          * If "spec" is not set, the item requests any VF related to the
1406          * PF of the current DPDK port (but not the PF itself).
1407          * Reject this match criterion as unsupported.
1408          */
1409         if (spec == NULL) {
1410                 return rte_flow_error_set(error, EINVAL,
1411                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1412                                 "Bad spec in the VF pattern item");
1413         }
1414
1415         rc = efx_mae_mport_by_pcie_function(encp->enc_pf, spec->id, &mport_v);
1416         if (rc != 0) {
1417                 return rte_flow_error_set(error, rc,
1418                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1419                                 "Failed to convert the PF + VF IDs");
1420         }
1421
1422         rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL);
1423         if (rc != 0) {
1424                 return rte_flow_error_set(error, rc,
1425                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1426                                 "Failed to set MPORT for the PF + VF");
1427         }
1428
1429         ctx_mae->match_mport_set = B_TRUE;
1430
1431         return 0;
1432 }
1433
1434 /*
1435  * Having this field ID in a field locator means that this
1436  * locator cannot be used to actually set the field at the
1437  * time when the corresponding item gets encountered. Such
1438  * fields get stashed in the parsing context instead. This
1439  * is required to resolve dependencies between the stashed
1440  * fields. See sfc_mae_rule_process_pattern_data().
1441  */
1442 #define SFC_MAE_FIELD_HANDLING_DEFERRED EFX_MAE_FIELD_NIDS
1443
1444 struct sfc_mae_field_locator {
1445         efx_mae_field_id_t              field_id;
1446         size_t                          size;
1447         /* Field offset in the corresponding rte_flow_item_ struct */
1448         size_t                          ofst;
1449 };
1450
1451 static void
1452 sfc_mae_item_build_supp_mask(const struct sfc_mae_field_locator *field_locators,
1453                              unsigned int nb_field_locators, void *mask_ptr,
1454                              size_t mask_size)
1455 {
1456         unsigned int i;
1457
1458         memset(mask_ptr, 0, mask_size);
1459
1460         for (i = 0; i < nb_field_locators; ++i) {
1461                 const struct sfc_mae_field_locator *fl = &field_locators[i];
1462
1463                 SFC_ASSERT(fl->ofst + fl->size <= mask_size);
1464                 memset(RTE_PTR_ADD(mask_ptr, fl->ofst), 0xff, fl->size);
1465         }
1466 }
1467
1468 static int
1469 sfc_mae_parse_item(const struct sfc_mae_field_locator *field_locators,
1470                    unsigned int nb_field_locators, const uint8_t *spec,
1471                    const uint8_t *mask, struct sfc_mae_parse_ctx *ctx,
1472                    struct rte_flow_error *error)
1473 {
1474         const efx_mae_field_id_t *fremap = ctx->field_ids_remap;
1475         unsigned int i;
1476         int rc = 0;
1477
1478         for (i = 0; i < nb_field_locators; ++i) {
1479                 const struct sfc_mae_field_locator *fl = &field_locators[i];
1480
1481                 if (fl->field_id == SFC_MAE_FIELD_HANDLING_DEFERRED)
1482                         continue;
1483
1484                 rc = efx_mae_match_spec_field_set(ctx->match_spec,
1485                                                   fremap[fl->field_id],
1486                                                   fl->size, spec + fl->ofst,
1487                                                   fl->size, mask + fl->ofst);
1488                 if (rc != 0)
1489                         break;
1490         }
1491
1492         if (rc != 0) {
1493                 rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM,
1494                                 NULL, "Failed to process item fields");
1495         }
1496
1497         return rc;
1498 }
1499
1500 static const struct sfc_mae_field_locator flocs_eth[] = {
1501         {
1502                 /*
1503                  * This locator is used only for building supported fields mask.
1504                  * The field is handled by sfc_mae_rule_process_pattern_data().
1505                  */
1506                 SFC_MAE_FIELD_HANDLING_DEFERRED,
1507                 RTE_SIZEOF_FIELD(struct rte_flow_item_eth, type),
1508                 offsetof(struct rte_flow_item_eth, type),
1509         },
1510         {
1511                 EFX_MAE_FIELD_ETH_DADDR_BE,
1512                 RTE_SIZEOF_FIELD(struct rte_flow_item_eth, dst),
1513                 offsetof(struct rte_flow_item_eth, dst),
1514         },
1515         {
1516                 EFX_MAE_FIELD_ETH_SADDR_BE,
1517                 RTE_SIZEOF_FIELD(struct rte_flow_item_eth, src),
1518                 offsetof(struct rte_flow_item_eth, src),
1519         },
1520 };
1521
1522 static int
1523 sfc_mae_rule_parse_item_eth(const struct rte_flow_item *item,
1524                             struct sfc_flow_parse_ctx *ctx,
1525                             struct rte_flow_error *error)
1526 {
1527         struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
1528         struct rte_flow_item_eth override_mask;
1529         struct rte_flow_item_eth supp_mask;
1530         const uint8_t *spec = NULL;
1531         const uint8_t *mask = NULL;
1532         int rc;
1533
1534         sfc_mae_item_build_supp_mask(flocs_eth, RTE_DIM(flocs_eth),
1535                                      &supp_mask, sizeof(supp_mask));
1536         supp_mask.has_vlan = 1;
1537
1538         rc = sfc_flow_parse_init(item,
1539                                  (const void **)&spec, (const void **)&mask,
1540                                  (const void *)&supp_mask,
1541                                  &rte_flow_item_eth_mask,
1542                                  sizeof(struct rte_flow_item_eth), error);
1543         if (rc != 0)
1544                 return rc;
1545
1546         if (ctx_mae->ft_rule_type == SFC_FT_RULE_JUMP && mask != NULL) {
1547                 /*
1548                  * The HW/FW hasn't got support for match on MAC addresses in
1549                  * outer rules yet (this will change). Match on VLAN presence
1550                  * isn't supported either. Ignore these match criteria.
1551                  */
1552                 memcpy(&override_mask, mask, sizeof(override_mask));
1553                 memset(&override_mask.hdr.dst_addr, 0,
1554                        sizeof(override_mask.hdr.dst_addr));
1555                 memset(&override_mask.hdr.src_addr, 0,
1556                        sizeof(override_mask.hdr.src_addr));
1557                 override_mask.has_vlan = 0;
1558
1559                 mask = (const uint8_t *)&override_mask;
1560         }
1561
1562         if (spec != NULL) {
1563                 struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
1564                 struct sfc_mae_ethertype *ethertypes = pdata->ethertypes;
1565                 const struct rte_flow_item_eth *item_spec;
1566                 const struct rte_flow_item_eth *item_mask;
1567
1568                 item_spec = (const struct rte_flow_item_eth *)spec;
1569                 item_mask = (const struct rte_flow_item_eth *)mask;
1570
1571                 /*
1572                  * Remember various match criteria in the parsing context.
1573                  * sfc_mae_rule_process_pattern_data() will consider them
1574                  * altogether when the rest of the items have been parsed.
1575                  */
1576                 ethertypes[0].value = item_spec->type;
1577                 ethertypes[0].mask = item_mask->type;
1578                 if (item_mask->has_vlan) {
1579                         pdata->has_ovlan_mask = B_TRUE;
1580                         if (item_spec->has_vlan)
1581                                 pdata->has_ovlan_value = B_TRUE;
1582                 }
1583         } else {
1584                 /*
1585                  * The specification is empty. The overall pattern
1586                  * validity will be enforced at the end of parsing.
1587                  * See sfc_mae_rule_process_pattern_data().
1588                  */
1589                 return 0;
1590         }
1591
1592         return sfc_mae_parse_item(flocs_eth, RTE_DIM(flocs_eth), spec, mask,
1593                                   ctx_mae, error);
1594 }
1595
1596 static const struct sfc_mae_field_locator flocs_vlan[] = {
1597         /* Outermost tag */
1598         {
1599                 EFX_MAE_FIELD_VLAN0_TCI_BE,
1600                 RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, tci),
1601                 offsetof(struct rte_flow_item_vlan, tci),
1602         },
1603         {
1604                 /*
1605                  * This locator is used only for building supported fields mask.
1606                  * The field is handled by sfc_mae_rule_process_pattern_data().
1607                  */
1608                 SFC_MAE_FIELD_HANDLING_DEFERRED,
1609                 RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, inner_type),
1610                 offsetof(struct rte_flow_item_vlan, inner_type),
1611         },
1612
1613         /* Innermost tag */
1614         {
1615                 EFX_MAE_FIELD_VLAN1_TCI_BE,
1616                 RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, tci),
1617                 offsetof(struct rte_flow_item_vlan, tci),
1618         },
1619         {
1620                 /*
1621                  * This locator is used only for building supported fields mask.
1622                  * The field is handled by sfc_mae_rule_process_pattern_data().
1623                  */
1624                 SFC_MAE_FIELD_HANDLING_DEFERRED,
1625                 RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, inner_type),
1626                 offsetof(struct rte_flow_item_vlan, inner_type),
1627         },
1628 };
1629
1630 static int
1631 sfc_mae_rule_parse_item_vlan(const struct rte_flow_item *item,
1632                              struct sfc_flow_parse_ctx *ctx,
1633                              struct rte_flow_error *error)
1634 {
1635         struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
1636         struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
1637         boolean_t *has_vlan_mp_by_nb_tags[SFC_MAE_MATCH_VLAN_MAX_NTAGS] = {
1638                 &pdata->has_ovlan_mask,
1639                 &pdata->has_ivlan_mask,
1640         };
1641         boolean_t *has_vlan_vp_by_nb_tags[SFC_MAE_MATCH_VLAN_MAX_NTAGS] = {
1642                 &pdata->has_ovlan_value,
1643                 &pdata->has_ivlan_value,
1644         };
1645         boolean_t *cur_tag_presence_bit_mp;
1646         boolean_t *cur_tag_presence_bit_vp;
1647         const struct sfc_mae_field_locator *flocs;
1648         struct rte_flow_item_vlan supp_mask;
1649         const uint8_t *spec = NULL;
1650         const uint8_t *mask = NULL;
1651         unsigned int nb_flocs;
1652         int rc;
1653
1654         RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2);
1655
1656         if (pdata->nb_vlan_tags == SFC_MAE_MATCH_VLAN_MAX_NTAGS) {
1657                 return rte_flow_error_set(error, ENOTSUP,
1658                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1659                                 "Can't match that many VLAN tags");
1660         }
1661
1662         cur_tag_presence_bit_mp = has_vlan_mp_by_nb_tags[pdata->nb_vlan_tags];
1663         cur_tag_presence_bit_vp = has_vlan_vp_by_nb_tags[pdata->nb_vlan_tags];
1664
1665         if (*cur_tag_presence_bit_mp == B_TRUE &&
1666             *cur_tag_presence_bit_vp == B_FALSE) {
1667                 return rte_flow_error_set(error, EINVAL,
1668                                 RTE_FLOW_ERROR_TYPE_ITEM, item,
1669                                 "The previous item enforces no (more) VLAN, "
1670                                 "so the current item (VLAN) must not exist");
1671         }
1672
1673         nb_flocs = RTE_DIM(flocs_vlan) / SFC_MAE_MATCH_VLAN_MAX_NTAGS;
1674         flocs = flocs_vlan + pdata->nb_vlan_tags * nb_flocs;
1675
1676         sfc_mae_item_build_supp_mask(flocs, nb_flocs,
1677                                      &supp_mask, sizeof(supp_mask));
1678         /*
1679          * This only means that the field is supported by the driver and libefx.
1680          * Support on NIC level will be checked when all items have been parsed.
1681          */
1682         supp_mask.has_more_vlan = 1;
1683
1684         rc = sfc_flow_parse_init(item,
1685                                  (const void **)&spec, (const void **)&mask,
1686                                  (const void *)&supp_mask,
1687                                  &rte_flow_item_vlan_mask,
1688                                  sizeof(struct rte_flow_item_vlan), error);
1689         if (rc != 0)
1690                 return rc;
1691
1692         if (spec != NULL) {
1693                 struct sfc_mae_ethertype *et = pdata->ethertypes;
1694                 const struct rte_flow_item_vlan *item_spec;
1695                 const struct rte_flow_item_vlan *item_mask;
1696
1697                 item_spec = (const struct rte_flow_item_vlan *)spec;
1698                 item_mask = (const struct rte_flow_item_vlan *)mask;
1699
1700                 /*
1701                  * Remember various match criteria in the parsing context.
1702                  * sfc_mae_rule_process_pattern_data() will consider them
1703                  * altogether when the rest of the items have been parsed.
1704                  */
1705                 et[pdata->nb_vlan_tags + 1].value = item_spec->inner_type;
1706                 et[pdata->nb_vlan_tags + 1].mask = item_mask->inner_type;
1707                 pdata->tci_masks[pdata->nb_vlan_tags] = item_mask->tci;
1708                 if (item_mask->has_more_vlan) {
1709                         if (pdata->nb_vlan_tags ==
1710                             SFC_MAE_MATCH_VLAN_MAX_NTAGS) {
1711                                 return rte_flow_error_set(error, ENOTSUP,
1712                                         RTE_FLOW_ERROR_TYPE_ITEM, item,
1713                                         "Can't use 'has_more_vlan' in "
1714                                         "the second item VLAN");
1715                         }
1716                         pdata->has_ivlan_mask = B_TRUE;
1717                         if (item_spec->has_more_vlan)
1718                                 pdata->has_ivlan_value = B_TRUE;
1719                 }
1720
1721                 /* Convert TCI to MAE representation right now. */
1722                 rc = sfc_mae_parse_item(flocs, nb_flocs, spec, mask,
1723                                         ctx_mae, error);
1724                 if (rc != 0)
1725                         return rc;
1726         }
1727
1728         ++(pdata->nb_vlan_tags);
1729
1730         return 0;
1731 }
1732
1733 static const struct sfc_mae_field_locator flocs_ipv4[] = {
1734         {
1735                 EFX_MAE_FIELD_SRC_IP4_BE,
1736                 RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.src_addr),
1737                 offsetof(struct rte_flow_item_ipv4, hdr.src_addr),
1738         },
1739         {
1740                 EFX_MAE_FIELD_DST_IP4_BE,
1741                 RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.dst_addr),
1742                 offsetof(struct rte_flow_item_ipv4, hdr.dst_addr),
1743         },
1744         {
1745                 /*
1746                  * This locator is used only for building supported fields mask.
1747                  * The field is handled by sfc_mae_rule_process_pattern_data().
1748                  */
1749                 SFC_MAE_FIELD_HANDLING_DEFERRED,
1750                 RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.next_proto_id),
1751                 offsetof(struct rte_flow_item_ipv4, hdr.next_proto_id),
1752         },
1753         {
1754                 EFX_MAE_FIELD_IP_TOS,
1755                 RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4,
1756                                  hdr.type_of_service),
1757                 offsetof(struct rte_flow_item_ipv4, hdr.type_of_service),
1758         },
1759         {
1760                 EFX_MAE_FIELD_IP_TTL,
1761                 RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.time_to_live),
1762                 offsetof(struct rte_flow_item_ipv4, hdr.time_to_live),
1763         },
1764 };
1765
1766 static int
1767 sfc_mae_rule_parse_item_ipv4(const struct rte_flow_item *item,
1768                              struct sfc_flow_parse_ctx *ctx,
1769                              struct rte_flow_error *error)
1770 {
1771         rte_be16_t ethertype_ipv4_be = RTE_BE16(RTE_ETHER_TYPE_IPV4);
1772         struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
1773         struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
1774         struct rte_flow_item_ipv4 supp_mask;
1775         const uint8_t *spec = NULL;
1776         const uint8_t *mask = NULL;
1777         int rc;
1778
1779         sfc_mae_item_build_supp_mask(flocs_ipv4, RTE_DIM(flocs_ipv4),
1780                                      &supp_mask, sizeof(supp_mask));
1781
1782         rc = sfc_flow_parse_init(item,
1783                                  (const void **)&spec, (const void **)&mask,
1784                                  (const void *)&supp_mask,
1785                                  &rte_flow_item_ipv4_mask,
1786                                  sizeof(struct rte_flow_item_ipv4), error);
1787         if (rc != 0)
1788                 return rc;
1789
1790         pdata->innermost_ethertype_restriction.value = ethertype_ipv4_be;
1791         pdata->innermost_ethertype_restriction.mask = RTE_BE16(0xffff);
1792
1793         if (spec != NULL) {
1794                 const struct rte_flow_item_ipv4 *item_spec;
1795                 const struct rte_flow_item_ipv4 *item_mask;
1796
1797                 item_spec = (const struct rte_flow_item_ipv4 *)spec;
1798                 item_mask = (const struct rte_flow_item_ipv4 *)mask;
1799
1800                 pdata->l3_next_proto_value = item_spec->hdr.next_proto_id;
1801                 pdata->l3_next_proto_mask = item_mask->hdr.next_proto_id;
1802         } else {
1803                 return 0;
1804         }
1805
1806         return sfc_mae_parse_item(flocs_ipv4, RTE_DIM(flocs_ipv4), spec, mask,
1807                                   ctx_mae, error);
1808 }
1809
1810 static const struct sfc_mae_field_locator flocs_ipv6[] = {
1811         {
1812                 EFX_MAE_FIELD_SRC_IP6_BE,
1813                 RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.src_addr),
1814                 offsetof(struct rte_flow_item_ipv6, hdr.src_addr),
1815         },
1816         {
1817                 EFX_MAE_FIELD_DST_IP6_BE,
1818                 RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.dst_addr),
1819                 offsetof(struct rte_flow_item_ipv6, hdr.dst_addr),
1820         },
1821         {
1822                 /*
1823                  * This locator is used only for building supported fields mask.
1824                  * The field is handled by sfc_mae_rule_process_pattern_data().
1825                  */
1826                 SFC_MAE_FIELD_HANDLING_DEFERRED,
1827                 RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.proto),
1828                 offsetof(struct rte_flow_item_ipv6, hdr.proto),
1829         },
1830         {
1831                 EFX_MAE_FIELD_IP_TTL,
1832                 RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.hop_limits),
1833                 offsetof(struct rte_flow_item_ipv6, hdr.hop_limits),
1834         },
1835 };
1836
1837 static int
1838 sfc_mae_rule_parse_item_ipv6(const struct rte_flow_item *item,
1839                              struct sfc_flow_parse_ctx *ctx,
1840                              struct rte_flow_error *error)
1841 {
1842         rte_be16_t ethertype_ipv6_be = RTE_BE16(RTE_ETHER_TYPE_IPV6);
1843         struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
1844         const efx_mae_field_id_t *fremap = ctx_mae->field_ids_remap;
1845         struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
1846         struct rte_flow_item_ipv6 supp_mask;
1847         const uint8_t *spec = NULL;
1848         const uint8_t *mask = NULL;
1849         rte_be32_t vtc_flow_be;
1850         uint32_t vtc_flow;
1851         uint8_t tc_value;
1852         uint8_t tc_mask;
1853         int rc;
1854
1855         sfc_mae_item_build_supp_mask(flocs_ipv6, RTE_DIM(flocs_ipv6),
1856                                      &supp_mask, sizeof(supp_mask));
1857
1858         vtc_flow_be = RTE_BE32(RTE_IPV6_HDR_TC_MASK);
1859         memcpy(&supp_mask, &vtc_flow_be, sizeof(vtc_flow_be));
1860
1861         rc = sfc_flow_parse_init(item,
1862                                  (const void **)&spec, (const void **)&mask,
1863                                  (const void *)&supp_mask,
1864                                  &rte_flow_item_ipv6_mask,
1865                                  sizeof(struct rte_flow_item_ipv6), error);
1866         if (rc != 0)
1867                 return rc;
1868
1869         pdata->innermost_ethertype_restriction.value = ethertype_ipv6_be;
1870         pdata->innermost_ethertype_restriction.mask = RTE_BE16(0xffff);
1871
1872         if (spec != NULL) {
1873                 const struct rte_flow_item_ipv6 *item_spec;
1874                 const struct rte_flow_item_ipv6 *item_mask;
1875
1876                 item_spec = (const struct rte_flow_item_ipv6 *)spec;
1877                 item_mask = (const struct rte_flow_item_ipv6 *)mask;
1878
1879                 pdata->l3_next_proto_value = item_spec->hdr.proto;
1880                 pdata->l3_next_proto_mask = item_mask->hdr.proto;
1881         } else {
1882                 return 0;
1883         }
1884
1885         rc = sfc_mae_parse_item(flocs_ipv6, RTE_DIM(flocs_ipv6), spec, mask,
1886                                 ctx_mae, error);
1887         if (rc != 0)
1888                 return rc;
1889
1890         memcpy(&vtc_flow_be, spec, sizeof(vtc_flow_be));
1891         vtc_flow = rte_be_to_cpu_32(vtc_flow_be);
1892         tc_value = (vtc_flow & RTE_IPV6_HDR_TC_MASK) >> RTE_IPV6_HDR_TC_SHIFT;
1893
1894         memcpy(&vtc_flow_be, mask, sizeof(vtc_flow_be));
1895         vtc_flow = rte_be_to_cpu_32(vtc_flow_be);
1896         tc_mask = (vtc_flow & RTE_IPV6_HDR_TC_MASK) >> RTE_IPV6_HDR_TC_SHIFT;
1897
1898         rc = efx_mae_match_spec_field_set(ctx_mae->match_spec,
1899                                           fremap[EFX_MAE_FIELD_IP_TOS],
1900                                           sizeof(tc_value), &tc_value,
1901                                           sizeof(tc_mask), &tc_mask);
1902         if (rc != 0) {
1903                 return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM,
1904                                 NULL, "Failed to process item fields");
1905         }
1906
1907         return 0;
1908 }
1909
1910 static const struct sfc_mae_field_locator flocs_tcp[] = {
1911         {
1912                 EFX_MAE_FIELD_L4_SPORT_BE,
1913                 RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.src_port),
1914                 offsetof(struct rte_flow_item_tcp, hdr.src_port),
1915         },
1916         {
1917                 EFX_MAE_FIELD_L4_DPORT_BE,
1918                 RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.dst_port),
1919                 offsetof(struct rte_flow_item_tcp, hdr.dst_port),
1920         },
1921         {
1922                 EFX_MAE_FIELD_TCP_FLAGS_BE,
1923                 /*
1924                  * The values have been picked intentionally since the
1925                  * target MAE field is oversize (16 bit). This mapping
1926                  * relies on the fact that the MAE field is big-endian.
1927                  */
1928                 RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.data_off) +
1929                 RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.tcp_flags),
1930                 offsetof(struct rte_flow_item_tcp, hdr.data_off),
1931         },
1932 };
1933
1934 static int
1935 sfc_mae_rule_parse_item_tcp(const struct rte_flow_item *item,
1936                             struct sfc_flow_parse_ctx *ctx,
1937                             struct rte_flow_error *error)
1938 {
1939         struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
1940         struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
1941         struct rte_flow_item_tcp supp_mask;
1942         const uint8_t *spec = NULL;
1943         const uint8_t *mask = NULL;
1944         int rc;
1945
1946         /*
1947          * When encountered among outermost items, item TCP is invalid.
1948          * Check which match specification is being constructed now.
1949          */
1950         if (ctx_mae->match_spec != ctx_mae->match_spec_action) {
1951                 return rte_flow_error_set(error, EINVAL,
1952                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1953                                           "TCP in outer frame is invalid");
1954         }
1955
1956         sfc_mae_item_build_supp_mask(flocs_tcp, RTE_DIM(flocs_tcp),
1957                                      &supp_mask, sizeof(supp_mask));
1958
1959         rc = sfc_flow_parse_init(item,
1960                                  (const void **)&spec, (const void **)&mask,
1961                                  (const void *)&supp_mask,
1962                                  &rte_flow_item_tcp_mask,
1963                                  sizeof(struct rte_flow_item_tcp), error);
1964         if (rc != 0)
1965                 return rc;
1966
1967         pdata->l3_next_proto_restriction_value = IPPROTO_TCP;
1968         pdata->l3_next_proto_restriction_mask = 0xff;
1969
1970         if (spec == NULL)
1971                 return 0;
1972
1973         return sfc_mae_parse_item(flocs_tcp, RTE_DIM(flocs_tcp), spec, mask,
1974                                   ctx_mae, error);
1975 }
1976
1977 static const struct sfc_mae_field_locator flocs_udp[] = {
1978         {
1979                 EFX_MAE_FIELD_L4_SPORT_BE,
1980                 RTE_SIZEOF_FIELD(struct rte_flow_item_udp, hdr.src_port),
1981                 offsetof(struct rte_flow_item_udp, hdr.src_port),
1982         },
1983         {
1984                 EFX_MAE_FIELD_L4_DPORT_BE,
1985                 RTE_SIZEOF_FIELD(struct rte_flow_item_udp, hdr.dst_port),
1986                 offsetof(struct rte_flow_item_udp, hdr.dst_port),
1987         },
1988 };
1989
1990 static int
1991 sfc_mae_rule_parse_item_udp(const struct rte_flow_item *item,
1992                             struct sfc_flow_parse_ctx *ctx,
1993                             struct rte_flow_error *error)
1994 {
1995         struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
1996         struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
1997         struct rte_flow_item_udp supp_mask;
1998         const uint8_t *spec = NULL;
1999         const uint8_t *mask = NULL;
2000         int rc;
2001
2002         sfc_mae_item_build_supp_mask(flocs_udp, RTE_DIM(flocs_udp),
2003                                      &supp_mask, sizeof(supp_mask));
2004
2005         rc = sfc_flow_parse_init(item,
2006                                  (const void **)&spec, (const void **)&mask,
2007                                  (const void *)&supp_mask,
2008                                  &rte_flow_item_udp_mask,
2009                                  sizeof(struct rte_flow_item_udp), error);
2010         if (rc != 0)
2011                 return rc;
2012
2013         pdata->l3_next_proto_restriction_value = IPPROTO_UDP;
2014         pdata->l3_next_proto_restriction_mask = 0xff;
2015
2016         if (spec == NULL)
2017                 return 0;
2018
2019         return sfc_mae_parse_item(flocs_udp, RTE_DIM(flocs_udp), spec, mask,
2020                                   ctx_mae, error);
2021 }
2022
2023 static const struct sfc_mae_field_locator flocs_tunnel[] = {
2024         {
2025                 /*
2026                  * The size and offset values are relevant
2027                  * for Geneve and NVGRE, too.
2028                  */
2029                 .size = RTE_SIZEOF_FIELD(struct rte_flow_item_vxlan, vni),
2030                 .ofst = offsetof(struct rte_flow_item_vxlan, vni),
2031         },
2032 };
2033
2034 /*
2035  * An auxiliary registry which allows using non-encap. field IDs
2036  * directly when building a match specification of type ACTION.
2037  *
2038  * See sfc_mae_rule_parse_pattern() and sfc_mae_rule_parse_item_tunnel().
2039  */
2040 static const efx_mae_field_id_t field_ids_no_remap[] = {
2041 #define FIELD_ID_NO_REMAP(_field) \
2042         [EFX_MAE_FIELD_##_field] = EFX_MAE_FIELD_##_field
2043
2044         FIELD_ID_NO_REMAP(ETHER_TYPE_BE),
2045         FIELD_ID_NO_REMAP(ETH_SADDR_BE),
2046         FIELD_ID_NO_REMAP(ETH_DADDR_BE),
2047         FIELD_ID_NO_REMAP(VLAN0_TCI_BE),
2048         FIELD_ID_NO_REMAP(VLAN0_PROTO_BE),
2049         FIELD_ID_NO_REMAP(VLAN1_TCI_BE),
2050         FIELD_ID_NO_REMAP(VLAN1_PROTO_BE),
2051         FIELD_ID_NO_REMAP(SRC_IP4_BE),
2052         FIELD_ID_NO_REMAP(DST_IP4_BE),
2053         FIELD_ID_NO_REMAP(IP_PROTO),
2054         FIELD_ID_NO_REMAP(IP_TOS),
2055         FIELD_ID_NO_REMAP(IP_TTL),
2056         FIELD_ID_NO_REMAP(SRC_IP6_BE),
2057         FIELD_ID_NO_REMAP(DST_IP6_BE),
2058         FIELD_ID_NO_REMAP(L4_SPORT_BE),
2059         FIELD_ID_NO_REMAP(L4_DPORT_BE),
2060         FIELD_ID_NO_REMAP(TCP_FLAGS_BE),
2061         FIELD_ID_NO_REMAP(HAS_OVLAN),
2062         FIELD_ID_NO_REMAP(HAS_IVLAN),
2063
2064 #undef FIELD_ID_NO_REMAP
2065 };
2066
2067 /*
2068  * An auxiliary registry which allows using "ENC" field IDs
2069  * when building a match specification of type OUTER.
2070  *
2071  * See sfc_mae_rule_encap_parse_init().
2072  */
2073 static const efx_mae_field_id_t field_ids_remap_to_encap[] = {
2074 #define FIELD_ID_REMAP_TO_ENCAP(_field) \
2075         [EFX_MAE_FIELD_##_field] = EFX_MAE_FIELD_ENC_##_field
2076
2077         FIELD_ID_REMAP_TO_ENCAP(ETHER_TYPE_BE),
2078         FIELD_ID_REMAP_TO_ENCAP(ETH_SADDR_BE),
2079         FIELD_ID_REMAP_TO_ENCAP(ETH_DADDR_BE),
2080         FIELD_ID_REMAP_TO_ENCAP(VLAN0_TCI_BE),
2081         FIELD_ID_REMAP_TO_ENCAP(VLAN0_PROTO_BE),
2082         FIELD_ID_REMAP_TO_ENCAP(VLAN1_TCI_BE),
2083         FIELD_ID_REMAP_TO_ENCAP(VLAN1_PROTO_BE),
2084         FIELD_ID_REMAP_TO_ENCAP(SRC_IP4_BE),
2085         FIELD_ID_REMAP_TO_ENCAP(DST_IP4_BE),
2086         FIELD_ID_REMAP_TO_ENCAP(IP_PROTO),
2087         FIELD_ID_REMAP_TO_ENCAP(IP_TOS),
2088         FIELD_ID_REMAP_TO_ENCAP(IP_TTL),
2089         FIELD_ID_REMAP_TO_ENCAP(SRC_IP6_BE),
2090         FIELD_ID_REMAP_TO_ENCAP(DST_IP6_BE),
2091         FIELD_ID_REMAP_TO_ENCAP(L4_SPORT_BE),
2092         FIELD_ID_REMAP_TO_ENCAP(L4_DPORT_BE),
2093         FIELD_ID_REMAP_TO_ENCAP(HAS_OVLAN),
2094         FIELD_ID_REMAP_TO_ENCAP(HAS_IVLAN),
2095
2096 #undef FIELD_ID_REMAP_TO_ENCAP
2097 };
2098
2099 static int
2100 sfc_mae_rule_parse_item_tunnel(const struct rte_flow_item *item,
2101                                struct sfc_flow_parse_ctx *ctx,
2102                                struct rte_flow_error *error)
2103 {
2104         struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
2105         uint8_t vnet_id_v[sizeof(uint32_t)] = {0};
2106         uint8_t vnet_id_m[sizeof(uint32_t)] = {0};
2107         const struct rte_flow_item_vxlan *vxp;
2108         uint8_t supp_mask[sizeof(uint64_t)];
2109         const uint8_t *spec = NULL;
2110         const uint8_t *mask = NULL;
2111         int rc;
2112
2113         /*
2114          * We're about to start processing inner frame items.
2115          * Process pattern data that has been deferred so far
2116          * and reset pattern data storage.
2117          */
2118         rc = sfc_mae_rule_process_pattern_data(ctx_mae, error);
2119         if (rc != 0)
2120                 return rc;
2121
2122         memset(&ctx_mae->pattern_data, 0, sizeof(ctx_mae->pattern_data));
2123
2124         sfc_mae_item_build_supp_mask(flocs_tunnel, RTE_DIM(flocs_tunnel),
2125                                      &supp_mask, sizeof(supp_mask));
2126
2127         /*
2128          * This tunnel item was preliminarily detected by
2129          * sfc_mae_rule_encap_parse_init(). Default mask
2130          * was also picked by that helper. Use it here.
2131          */
2132         rc = sfc_flow_parse_init(item,
2133                                  (const void **)&spec, (const void **)&mask,
2134                                  (const void *)&supp_mask,
2135                                  ctx_mae->tunnel_def_mask,
2136                                  ctx_mae->tunnel_def_mask_size,  error);
2137         if (rc != 0)
2138                 return rc;
2139
2140         /*
2141          * This item and later ones comprise a
2142          * match specification of type ACTION.
2143          */
2144         ctx_mae->match_spec = ctx_mae->match_spec_action;
2145
2146         /* This item and later ones use non-encap. EFX MAE field IDs. */
2147         ctx_mae->field_ids_remap = field_ids_no_remap;
2148
2149         if (spec == NULL)
2150                 return 0;
2151
2152         /*
2153          * Field EFX_MAE_FIELD_ENC_VNET_ID_BE is a 32-bit one.
2154          * Copy 24-bit VNI, which is BE, at offset 1 in it.
2155          * The extra byte is 0 both in the mask and in the value.
2156          */
2157         vxp = (const struct rte_flow_item_vxlan *)spec;
2158         memcpy(vnet_id_v + 1, &vxp->vni, sizeof(vxp->vni));
2159
2160         vxp = (const struct rte_flow_item_vxlan *)mask;
2161         memcpy(vnet_id_m + 1, &vxp->vni, sizeof(vxp->vni));
2162
2163         rc = efx_mae_match_spec_field_set(ctx_mae->match_spec,
2164                                           EFX_MAE_FIELD_ENC_VNET_ID_BE,
2165                                           sizeof(vnet_id_v), vnet_id_v,
2166                                           sizeof(vnet_id_m), vnet_id_m);
2167         if (rc != 0) {
2168                 rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM,
2169                                         item, "Failed to set VXLAN VNI");
2170         }
2171
2172         return rc;
2173 }
2174
2175 static const struct sfc_flow_item sfc_flow_items[] = {
2176         {
2177                 .type = RTE_FLOW_ITEM_TYPE_MARK,
2178                 .name = "MARK",
2179                 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
2180                 .layer = SFC_FLOW_ITEM_ANY_LAYER,
2181                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2182                 .parse = sfc_mae_rule_parse_item_mark,
2183         },
2184         {
2185                 .type = RTE_FLOW_ITEM_TYPE_PORT_ID,
2186                 .name = "PORT_ID",
2187                 /*
2188                  * In terms of RTE flow, this item is a META one,
2189                  * and its position in the pattern is don't care.
2190                  */
2191                 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
2192                 .layer = SFC_FLOW_ITEM_ANY_LAYER,
2193                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2194                 .parse = sfc_mae_rule_parse_item_port_id,
2195         },
2196         {
2197                 .type = RTE_FLOW_ITEM_TYPE_PHY_PORT,
2198                 .name = "PHY_PORT",
2199                 /*
2200                  * In terms of RTE flow, this item is a META one,
2201                  * and its position in the pattern is don't care.
2202                  */
2203                 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
2204                 .layer = SFC_FLOW_ITEM_ANY_LAYER,
2205                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2206                 .parse = sfc_mae_rule_parse_item_phy_port,
2207         },
2208         {
2209                 .type = RTE_FLOW_ITEM_TYPE_PF,
2210                 .name = "PF",
2211                 /*
2212                  * In terms of RTE flow, this item is a META one,
2213                  * and its position in the pattern is don't care.
2214                  */
2215                 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
2216                 .layer = SFC_FLOW_ITEM_ANY_LAYER,
2217                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2218                 .parse = sfc_mae_rule_parse_item_pf,
2219         },
2220         {
2221                 .type = RTE_FLOW_ITEM_TYPE_VF,
2222                 .name = "VF",
2223                 /*
2224                  * In terms of RTE flow, this item is a META one,
2225                  * and its position in the pattern is don't care.
2226                  */
2227                 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
2228                 .layer = SFC_FLOW_ITEM_ANY_LAYER,
2229                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2230                 .parse = sfc_mae_rule_parse_item_vf,
2231         },
2232         {
2233                 .type = RTE_FLOW_ITEM_TYPE_ETH,
2234                 .name = "ETH",
2235                 .prev_layer = SFC_FLOW_ITEM_START_LAYER,
2236                 .layer = SFC_FLOW_ITEM_L2,
2237                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2238                 .parse = sfc_mae_rule_parse_item_eth,
2239         },
2240         {
2241                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
2242                 .name = "VLAN",
2243                 .prev_layer = SFC_FLOW_ITEM_L2,
2244                 .layer = SFC_FLOW_ITEM_L2,
2245                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2246                 .parse = sfc_mae_rule_parse_item_vlan,
2247         },
2248         {
2249                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
2250                 .name = "IPV4",
2251                 .prev_layer = SFC_FLOW_ITEM_L2,
2252                 .layer = SFC_FLOW_ITEM_L3,
2253                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2254                 .parse = sfc_mae_rule_parse_item_ipv4,
2255         },
2256         {
2257                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
2258                 .name = "IPV6",
2259                 .prev_layer = SFC_FLOW_ITEM_L2,
2260                 .layer = SFC_FLOW_ITEM_L3,
2261                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2262                 .parse = sfc_mae_rule_parse_item_ipv6,
2263         },
2264         {
2265                 .type = RTE_FLOW_ITEM_TYPE_TCP,
2266                 .name = "TCP",
2267                 .prev_layer = SFC_FLOW_ITEM_L3,
2268                 .layer = SFC_FLOW_ITEM_L4,
2269                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2270                 .parse = sfc_mae_rule_parse_item_tcp,
2271         },
2272         {
2273                 .type = RTE_FLOW_ITEM_TYPE_UDP,
2274                 .name = "UDP",
2275                 .prev_layer = SFC_FLOW_ITEM_L3,
2276                 .layer = SFC_FLOW_ITEM_L4,
2277                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2278                 .parse = sfc_mae_rule_parse_item_udp,
2279         },
2280         {
2281                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
2282                 .name = "VXLAN",
2283                 .prev_layer = SFC_FLOW_ITEM_L4,
2284                 .layer = SFC_FLOW_ITEM_START_LAYER,
2285                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2286                 .parse = sfc_mae_rule_parse_item_tunnel,
2287         },
2288         {
2289                 .type = RTE_FLOW_ITEM_TYPE_GENEVE,
2290                 .name = "GENEVE",
2291                 .prev_layer = SFC_FLOW_ITEM_L4,
2292                 .layer = SFC_FLOW_ITEM_START_LAYER,
2293                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2294                 .parse = sfc_mae_rule_parse_item_tunnel,
2295         },
2296         {
2297                 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
2298                 .name = "NVGRE",
2299                 .prev_layer = SFC_FLOW_ITEM_L3,
2300                 .layer = SFC_FLOW_ITEM_START_LAYER,
2301                 .ctx_type = SFC_FLOW_PARSE_CTX_MAE,
2302                 .parse = sfc_mae_rule_parse_item_tunnel,
2303         },
2304 };
2305
2306 static int
2307 sfc_mae_rule_process_outer(struct sfc_adapter *sa,
2308                            struct sfc_mae_parse_ctx *ctx,
2309                            struct sfc_mae_outer_rule **rulep,
2310                            struct rte_flow_error *error)
2311 {
2312         efx_mae_rule_id_t invalid_rule_id = { .id = EFX_MAE_RSRC_ID_INVALID };
2313         int rc;
2314
2315         if (ctx->encap_type == EFX_TUNNEL_PROTOCOL_NONE) {
2316                 *rulep = NULL;
2317                 goto no_or_id;
2318         }
2319
2320         SFC_ASSERT(ctx->match_spec_outer != NULL);
2321
2322         if (!efx_mae_match_spec_is_valid(sa->nic, ctx->match_spec_outer)) {
2323                 return rte_flow_error_set(error, ENOTSUP,
2324                                           RTE_FLOW_ERROR_TYPE_ITEM, NULL,
2325                                           "Inconsistent pattern (outer)");
2326         }
2327
2328         *rulep = sfc_mae_outer_rule_attach(sa, ctx->match_spec_outer,
2329                                            ctx->encap_type);
2330         if (*rulep != NULL) {
2331                 efx_mae_match_spec_fini(sa->nic, ctx->match_spec_outer);
2332         } else {
2333                 rc = sfc_mae_outer_rule_add(sa, ctx->match_spec_outer,
2334                                             ctx->encap_type, rulep);
2335                 if (rc != 0) {
2336                         return rte_flow_error_set(error, rc,
2337                                         RTE_FLOW_ERROR_TYPE_ITEM, NULL,
2338                                         "Failed to process the pattern");
2339                 }
2340         }
2341
2342         /* The spec has now been tracked by the outer rule entry. */
2343         ctx->match_spec_outer = NULL;
2344
2345 no_or_id:
2346         switch (ctx->ft_rule_type) {
2347         case SFC_FT_RULE_NONE:
2348                 break;
2349         case SFC_FT_RULE_JUMP:
2350                 /* No action rule */
2351                 return 0;
2352         case SFC_FT_RULE_GROUP:
2353                 /*
2354                  * Match on recirculation ID rather than
2355                  * on the outer rule allocation handle.
2356                  */
2357                 rc = efx_mae_match_spec_recirc_id_set(ctx->match_spec_action,
2358                                         SFC_FT_ID_TO_TUNNEL_MARK(ctx->ft->id));
2359                 if (rc != 0) {
2360                         return rte_flow_error_set(error, rc,
2361                                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2362                                         "tunnel offload: GROUP: AR: failed to request match on RECIRC_ID");
2363                 }
2364                 return 0;
2365         default:
2366                 SFC_ASSERT(B_FALSE);
2367         }
2368
2369         /*
2370          * In MAE, lookup sequence comprises outer parse, outer rule lookup,
2371          * inner parse (when some outer rule is hit) and action rule lookup.
2372          * If the currently processed flow does not come with an outer rule,
2373          * its action rule must be available only for packets which miss in
2374          * outer rule table. Set OR_ID match field to 0xffffffff/0xffffffff
2375          * in the action rule specification; this ensures correct behaviour.
2376          *
2377          * If, on the other hand, this flow does have an outer rule, its ID
2378          * may be unknown at the moment (not yet allocated), but OR_ID mask
2379          * has to be set to 0xffffffff anyway for correct class comparisons.
2380          * When the outer rule has been allocated, this match field will be
2381          * overridden by sfc_mae_outer_rule_enable() to use the right value.
2382          */
2383         rc = efx_mae_match_spec_outer_rule_id_set(ctx->match_spec_action,
2384                                                   &invalid_rule_id);
2385         if (rc != 0) {
2386                 if (*rulep != NULL)
2387                         sfc_mae_outer_rule_del(sa, *rulep);
2388
2389                 *rulep = NULL;
2390
2391                 return rte_flow_error_set(error, rc,
2392                                           RTE_FLOW_ERROR_TYPE_ITEM, NULL,
2393                                           "Failed to process the pattern");
2394         }
2395
2396         return 0;
2397 }
2398
2399 static int
2400 sfc_mae_rule_preparse_item_mark(const struct rte_flow_item_mark *spec,
2401                                 struct sfc_mae_parse_ctx *ctx)
2402 {
2403         struct sfc_flow_tunnel *ft;
2404         uint32_t user_mark;
2405
2406         if (spec == NULL) {
2407                 sfc_err(ctx->sa, "tunnel offload: GROUP: NULL spec in item MARK");
2408                 return EINVAL;
2409         }
2410
2411         ft = sfc_flow_tunnel_pick(ctx->sa, spec->id);
2412         if (ft == NULL) {
2413                 sfc_err(ctx->sa, "tunnel offload: GROUP: invalid tunnel");
2414                 return EINVAL;
2415         }
2416
2417         if (ft->refcnt == 0) {
2418                 sfc_err(ctx->sa, "tunnel offload: GROUP: tunnel=%u does not exist",
2419                         ft->id);
2420                 return ENOENT;
2421         }
2422
2423         user_mark = SFC_FT_GET_USER_MARK(spec->id);
2424         if (user_mark != 0) {
2425                 sfc_err(ctx->sa, "tunnel offload: GROUP: invalid item MARK");
2426                 return EINVAL;
2427         }
2428
2429         sfc_dbg(ctx->sa, "tunnel offload: GROUP: detected");
2430
2431         ctx->ft_rule_type = SFC_FT_RULE_GROUP;
2432         ctx->ft = ft;
2433
2434         return 0;
2435 }
2436
2437 static int
2438 sfc_mae_rule_encap_parse_init(struct sfc_adapter *sa,
2439                               const struct rte_flow_item pattern[],
2440                               struct sfc_mae_parse_ctx *ctx,
2441                               struct rte_flow_error *error)
2442 {
2443         struct sfc_mae *mae = &sa->mae;
2444         uint8_t recirc_id = 0;
2445         int rc;
2446
2447         if (pattern == NULL) {
2448                 rte_flow_error_set(error, EINVAL,
2449                                    RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
2450                                    "NULL pattern");
2451                 return -rte_errno;
2452         }
2453
2454         for (;;) {
2455                 switch (pattern->type) {
2456                 case RTE_FLOW_ITEM_TYPE_MARK:
2457                         rc = sfc_mae_rule_preparse_item_mark(pattern->spec,
2458                                                              ctx);
2459                         if (rc != 0) {
2460                                 return rte_flow_error_set(error, rc,
2461                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2462                                                   pattern, "tunnel offload: GROUP: invalid item MARK");
2463                         }
2464                         ++pattern;
2465                         continue;
2466                 case RTE_FLOW_ITEM_TYPE_VXLAN:
2467                         ctx->encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
2468                         ctx->tunnel_def_mask = &rte_flow_item_vxlan_mask;
2469                         ctx->tunnel_def_mask_size =
2470                                 sizeof(rte_flow_item_vxlan_mask);
2471                         break;
2472                 case RTE_FLOW_ITEM_TYPE_GENEVE:
2473                         ctx->encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
2474                         ctx->tunnel_def_mask = &rte_flow_item_geneve_mask;
2475                         ctx->tunnel_def_mask_size =
2476                                 sizeof(rte_flow_item_geneve_mask);
2477                         break;
2478                 case RTE_FLOW_ITEM_TYPE_NVGRE:
2479                         ctx->encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
2480                         ctx->tunnel_def_mask = &rte_flow_item_nvgre_mask;
2481                         ctx->tunnel_def_mask_size =
2482                                 sizeof(rte_flow_item_nvgre_mask);
2483                         break;
2484                 case RTE_FLOW_ITEM_TYPE_END:
2485                         break;
2486                 default:
2487                         ++pattern;
2488                         continue;
2489                 };
2490
2491                 break;
2492         }
2493
2494         switch (ctx->ft_rule_type) {
2495         case SFC_FT_RULE_NONE:
2496                 if (pattern->type == RTE_FLOW_ITEM_TYPE_END)
2497                         return 0;
2498                 break;
2499         case SFC_FT_RULE_JUMP:
2500                 if (pattern->type != RTE_FLOW_ITEM_TYPE_END) {
2501                         return rte_flow_error_set(error, ENOTSUP,
2502                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2503                                                   pattern, "tunnel offload: JUMP: invalid item");
2504                 }
2505                 ctx->encap_type = ctx->ft->encap_type;
2506                 break;
2507         case SFC_FT_RULE_GROUP:
2508                 if (pattern->type == RTE_FLOW_ITEM_TYPE_END) {
2509                         return rte_flow_error_set(error, EINVAL,
2510                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2511                                                   NULL, "tunnel offload: GROUP: missing tunnel item");
2512                 } else if (ctx->encap_type != ctx->ft->encap_type) {
2513                         return rte_flow_error_set(error, EINVAL,
2514                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2515                                                   pattern, "tunnel offload: GROUP: tunnel type mismatch");
2516                 }
2517                 break;
2518         default:
2519                 SFC_ASSERT(B_FALSE);
2520                 break;
2521         }
2522
2523         if ((mae->encap_types_supported & (1U << ctx->encap_type)) == 0) {
2524                 return rte_flow_error_set(error, ENOTSUP,
2525                                           RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2526                                           "OR: unsupported tunnel type");
2527         }
2528
2529         switch (ctx->ft_rule_type) {
2530         case SFC_FT_RULE_JUMP:
2531                 recirc_id = SFC_FT_ID_TO_TUNNEL_MARK(ctx->ft->id);
2532                 /* FALLTHROUGH */
2533         case SFC_FT_RULE_NONE:
2534                 if (ctx->priority >= mae->nb_outer_rule_prios_max) {
2535                         return rte_flow_error_set(error, ENOTSUP,
2536                                         RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
2537                                         NULL, "OR: unsupported priority level");
2538                 }
2539
2540                 rc = efx_mae_match_spec_init(sa->nic,
2541                                              EFX_MAE_RULE_OUTER, ctx->priority,
2542                                              &ctx->match_spec_outer);
2543                 if (rc != 0) {
2544                         return rte_flow_error_set(error, rc,
2545                                 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2546                                 "OR: failed to initialise the match specification");
2547                 }
2548
2549                 /*
2550                  * Outermost items comprise a match
2551                  * specification of type OUTER.
2552                  */
2553                 ctx->match_spec = ctx->match_spec_outer;
2554
2555                 /* Outermost items use "ENC" EFX MAE field IDs. */
2556                 ctx->field_ids_remap = field_ids_remap_to_encap;
2557
2558                 rc = efx_mae_outer_rule_recirc_id_set(ctx->match_spec,
2559                                                       recirc_id);
2560                 if (rc != 0) {
2561                         return rte_flow_error_set(error, rc,
2562                                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2563                                         "OR: failed to initialise RECIRC_ID");
2564                 }
2565                 break;
2566         case SFC_FT_RULE_GROUP:
2567                 /* Outermost items -> "ENC" match fields in the action rule. */
2568                 ctx->field_ids_remap = field_ids_remap_to_encap;
2569                 ctx->match_spec = ctx->match_spec_action;
2570
2571                 /* No own outer rule; match on JUMP OR's RECIRC_ID is used. */
2572                 ctx->encap_type = EFX_TUNNEL_PROTOCOL_NONE;
2573                 break;
2574         default:
2575                 SFC_ASSERT(B_FALSE);
2576                 break;
2577         }
2578
2579         return 0;
2580 }
2581
2582 static void
2583 sfc_mae_rule_encap_parse_fini(struct sfc_adapter *sa,
2584                               struct sfc_mae_parse_ctx *ctx)
2585 {
2586         if (ctx->encap_type == EFX_TUNNEL_PROTOCOL_NONE)
2587                 return;
2588
2589         if (ctx->match_spec_outer != NULL)
2590                 efx_mae_match_spec_fini(sa->nic, ctx->match_spec_outer);
2591 }
2592
2593 int
2594 sfc_mae_rule_parse_pattern(struct sfc_adapter *sa,
2595                            const struct rte_flow_item pattern[],
2596                            struct sfc_flow_spec_mae *spec,
2597                            struct rte_flow_error *error)
2598 {
2599         struct sfc_mae_parse_ctx ctx_mae;
2600         unsigned int priority_shift = 0;
2601         struct sfc_flow_parse_ctx ctx;
2602         int rc;
2603
2604         memset(&ctx_mae, 0, sizeof(ctx_mae));
2605         ctx_mae.ft_rule_type = spec->ft_rule_type;
2606         ctx_mae.priority = spec->priority;
2607         ctx_mae.ft = spec->ft;
2608         ctx_mae.sa = sa;
2609
2610         switch (ctx_mae.ft_rule_type) {
2611         case SFC_FT_RULE_JUMP:
2612                 /*
2613                  * By design, this flow should be represented solely by the
2614                  * outer rule. But the HW/FW hasn't got support for setting
2615                  * Rx mark from RECIRC_ID on outer rule lookup yet. Neither
2616                  * does it support outer rule counters. As a workaround, an
2617                  * action rule of lower priority is used to do the job.
2618                  */
2619                 priority_shift = 1;
2620
2621                 /* FALLTHROUGH */
2622         case SFC_FT_RULE_GROUP:
2623                 if (ctx_mae.priority != 0) {
2624                         /*
2625                          * Because of the above workaround, deny the
2626                          * use of priorities to JUMP and GROUP rules.
2627                          */
2628                         rc = rte_flow_error_set(error, ENOTSUP,
2629                                 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, NULL,
2630                                 "tunnel offload: priorities are not supported");
2631                         goto fail_priority_check;
2632                 }
2633
2634                 /* FALLTHROUGH */
2635         case SFC_FT_RULE_NONE:
2636                 rc = efx_mae_match_spec_init(sa->nic, EFX_MAE_RULE_ACTION,
2637                                              spec->priority + priority_shift,
2638                                              &ctx_mae.match_spec_action);
2639                 if (rc != 0) {
2640                         rc = rte_flow_error_set(error, rc,
2641                                 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2642                                 "AR: failed to initialise the match specification");
2643                         goto fail_init_match_spec_action;
2644                 }
2645                 break;
2646         default:
2647                 SFC_ASSERT(B_FALSE);
2648                 break;
2649         }
2650
2651         /*
2652          * As a preliminary setting, assume that there is no encapsulation
2653          * in the pattern. That is, pattern items are about to comprise a
2654          * match specification of type ACTION and use non-encap. field IDs.
2655          *
2656          * sfc_mae_rule_encap_parse_init() below may override this.
2657          */
2658         ctx_mae.encap_type = EFX_TUNNEL_PROTOCOL_NONE;
2659         ctx_mae.match_spec = ctx_mae.match_spec_action;
2660         ctx_mae.field_ids_remap = field_ids_no_remap;
2661
2662         ctx.type = SFC_FLOW_PARSE_CTX_MAE;
2663         ctx.mae = &ctx_mae;
2664
2665         rc = sfc_mae_rule_encap_parse_init(sa, pattern, &ctx_mae, error);
2666         if (rc != 0)
2667                 goto fail_encap_parse_init;
2668
2669         /*
2670          * sfc_mae_rule_encap_parse_init() may have detected tunnel offload
2671          * GROUP rule. Remember its properties for later use.
2672          */
2673         spec->ft_rule_type = ctx_mae.ft_rule_type;
2674         spec->ft = ctx_mae.ft;
2675
2676         rc = sfc_flow_parse_pattern(sa, sfc_flow_items, RTE_DIM(sfc_flow_items),
2677                                     pattern, &ctx, error);
2678         if (rc != 0)
2679                 goto fail_parse_pattern;
2680
2681         rc = sfc_mae_rule_process_pattern_data(&ctx_mae, error);
2682         if (rc != 0)
2683                 goto fail_process_pattern_data;
2684
2685         rc = sfc_mae_rule_process_outer(sa, &ctx_mae, &spec->outer_rule, error);
2686         if (rc != 0)
2687                 goto fail_process_outer;
2688
2689         if (ctx_mae.match_spec_action != NULL &&
2690             !efx_mae_match_spec_is_valid(sa->nic, ctx_mae.match_spec_action)) {
2691                 rc = rte_flow_error_set(error, ENOTSUP,
2692                                         RTE_FLOW_ERROR_TYPE_ITEM, NULL,
2693                                         "Inconsistent pattern");
2694                 goto fail_validate_match_spec_action;
2695         }
2696
2697         spec->match_spec = ctx_mae.match_spec_action;
2698
2699         return 0;
2700
2701 fail_validate_match_spec_action:
2702 fail_process_outer:
2703 fail_process_pattern_data:
2704 fail_parse_pattern:
2705         sfc_mae_rule_encap_parse_fini(sa, &ctx_mae);
2706
2707 fail_encap_parse_init:
2708         if (ctx_mae.match_spec_action != NULL)
2709                 efx_mae_match_spec_fini(sa->nic, ctx_mae.match_spec_action);
2710
2711 fail_init_match_spec_action:
2712 fail_priority_check:
2713         return rc;
2714 }
2715
2716 /*
2717  * An action supported by MAE may correspond to a bundle of RTE flow actions,
2718  * in example, VLAN_PUSH = OF_PUSH_VLAN + OF_VLAN_SET_VID + OF_VLAN_SET_PCP.
2719  * That is, related RTE flow actions need to be tracked as parts of a whole
2720  * so that they can be combined into a single action and submitted to MAE
2721  * representation of a given rule's action set.
2722  *
2723  * Each RTE flow action provided by an application gets classified as
2724  * one belonging to some bundle type. If an action is not supposed to
2725  * belong to any bundle, or if this action is END, it is described as
2726  * one belonging to a dummy bundle of type EMPTY.
2727  *
2728  * A currently tracked bundle will be submitted if a repeating
2729  * action or an action of different bundle type follows.
2730  */
2731
2732 enum sfc_mae_actions_bundle_type {
2733         SFC_MAE_ACTIONS_BUNDLE_EMPTY = 0,
2734         SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH,
2735 };
2736
2737 struct sfc_mae_actions_bundle {
2738         enum sfc_mae_actions_bundle_type        type;
2739
2740         /* Indicates actions already tracked by the current bundle */
2741         uint64_t                                actions_mask;
2742
2743         /* Parameters used by SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH */
2744         rte_be16_t                              vlan_push_tpid;
2745         rte_be16_t                              vlan_push_tci;
2746 };
2747
2748 /*
2749  * Combine configuration of RTE flow actions tracked by the bundle into a
2750  * single action and submit the result to MAE action set specification.
2751  * Do nothing in the case of dummy action bundle.
2752  */
2753 static int
2754 sfc_mae_actions_bundle_submit(const struct sfc_mae_actions_bundle *bundle,
2755                               efx_mae_actions_t *spec)
2756 {
2757         int rc = 0;
2758
2759         switch (bundle->type) {
2760         case SFC_MAE_ACTIONS_BUNDLE_EMPTY:
2761                 break;
2762         case SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH:
2763                 rc = efx_mae_action_set_populate_vlan_push(
2764                         spec, bundle->vlan_push_tpid, bundle->vlan_push_tci);
2765                 break;
2766         default:
2767                 SFC_ASSERT(B_FALSE);
2768                 break;
2769         }
2770
2771         return rc;
2772 }
2773
2774 /*
2775  * Given the type of the next RTE flow action in the line, decide
2776  * whether a new bundle is about to start, and, if this is the case,
2777  * submit and reset the current bundle.
2778  */
2779 static int
2780 sfc_mae_actions_bundle_sync(const struct rte_flow_action *action,
2781                             struct sfc_mae_actions_bundle *bundle,
2782                             efx_mae_actions_t *spec,
2783                             struct rte_flow_error *error)
2784 {
2785         enum sfc_mae_actions_bundle_type bundle_type_new;
2786         int rc;
2787
2788         switch (action->type) {
2789         case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
2790         case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
2791         case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
2792                 bundle_type_new = SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH;
2793                 break;
2794         default:
2795                 /*
2796                  * Self-sufficient actions, including END, are handled in this
2797                  * case. No checks for unsupported actions are needed here
2798                  * because parsing doesn't occur at this point.
2799                  */
2800                 bundle_type_new = SFC_MAE_ACTIONS_BUNDLE_EMPTY;
2801                 break;
2802         }
2803
2804         if (bundle_type_new != bundle->type ||
2805             (bundle->actions_mask & (1ULL << action->type)) != 0) {
2806                 rc = sfc_mae_actions_bundle_submit(bundle, spec);
2807                 if (rc != 0)
2808                         goto fail_submit;
2809
2810                 memset(bundle, 0, sizeof(*bundle));
2811         }
2812
2813         bundle->type = bundle_type_new;
2814
2815         return 0;
2816
2817 fail_submit:
2818         return rte_flow_error_set(error, rc,
2819                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
2820                         "Failed to request the (group of) action(s)");
2821 }
2822
2823 static void
2824 sfc_mae_rule_parse_action_of_push_vlan(
2825                             const struct rte_flow_action_of_push_vlan *conf,
2826                             struct sfc_mae_actions_bundle *bundle)
2827 {
2828         bundle->vlan_push_tpid = conf->ethertype;
2829 }
2830
2831 static void
2832 sfc_mae_rule_parse_action_of_set_vlan_vid(
2833                             const struct rte_flow_action_of_set_vlan_vid *conf,
2834                             struct sfc_mae_actions_bundle *bundle)
2835 {
2836         bundle->vlan_push_tci |= (conf->vlan_vid &
2837                                   rte_cpu_to_be_16(RTE_LEN2MASK(12, uint16_t)));
2838 }
2839
2840 static void
2841 sfc_mae_rule_parse_action_of_set_vlan_pcp(
2842                             const struct rte_flow_action_of_set_vlan_pcp *conf,
2843                             struct sfc_mae_actions_bundle *bundle)
2844 {
2845         uint16_t vlan_tci_pcp = (uint16_t)(conf->vlan_pcp &
2846                                            RTE_LEN2MASK(3, uint8_t)) << 13;
2847
2848         bundle->vlan_push_tci |= rte_cpu_to_be_16(vlan_tci_pcp);
2849 }
2850
2851 struct sfc_mae_parsed_item {
2852         const struct rte_flow_item      *item;
2853         size_t                          proto_header_ofst;
2854         size_t                          proto_header_size;
2855 };
2856
2857 /*
2858  * For each 16-bit word of the given header, override
2859  * bits enforced by the corresponding 16-bit mask.
2860  */
2861 static void
2862 sfc_mae_header_force_item_masks(uint8_t *header_buf,
2863                                 const struct sfc_mae_parsed_item *parsed_items,
2864                                 unsigned int nb_parsed_items)
2865 {
2866         unsigned int item_idx;
2867
2868         for (item_idx = 0; item_idx < nb_parsed_items; ++item_idx) {
2869                 const struct sfc_mae_parsed_item *parsed_item;
2870                 const struct rte_flow_item *item;
2871                 size_t proto_header_size;
2872                 size_t ofst;
2873
2874                 parsed_item = &parsed_items[item_idx];
2875                 proto_header_size = parsed_item->proto_header_size;
2876                 item = parsed_item->item;
2877
2878                 for (ofst = 0; ofst < proto_header_size;
2879                      ofst += sizeof(rte_be16_t)) {
2880                         rte_be16_t *wp = RTE_PTR_ADD(header_buf, ofst);
2881                         const rte_be16_t *w_maskp;
2882                         const rte_be16_t *w_specp;
2883
2884                         w_maskp = RTE_PTR_ADD(item->mask, ofst);
2885                         w_specp = RTE_PTR_ADD(item->spec, ofst);
2886
2887                         *wp &= ~(*w_maskp);
2888                         *wp |= (*w_specp & *w_maskp);
2889                 }
2890
2891                 header_buf += proto_header_size;
2892         }
2893 }
2894
2895 #define SFC_IPV4_TTL_DEF        0x40
2896 #define SFC_IPV6_VTC_FLOW_DEF   0x60000000
2897 #define SFC_IPV6_HOP_LIMITS_DEF 0xff
2898 #define SFC_VXLAN_FLAGS_DEF     0x08000000
2899
2900 static int
2901 sfc_mae_rule_parse_action_vxlan_encap(
2902                             struct sfc_mae *mae,
2903                             const struct rte_flow_action_vxlan_encap *conf,
2904                             efx_mae_actions_t *spec,
2905                             struct rte_flow_error *error)
2906 {
2907         struct sfc_mae_bounce_eh *bounce_eh = &mae->bounce_eh;
2908         struct rte_flow_item *pattern = conf->definition;
2909         uint8_t *buf = bounce_eh->buf;
2910
2911         /* This array will keep track of non-VOID pattern items. */
2912         struct sfc_mae_parsed_item parsed_items[1 /* Ethernet */ +
2913                                                 2 /* VLAN tags */ +
2914                                                 1 /* IPv4 or IPv6 */ +
2915                                                 1 /* UDP */ +
2916                                                 1 /* VXLAN */];
2917         unsigned int nb_parsed_items = 0;
2918
2919         size_t eth_ethertype_ofst = offsetof(struct rte_ether_hdr, ether_type);
2920         uint8_t dummy_buf[RTE_MAX(sizeof(struct rte_ipv4_hdr),
2921                                   sizeof(struct rte_ipv6_hdr))];
2922         struct rte_ipv4_hdr *ipv4 = (void *)dummy_buf;
2923         struct rte_ipv6_hdr *ipv6 = (void *)dummy_buf;
2924         struct rte_vxlan_hdr *vxlan = NULL;
2925         struct rte_udp_hdr *udp = NULL;
2926         unsigned int nb_vlan_tags = 0;
2927         size_t next_proto_ofst = 0;
2928         size_t ethertype_ofst = 0;
2929         uint64_t exp_items;
2930         int rc;
2931
2932         if (pattern == NULL) {
2933                 return rte_flow_error_set(error, EINVAL,
2934                                 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
2935                                 "The encap. header definition is NULL");
2936         }
2937
2938         bounce_eh->type = EFX_TUNNEL_PROTOCOL_VXLAN;
2939         bounce_eh->size = 0;
2940
2941         /*
2942          * Process pattern items and remember non-VOID ones.
2943          * Defer applying masks until after the complete header
2944          * has been built from the pattern items.
2945          */
2946         exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_ETH);
2947
2948         for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; ++pattern) {
2949                 struct sfc_mae_parsed_item *parsed_item;
2950                 const uint64_t exp_items_extra_vlan[] = {
2951                         RTE_BIT64(RTE_FLOW_ITEM_TYPE_VLAN), 0
2952                 };
2953                 size_t proto_header_size;
2954                 rte_be16_t *ethertypep;
2955                 uint8_t *next_protop;
2956                 uint8_t *buf_cur;
2957
2958                 if (pattern->spec == NULL) {
2959                         return rte_flow_error_set(error, EINVAL,
2960                                         RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
2961                                         "NULL item spec in the encap. header");
2962                 }
2963
2964                 if (pattern->mask == NULL) {
2965                         return rte_flow_error_set(error, EINVAL,
2966                                         RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
2967                                         "NULL item mask in the encap. header");
2968                 }
2969
2970                 if (pattern->last != NULL) {
2971                         /* This is not a match pattern, so disallow range. */
2972                         return rte_flow_error_set(error, EINVAL,
2973                                         RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
2974                                         "Range item in the encap. header");
2975                 }
2976
2977                 if (pattern->type == RTE_FLOW_ITEM_TYPE_VOID) {
2978                         /* Handle VOID separately, for clarity. */
2979                         continue;
2980                 }
2981
2982                 if ((exp_items & RTE_BIT64(pattern->type)) == 0) {
2983                         return rte_flow_error_set(error, ENOTSUP,
2984                                         RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
2985                                         "Unexpected item in the encap. header");
2986                 }
2987
2988                 parsed_item = &parsed_items[nb_parsed_items];
2989                 buf_cur = buf + bounce_eh->size;
2990
2991                 switch (pattern->type) {
2992                 case RTE_FLOW_ITEM_TYPE_ETH:
2993                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_ETH,
2994                                                exp_items);
2995                         RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_eth,
2996                                                   hdr) != 0);
2997
2998                         proto_header_size = sizeof(struct rte_ether_hdr);
2999
3000                         ethertype_ofst = eth_ethertype_ofst;
3001
3002                         exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_VLAN) |
3003                                     RTE_BIT64(RTE_FLOW_ITEM_TYPE_IPV4) |
3004                                     RTE_BIT64(RTE_FLOW_ITEM_TYPE_IPV6);
3005                         break;
3006                 case RTE_FLOW_ITEM_TYPE_VLAN:
3007                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_VLAN,
3008                                                exp_items);
3009                         RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_vlan,
3010                                                   hdr) != 0);
3011
3012                         proto_header_size = sizeof(struct rte_vlan_hdr);
3013
3014                         ethertypep = RTE_PTR_ADD(buf, eth_ethertype_ofst);
3015                         *ethertypep = RTE_BE16(RTE_ETHER_TYPE_QINQ);
3016
3017                         ethertypep = RTE_PTR_ADD(buf, ethertype_ofst);
3018                         *ethertypep = RTE_BE16(RTE_ETHER_TYPE_VLAN);
3019
3020                         ethertype_ofst =
3021                             bounce_eh->size +
3022                             offsetof(struct rte_vlan_hdr, eth_proto);
3023
3024                         exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_IPV4) |
3025                                     RTE_BIT64(RTE_FLOW_ITEM_TYPE_IPV6);
3026                         exp_items |= exp_items_extra_vlan[nb_vlan_tags];
3027
3028                         ++nb_vlan_tags;
3029                         break;
3030                 case RTE_FLOW_ITEM_TYPE_IPV4:
3031                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_IPV4,
3032                                                exp_items);
3033                         RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_ipv4,
3034                                                   hdr) != 0);
3035
3036                         proto_header_size = sizeof(struct rte_ipv4_hdr);
3037
3038                         ethertypep = RTE_PTR_ADD(buf, ethertype_ofst);
3039                         *ethertypep = RTE_BE16(RTE_ETHER_TYPE_IPV4);
3040
3041                         next_proto_ofst =
3042                             bounce_eh->size +
3043                             offsetof(struct rte_ipv4_hdr, next_proto_id);
3044
3045                         ipv4 = (struct rte_ipv4_hdr *)buf_cur;
3046
3047                         exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_UDP);
3048                         break;
3049                 case RTE_FLOW_ITEM_TYPE_IPV6:
3050                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_IPV6,
3051                                                exp_items);
3052                         RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_ipv6,
3053                                                   hdr) != 0);
3054
3055                         proto_header_size = sizeof(struct rte_ipv6_hdr);
3056
3057                         ethertypep = RTE_PTR_ADD(buf, ethertype_ofst);
3058                         *ethertypep = RTE_BE16(RTE_ETHER_TYPE_IPV6);
3059
3060                         next_proto_ofst = bounce_eh->size +
3061                                           offsetof(struct rte_ipv6_hdr, proto);
3062
3063                         ipv6 = (struct rte_ipv6_hdr *)buf_cur;
3064
3065                         exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_UDP);
3066                         break;
3067                 case RTE_FLOW_ITEM_TYPE_UDP:
3068                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_UDP,
3069                                                exp_items);
3070                         RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_udp,
3071                                                   hdr) != 0);
3072
3073                         proto_header_size = sizeof(struct rte_udp_hdr);
3074
3075                         next_protop = RTE_PTR_ADD(buf, next_proto_ofst);
3076                         *next_protop = IPPROTO_UDP;
3077
3078                         udp = (struct rte_udp_hdr *)buf_cur;
3079
3080                         exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_VXLAN);
3081                         break;
3082                 case RTE_FLOW_ITEM_TYPE_VXLAN:
3083                         SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_VXLAN,
3084                                                exp_items);
3085                         RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_vxlan,
3086                                                   hdr) != 0);
3087
3088                         proto_header_size = sizeof(struct rte_vxlan_hdr);
3089
3090                         vxlan = (struct rte_vxlan_hdr *)buf_cur;
3091
3092                         udp->dst_port = RTE_BE16(RTE_VXLAN_DEFAULT_PORT);
3093                         udp->dgram_len = RTE_BE16(sizeof(*udp) +
3094                                                   sizeof(*vxlan));
3095                         udp->dgram_cksum = 0;
3096
3097                         exp_items = 0;
3098                         break;
3099                 default:
3100                         return rte_flow_error_set(error, ENOTSUP,
3101                                         RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
3102                                         "Unknown item in the encap. header");
3103                 }
3104
3105                 if (bounce_eh->size + proto_header_size > bounce_eh->buf_size) {
3106                         return rte_flow_error_set(error, E2BIG,
3107                                         RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
3108                                         "The encap. header is too big");
3109                 }
3110
3111                 if ((proto_header_size & 1) != 0) {
3112                         return rte_flow_error_set(error, EINVAL,
3113                                         RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
3114                                         "Odd layer size in the encap. header");
3115                 }
3116
3117                 rte_memcpy(buf_cur, pattern->spec, proto_header_size);
3118                 bounce_eh->size += proto_header_size;
3119
3120                 parsed_item->item = pattern;
3121                 parsed_item->proto_header_size = proto_header_size;
3122                 ++nb_parsed_items;
3123         }
3124
3125         if (exp_items != 0) {
3126                 /* Parsing item VXLAN would have reset exp_items to 0. */
3127                 return rte_flow_error_set(error, ENOTSUP,
3128                                         RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
3129                                         "No item VXLAN in the encap. header");
3130         }
3131
3132         /* One of the pointers (ipv4, ipv6) refers to a dummy area. */
3133         ipv4->version_ihl = RTE_IPV4_VHL_DEF;
3134         ipv4->time_to_live = SFC_IPV4_TTL_DEF;
3135         ipv4->total_length = RTE_BE16(sizeof(*ipv4) + sizeof(*udp) +
3136                                       sizeof(*vxlan));
3137         /* The HW cannot compute this checksum. */
3138         ipv4->hdr_checksum = 0;
3139         ipv4->hdr_checksum = rte_ipv4_cksum(ipv4);
3140
3141         ipv6->vtc_flow = RTE_BE32(SFC_IPV6_VTC_FLOW_DEF);
3142         ipv6->hop_limits = SFC_IPV6_HOP_LIMITS_DEF;
3143         ipv6->payload_len = udp->dgram_len;
3144
3145         vxlan->vx_flags = RTE_BE32(SFC_VXLAN_FLAGS_DEF);
3146
3147         /* Take care of the masks. */
3148         sfc_mae_header_force_item_masks(buf, parsed_items, nb_parsed_items);
3149
3150         rc = efx_mae_action_set_populate_encap(spec);
3151         if (rc != 0) {
3152                 rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ACTION,
3153                                 NULL, "failed to request action ENCAP");
3154         }
3155
3156         return rc;
3157 }
3158
3159 static int
3160 sfc_mae_rule_parse_action_mark(struct sfc_adapter *sa,
3161                                const struct rte_flow_action_mark *conf,
3162                                const struct sfc_flow_spec_mae *spec_mae,
3163                                efx_mae_actions_t *spec)
3164 {
3165         int rc;
3166
3167         if (spec_mae->ft_rule_type == SFC_FT_RULE_JUMP) {
3168                 /* Workaround. See sfc_flow_parse_rte_to_mae() */
3169         } else if (conf->id > SFC_FT_USER_MARK_MASK) {
3170                 sfc_err(sa, "the mark value is too large");
3171                 return EINVAL;
3172         }
3173
3174         rc = efx_mae_action_set_populate_mark(spec, conf->id);
3175         if (rc != 0)
3176                 sfc_err(sa, "failed to request action MARK: %s", strerror(rc));
3177
3178         return rc;
3179 }
3180
3181 static int
3182 sfc_mae_rule_parse_action_count(struct sfc_adapter *sa,
3183                                 const struct rte_flow_action_count *conf
3184                                         __rte_unused,
3185                                 efx_mae_actions_t *spec)
3186 {
3187         int rc;
3188
3189         if ((sa->counter_rxq.state & SFC_COUNTER_RXQ_INITIALIZED) == 0) {
3190                 sfc_err(sa,
3191                         "counter queue is not configured for COUNT action");
3192                 rc = EINVAL;
3193                 goto fail_counter_queue_uninit;
3194         }
3195
3196         if (sfc_get_service_lcore(SOCKET_ID_ANY) == RTE_MAX_LCORE) {
3197                 rc = EINVAL;
3198                 goto fail_no_service_core;
3199         }
3200
3201         rc = efx_mae_action_set_populate_count(spec);
3202         if (rc != 0) {
3203                 sfc_err(sa,
3204                         "failed to populate counters in MAE action set: %s",
3205                         rte_strerror(rc));
3206                 goto fail_populate_count;
3207         }
3208
3209         return 0;
3210
3211 fail_populate_count:
3212 fail_no_service_core:
3213 fail_counter_queue_uninit:
3214
3215         return rc;
3216 }
3217
3218 static int
3219 sfc_mae_rule_parse_action_phy_port(struct sfc_adapter *sa,
3220                                    const struct rte_flow_action_phy_port *conf,
3221                                    efx_mae_actions_t *spec)
3222 {
3223         efx_mport_sel_t mport;
3224         uint32_t phy_port;
3225         int rc;
3226
3227         if (conf->original != 0)
3228                 phy_port = efx_nic_cfg_get(sa->nic)->enc_assigned_port;
3229         else
3230                 phy_port = conf->index;
3231
3232         rc = efx_mae_mport_by_phy_port(phy_port, &mport);
3233         if (rc != 0) {
3234                 sfc_err(sa, "failed to convert phys. port ID %u to m-port selector: %s",
3235                         phy_port, strerror(rc));
3236                 return rc;
3237         }
3238
3239         rc = efx_mae_action_set_populate_deliver(spec, &mport);
3240         if (rc != 0) {
3241                 sfc_err(sa, "failed to request action DELIVER with m-port selector 0x%08x: %s",
3242                         mport.sel, strerror(rc));
3243         }
3244
3245         return rc;
3246 }
3247
3248 static int
3249 sfc_mae_rule_parse_action_pf_vf(struct sfc_adapter *sa,
3250                                 const struct rte_flow_action_vf *vf_conf,
3251                                 efx_mae_actions_t *spec)
3252 {
3253         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
3254         efx_mport_sel_t mport;
3255         uint32_t vf;
3256         int rc;
3257
3258         if (vf_conf == NULL)
3259                 vf = EFX_PCI_VF_INVALID;
3260         else if (vf_conf->original != 0)
3261                 vf = encp->enc_vf;
3262         else
3263                 vf = vf_conf->id;
3264
3265         rc = efx_mae_mport_by_pcie_function(encp->enc_pf, vf, &mport);
3266         if (rc != 0) {
3267                 sfc_err(sa, "failed to convert PF %u VF %d to m-port: %s",
3268                         encp->enc_pf, (vf != EFX_PCI_VF_INVALID) ? (int)vf : -1,
3269                         strerror(rc));
3270                 return rc;
3271         }
3272
3273         rc = efx_mae_action_set_populate_deliver(spec, &mport);
3274         if (rc != 0) {
3275                 sfc_err(sa, "failed to request action DELIVER with m-port selector 0x%08x: %s",
3276                         mport.sel, strerror(rc));
3277         }
3278
3279         return rc;
3280 }
3281
3282 static int
3283 sfc_mae_rule_parse_action_port_id(struct sfc_adapter *sa,
3284                                   const struct rte_flow_action_port_id *conf,
3285                                   efx_mae_actions_t *spec)
3286 {
3287         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
3288         struct sfc_mae *mae = &sa->mae;
3289         efx_mport_sel_t mport;
3290         uint16_t port_id;
3291         int rc;
3292
3293         if (conf->id > UINT16_MAX)
3294                 return EOVERFLOW;
3295
3296         port_id = (conf->original != 0) ? sas->port_id : conf->id;
3297
3298         rc = sfc_mae_switch_port_by_ethdev(mae->switch_domain_id,
3299                                            port_id, &mport);
3300         if (rc != 0) {
3301                 sfc_err(sa, "failed to find MAE switch port SW entry for RTE ethdev port %u: %s",
3302                         port_id, strerror(rc));
3303                 return rc;
3304         }
3305
3306         rc = efx_mae_action_set_populate_deliver(spec, &mport);
3307         if (rc != 0) {
3308                 sfc_err(sa, "failed to request action DELIVER with m-port selector 0x%08x: %s",
3309                         mport.sel, strerror(rc));
3310         }
3311
3312         return rc;
3313 }
3314
3315 static const char * const action_names[] = {
3316         [RTE_FLOW_ACTION_TYPE_VXLAN_DECAP] = "VXLAN_DECAP",
3317         [RTE_FLOW_ACTION_TYPE_OF_POP_VLAN] = "OF_POP_VLAN",
3318         [RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN] = "OF_PUSH_VLAN",
3319         [RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID] = "OF_SET_VLAN_VID",
3320         [RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP] = "OF_SET_VLAN_PCP",
3321         [RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP] = "VXLAN_ENCAP",
3322         [RTE_FLOW_ACTION_TYPE_FLAG] = "FLAG",
3323         [RTE_FLOW_ACTION_TYPE_MARK] = "MARK",
3324         [RTE_FLOW_ACTION_TYPE_PHY_PORT] = "PHY_PORT",
3325         [RTE_FLOW_ACTION_TYPE_PF] = "PF",
3326         [RTE_FLOW_ACTION_TYPE_VF] = "VF",
3327         [RTE_FLOW_ACTION_TYPE_PORT_ID] = "PORT_ID",
3328         [RTE_FLOW_ACTION_TYPE_DROP] = "DROP",
3329         [RTE_FLOW_ACTION_TYPE_JUMP] = "JUMP",
3330 };
3331
3332 static int
3333 sfc_mae_rule_parse_action(struct sfc_adapter *sa,
3334                           const struct rte_flow_action *action,
3335                           const struct sfc_flow_spec_mae *spec_mae,
3336                           struct sfc_mae_actions_bundle *bundle,
3337                           efx_mae_actions_t *spec,
3338                           struct rte_flow_error *error)
3339 {
3340         const struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule;
3341         const uint64_t rx_metadata = sa->negotiated_rx_metadata;
3342         bool custom_error = B_FALSE;
3343         int rc = 0;
3344
3345         switch (action->type) {
3346         case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
3347                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VXLAN_DECAP,
3348                                        bundle->actions_mask);
3349                 if (outer_rule == NULL ||
3350                     outer_rule->encap_type != EFX_TUNNEL_PROTOCOL_VXLAN)
3351                         rc = EINVAL;
3352                 else
3353                         rc = efx_mae_action_set_populate_decap(spec);
3354                 break;
3355         case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
3356                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_POP_VLAN,
3357                                        bundle->actions_mask);
3358                 rc = efx_mae_action_set_populate_vlan_pop(spec);
3359                 break;
3360         case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3361                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN,
3362                                        bundle->actions_mask);
3363                 sfc_mae_rule_parse_action_of_push_vlan(action->conf, bundle);
3364                 break;
3365         case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3366                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID,
3367                                        bundle->actions_mask);
3368                 sfc_mae_rule_parse_action_of_set_vlan_vid(action->conf, bundle);
3369                 break;
3370         case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3371                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP,
3372                                        bundle->actions_mask);
3373                 sfc_mae_rule_parse_action_of_set_vlan_pcp(action->conf, bundle);
3374                 break;
3375         case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3376                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP,
3377                                        bundle->actions_mask);
3378                 rc = sfc_mae_rule_parse_action_vxlan_encap(&sa->mae,
3379                                                            action->conf,
3380                                                            spec, error);
3381                 custom_error = B_TRUE;
3382                 break;
3383         case RTE_FLOW_ACTION_TYPE_COUNT:
3384                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_COUNT,
3385                                        bundle->actions_mask);
3386                 rc = sfc_mae_rule_parse_action_count(sa, action->conf, spec);
3387                 break;
3388         case RTE_FLOW_ACTION_TYPE_FLAG:
3389                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
3390                                        bundle->actions_mask);
3391                 if ((rx_metadata & RTE_ETH_RX_METADATA_USER_FLAG) != 0) {
3392                         rc = efx_mae_action_set_populate_flag(spec);
3393                 } else {
3394                         rc = rte_flow_error_set(error, ENOTSUP,
3395                                                 RTE_FLOW_ERROR_TYPE_ACTION,
3396                                                 action,
3397                                                 "flag delivery has not been negotiated");
3398                         custom_error = B_TRUE;
3399                 }
3400                 break;
3401         case RTE_FLOW_ACTION_TYPE_MARK:
3402                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
3403                                        bundle->actions_mask);
3404                 if ((rx_metadata & RTE_ETH_RX_METADATA_USER_MARK) != 0 ||
3405                     spec_mae->ft_rule_type == SFC_FT_RULE_JUMP) {
3406                         rc = sfc_mae_rule_parse_action_mark(sa, action->conf,
3407                                                             spec_mae, spec);
3408                 } else {
3409                         rc = rte_flow_error_set(error, ENOTSUP,
3410                                                 RTE_FLOW_ERROR_TYPE_ACTION,
3411                                                 action,
3412                                                 "mark delivery has not been negotiated");
3413                         custom_error = B_TRUE;
3414                 }
3415                 break;
3416         case RTE_FLOW_ACTION_TYPE_PHY_PORT:
3417                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PHY_PORT,
3418                                        bundle->actions_mask);
3419                 rc = sfc_mae_rule_parse_action_phy_port(sa, action->conf, spec);
3420                 break;
3421         case RTE_FLOW_ACTION_TYPE_PF:
3422                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PF,
3423                                        bundle->actions_mask);
3424                 rc = sfc_mae_rule_parse_action_pf_vf(sa, NULL, spec);
3425                 break;
3426         case RTE_FLOW_ACTION_TYPE_VF:
3427                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VF,
3428                                        bundle->actions_mask);
3429                 rc = sfc_mae_rule_parse_action_pf_vf(sa, action->conf, spec);
3430                 break;
3431         case RTE_FLOW_ACTION_TYPE_PORT_ID:
3432                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PORT_ID,
3433                                        bundle->actions_mask);
3434                 rc = sfc_mae_rule_parse_action_port_id(sa, action->conf, spec);
3435                 break;
3436         case RTE_FLOW_ACTION_TYPE_DROP:
3437                 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
3438                                        bundle->actions_mask);
3439                 rc = efx_mae_action_set_populate_drop(spec);
3440                 break;
3441         case RTE_FLOW_ACTION_TYPE_JUMP:
3442                 if (spec_mae->ft_rule_type == SFC_FT_RULE_JUMP) {
3443                         /* Workaround. See sfc_flow_parse_rte_to_mae() */
3444                         break;
3445                 }
3446                 /* FALLTHROUGH */
3447         default:
3448                 return rte_flow_error_set(error, ENOTSUP,
3449                                 RTE_FLOW_ERROR_TYPE_ACTION, NULL,
3450                                 "Unsupported action");
3451         }
3452
3453         if (rc == 0) {
3454                 bundle->actions_mask |= (1ULL << action->type);
3455         } else if (!custom_error) {
3456                 if (action->type < RTE_DIM(action_names)) {
3457                         const char *action_name = action_names[action->type];
3458
3459                         if (action_name != NULL) {
3460                                 sfc_err(sa, "action %s was rejected: %s",
3461                                         action_name, strerror(rc));
3462                         }
3463                 }
3464                 rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ACTION,
3465                                 NULL, "Failed to request the action");
3466         }
3467
3468         return rc;
3469 }
3470
3471 static void
3472 sfc_mae_bounce_eh_invalidate(struct sfc_mae_bounce_eh *bounce_eh)
3473 {
3474         bounce_eh->type = EFX_TUNNEL_PROTOCOL_NONE;
3475 }
3476
3477 static int
3478 sfc_mae_process_encap_header(struct sfc_adapter *sa,
3479                              const struct sfc_mae_bounce_eh *bounce_eh,
3480                              struct sfc_mae_encap_header **encap_headerp)
3481 {
3482         if (bounce_eh->type == EFX_TUNNEL_PROTOCOL_NONE) {
3483                 encap_headerp = NULL;
3484                 return 0;
3485         }
3486
3487         *encap_headerp = sfc_mae_encap_header_attach(sa, bounce_eh);
3488         if (*encap_headerp != NULL)
3489                 return 0;
3490
3491         return sfc_mae_encap_header_add(sa, bounce_eh, encap_headerp);
3492 }
3493
3494 int
3495 sfc_mae_rule_parse_actions(struct sfc_adapter *sa,
3496                            const struct rte_flow_action actions[],
3497                            struct sfc_flow_spec_mae *spec_mae,
3498                            struct rte_flow_error *error)
3499 {
3500         struct sfc_mae_encap_header *encap_header = NULL;
3501         struct sfc_mae_actions_bundle bundle = {0};
3502         const struct rte_flow_action *action;
3503         struct sfc_mae *mae = &sa->mae;
3504         efx_mae_actions_t *spec;
3505         unsigned int n_count;
3506         int rc;
3507
3508         rte_errno = 0;
3509
3510         if (actions == NULL) {
3511                 return rte_flow_error_set(error, EINVAL,
3512                                 RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
3513                                 "NULL actions");
3514         }
3515
3516         rc = efx_mae_action_set_spec_init(sa->nic, &spec);
3517         if (rc != 0)
3518                 goto fail_action_set_spec_init;
3519
3520         if (spec_mae->ft_rule_type == SFC_FT_RULE_GROUP) {
3521                 /* JUMP rules don't decapsulate packets. GROUP rules do. */
3522                 rc = efx_mae_action_set_populate_decap(spec);
3523                 if (rc != 0)
3524                         goto fail_enforce_ft_decap;
3525         }
3526
3527         /* Cleanup after previous encap. header bounce buffer usage. */
3528         sfc_mae_bounce_eh_invalidate(&mae->bounce_eh);
3529
3530         for (action = actions;
3531              action->type != RTE_FLOW_ACTION_TYPE_END; ++action) {
3532                 rc = sfc_mae_actions_bundle_sync(action, &bundle, spec, error);
3533                 if (rc != 0)
3534                         goto fail_rule_parse_action;
3535
3536                 rc = sfc_mae_rule_parse_action(sa, action, spec_mae,
3537                                                &bundle, spec, error);
3538                 if (rc != 0)
3539                         goto fail_rule_parse_action;
3540         }
3541
3542         rc = sfc_mae_actions_bundle_sync(action, &bundle, spec, error);
3543         if (rc != 0)
3544                 goto fail_rule_parse_action;
3545
3546         rc = sfc_mae_process_encap_header(sa, &mae->bounce_eh, &encap_header);
3547         if (rc != 0)
3548                 goto fail_process_encap_header;
3549
3550         n_count = efx_mae_action_set_get_nb_count(spec);
3551         if (n_count > 1) {
3552                 rc = ENOTSUP;
3553                 sfc_err(sa, "too many count actions requested: %u", n_count);
3554                 goto fail_nb_count;
3555         }
3556
3557         switch (spec_mae->ft_rule_type) {
3558         case SFC_FT_RULE_NONE:
3559                 break;
3560         case SFC_FT_RULE_JUMP:
3561                 /* Workaround. See sfc_flow_parse_rte_to_mae() */
3562                 rc = sfc_mae_rule_parse_action_pf_vf(sa, NULL, spec);
3563                 if (rc != 0)
3564                         goto fail_workaround_jump_delivery;
3565                 break;
3566         case SFC_FT_RULE_GROUP:
3567                 /*
3568                  * Packets that go to the rule's AR have FT mark set (from the
3569                  * JUMP rule OR's RECIRC_ID). Remove this mark in matching
3570                  * packets. The user may have provided their own action
3571                  * MARK above, so don't check the return value here.
3572                  */
3573                 (void)efx_mae_action_set_populate_mark(spec, 0);
3574                 break;
3575         default:
3576                 SFC_ASSERT(B_FALSE);
3577         }
3578
3579         spec_mae->action_set = sfc_mae_action_set_attach(sa, encap_header,
3580                                                          n_count, spec);
3581         if (spec_mae->action_set != NULL) {
3582                 sfc_mae_encap_header_del(sa, encap_header);
3583                 efx_mae_action_set_spec_fini(sa->nic, spec);
3584                 return 0;
3585         }
3586
3587         rc = sfc_mae_action_set_add(sa, actions, spec, encap_header, n_count,
3588                                     &spec_mae->action_set);
3589         if (rc != 0)
3590                 goto fail_action_set_add;
3591
3592         return 0;
3593
3594 fail_action_set_add:
3595 fail_workaround_jump_delivery:
3596 fail_nb_count:
3597         sfc_mae_encap_header_del(sa, encap_header);
3598
3599 fail_process_encap_header:
3600 fail_rule_parse_action:
3601         efx_mae_action_set_spec_fini(sa->nic, spec);
3602
3603 fail_enforce_ft_decap:
3604 fail_action_set_spec_init:
3605         if (rc > 0 && rte_errno == 0) {
3606                 rc = rte_flow_error_set(error, rc,
3607                         RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3608                         NULL, "Failed to process the action");
3609         }
3610         return rc;
3611 }
3612
3613 static bool
3614 sfc_mae_rules_class_cmp(struct sfc_adapter *sa,
3615                         const efx_mae_match_spec_t *left,
3616                         const efx_mae_match_spec_t *right)
3617 {
3618         bool have_same_class;
3619         int rc;
3620
3621         rc = efx_mae_match_specs_class_cmp(sa->nic, left, right,
3622                                            &have_same_class);
3623
3624         return (rc == 0) ? have_same_class : false;
3625 }
3626
3627 static int
3628 sfc_mae_outer_rule_class_verify(struct sfc_adapter *sa,
3629                                 struct sfc_mae_outer_rule *rule)
3630 {
3631         struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc;
3632         struct sfc_mae_outer_rule *entry;
3633         struct sfc_mae *mae = &sa->mae;
3634
3635         if (fw_rsrc->rule_id.id != EFX_MAE_RSRC_ID_INVALID) {
3636                 /* An active rule is reused. It's class is wittingly valid. */
3637                 return 0;
3638         }
3639
3640         TAILQ_FOREACH_REVERSE(entry, &mae->outer_rules,
3641                               sfc_mae_outer_rules, entries) {
3642                 const efx_mae_match_spec_t *left = entry->match_spec;
3643                 const efx_mae_match_spec_t *right = rule->match_spec;
3644
3645                 if (entry == rule)
3646                         continue;
3647
3648                 if (sfc_mae_rules_class_cmp(sa, left, right))
3649                         return 0;
3650         }
3651
3652         sfc_info(sa, "for now, the HW doesn't support rule validation, and HW "
3653                  "support for outer frame pattern items is not guaranteed; "
3654                  "other than that, the items are valid from SW standpoint");
3655         return 0;
3656 }
3657
3658 static int
3659 sfc_mae_action_rule_class_verify(struct sfc_adapter *sa,
3660                                  struct sfc_flow_spec_mae *spec)
3661 {
3662         const struct rte_flow *entry;
3663
3664         if (spec->match_spec == NULL)
3665                 return 0;
3666
3667         TAILQ_FOREACH_REVERSE(entry, &sa->flow_list, sfc_flow_list, entries) {
3668                 const struct sfc_flow_spec *entry_spec = &entry->spec;
3669                 const struct sfc_flow_spec_mae *es_mae = &entry_spec->mae;
3670                 const efx_mae_match_spec_t *left = es_mae->match_spec;
3671                 const efx_mae_match_spec_t *right = spec->match_spec;
3672
3673                 switch (entry_spec->type) {
3674                 case SFC_FLOW_SPEC_FILTER:
3675                         /* Ignore VNIC-level flows */
3676                         break;
3677                 case SFC_FLOW_SPEC_MAE:
3678                         if (sfc_mae_rules_class_cmp(sa, left, right))
3679                                 return 0;
3680                         break;
3681                 default:
3682                         SFC_ASSERT(false);
3683                 }
3684         }
3685
3686         sfc_info(sa, "for now, the HW doesn't support rule validation, and HW "
3687                  "support for inner frame pattern items is not guaranteed; "
3688                  "other than that, the items are valid from SW standpoint");
3689         return 0;
3690 }
3691
3692 /**
3693  * Confirm that a given flow can be accepted by the FW.
3694  *
3695  * @param sa
3696  *   Software adapter context
3697  * @param flow
3698  *   Flow to be verified
3699  * @return
3700  *   Zero on success and non-zero in the case of error.
3701  *   A special value of EAGAIN indicates that the adapter is
3702  *   not in started state. This state is compulsory because
3703  *   it only makes sense to compare the rule class of the flow
3704  *   being validated with classes of the active rules.
3705  *   Such classes are wittingly supported by the FW.
3706  */
3707 int
3708 sfc_mae_flow_verify(struct sfc_adapter *sa,
3709                     struct rte_flow *flow)
3710 {
3711         struct sfc_flow_spec *spec = &flow->spec;
3712         struct sfc_flow_spec_mae *spec_mae = &spec->mae;
3713         struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule;
3714         int rc;
3715
3716         SFC_ASSERT(sfc_adapter_is_locked(sa));
3717
3718         if (sa->state != SFC_ETHDEV_STARTED)
3719                 return EAGAIN;
3720
3721         if (outer_rule != NULL) {
3722                 rc = sfc_mae_outer_rule_class_verify(sa, outer_rule);
3723                 if (rc != 0)
3724                         return rc;
3725         }
3726
3727         return sfc_mae_action_rule_class_verify(sa, spec_mae);
3728 }
3729
3730 int
3731 sfc_mae_flow_insert(struct sfc_adapter *sa,
3732                     struct rte_flow *flow)
3733 {
3734         struct sfc_flow_spec *spec = &flow->spec;
3735         struct sfc_flow_spec_mae *spec_mae = &spec->mae;
3736         struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule;
3737         struct sfc_mae_action_set *action_set = spec_mae->action_set;
3738         struct sfc_mae_fw_rsrc *fw_rsrc;
3739         int rc;
3740
3741         SFC_ASSERT(spec_mae->rule_id.id == EFX_MAE_RSRC_ID_INVALID);
3742
3743         if (outer_rule != NULL) {
3744                 rc = sfc_mae_outer_rule_enable(sa, outer_rule,
3745                                                spec_mae->match_spec);
3746                 if (rc != 0)
3747                         goto fail_outer_rule_enable;
3748         }
3749
3750         if (action_set == NULL) {
3751                 sfc_dbg(sa, "enabled flow=%p (no AR)", flow);
3752                 return 0;
3753         }
3754
3755         rc = sfc_mae_action_set_enable(sa, action_set);
3756         if (rc != 0)
3757                 goto fail_action_set_enable;
3758
3759         if (action_set->n_counters > 0) {
3760                 rc = sfc_mae_counter_start(sa);
3761                 if (rc != 0) {
3762                         sfc_err(sa, "failed to start MAE counters support: %s",
3763                                 rte_strerror(rc));
3764                         goto fail_mae_counter_start;
3765                 }
3766         }
3767
3768         fw_rsrc = &action_set->fw_rsrc;
3769
3770         rc = efx_mae_action_rule_insert(sa->nic, spec_mae->match_spec,
3771                                         NULL, &fw_rsrc->aset_id,
3772                                         &spec_mae->rule_id);
3773         if (rc != 0)
3774                 goto fail_action_rule_insert;
3775
3776         sfc_dbg(sa, "enabled flow=%p: AR_ID=0x%08x",
3777                 flow, spec_mae->rule_id.id);
3778
3779         return 0;
3780
3781 fail_action_rule_insert:
3782 fail_mae_counter_start:
3783         sfc_mae_action_set_disable(sa, action_set);
3784
3785 fail_action_set_enable:
3786         if (outer_rule != NULL)
3787                 sfc_mae_outer_rule_disable(sa, outer_rule);
3788
3789 fail_outer_rule_enable:
3790         return rc;
3791 }
3792
3793 int
3794 sfc_mae_flow_remove(struct sfc_adapter *sa,
3795                     struct rte_flow *flow)
3796 {
3797         struct sfc_flow_spec *spec = &flow->spec;
3798         struct sfc_flow_spec_mae *spec_mae = &spec->mae;
3799         struct sfc_mae_action_set *action_set = spec_mae->action_set;
3800         struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule;
3801         int rc;
3802
3803         if (action_set == NULL) {
3804                 sfc_dbg(sa, "disabled flow=%p (no AR)", flow);
3805                 goto skip_action_rule;
3806         }
3807
3808         SFC_ASSERT(spec_mae->rule_id.id != EFX_MAE_RSRC_ID_INVALID);
3809
3810         rc = efx_mae_action_rule_remove(sa->nic, &spec_mae->rule_id);
3811         if (rc != 0) {
3812                 sfc_err(sa, "failed to disable flow=%p with AR_ID=0x%08x: %s",
3813                         flow, spec_mae->rule_id.id, strerror(rc));
3814         }
3815         sfc_dbg(sa, "disabled flow=%p with AR_ID=0x%08x",
3816                 flow, spec_mae->rule_id.id);
3817         spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
3818
3819         sfc_mae_action_set_disable(sa, action_set);
3820
3821 skip_action_rule:
3822         if (outer_rule != NULL)
3823                 sfc_mae_outer_rule_disable(sa, outer_rule);
3824
3825         return 0;
3826 }
3827
3828 static int
3829 sfc_mae_query_counter(struct sfc_adapter *sa,
3830                       struct sfc_flow_spec_mae *spec,
3831                       const struct rte_flow_action *action,
3832                       struct rte_flow_query_count *data,
3833                       struct rte_flow_error *error)
3834 {
3835         struct sfc_mae_action_set *action_set = spec->action_set;
3836         const struct rte_flow_action_count *conf = action->conf;
3837         unsigned int i;
3838         int rc;
3839
3840         if (action_set == NULL || action_set->n_counters == 0) {
3841                 return rte_flow_error_set(error, EINVAL,
3842                         RTE_FLOW_ERROR_TYPE_ACTION, action,
3843                         "Queried flow rule does not have count actions");
3844         }
3845
3846         for (i = 0; i < action_set->n_counters; i++) {
3847                 /*
3848                  * Get the first available counter of the flow rule if
3849                  * counter ID is not specified.
3850                  */
3851                 if (conf != NULL && action_set->counters[i].rte_id != conf->id)
3852                         continue;
3853
3854                 rc = sfc_mae_counter_get(&sa->mae.counter_registry.counters,
3855                                          &action_set->counters[i], data);
3856                 if (rc != 0) {
3857                         return rte_flow_error_set(error, EINVAL,
3858                                 RTE_FLOW_ERROR_TYPE_ACTION, action,
3859                                 "Queried flow rule counter action is invalid");
3860                 }
3861
3862                 return 0;
3863         }
3864
3865         return rte_flow_error_set(error, ENOENT,
3866                                   RTE_FLOW_ERROR_TYPE_ACTION, action,
3867                                   "No such flow rule action count ID");
3868 }
3869
3870 int
3871 sfc_mae_flow_query(struct rte_eth_dev *dev,
3872                    struct rte_flow *flow,
3873                    const struct rte_flow_action *action,
3874                    void *data,
3875                    struct rte_flow_error *error)
3876 {
3877         struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
3878         struct sfc_flow_spec *spec = &flow->spec;
3879         struct sfc_flow_spec_mae *spec_mae = &spec->mae;
3880
3881         switch (action->type) {
3882         case RTE_FLOW_ACTION_TYPE_COUNT:
3883                 return sfc_mae_query_counter(sa, spec_mae, action,
3884                                              data, error);
3885         default:
3886                 return rte_flow_error_set(error, ENOTSUP,
3887                         RTE_FLOW_ERROR_TYPE_ACTION, NULL,
3888                         "Query for action of this type is not supported");
3889         }
3890 }
3891
3892 int
3893 sfc_mae_switchdev_init(struct sfc_adapter *sa)
3894 {
3895         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
3896         struct sfc_mae *mae = &sa->mae;
3897         efx_mport_sel_t pf;
3898         efx_mport_sel_t phy;
3899         int rc;
3900
3901         sfc_log_init(sa, "entry");
3902
3903         if (!sa->switchdev) {
3904                 sfc_log_init(sa, "switchdev is not enabled - skip");
3905                 return 0;
3906         }
3907
3908         if (mae->status != SFC_MAE_STATUS_SUPPORTED) {
3909                 rc = ENOTSUP;
3910                 sfc_err(sa, "failed to init switchdev - no MAE support");
3911                 goto fail_no_mae;
3912         }
3913
3914         rc = efx_mae_mport_by_pcie_function(encp->enc_pf, EFX_PCI_VF_INVALID,
3915                                             &pf);
3916         if (rc != 0) {
3917                 sfc_err(sa, "failed get PF mport");
3918                 goto fail_pf_get;
3919         }
3920
3921         rc = efx_mae_mport_by_phy_port(encp->enc_assigned_port, &phy);
3922         if (rc != 0) {
3923                 sfc_err(sa, "failed get PHY mport");
3924                 goto fail_phy_get;
3925         }
3926
3927         rc = sfc_mae_rule_add_mport_match_deliver(sa, &pf, &phy,
3928                         SFC_MAE_RULE_PRIO_LOWEST,
3929                         &mae->switchdev_rule_pf_to_ext);
3930         if (rc != 0) {
3931                 sfc_err(sa, "failed add MAE rule to forward from PF to PHY");
3932                 goto fail_pf_add;
3933         }
3934
3935         rc = sfc_mae_rule_add_mport_match_deliver(sa, &phy, &pf,
3936                         SFC_MAE_RULE_PRIO_LOWEST,
3937                         &mae->switchdev_rule_ext_to_pf);
3938         if (rc != 0) {
3939                 sfc_err(sa, "failed add MAE rule to forward from PHY to PF");
3940                 goto fail_phy_add;
3941         }
3942
3943         sfc_log_init(sa, "done");
3944
3945         return 0;
3946
3947 fail_phy_add:
3948         sfc_mae_rule_del(sa, mae->switchdev_rule_pf_to_ext);
3949
3950 fail_pf_add:
3951 fail_phy_get:
3952 fail_pf_get:
3953 fail_no_mae:
3954         sfc_log_init(sa, "failed: %s", rte_strerror(rc));
3955         return rc;
3956 }
3957
3958 void
3959 sfc_mae_switchdev_fini(struct sfc_adapter *sa)
3960 {
3961         struct sfc_mae *mae = &sa->mae;
3962
3963         if (!sa->switchdev)
3964                 return;
3965
3966         sfc_mae_rule_del(sa, mae->switchdev_rule_pf_to_ext);
3967         sfc_mae_rule_del(sa, mae->switchdev_rule_ext_to_pf);
3968 }