6fa56b4a33c24cc54067c66d4adcbdae2b7f81ad
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq *rxq)
43 {
44         rxq->state |= SFC_RXQ_FLUSHED;
45         rxq->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq *rxq)
50 {
51         rxq->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58         unsigned int free_space;
59         unsigned int bulks;
60         void *objs[SFC_RX_REFILL_BULK];
61         efsys_dma_addr_t addr[RTE_DIM(objs)];
62         unsigned int added = rxq->added;
63         unsigned int id;
64         unsigned int i;
65         struct sfc_efx_rx_sw_desc *rxd;
66         struct rte_mbuf *m;
67         uint16_t port_id = rxq->dp.dpq.port_id;
68
69         free_space = rxq->max_fill_level - (added - rxq->completed);
70
71         if (free_space < rxq->refill_threshold)
72                 return;
73
74         bulks = free_space / RTE_DIM(objs);
75         /* refill_threshold guarantees that bulks is positive */
76         SFC_ASSERT(bulks > 0);
77
78         id = added & rxq->ptr_mask;
79         do {
80                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81                                                   RTE_DIM(objs)) < 0)) {
82                         /*
83                          * It is hardly a safe way to increment counter
84                          * from different contexts, but all PMDs do it.
85                          */
86                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87                                 RTE_DIM(objs);
88                         /* Return if we have posted nothing yet */
89                         if (added == rxq->added)
90                                 return;
91                         /* Push posted */
92                         break;
93                 }
94
95                 for (i = 0; i < RTE_DIM(objs);
96                      ++i, id = (id + 1) & rxq->ptr_mask) {
97                         m = objs[i];
98
99                         rxd = &rxq->sw_desc[id];
100                         rxd->mbuf = m;
101
102                         SFC_ASSERT(rte_mbuf_refcnt_read(m) == 1);
103                         m->data_off = RTE_PKTMBUF_HEADROOM;
104                         SFC_ASSERT(m->next == NULL);
105                         SFC_ASSERT(m->nb_segs == 1);
106                         m->port = port_id;
107
108                         addr[i] = rte_pktmbuf_iova(m);
109                 }
110
111                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
112                              RTE_DIM(objs), rxq->completed, added);
113                 added += RTE_DIM(objs);
114         } while (--bulks > 0);
115
116         SFC_ASSERT(added != rxq->added);
117         rxq->added = added;
118         efx_rx_qpush(rxq->common, added, &rxq->pushed);
119 }
120
121 static uint64_t
122 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
123 {
124         uint64_t mbuf_flags = 0;
125
126         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
127         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
128                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
129                 break;
130         case EFX_PKT_IPV4:
131                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
132                 break;
133         default:
134                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
135                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
136                            PKT_RX_IP_CKSUM_UNKNOWN);
137                 break;
138         }
139
140         switch ((desc_flags &
141                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
142         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
143         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
144                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
145                 break;
146         case EFX_PKT_TCP:
147         case EFX_PKT_UDP:
148                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
149                 break;
150         default:
151                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
152                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
153                            PKT_RX_L4_CKSUM_UNKNOWN);
154                 break;
155         }
156
157         return mbuf_flags;
158 }
159
160 static uint32_t
161 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
162 {
163         return RTE_PTYPE_L2_ETHER |
164                 ((desc_flags & EFX_PKT_IPV4) ?
165                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
166                 ((desc_flags & EFX_PKT_IPV6) ?
167                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
168                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
169                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
170 }
171
172 static const uint32_t *
173 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
174 {
175         static const uint32_t ptypes[] = {
176                 RTE_PTYPE_L2_ETHER,
177                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
178                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
179                 RTE_PTYPE_L4_TCP,
180                 RTE_PTYPE_L4_UDP,
181                 RTE_PTYPE_UNKNOWN
182         };
183
184         return ptypes;
185 }
186
187 #if EFSYS_OPT_RX_SCALE
188 static void
189 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
190                         struct rte_mbuf *m)
191 {
192         uint8_t *mbuf_data;
193
194
195         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
196                 return;
197
198         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
199
200         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
201                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
202                                                       EFX_RX_HASHALG_TOEPLITZ,
203                                                       mbuf_data);
204
205                 m->ol_flags |= PKT_RX_RSS_HASH;
206         }
207 }
208 #else
209 static void
210 sfc_efx_rx_set_rss_hash(__rte_unused struct sfc_efx_rxq *rxq,
211                         __rte_unused unsigned int flags,
212                         __rte_unused struct rte_mbuf *m)
213 {
214 }
215 #endif
216
217 static uint16_t
218 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
219 {
220         struct sfc_dp_rxq *dp_rxq = rx_queue;
221         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
222         unsigned int completed;
223         unsigned int prefix_size = rxq->prefix_size;
224         unsigned int done_pkts = 0;
225         boolean_t discard_next = B_FALSE;
226         struct rte_mbuf *scatter_pkt = NULL;
227
228         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
229                 return 0;
230
231         sfc_ev_qpoll(rxq->evq);
232
233         completed = rxq->completed;
234         while (completed != rxq->pending && done_pkts < nb_pkts) {
235                 unsigned int id;
236                 struct sfc_efx_rx_sw_desc *rxd;
237                 struct rte_mbuf *m;
238                 unsigned int seg_len;
239                 unsigned int desc_flags;
240
241                 id = completed++ & rxq->ptr_mask;
242                 rxd = &rxq->sw_desc[id];
243                 m = rxd->mbuf;
244                 desc_flags = rxd->flags;
245
246                 if (discard_next)
247                         goto discard;
248
249                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
250                         goto discard;
251
252                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
253                         uint16_t tmp_size;
254                         int rc __rte_unused;
255
256                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
257                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
258                         SFC_ASSERT(rc == 0);
259                         seg_len = tmp_size;
260                 } else {
261                         seg_len = rxd->size - prefix_size;
262                 }
263
264                 rte_pktmbuf_data_len(m) = seg_len;
265                 rte_pktmbuf_pkt_len(m) = seg_len;
266
267                 if (scatter_pkt != NULL) {
268                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
269                                 rte_pktmbuf_free(scatter_pkt);
270                                 goto discard;
271                         }
272                         /* The packet to deliver */
273                         m = scatter_pkt;
274                 }
275
276                 if (desc_flags & EFX_PKT_CONT) {
277                         /* The packet is scattered, more fragments to come */
278                         scatter_pkt = m;
279                         /* Further fragments have no prefix */
280                         prefix_size = 0;
281                         continue;
282                 }
283
284                 /* Scattered packet is done */
285                 scatter_pkt = NULL;
286                 /* The first fragment of the packet has prefix */
287                 prefix_size = rxq->prefix_size;
288
289                 m->ol_flags =
290                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
291                 m->packet_type =
292                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
293
294                 /*
295                  * Extract RSS hash from the packet prefix and
296                  * set the corresponding field (if needed and possible)
297                  */
298                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
299
300                 m->data_off += prefix_size;
301
302                 *rx_pkts++ = m;
303                 done_pkts++;
304                 continue;
305
306 discard:
307                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
308                 rte_mempool_put(rxq->refill_mb_pool, m);
309                 rxd->mbuf = NULL;
310         }
311
312         /* pending is only moved when entire packet is received */
313         SFC_ASSERT(scatter_pkt == NULL);
314
315         rxq->completed = completed;
316
317         sfc_efx_rx_qrefill(rxq);
318
319         return done_pkts;
320 }
321
322 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
323 static unsigned int
324 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
325 {
326         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
327
328         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
329                 return 0;
330
331         sfc_ev_qpoll(rxq->evq);
332
333         return rxq->pending - rxq->completed;
334 }
335
336 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
337 static int
338 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
339 {
340         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
341
342         if (unlikely(offset > rxq->ptr_mask))
343                 return -EINVAL;
344
345         /*
346          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
347          * it is required for the queue to be running, but the
348          * check is omitted because API design assumes that it
349          * is the duty of the caller to satisfy all conditions
350          */
351         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
352                    SFC_EFX_RXQ_FLAG_RUNNING);
353         sfc_ev_qpoll(rxq->evq);
354
355         /*
356          * There is a handful of reserved entries in the ring,
357          * but an explicit check whether the offset points to
358          * a reserved entry is neglected since the two checks
359          * below rely on the figures which take the HW limits
360          * into account and thus if an entry is reserved, the
361          * checks will fail and UNAVAIL code will be returned
362          */
363
364         if (offset < (rxq->pending - rxq->completed))
365                 return RTE_ETH_RX_DESC_DONE;
366
367         if (offset < (rxq->added - rxq->completed))
368                 return RTE_ETH_RX_DESC_AVAIL;
369
370         return RTE_ETH_RX_DESC_UNAVAIL;
371 }
372
373 struct sfc_rxq *
374 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
375 {
376         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
377         struct rte_eth_dev *eth_dev;
378         struct sfc_adapter *sa;
379         struct sfc_rxq *rxq;
380
381         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
382         eth_dev = &rte_eth_devices[dpq->port_id];
383
384         sa = eth_dev->data->dev_private;
385
386         SFC_ASSERT(dpq->queue_id < sa->rxq_count);
387         rxq = sa->rxq_info[dpq->queue_id].rxq;
388
389         SFC_ASSERT(rxq != NULL);
390         return rxq;
391 }
392
393 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
394 static int
395 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
396                           unsigned int *rxq_entries,
397                           unsigned int *evq_entries,
398                           unsigned int *rxq_max_fill_level)
399 {
400         *rxq_entries = nb_rx_desc;
401         *evq_entries = nb_rx_desc;
402         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
403         return 0;
404 }
405
406 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
407 static int
408 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
409                    const struct rte_pci_addr *pci_addr, int socket_id,
410                    const struct sfc_dp_rx_qcreate_info *info,
411                    struct sfc_dp_rxq **dp_rxqp)
412 {
413         struct sfc_efx_rxq *rxq;
414         int rc;
415
416         rc = ENOMEM;
417         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
418                                  RTE_CACHE_LINE_SIZE, socket_id);
419         if (rxq == NULL)
420                 goto fail_rxq_alloc;
421
422         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
423
424         rc = ENOMEM;
425         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
426                                          info->rxq_entries,
427                                          sizeof(*rxq->sw_desc),
428                                          RTE_CACHE_LINE_SIZE, socket_id);
429         if (rxq->sw_desc == NULL)
430                 goto fail_desc_alloc;
431
432         /* efx datapath is bound to efx control path */
433         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
434         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
435                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
436         rxq->ptr_mask = info->rxq_entries - 1;
437         rxq->batch_max = info->batch_max;
438         rxq->prefix_size = info->prefix_size;
439         rxq->max_fill_level = info->max_fill_level;
440         rxq->refill_threshold = info->refill_threshold;
441         rxq->buf_size = info->buf_size;
442         rxq->refill_mb_pool = info->refill_mb_pool;
443
444         *dp_rxqp = &rxq->dp;
445         return 0;
446
447 fail_desc_alloc:
448         rte_free(rxq);
449
450 fail_rxq_alloc:
451         return rc;
452 }
453
454 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
455 static void
456 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
457 {
458         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
459
460         rte_free(rxq->sw_desc);
461         rte_free(rxq);
462 }
463
464 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
465 static int
466 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
467                   __rte_unused unsigned int evq_read_ptr)
468 {
469         /* libefx-based datapath is specific to libefx-based PMD */
470         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
471         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
472
473         rxq->common = crxq->common;
474
475         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
476
477         sfc_efx_rx_qrefill(rxq);
478
479         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
480
481         return 0;
482 }
483
484 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
485 static void
486 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
487                  __rte_unused unsigned int *evq_read_ptr)
488 {
489         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
490
491         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
492
493         /* libefx-based datapath is bound to libefx-based PMD and uses
494          * event queue structure directly. So, there is no necessity to
495          * return EvQ read pointer.
496          */
497 }
498
499 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
500 static void
501 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
502 {
503         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
504         unsigned int i;
505         struct sfc_efx_rx_sw_desc *rxd;
506
507         for (i = rxq->completed; i != rxq->added; ++i) {
508                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
509                 rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
510                 rxd->mbuf = NULL;
511                 /* Packed stream relies on 0 in inactive SW desc.
512                  * Rx queue stop is not performance critical, so
513                  * there is no harm to do it always.
514                  */
515                 rxd->flags = 0;
516                 rxd->size = 0;
517         }
518
519         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
520 }
521
522 struct sfc_dp_rx sfc_efx_rx = {
523         .dp = {
524                 .name           = SFC_KVARG_DATAPATH_EFX,
525                 .type           = SFC_DP_RX,
526                 .hw_fw_caps     = 0,
527         },
528         .features               = SFC_DP_RX_FEAT_SCATTER,
529         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
530         .qcreate                = sfc_efx_rx_qcreate,
531         .qdestroy               = sfc_efx_rx_qdestroy,
532         .qstart                 = sfc_efx_rx_qstart,
533         .qstop                  = sfc_efx_rx_qstop,
534         .qpurge                 = sfc_efx_rx_qpurge,
535         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
536         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
537         .qdesc_status           = sfc_efx_rx_qdesc_status,
538         .pkt_burst              = sfc_efx_recv_pkts,
539 };
540
541 unsigned int
542 sfc_rx_qdesc_npending(struct sfc_adapter *sa, unsigned int sw_index)
543 {
544         struct sfc_rxq *rxq;
545
546         SFC_ASSERT(sw_index < sa->rxq_count);
547         rxq = sa->rxq_info[sw_index].rxq;
548
549         if (rxq == NULL || (rxq->state & SFC_RXQ_STARTED) == 0)
550                 return 0;
551
552         return sa->dp_rx->qdesc_npending(rxq->dp);
553 }
554
555 int
556 sfc_rx_qdesc_done(struct sfc_dp_rxq *dp_rxq, unsigned int offset)
557 {
558         struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
559
560         return offset < rxq->evq->sa->dp_rx->qdesc_npending(dp_rxq);
561 }
562
563 static void
564 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
565 {
566         struct sfc_rxq *rxq;
567         unsigned int retry_count;
568         unsigned int wait_count;
569         int rc;
570
571         rxq = sa->rxq_info[sw_index].rxq;
572         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
573
574         /*
575          * Retry Rx queue flushing in the case of flush failed or
576          * timeout. In the worst case it can delay for 6 seconds.
577          */
578         for (retry_count = 0;
579              ((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
580              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
581              ++retry_count) {
582                 rc = efx_rx_qflush(rxq->common);
583                 if (rc != 0) {
584                         rxq->state |= (rc == EALREADY) ?
585                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
586                         break;
587                 }
588                 rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
589                 rxq->state |= SFC_RXQ_FLUSHING;
590
591                 /*
592                  * Wait for Rx queue flush done or failed event at least
593                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
594                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
595                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
596                  */
597                 wait_count = 0;
598                 do {
599                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
600                         sfc_ev_qpoll(rxq->evq);
601                 } while ((rxq->state & SFC_RXQ_FLUSHING) &&
602                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
603
604                 if (rxq->state & SFC_RXQ_FLUSHING)
605                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
606
607                 if (rxq->state & SFC_RXQ_FLUSH_FAILED)
608                         sfc_err(sa, "RxQ %u flush failed", sw_index);
609
610                 if (rxq->state & SFC_RXQ_FLUSHED)
611                         sfc_info(sa, "RxQ %u flushed", sw_index);
612         }
613
614         sa->dp_rx->qpurge(rxq->dp);
615 }
616
617 static int
618 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
619 {
620         boolean_t rss = (sa->rss_channels > 0) ? B_TRUE : B_FALSE;
621         struct sfc_port *port = &sa->port;
622         int rc;
623
624         /*
625          * If promiscuous or all-multicast mode has been requested, setting
626          * filter for the default Rx queue might fail, in particular, while
627          * running over PCI function which is not a member of corresponding
628          * privilege groups; if this occurs, few iterations will be made to
629          * repeat this step without promiscuous and all-multicast flags set
630          */
631 retry:
632         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, rss);
633         if (rc == 0)
634                 return 0;
635         else if (rc != EOPNOTSUPP)
636                 return rc;
637
638         if (port->promisc) {
639                 sfc_warn(sa, "promiscuous mode has been requested, "
640                              "but the HW rejects it");
641                 sfc_warn(sa, "promiscuous mode will be disabled");
642
643                 port->promisc = B_FALSE;
644                 rc = sfc_set_rx_mode(sa);
645                 if (rc != 0)
646                         return rc;
647
648                 goto retry;
649         }
650
651         if (port->allmulti) {
652                 sfc_warn(sa, "all-multicast mode has been requested, "
653                              "but the HW rejects it");
654                 sfc_warn(sa, "all-multicast mode will be disabled");
655
656                 port->allmulti = B_FALSE;
657                 rc = sfc_set_rx_mode(sa);
658                 if (rc != 0)
659                         return rc;
660
661                 goto retry;
662         }
663
664         return rc;
665 }
666
667 int
668 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
669 {
670         struct sfc_port *port = &sa->port;
671         struct sfc_rxq_info *rxq_info;
672         struct sfc_rxq *rxq;
673         struct sfc_evq *evq;
674         int rc;
675
676         sfc_log_init(sa, "sw_index=%u", sw_index);
677
678         SFC_ASSERT(sw_index < sa->rxq_count);
679
680         rxq_info = &sa->rxq_info[sw_index];
681         rxq = rxq_info->rxq;
682         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
683
684         evq = rxq->evq;
685
686         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
687         if (rc != 0)
688                 goto fail_ev_qstart;
689
690         rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
691                             &rxq->mem, rxq_info->entries,
692                             0 /* not used on EF10 */, rxq_info->type_flags,
693                             evq->common, &rxq->common);
694         if (rc != 0)
695                 goto fail_rx_qcreate;
696
697         efx_rx_qenable(rxq->common);
698
699         rc = sa->dp_rx->qstart(rxq->dp, evq->read_ptr);
700         if (rc != 0)
701                 goto fail_dp_qstart;
702
703         rxq->state |= SFC_RXQ_STARTED;
704
705         if ((sw_index == 0) && !port->isolated) {
706                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
707                 if (rc != 0)
708                         goto fail_mac_filter_default_rxq_set;
709         }
710
711         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
712         sa->eth_dev->data->rx_queue_state[sw_index] =
713                 RTE_ETH_QUEUE_STATE_STARTED;
714
715         return 0;
716
717 fail_mac_filter_default_rxq_set:
718         sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
719
720 fail_dp_qstart:
721         sfc_rx_qflush(sa, sw_index);
722
723 fail_rx_qcreate:
724         sfc_ev_qstop(evq);
725
726 fail_ev_qstart:
727         return rc;
728 }
729
730 void
731 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
732 {
733         struct sfc_rxq_info *rxq_info;
734         struct sfc_rxq *rxq;
735
736         sfc_log_init(sa, "sw_index=%u", sw_index);
737
738         SFC_ASSERT(sw_index < sa->rxq_count);
739
740         rxq_info = &sa->rxq_info[sw_index];
741         rxq = rxq_info->rxq;
742
743         if (rxq->state == SFC_RXQ_INITIALIZED)
744                 return;
745         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
746
747         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
748         sa->eth_dev->data->rx_queue_state[sw_index] =
749                 RTE_ETH_QUEUE_STATE_STOPPED;
750
751         sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
752
753         if (sw_index == 0)
754                 efx_mac_filter_default_rxq_clear(sa->nic);
755
756         sfc_rx_qflush(sa, sw_index);
757
758         rxq->state = SFC_RXQ_INITIALIZED;
759
760         efx_rx_qdestroy(rxq->common);
761
762         sfc_ev_qstop(rxq->evq);
763 }
764
765 static int
766 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
767                    const struct rte_eth_rxconf *rx_conf)
768 {
769         int rc = 0;
770
771         if (rx_conf->rx_thresh.pthresh != 0 ||
772             rx_conf->rx_thresh.hthresh != 0 ||
773             rx_conf->rx_thresh.wthresh != 0) {
774                 sfc_warn(sa,
775                         "RxQ prefetch/host/writeback thresholds are not supported");
776         }
777
778         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
779                 sfc_err(sa,
780                         "RxQ free threshold too large: %u vs maximum %u",
781                         rx_conf->rx_free_thresh, rxq_max_fill_level);
782                 rc = EINVAL;
783         }
784
785         if (rx_conf->rx_drop_en == 0) {
786                 sfc_err(sa, "RxQ drop disable is not supported");
787                 rc = EINVAL;
788         }
789
790         return rc;
791 }
792
793 static unsigned int
794 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
795 {
796         uint32_t data_off;
797         uint32_t order;
798
799         /* The mbuf object itself is always cache line aligned */
800         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
801
802         /* Data offset from mbuf object start */
803         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
804                 RTE_PKTMBUF_HEADROOM;
805
806         order = MIN(order, rte_bsf32(data_off));
807
808         return 1u << (order - 1);
809 }
810
811 static uint16_t
812 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
813 {
814         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
815         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
816         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
817         uint16_t buf_size;
818         unsigned int buf_aligned;
819         unsigned int start_alignment;
820         unsigned int end_padding_alignment;
821
822         /* Below it is assumed that both alignments are power of 2 */
823         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
824         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
825
826         /*
827          * mbuf is always cache line aligned, double-check
828          * that it meets rx buffer start alignment requirements.
829          */
830
831         /* Start from mbuf pool data room size */
832         buf_size = rte_pktmbuf_data_room_size(mb_pool);
833
834         /* Remove headroom */
835         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
836                 sfc_err(sa,
837                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
838                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
839                 return 0;
840         }
841         buf_size -= RTE_PKTMBUF_HEADROOM;
842
843         /* Calculate guaranteed data start alignment */
844         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
845
846         /* Reserve space for start alignment */
847         if (buf_aligned < nic_align_start) {
848                 start_alignment = nic_align_start - buf_aligned;
849                 if (buf_size <= start_alignment) {
850                         sfc_err(sa,
851                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
852                                 mb_pool->name,
853                                 rte_pktmbuf_data_room_size(mb_pool),
854                                 RTE_PKTMBUF_HEADROOM, start_alignment);
855                         return 0;
856                 }
857                 buf_aligned = nic_align_start;
858                 buf_size -= start_alignment;
859         } else {
860                 start_alignment = 0;
861         }
862
863         /* Make sure that end padding does not write beyond the buffer */
864         if (buf_aligned < nic_align_end) {
865                 /*
866                  * Estimate space which can be lost. If guarnteed buffer
867                  * size is odd, lost space is (nic_align_end - 1). More
868                  * accurate formula is below.
869                  */
870                 end_padding_alignment = nic_align_end -
871                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
872                 if (buf_size <= end_padding_alignment) {
873                         sfc_err(sa,
874                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
875                                 mb_pool->name,
876                                 rte_pktmbuf_data_room_size(mb_pool),
877                                 RTE_PKTMBUF_HEADROOM, start_alignment,
878                                 end_padding_alignment);
879                         return 0;
880                 }
881                 buf_size -= end_padding_alignment;
882         } else {
883                 /*
884                  * Start is aligned the same or better than end,
885                  * just align length.
886                  */
887                 buf_size = P2ALIGN(buf_size, nic_align_end);
888         }
889
890         return buf_size;
891 }
892
893 int
894 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
895              uint16_t nb_rx_desc, unsigned int socket_id,
896              const struct rte_eth_rxconf *rx_conf,
897              struct rte_mempool *mb_pool)
898 {
899         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
900         int rc;
901         unsigned int rxq_entries;
902         unsigned int evq_entries;
903         unsigned int rxq_max_fill_level;
904         uint16_t buf_size;
905         struct sfc_rxq_info *rxq_info;
906         struct sfc_evq *evq;
907         struct sfc_rxq *rxq;
908         struct sfc_dp_rx_qcreate_info info;
909
910         rc = sa->dp_rx->qsize_up_rings(nb_rx_desc, &rxq_entries, &evq_entries,
911                                        &rxq_max_fill_level);
912         if (rc != 0)
913                 goto fail_size_up_rings;
914         SFC_ASSERT(rxq_entries >= EFX_RXQ_MINNDESCS);
915         SFC_ASSERT(rxq_entries <= EFX_RXQ_MAXNDESCS);
916         SFC_ASSERT(rxq_entries >= nb_rx_desc);
917         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
918
919         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf);
920         if (rc != 0)
921                 goto fail_bad_conf;
922
923         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
924         if (buf_size == 0) {
925                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
926                         sw_index);
927                 rc = EINVAL;
928                 goto fail_bad_conf;
929         }
930
931         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
932             !sa->eth_dev->data->dev_conf.rxmode.enable_scatter) {
933                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
934                         "object size is too small", sw_index);
935                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
936                         "PDU size %u plus Rx prefix %u bytes",
937                         sw_index, buf_size, (unsigned int)sa->port.pdu,
938                         encp->enc_rx_prefix_size);
939                 rc = EINVAL;
940                 goto fail_bad_conf;
941         }
942
943         SFC_ASSERT(sw_index < sa->rxq_count);
944         rxq_info = &sa->rxq_info[sw_index];
945
946         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
947         rxq_info->entries = rxq_entries;
948         rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
949         rxq_info->type_flags =
950                 sa->eth_dev->data->dev_conf.rxmode.enable_scatter ?
951                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
952
953         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
954             (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
955                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
956
957         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
958                           evq_entries, socket_id, &evq);
959         if (rc != 0)
960                 goto fail_ev_qinit;
961
962         rc = ENOMEM;
963         rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
964                                  socket_id);
965         if (rxq == NULL)
966                 goto fail_rxq_alloc;
967
968         rxq_info->rxq = rxq;
969
970         rxq->evq = evq;
971         rxq->hw_index = sw_index;
972         rxq->refill_threshold =
973                 RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
974         rxq->refill_mb_pool = mb_pool;
975
976         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
977                            socket_id, &rxq->mem);
978         if (rc != 0)
979                 goto fail_dma_alloc;
980
981         memset(&info, 0, sizeof(info));
982         info.refill_mb_pool = rxq->refill_mb_pool;
983         info.max_fill_level = rxq_max_fill_level;
984         info.refill_threshold = rxq->refill_threshold;
985         info.buf_size = buf_size;
986         info.batch_max = encp->enc_rx_batch_max;
987         info.prefix_size = encp->enc_rx_prefix_size;
988
989 #if EFSYS_OPT_RX_SCALE
990         if (sa->hash_support == EFX_RX_HASH_AVAILABLE && sa->rss_channels > 0)
991                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
992 #endif
993
994         info.rxq_entries = rxq_info->entries;
995         info.rxq_hw_ring = rxq->mem.esm_base;
996         info.evq_entries = evq_entries;
997         info.evq_hw_ring = evq->mem.esm_base;
998         info.hw_index = rxq->hw_index;
999         info.mem_bar = sa->mem_bar.esb_base;
1000
1001         rc = sa->dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1002                                 &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1003                                 socket_id, &info, &rxq->dp);
1004         if (rc != 0)
1005                 goto fail_dp_rx_qcreate;
1006
1007         evq->dp_rxq = rxq->dp;
1008
1009         rxq->state = SFC_RXQ_INITIALIZED;
1010
1011         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1012
1013         return 0;
1014
1015 fail_dp_rx_qcreate:
1016         sfc_dma_free(sa, &rxq->mem);
1017
1018 fail_dma_alloc:
1019         rxq_info->rxq = NULL;
1020         rte_free(rxq);
1021
1022 fail_rxq_alloc:
1023         sfc_ev_qfini(evq);
1024
1025 fail_ev_qinit:
1026         rxq_info->entries = 0;
1027
1028 fail_bad_conf:
1029 fail_size_up_rings:
1030         sfc_log_init(sa, "failed %d", rc);
1031         return rc;
1032 }
1033
1034 void
1035 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1036 {
1037         struct sfc_rxq_info *rxq_info;
1038         struct sfc_rxq *rxq;
1039
1040         SFC_ASSERT(sw_index < sa->rxq_count);
1041
1042         rxq_info = &sa->rxq_info[sw_index];
1043
1044         rxq = rxq_info->rxq;
1045         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
1046
1047         sa->dp_rx->qdestroy(rxq->dp);
1048         rxq->dp = NULL;
1049
1050         rxq_info->rxq = NULL;
1051         rxq_info->entries = 0;
1052
1053         sfc_dma_free(sa, &rxq->mem);
1054
1055         sfc_ev_qfini(rxq->evq);
1056         rxq->evq = NULL;
1057
1058         rte_free(rxq);
1059 }
1060
1061 #if EFSYS_OPT_RX_SCALE
1062 efx_rx_hash_type_t
1063 sfc_rte_to_efx_hash_type(uint64_t rss_hf)
1064 {
1065         efx_rx_hash_type_t efx_hash_types = 0;
1066
1067         if ((rss_hf & (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
1068                        ETH_RSS_NONFRAG_IPV4_OTHER)) != 0)
1069                 efx_hash_types |= EFX_RX_HASH_IPV4;
1070
1071         if ((rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) != 0)
1072                 efx_hash_types |= EFX_RX_HASH_TCPIPV4;
1073
1074         if ((rss_hf & (ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
1075                         ETH_RSS_NONFRAG_IPV6_OTHER | ETH_RSS_IPV6_EX)) != 0)
1076                 efx_hash_types |= EFX_RX_HASH_IPV6;
1077
1078         if ((rss_hf & (ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX)) != 0)
1079                 efx_hash_types |= EFX_RX_HASH_TCPIPV6;
1080
1081         return efx_hash_types;
1082 }
1083
1084 uint64_t
1085 sfc_efx_to_rte_hash_type(efx_rx_hash_type_t efx_hash_types)
1086 {
1087         uint64_t rss_hf = 0;
1088
1089         if ((efx_hash_types & EFX_RX_HASH_IPV4) != 0)
1090                 rss_hf |= (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
1091                            ETH_RSS_NONFRAG_IPV4_OTHER);
1092
1093         if ((efx_hash_types & EFX_RX_HASH_TCPIPV4) != 0)
1094                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1095
1096         if ((efx_hash_types & EFX_RX_HASH_IPV6) != 0)
1097                 rss_hf |= (ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
1098                            ETH_RSS_NONFRAG_IPV6_OTHER | ETH_RSS_IPV6_EX);
1099
1100         if ((efx_hash_types & EFX_RX_HASH_TCPIPV6) != 0)
1101                 rss_hf |= (ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX);
1102
1103         return rss_hf;
1104 }
1105 #endif
1106
1107 #if EFSYS_OPT_RX_SCALE
1108 static int
1109 sfc_rx_rss_config(struct sfc_adapter *sa)
1110 {
1111         int rc = 0;
1112
1113         if (sa->rss_channels > 0) {
1114                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1115                                            EFX_RX_HASHALG_TOEPLITZ,
1116                                            sa->rss_hash_types, B_TRUE);
1117                 if (rc != 0)
1118                         goto finish;
1119
1120                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1121                                           sa->rss_key,
1122                                           sizeof(sa->rss_key));
1123                 if (rc != 0)
1124                         goto finish;
1125
1126                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1127                                           sa->rss_tbl, RTE_DIM(sa->rss_tbl));
1128         }
1129
1130 finish:
1131         return rc;
1132 }
1133 #else
1134 static int
1135 sfc_rx_rss_config(__rte_unused struct sfc_adapter *sa)
1136 {
1137         return 0;
1138 }
1139 #endif
1140
1141 int
1142 sfc_rx_start(struct sfc_adapter *sa)
1143 {
1144         unsigned int sw_index;
1145         int rc;
1146
1147         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1148
1149         rc = efx_rx_init(sa->nic);
1150         if (rc != 0)
1151                 goto fail_rx_init;
1152
1153         rc = sfc_rx_rss_config(sa);
1154         if (rc != 0)
1155                 goto fail_rss_config;
1156
1157         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
1158                 if ((!sa->rxq_info[sw_index].deferred_start ||
1159                      sa->rxq_info[sw_index].deferred_started)) {
1160                         rc = sfc_rx_qstart(sa, sw_index);
1161                         if (rc != 0)
1162                                 goto fail_rx_qstart;
1163                 }
1164         }
1165
1166         return 0;
1167
1168 fail_rx_qstart:
1169         while (sw_index-- > 0)
1170                 sfc_rx_qstop(sa, sw_index);
1171
1172 fail_rss_config:
1173         efx_rx_fini(sa->nic);
1174
1175 fail_rx_init:
1176         sfc_log_init(sa, "failed %d", rc);
1177         return rc;
1178 }
1179
1180 void
1181 sfc_rx_stop(struct sfc_adapter *sa)
1182 {
1183         unsigned int sw_index;
1184
1185         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1186
1187         sw_index = sa->rxq_count;
1188         while (sw_index-- > 0) {
1189                 if (sa->rxq_info[sw_index].rxq != NULL)
1190                         sfc_rx_qstop(sa, sw_index);
1191         }
1192
1193         efx_rx_fini(sa->nic);
1194 }
1195
1196 static int
1197 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1198 {
1199         struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
1200         unsigned int max_entries;
1201
1202         max_entries = EFX_RXQ_MAXNDESCS;
1203         SFC_ASSERT(rte_is_power_of_2(max_entries));
1204
1205         rxq_info->max_entries = max_entries;
1206
1207         return 0;
1208 }
1209
1210 static int
1211 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1212 {
1213         int rc = 0;
1214
1215         switch (rxmode->mq_mode) {
1216         case ETH_MQ_RX_NONE:
1217                 /* No special checks are required */
1218                 break;
1219 #if EFSYS_OPT_RX_SCALE
1220         case ETH_MQ_RX_RSS:
1221                 if (sa->rss_support == EFX_RX_SCALE_UNAVAILABLE) {
1222                         sfc_err(sa, "RSS is not available");
1223                         rc = EINVAL;
1224                 }
1225                 break;
1226 #endif
1227         default:
1228                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1229                         rxmode->mq_mode);
1230                 rc = EINVAL;
1231         }
1232
1233         if (rxmode->header_split) {
1234                 sfc_err(sa, "Header split on Rx not supported");
1235                 rc = EINVAL;
1236         }
1237
1238         if (rxmode->hw_vlan_filter) {
1239                 sfc_err(sa, "HW VLAN filtering not supported");
1240                 rc = EINVAL;
1241         }
1242
1243         if (rxmode->hw_vlan_strip) {
1244                 sfc_err(sa, "HW VLAN stripping not supported");
1245                 rc = EINVAL;
1246         }
1247
1248         if (rxmode->hw_vlan_extend) {
1249                 sfc_err(sa,
1250                         "Q-in-Q HW VLAN stripping not supported");
1251                 rc = EINVAL;
1252         }
1253
1254         if (!rxmode->hw_strip_crc) {
1255                 sfc_warn(sa,
1256                          "FCS stripping control not supported - always stripped");
1257                 rxmode->hw_strip_crc = 1;
1258         }
1259
1260         if (rxmode->enable_scatter &&
1261             (~sa->dp_rx->features & SFC_DP_RX_FEAT_SCATTER)) {
1262                 sfc_err(sa, "Rx scatter not supported by %s datapath",
1263                         sa->dp_rx->dp.name);
1264                 rc = EINVAL;
1265         }
1266
1267         if (rxmode->enable_lro) {
1268                 sfc_err(sa, "LRO not supported");
1269                 rc = EINVAL;
1270         }
1271
1272         return rc;
1273 }
1274
1275 /**
1276  * Destroy excess queues that are no longer needed after reconfiguration
1277  * or complete close.
1278  */
1279 static void
1280 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1281 {
1282         int sw_index;
1283
1284         SFC_ASSERT(nb_rx_queues <= sa->rxq_count);
1285
1286         sw_index = sa->rxq_count;
1287         while (--sw_index >= (int)nb_rx_queues) {
1288                 if (sa->rxq_info[sw_index].rxq != NULL)
1289                         sfc_rx_qfini(sa, sw_index);
1290         }
1291
1292         sa->rxq_count = nb_rx_queues;
1293 }
1294
1295 /**
1296  * Initialize Rx subsystem.
1297  *
1298  * Called at device (re)configuration stage when number of receive queues is
1299  * specified together with other device level receive configuration.
1300  *
1301  * It should be used to allocate NUMA-unaware resources.
1302  */
1303 int
1304 sfc_rx_configure(struct sfc_adapter *sa)
1305 {
1306         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1307         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1308         int rc;
1309
1310         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1311                      nb_rx_queues, sa->rxq_count);
1312
1313         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1314         if (rc != 0)
1315                 goto fail_check_mode;
1316
1317         if (nb_rx_queues == sa->rxq_count)
1318                 goto done;
1319
1320         if (sa->rxq_info == NULL) {
1321                 rc = ENOMEM;
1322                 sa->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1323                                                  sizeof(sa->rxq_info[0]), 0,
1324                                                  sa->socket_id);
1325                 if (sa->rxq_info == NULL)
1326                         goto fail_rxqs_alloc;
1327         } else {
1328                 struct sfc_rxq_info *new_rxq_info;
1329
1330                 if (nb_rx_queues < sa->rxq_count)
1331                         sfc_rx_fini_queues(sa, nb_rx_queues);
1332
1333                 rc = ENOMEM;
1334                 new_rxq_info =
1335                         rte_realloc(sa->rxq_info,
1336                                     nb_rx_queues * sizeof(sa->rxq_info[0]), 0);
1337                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1338                         goto fail_rxqs_realloc;
1339
1340                 sa->rxq_info = new_rxq_info;
1341                 if (nb_rx_queues > sa->rxq_count)
1342                         memset(&sa->rxq_info[sa->rxq_count], 0,
1343                                (nb_rx_queues - sa->rxq_count) *
1344                                sizeof(sa->rxq_info[0]));
1345         }
1346
1347         while (sa->rxq_count < nb_rx_queues) {
1348                 rc = sfc_rx_qinit_info(sa, sa->rxq_count);
1349                 if (rc != 0)
1350                         goto fail_rx_qinit_info;
1351
1352                 sa->rxq_count++;
1353         }
1354
1355 #if EFSYS_OPT_RX_SCALE
1356         sa->rss_channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1357                            MIN(sa->rxq_count, EFX_MAXRSS) : 0;
1358
1359         if (sa->rss_channels > 0) {
1360                 unsigned int sw_index;
1361
1362                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1363                         sa->rss_tbl[sw_index] = sw_index % sa->rss_channels;
1364         }
1365 #endif
1366
1367 done:
1368         return 0;
1369
1370 fail_rx_qinit_info:
1371 fail_rxqs_realloc:
1372 fail_rxqs_alloc:
1373         sfc_rx_close(sa);
1374
1375 fail_check_mode:
1376         sfc_log_init(sa, "failed %d", rc);
1377         return rc;
1378 }
1379
1380 /**
1381  * Shutdown Rx subsystem.
1382  *
1383  * Called at device close stage, for example, before device shutdown.
1384  */
1385 void
1386 sfc_rx_close(struct sfc_adapter *sa)
1387 {
1388         sfc_rx_fini_queues(sa, 0);
1389
1390         sa->rss_channels = 0;
1391
1392         rte_free(sa->rxq_info);
1393         sa->rxq_info = NULL;
1394 }