net/sfc: move datapath RxQ handle to shared RxQ info
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44         rxq_info->state |= SFC_RXQ_FLUSHED;
45         rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51         rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58         unsigned int free_space;
59         unsigned int bulks;
60         void *objs[SFC_RX_REFILL_BULK];
61         efsys_dma_addr_t addr[RTE_DIM(objs)];
62         unsigned int added = rxq->added;
63         unsigned int id;
64         unsigned int i;
65         struct sfc_efx_rx_sw_desc *rxd;
66         struct rte_mbuf *m;
67         uint16_t port_id = rxq->dp.dpq.port_id;
68
69         free_space = rxq->max_fill_level - (added - rxq->completed);
70
71         if (free_space < rxq->refill_threshold)
72                 return;
73
74         bulks = free_space / RTE_DIM(objs);
75         /* refill_threshold guarantees that bulks is positive */
76         SFC_ASSERT(bulks > 0);
77
78         id = added & rxq->ptr_mask;
79         do {
80                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81                                                   RTE_DIM(objs)) < 0)) {
82                         /*
83                          * It is hardly a safe way to increment counter
84                          * from different contexts, but all PMDs do it.
85                          */
86                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87                                 RTE_DIM(objs);
88                         /* Return if we have posted nothing yet */
89                         if (added == rxq->added)
90                                 return;
91                         /* Push posted */
92                         break;
93                 }
94
95                 for (i = 0; i < RTE_DIM(objs);
96                      ++i, id = (id + 1) & rxq->ptr_mask) {
97                         m = objs[i];
98
99                         MBUF_RAW_ALLOC_CHECK(m);
100
101                         rxd = &rxq->sw_desc[id];
102                         rxd->mbuf = m;
103
104                         m->data_off = RTE_PKTMBUF_HEADROOM;
105                         m->port = port_id;
106
107                         addr[i] = rte_pktmbuf_iova(m);
108                 }
109
110                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
111                              RTE_DIM(objs), rxq->completed, added);
112                 added += RTE_DIM(objs);
113         } while (--bulks > 0);
114
115         SFC_ASSERT(added != rxq->added);
116         rxq->added = added;
117         efx_rx_qpush(rxq->common, added, &rxq->pushed);
118 }
119
120 static uint64_t
121 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
122 {
123         uint64_t mbuf_flags = 0;
124
125         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
126         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
127                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
128                 break;
129         case EFX_PKT_IPV4:
130                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
131                 break;
132         default:
133                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
134                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
135                            PKT_RX_IP_CKSUM_UNKNOWN);
136                 break;
137         }
138
139         switch ((desc_flags &
140                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
141         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
142         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
143                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
144                 break;
145         case EFX_PKT_TCP:
146         case EFX_PKT_UDP:
147                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
148                 break;
149         default:
150                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
151                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
152                            PKT_RX_L4_CKSUM_UNKNOWN);
153                 break;
154         }
155
156         return mbuf_flags;
157 }
158
159 static uint32_t
160 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
161 {
162         return RTE_PTYPE_L2_ETHER |
163                 ((desc_flags & EFX_PKT_IPV4) ?
164                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
165                 ((desc_flags & EFX_PKT_IPV6) ?
166                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
167                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
168                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
169 }
170
171 static const uint32_t *
172 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
173 {
174         static const uint32_t ptypes[] = {
175                 RTE_PTYPE_L2_ETHER,
176                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
177                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
178                 RTE_PTYPE_L4_TCP,
179                 RTE_PTYPE_L4_UDP,
180                 RTE_PTYPE_UNKNOWN
181         };
182
183         return ptypes;
184 }
185
186 static void
187 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
188                         struct rte_mbuf *m)
189 {
190         uint8_t *mbuf_data;
191
192
193         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
194                 return;
195
196         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
197
198         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
199                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
200                                                       EFX_RX_HASHALG_TOEPLITZ,
201                                                       mbuf_data);
202
203                 m->ol_flags |= PKT_RX_RSS_HASH;
204         }
205 }
206
207 static uint16_t
208 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
209 {
210         struct sfc_dp_rxq *dp_rxq = rx_queue;
211         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
212         unsigned int completed;
213         unsigned int prefix_size = rxq->prefix_size;
214         unsigned int done_pkts = 0;
215         boolean_t discard_next = B_FALSE;
216         struct rte_mbuf *scatter_pkt = NULL;
217
218         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
219                 return 0;
220
221         sfc_ev_qpoll(rxq->evq);
222
223         completed = rxq->completed;
224         while (completed != rxq->pending && done_pkts < nb_pkts) {
225                 unsigned int id;
226                 struct sfc_efx_rx_sw_desc *rxd;
227                 struct rte_mbuf *m;
228                 unsigned int seg_len;
229                 unsigned int desc_flags;
230
231                 id = completed++ & rxq->ptr_mask;
232                 rxd = &rxq->sw_desc[id];
233                 m = rxd->mbuf;
234                 desc_flags = rxd->flags;
235
236                 if (discard_next)
237                         goto discard;
238
239                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
240                         goto discard;
241
242                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
243                         uint16_t tmp_size;
244                         int rc __rte_unused;
245
246                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
247                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
248                         SFC_ASSERT(rc == 0);
249                         seg_len = tmp_size;
250                 } else {
251                         seg_len = rxd->size - prefix_size;
252                 }
253
254                 rte_pktmbuf_data_len(m) = seg_len;
255                 rte_pktmbuf_pkt_len(m) = seg_len;
256
257                 if (scatter_pkt != NULL) {
258                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
259                                 rte_pktmbuf_free(scatter_pkt);
260                                 goto discard;
261                         }
262                         /* The packet to deliver */
263                         m = scatter_pkt;
264                 }
265
266                 if (desc_flags & EFX_PKT_CONT) {
267                         /* The packet is scattered, more fragments to come */
268                         scatter_pkt = m;
269                         /* Further fragments have no prefix */
270                         prefix_size = 0;
271                         continue;
272                 }
273
274                 /* Scattered packet is done */
275                 scatter_pkt = NULL;
276                 /* The first fragment of the packet has prefix */
277                 prefix_size = rxq->prefix_size;
278
279                 m->ol_flags =
280                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
281                 m->packet_type =
282                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
283
284                 /*
285                  * Extract RSS hash from the packet prefix and
286                  * set the corresponding field (if needed and possible)
287                  */
288                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
289
290                 m->data_off += prefix_size;
291
292                 *rx_pkts++ = m;
293                 done_pkts++;
294                 continue;
295
296 discard:
297                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
298                 rte_mbuf_raw_free(m);
299                 rxd->mbuf = NULL;
300         }
301
302         /* pending is only moved when entire packet is received */
303         SFC_ASSERT(scatter_pkt == NULL);
304
305         rxq->completed = completed;
306
307         sfc_efx_rx_qrefill(rxq);
308
309         return done_pkts;
310 }
311
312 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
313 static unsigned int
314 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
315 {
316         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
317
318         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
319                 return 0;
320
321         sfc_ev_qpoll(rxq->evq);
322
323         return rxq->pending - rxq->completed;
324 }
325
326 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
327 static int
328 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
329 {
330         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
331
332         if (unlikely(offset > rxq->ptr_mask))
333                 return -EINVAL;
334
335         /*
336          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
337          * it is required for the queue to be running, but the
338          * check is omitted because API design assumes that it
339          * is the duty of the caller to satisfy all conditions
340          */
341         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
342                    SFC_EFX_RXQ_FLAG_RUNNING);
343         sfc_ev_qpoll(rxq->evq);
344
345         /*
346          * There is a handful of reserved entries in the ring,
347          * but an explicit check whether the offset points to
348          * a reserved entry is neglected since the two checks
349          * below rely on the figures which take the HW limits
350          * into account and thus if an entry is reserved, the
351          * checks will fail and UNAVAIL code will be returned
352          */
353
354         if (offset < (rxq->pending - rxq->completed))
355                 return RTE_ETH_RX_DESC_DONE;
356
357         if (offset < (rxq->added - rxq->completed))
358                 return RTE_ETH_RX_DESC_AVAIL;
359
360         return RTE_ETH_RX_DESC_UNAVAIL;
361 }
362
363 struct sfc_rxq_info *
364 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
365 {
366         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
367         struct rte_eth_dev *eth_dev;
368         struct sfc_adapter *sa;
369
370         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
371         eth_dev = &rte_eth_devices[dpq->port_id];
372
373         sa = eth_dev->data->dev_private;
374
375         SFC_ASSERT(dpq->queue_id < sa->rxq_count);
376         return &sa->rxq_info[dpq->queue_id];
377 }
378
379 struct sfc_rxq *
380 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
381 {
382         struct sfc_rxq_info *rxq_info;
383
384         rxq_info = sfc_rxq_info_by_dp_rxq(dp_rxq);
385
386         SFC_ASSERT(rxq_info->rxq != NULL);
387         return rxq_info->rxq;
388 }
389
390 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
391 static int
392 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
393                           __rte_unused struct rte_mempool *mb_pool,
394                           unsigned int *rxq_entries,
395                           unsigned int *evq_entries,
396                           unsigned int *rxq_max_fill_level)
397 {
398         *rxq_entries = nb_rx_desc;
399         *evq_entries = nb_rx_desc;
400         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
401         return 0;
402 }
403
404 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
405 static int
406 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
407                    const struct rte_pci_addr *pci_addr, int socket_id,
408                    const struct sfc_dp_rx_qcreate_info *info,
409                    struct sfc_dp_rxq **dp_rxqp)
410 {
411         struct sfc_efx_rxq *rxq;
412         int rc;
413
414         rc = ENOMEM;
415         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
416                                  RTE_CACHE_LINE_SIZE, socket_id);
417         if (rxq == NULL)
418                 goto fail_rxq_alloc;
419
420         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
421
422         rc = ENOMEM;
423         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
424                                          info->rxq_entries,
425                                          sizeof(*rxq->sw_desc),
426                                          RTE_CACHE_LINE_SIZE, socket_id);
427         if (rxq->sw_desc == NULL)
428                 goto fail_desc_alloc;
429
430         /* efx datapath is bound to efx control path */
431         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
432         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
433                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
434         rxq->ptr_mask = info->rxq_entries - 1;
435         rxq->batch_max = info->batch_max;
436         rxq->prefix_size = info->prefix_size;
437         rxq->max_fill_level = info->max_fill_level;
438         rxq->refill_threshold = info->refill_threshold;
439         rxq->buf_size = info->buf_size;
440         rxq->refill_mb_pool = info->refill_mb_pool;
441
442         *dp_rxqp = &rxq->dp;
443         return 0;
444
445 fail_desc_alloc:
446         rte_free(rxq);
447
448 fail_rxq_alloc:
449         return rc;
450 }
451
452 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
453 static void
454 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
455 {
456         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
457
458         rte_free(rxq->sw_desc);
459         rte_free(rxq);
460 }
461
462 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
463 static int
464 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
465                   __rte_unused unsigned int evq_read_ptr)
466 {
467         /* libefx-based datapath is specific to libefx-based PMD */
468         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
469         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
470
471         rxq->common = crxq->common;
472
473         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
474
475         sfc_efx_rx_qrefill(rxq);
476
477         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
478
479         return 0;
480 }
481
482 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
483 static void
484 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
485                  __rte_unused unsigned int *evq_read_ptr)
486 {
487         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
488
489         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
490
491         /* libefx-based datapath is bound to libefx-based PMD and uses
492          * event queue structure directly. So, there is no necessity to
493          * return EvQ read pointer.
494          */
495 }
496
497 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
498 static void
499 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
500 {
501         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
502         unsigned int i;
503         struct sfc_efx_rx_sw_desc *rxd;
504
505         for (i = rxq->completed; i != rxq->added; ++i) {
506                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
507                 rte_mbuf_raw_free(rxd->mbuf);
508                 rxd->mbuf = NULL;
509                 /* Packed stream relies on 0 in inactive SW desc.
510                  * Rx queue stop is not performance critical, so
511                  * there is no harm to do it always.
512                  */
513                 rxd->flags = 0;
514                 rxd->size = 0;
515         }
516
517         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
518 }
519
520 struct sfc_dp_rx sfc_efx_rx = {
521         .dp = {
522                 .name           = SFC_KVARG_DATAPATH_EFX,
523                 .type           = SFC_DP_RX,
524                 .hw_fw_caps     = 0,
525         },
526         .features               = SFC_DP_RX_FEAT_SCATTER |
527                                   SFC_DP_RX_FEAT_CHECKSUM,
528         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
529         .qcreate                = sfc_efx_rx_qcreate,
530         .qdestroy               = sfc_efx_rx_qdestroy,
531         .qstart                 = sfc_efx_rx_qstart,
532         .qstop                  = sfc_efx_rx_qstop,
533         .qpurge                 = sfc_efx_rx_qpurge,
534         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
535         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
536         .qdesc_status           = sfc_efx_rx_qdesc_status,
537         .pkt_burst              = sfc_efx_recv_pkts,
538 };
539
540 static void
541 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
542 {
543         struct sfc_rxq_info *rxq_info;
544         struct sfc_rxq *rxq;
545         unsigned int retry_count;
546         unsigned int wait_count;
547         int rc;
548
549         rxq_info = &sa->rxq_info[sw_index];
550         rxq = rxq_info->rxq;
551         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
552
553         /*
554          * Retry Rx queue flushing in the case of flush failed or
555          * timeout. In the worst case it can delay for 6 seconds.
556          */
557         for (retry_count = 0;
558              ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
559              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
560              ++retry_count) {
561                 rc = efx_rx_qflush(rxq->common);
562                 if (rc != 0) {
563                         rxq_info->state |= (rc == EALREADY) ?
564                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
565                         break;
566                 }
567                 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
568                 rxq_info->state |= SFC_RXQ_FLUSHING;
569
570                 /*
571                  * Wait for Rx queue flush done or failed event at least
572                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
573                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
574                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
575                  */
576                 wait_count = 0;
577                 do {
578                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
579                         sfc_ev_qpoll(rxq->evq);
580                 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
581                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
582
583                 if (rxq_info->state & SFC_RXQ_FLUSHING)
584                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
585
586                 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
587                         sfc_err(sa, "RxQ %u flush failed", sw_index);
588
589                 if (rxq_info->state & SFC_RXQ_FLUSHED)
590                         sfc_notice(sa, "RxQ %u flushed", sw_index);
591         }
592
593         sa->priv.dp_rx->qpurge(rxq_info->dp);
594 }
595
596 static int
597 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
598 {
599         struct sfc_rss *rss = &sa->rss;
600         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
601         struct sfc_port *port = &sa->port;
602         int rc;
603
604         /*
605          * If promiscuous or all-multicast mode has been requested, setting
606          * filter for the default Rx queue might fail, in particular, while
607          * running over PCI function which is not a member of corresponding
608          * privilege groups; if this occurs, few iterations will be made to
609          * repeat this step without promiscuous and all-multicast flags set
610          */
611 retry:
612         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
613         if (rc == 0)
614                 return 0;
615         else if (rc != EOPNOTSUPP)
616                 return rc;
617
618         if (port->promisc) {
619                 sfc_warn(sa, "promiscuous mode has been requested, "
620                              "but the HW rejects it");
621                 sfc_warn(sa, "promiscuous mode will be disabled");
622
623                 port->promisc = B_FALSE;
624                 rc = sfc_set_rx_mode(sa);
625                 if (rc != 0)
626                         return rc;
627
628                 goto retry;
629         }
630
631         if (port->allmulti) {
632                 sfc_warn(sa, "all-multicast mode has been requested, "
633                              "but the HW rejects it");
634                 sfc_warn(sa, "all-multicast mode will be disabled");
635
636                 port->allmulti = B_FALSE;
637                 rc = sfc_set_rx_mode(sa);
638                 if (rc != 0)
639                         return rc;
640
641                 goto retry;
642         }
643
644         return rc;
645 }
646
647 int
648 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
649 {
650         struct sfc_port *port = &sa->port;
651         struct sfc_rxq_info *rxq_info;
652         struct sfc_rxq *rxq;
653         struct sfc_evq *evq;
654         int rc;
655
656         sfc_log_init(sa, "sw_index=%u", sw_index);
657
658         SFC_ASSERT(sw_index < sa->rxq_count);
659
660         rxq_info = &sa->rxq_info[sw_index];
661         rxq = rxq_info->rxq;
662         SFC_ASSERT(rxq != NULL);
663         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
664
665         evq = rxq->evq;
666
667         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
668         if (rc != 0)
669                 goto fail_ev_qstart;
670
671         switch (rxq_info->type) {
672         case EFX_RXQ_TYPE_DEFAULT:
673                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
674                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
675                         rxq_info->type_flags, evq->common, &rxq->common);
676                 break;
677         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
678                 struct rte_mempool *mp = rxq_info->refill_mb_pool;
679                 struct rte_mempool_info mp_info;
680
681                 rc = rte_mempool_ops_get_info(mp, &mp_info);
682                 if (rc != 0) {
683                         /* Positive errno is used in the driver */
684                         rc = -rc;
685                         goto fail_mp_get_info;
686                 }
687                 if (mp_info.contig_block_size <= 0) {
688                         rc = EINVAL;
689                         goto fail_bad_contig_block_size;
690                 }
691                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
692                         mp_info.contig_block_size, rxq->buf_size,
693                         mp->header_size + mp->elt_size + mp->trailer_size,
694                         sa->rxd_wait_timeout_ns,
695                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
696                         evq->common, &rxq->common);
697                 break;
698         }
699         default:
700                 rc = ENOTSUP;
701         }
702         if (rc != 0)
703                 goto fail_rx_qcreate;
704
705         efx_rx_qenable(rxq->common);
706
707         rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
708         if (rc != 0)
709                 goto fail_dp_qstart;
710
711         rxq_info->state |= SFC_RXQ_STARTED;
712
713         if ((sw_index == 0) && !port->isolated) {
714                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
715                 if (rc != 0)
716                         goto fail_mac_filter_default_rxq_set;
717         }
718
719         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
720         sa->eth_dev->data->rx_queue_state[sw_index] =
721                 RTE_ETH_QUEUE_STATE_STARTED;
722
723         return 0;
724
725 fail_mac_filter_default_rxq_set:
726         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
727
728 fail_dp_qstart:
729         sfc_rx_qflush(sa, sw_index);
730
731 fail_rx_qcreate:
732 fail_bad_contig_block_size:
733 fail_mp_get_info:
734         sfc_ev_qstop(evq);
735
736 fail_ev_qstart:
737         return rc;
738 }
739
740 void
741 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
742 {
743         struct sfc_rxq_info *rxq_info;
744         struct sfc_rxq *rxq;
745
746         sfc_log_init(sa, "sw_index=%u", sw_index);
747
748         SFC_ASSERT(sw_index < sa->rxq_count);
749
750         rxq_info = &sa->rxq_info[sw_index];
751         rxq = rxq_info->rxq;
752
753         if (rxq == NULL || rxq_info->state == SFC_RXQ_INITIALIZED)
754                 return;
755         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
756
757         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
758         sa->eth_dev->data->rx_queue_state[sw_index] =
759                 RTE_ETH_QUEUE_STATE_STOPPED;
760
761         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
762
763         if (sw_index == 0)
764                 efx_mac_filter_default_rxq_clear(sa->nic);
765
766         sfc_rx_qflush(sa, sw_index);
767
768         rxq_info->state = SFC_RXQ_INITIALIZED;
769
770         efx_rx_qdestroy(rxq->common);
771
772         sfc_ev_qstop(rxq->evq);
773 }
774
775 uint64_t
776 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
777 {
778         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
779         uint64_t caps = 0;
780
781         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
782
783         if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_CHECKSUM) {
784                 caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
785                 caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
786                 caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
787         }
788
789         if (encp->enc_tunnel_encapsulations_supported &&
790             (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
791                 caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
792
793         return caps;
794 }
795
796 uint64_t
797 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
798 {
799         uint64_t caps = 0;
800
801         if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
802                 caps |= DEV_RX_OFFLOAD_SCATTER;
803
804         return caps;
805 }
806
807 static int
808 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
809                    const struct rte_eth_rxconf *rx_conf,
810                    __rte_unused uint64_t offloads)
811 {
812         int rc = 0;
813
814         if (rx_conf->rx_thresh.pthresh != 0 ||
815             rx_conf->rx_thresh.hthresh != 0 ||
816             rx_conf->rx_thresh.wthresh != 0) {
817                 sfc_warn(sa,
818                         "RxQ prefetch/host/writeback thresholds are not supported");
819         }
820
821         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
822                 sfc_err(sa,
823                         "RxQ free threshold too large: %u vs maximum %u",
824                         rx_conf->rx_free_thresh, rxq_max_fill_level);
825                 rc = EINVAL;
826         }
827
828         if (rx_conf->rx_drop_en == 0) {
829                 sfc_err(sa, "RxQ drop disable is not supported");
830                 rc = EINVAL;
831         }
832
833         return rc;
834 }
835
836 static unsigned int
837 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
838 {
839         uint32_t data_off;
840         uint32_t order;
841
842         /* The mbuf object itself is always cache line aligned */
843         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
844
845         /* Data offset from mbuf object start */
846         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
847                 RTE_PKTMBUF_HEADROOM;
848
849         order = MIN(order, rte_bsf32(data_off));
850
851         return 1u << order;
852 }
853
854 static uint16_t
855 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
856 {
857         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
858         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
859         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
860         uint16_t buf_size;
861         unsigned int buf_aligned;
862         unsigned int start_alignment;
863         unsigned int end_padding_alignment;
864
865         /* Below it is assumed that both alignments are power of 2 */
866         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
867         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
868
869         /*
870          * mbuf is always cache line aligned, double-check
871          * that it meets rx buffer start alignment requirements.
872          */
873
874         /* Start from mbuf pool data room size */
875         buf_size = rte_pktmbuf_data_room_size(mb_pool);
876
877         /* Remove headroom */
878         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
879                 sfc_err(sa,
880                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
881                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
882                 return 0;
883         }
884         buf_size -= RTE_PKTMBUF_HEADROOM;
885
886         /* Calculate guaranteed data start alignment */
887         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
888
889         /* Reserve space for start alignment */
890         if (buf_aligned < nic_align_start) {
891                 start_alignment = nic_align_start - buf_aligned;
892                 if (buf_size <= start_alignment) {
893                         sfc_err(sa,
894                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
895                                 mb_pool->name,
896                                 rte_pktmbuf_data_room_size(mb_pool),
897                                 RTE_PKTMBUF_HEADROOM, start_alignment);
898                         return 0;
899                 }
900                 buf_aligned = nic_align_start;
901                 buf_size -= start_alignment;
902         } else {
903                 start_alignment = 0;
904         }
905
906         /* Make sure that end padding does not write beyond the buffer */
907         if (buf_aligned < nic_align_end) {
908                 /*
909                  * Estimate space which can be lost. If guarnteed buffer
910                  * size is odd, lost space is (nic_align_end - 1). More
911                  * accurate formula is below.
912                  */
913                 end_padding_alignment = nic_align_end -
914                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
915                 if (buf_size <= end_padding_alignment) {
916                         sfc_err(sa,
917                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
918                                 mb_pool->name,
919                                 rte_pktmbuf_data_room_size(mb_pool),
920                                 RTE_PKTMBUF_HEADROOM, start_alignment,
921                                 end_padding_alignment);
922                         return 0;
923                 }
924                 buf_size -= end_padding_alignment;
925         } else {
926                 /*
927                  * Start is aligned the same or better than end,
928                  * just align length.
929                  */
930                 buf_size = P2ALIGN(buf_size, nic_align_end);
931         }
932
933         return buf_size;
934 }
935
936 int
937 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
938              uint16_t nb_rx_desc, unsigned int socket_id,
939              const struct rte_eth_rxconf *rx_conf,
940              struct rte_mempool *mb_pool)
941 {
942         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
943         struct sfc_rss *rss = &sa->rss;
944         int rc;
945         unsigned int rxq_entries;
946         unsigned int evq_entries;
947         unsigned int rxq_max_fill_level;
948         uint64_t offloads;
949         uint16_t buf_size;
950         struct sfc_rxq_info *rxq_info;
951         struct sfc_evq *evq;
952         struct sfc_rxq *rxq;
953         struct sfc_dp_rx_qcreate_info info;
954
955         rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, mb_pool, &rxq_entries,
956                                             &evq_entries, &rxq_max_fill_level);
957         if (rc != 0)
958                 goto fail_size_up_rings;
959         SFC_ASSERT(rxq_entries >= EFX_RXQ_MINNDESCS);
960         SFC_ASSERT(rxq_entries <= EFX_RXQ_MAXNDESCS);
961         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
962
963         offloads = rx_conf->offloads |
964                 sa->eth_dev->data->dev_conf.rxmode.offloads;
965         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
966         if (rc != 0)
967                 goto fail_bad_conf;
968
969         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
970         if (buf_size == 0) {
971                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
972                         sw_index);
973                 rc = EINVAL;
974                 goto fail_bad_conf;
975         }
976
977         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
978             (~offloads & DEV_RX_OFFLOAD_SCATTER)) {
979                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
980                         "object size is too small", sw_index);
981                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
982                         "PDU size %u plus Rx prefix %u bytes",
983                         sw_index, buf_size, (unsigned int)sa->port.pdu,
984                         encp->enc_rx_prefix_size);
985                 rc = EINVAL;
986                 goto fail_bad_conf;
987         }
988
989         SFC_ASSERT(sw_index < sa->rxq_count);
990         rxq_info = &sa->rxq_info[sw_index];
991
992         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
993         rxq_info->entries = rxq_entries;
994
995         if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
996                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
997         else
998                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
999
1000         rxq_info->type_flags =
1001                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1002                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1003
1004         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1005             (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
1006                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1007
1008         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1009                           evq_entries, socket_id, &evq);
1010         if (rc != 0)
1011                 goto fail_ev_qinit;
1012
1013         rc = ENOMEM;
1014         rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
1015                                  socket_id);
1016         if (rxq == NULL)
1017                 goto fail_rxq_alloc;
1018
1019         rxq_info->rxq = rxq;
1020
1021         rxq->evq = evq;
1022         rxq->hw_index = sw_index;
1023         rxq_info->refill_threshold =
1024                 RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
1025         rxq_info->refill_mb_pool = mb_pool;
1026         rxq->buf_size = buf_size;
1027
1028         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
1029                            socket_id, &rxq->mem);
1030         if (rc != 0)
1031                 goto fail_dma_alloc;
1032
1033         memset(&info, 0, sizeof(info));
1034         info.refill_mb_pool = rxq_info->refill_mb_pool;
1035         info.max_fill_level = rxq_max_fill_level;
1036         info.refill_threshold = rxq_info->refill_threshold;
1037         info.buf_size = buf_size;
1038         info.batch_max = encp->enc_rx_batch_max;
1039         info.prefix_size = encp->enc_rx_prefix_size;
1040
1041         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1042                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1043
1044         info.rxq_entries = rxq_info->entries;
1045         info.rxq_hw_ring = rxq->mem.esm_base;
1046         info.evq_entries = evq_entries;
1047         info.evq_hw_ring = evq->mem.esm_base;
1048         info.hw_index = rxq->hw_index;
1049         info.mem_bar = sa->mem_bar.esb_base;
1050         info.vi_window_shift = encp->enc_vi_window_shift;
1051
1052         rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1053                                      &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1054                                      socket_id, &info, &rxq_info->dp);
1055         if (rc != 0)
1056                 goto fail_dp_rx_qcreate;
1057
1058         evq->dp_rxq = rxq_info->dp;
1059
1060         rxq_info->state = SFC_RXQ_INITIALIZED;
1061
1062         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1063
1064         return 0;
1065
1066 fail_dp_rx_qcreate:
1067         sfc_dma_free(sa, &rxq->mem);
1068
1069 fail_dma_alloc:
1070         rxq_info->rxq = NULL;
1071         rte_free(rxq);
1072
1073 fail_rxq_alloc:
1074         sfc_ev_qfini(evq);
1075
1076 fail_ev_qinit:
1077         rxq_info->entries = 0;
1078
1079 fail_bad_conf:
1080 fail_size_up_rings:
1081         sfc_log_init(sa, "failed %d", rc);
1082         return rc;
1083 }
1084
1085 void
1086 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1087 {
1088         struct sfc_rxq_info *rxq_info;
1089         struct sfc_rxq *rxq;
1090
1091         SFC_ASSERT(sw_index < sa->rxq_count);
1092         sa->eth_dev->data->rx_queues[sw_index] = NULL;
1093
1094         rxq_info = &sa->rxq_info[sw_index];
1095
1096         rxq = rxq_info->rxq;
1097         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1098
1099         sa->priv.dp_rx->qdestroy(rxq_info->dp);
1100         rxq_info->dp = NULL;
1101
1102         rxq_info->rxq = NULL;
1103         rxq_info->entries = 0;
1104
1105         sfc_dma_free(sa, &rxq->mem);
1106
1107         sfc_ev_qfini(rxq->evq);
1108         rxq->evq = NULL;
1109
1110         rte_free(rxq);
1111 }
1112
1113 /*
1114  * Mapping between RTE RSS hash functions and their EFX counterparts.
1115  */
1116 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1117         { ETH_RSS_NONFRAG_IPV4_TCP,
1118           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1119         { ETH_RSS_NONFRAG_IPV4_UDP,
1120           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1121         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1122           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1123         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1124           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1125         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1126           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1127           EFX_RX_HASH(IPV4, 2TUPLE) },
1128         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1129           ETH_RSS_IPV6_EX,
1130           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1131           EFX_RX_HASH(IPV6, 2TUPLE) }
1132 };
1133
1134 static efx_rx_hash_type_t
1135 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1136                             unsigned int *hash_type_flags_supported,
1137                             unsigned int nb_hash_type_flags_supported)
1138 {
1139         efx_rx_hash_type_t hash_type_masked = 0;
1140         unsigned int i, j;
1141
1142         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1143                 unsigned int class_tuple_lbn[] = {
1144                         EFX_RX_CLASS_IPV4_TCP_LBN,
1145                         EFX_RX_CLASS_IPV4_UDP_LBN,
1146                         EFX_RX_CLASS_IPV4_LBN,
1147                         EFX_RX_CLASS_IPV6_TCP_LBN,
1148                         EFX_RX_CLASS_IPV6_UDP_LBN,
1149                         EFX_RX_CLASS_IPV6_LBN
1150                 };
1151
1152                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1153                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1154                         unsigned int flag;
1155
1156                         tuple_mask <<= class_tuple_lbn[j];
1157                         flag = hash_type & tuple_mask;
1158
1159                         if (flag == hash_type_flags_supported[i])
1160                                 hash_type_masked |= flag;
1161                 }
1162         }
1163
1164         return hash_type_masked;
1165 }
1166
1167 int
1168 sfc_rx_hash_init(struct sfc_adapter *sa)
1169 {
1170         struct sfc_rss *rss = &sa->rss;
1171         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1172         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1173         efx_rx_hash_alg_t alg;
1174         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1175         unsigned int nb_flags_supp;
1176         struct sfc_rss_hf_rte_to_efx *hf_map;
1177         struct sfc_rss_hf_rte_to_efx *entry;
1178         efx_rx_hash_type_t efx_hash_types;
1179         unsigned int i;
1180         int rc;
1181
1182         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1183                 alg = EFX_RX_HASHALG_TOEPLITZ;
1184         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1185                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1186         else
1187                 return EINVAL;
1188
1189         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1190                                          RTE_DIM(flags_supp), &nb_flags_supp);
1191         if (rc != 0)
1192                 return rc;
1193
1194         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1195                                    RTE_DIM(sfc_rss_hf_map),
1196                                    sizeof(*hf_map), 0, sa->socket_id);
1197         if (hf_map == NULL)
1198                 return ENOMEM;
1199
1200         entry = hf_map;
1201         efx_hash_types = 0;
1202         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1203                 efx_rx_hash_type_t ht;
1204
1205                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1206                                                  flags_supp, nb_flags_supp);
1207                 if (ht != 0) {
1208                         entry->rte = sfc_rss_hf_map[i].rte;
1209                         entry->efx = ht;
1210                         efx_hash_types |= ht;
1211                         ++entry;
1212                 }
1213         }
1214
1215         rss->hash_alg = alg;
1216         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1217         rss->hf_map = hf_map;
1218         rss->hash_types = efx_hash_types;
1219
1220         return 0;
1221 }
1222
1223 void
1224 sfc_rx_hash_fini(struct sfc_adapter *sa)
1225 {
1226         struct sfc_rss *rss = &sa->rss;
1227
1228         rte_free(rss->hf_map);
1229 }
1230
1231 int
1232 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1233                      efx_rx_hash_type_t *efx)
1234 {
1235         struct sfc_rss *rss = &sa->rss;
1236         efx_rx_hash_type_t hash_types = 0;
1237         unsigned int i;
1238
1239         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1240                 uint64_t rte_mask = rss->hf_map[i].rte;
1241
1242                 if ((rte & rte_mask) != 0) {
1243                         rte &= ~rte_mask;
1244                         hash_types |= rss->hf_map[i].efx;
1245                 }
1246         }
1247
1248         if (rte != 0) {
1249                 sfc_err(sa, "unsupported hash functions requested");
1250                 return EINVAL;
1251         }
1252
1253         *efx = hash_types;
1254
1255         return 0;
1256 }
1257
1258 uint64_t
1259 sfc_rx_hf_efx_to_rte(struct sfc_adapter *sa, efx_rx_hash_type_t efx)
1260 {
1261         struct sfc_rss *rss = &sa->rss;
1262         uint64_t rte = 0;
1263         unsigned int i;
1264
1265         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1266                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1267
1268                 if ((efx & hash_type) == hash_type)
1269                         rte |= rss->hf_map[i].rte;
1270         }
1271
1272         return rte;
1273 }
1274
1275 static int
1276 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1277                             struct rte_eth_rss_conf *conf)
1278 {
1279         struct sfc_rss *rss = &sa->rss;
1280         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1281         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(sa, efx_hash_types);
1282         int rc;
1283
1284         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1285                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1286                     conf->rss_key != NULL)
1287                         return EINVAL;
1288         }
1289
1290         if (conf->rss_hf != 0) {
1291                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1292                 if (rc != 0)
1293                         return rc;
1294         }
1295
1296         if (conf->rss_key != NULL) {
1297                 if (conf->rss_key_len != sizeof(rss->key)) {
1298                         sfc_err(sa, "RSS key size is wrong (should be %lu)",
1299                                 sizeof(rss->key));
1300                         return EINVAL;
1301                 }
1302                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1303         }
1304
1305         rss->hash_types = efx_hash_types;
1306
1307         return 0;
1308 }
1309
1310 static int
1311 sfc_rx_rss_config(struct sfc_adapter *sa)
1312 {
1313         struct sfc_rss *rss = &sa->rss;
1314         int rc = 0;
1315
1316         if (rss->channels > 0) {
1317                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1318                                            rss->hash_alg, rss->hash_types,
1319                                            B_TRUE);
1320                 if (rc != 0)
1321                         goto finish;
1322
1323                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1324                                           rss->key, sizeof(rss->key));
1325                 if (rc != 0)
1326                         goto finish;
1327
1328                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1329                                           rss->tbl, RTE_DIM(rss->tbl));
1330         }
1331
1332 finish:
1333         return rc;
1334 }
1335
1336 int
1337 sfc_rx_start(struct sfc_adapter *sa)
1338 {
1339         unsigned int sw_index;
1340         int rc;
1341
1342         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1343
1344         rc = efx_rx_init(sa->nic);
1345         if (rc != 0)
1346                 goto fail_rx_init;
1347
1348         rc = sfc_rx_rss_config(sa);
1349         if (rc != 0)
1350                 goto fail_rss_config;
1351
1352         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
1353                 if (sa->rxq_info[sw_index].rxq != NULL &&
1354                     (!sa->rxq_info[sw_index].deferred_start ||
1355                      sa->rxq_info[sw_index].deferred_started)) {
1356                         rc = sfc_rx_qstart(sa, sw_index);
1357                         if (rc != 0)
1358                                 goto fail_rx_qstart;
1359                 }
1360         }
1361
1362         return 0;
1363
1364 fail_rx_qstart:
1365         while (sw_index-- > 0)
1366                 sfc_rx_qstop(sa, sw_index);
1367
1368 fail_rss_config:
1369         efx_rx_fini(sa->nic);
1370
1371 fail_rx_init:
1372         sfc_log_init(sa, "failed %d", rc);
1373         return rc;
1374 }
1375
1376 void
1377 sfc_rx_stop(struct sfc_adapter *sa)
1378 {
1379         unsigned int sw_index;
1380
1381         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1382
1383         sw_index = sa->rxq_count;
1384         while (sw_index-- > 0) {
1385                 if (sa->rxq_info[sw_index].rxq != NULL)
1386                         sfc_rx_qstop(sa, sw_index);
1387         }
1388
1389         efx_rx_fini(sa->nic);
1390 }
1391
1392 static int
1393 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1394 {
1395         struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
1396         unsigned int max_entries;
1397
1398         max_entries = EFX_RXQ_MAXNDESCS;
1399         SFC_ASSERT(rte_is_power_of_2(max_entries));
1400
1401         rxq_info->max_entries = max_entries;
1402
1403         return 0;
1404 }
1405
1406 static int
1407 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1408 {
1409         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1410                                       sfc_rx_get_queue_offload_caps(sa);
1411         struct sfc_rss *rss = &sa->rss;
1412         int rc = 0;
1413
1414         switch (rxmode->mq_mode) {
1415         case ETH_MQ_RX_NONE:
1416                 /* No special checks are required */
1417                 break;
1418         case ETH_MQ_RX_RSS:
1419                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1420                         sfc_err(sa, "RSS is not available");
1421                         rc = EINVAL;
1422                 }
1423                 break;
1424         default:
1425                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1426                         rxmode->mq_mode);
1427                 rc = EINVAL;
1428         }
1429
1430         /*
1431          * Requested offloads are validated against supported by ethdev,
1432          * so unsupported offloads cannot be added as the result of
1433          * below check.
1434          */
1435         if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1436             (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1437                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1438                 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1439         }
1440
1441         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1442             (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1443                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1444                 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1445         }
1446
1447         return rc;
1448 }
1449
1450 /**
1451  * Destroy excess queues that are no longer needed after reconfiguration
1452  * or complete close.
1453  */
1454 static void
1455 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1456 {
1457         int sw_index;
1458
1459         SFC_ASSERT(nb_rx_queues <= sa->rxq_count);
1460
1461         sw_index = sa->rxq_count;
1462         while (--sw_index >= (int)nb_rx_queues) {
1463                 if (sa->rxq_info[sw_index].rxq != NULL)
1464                         sfc_rx_qfini(sa, sw_index);
1465         }
1466
1467         sa->rxq_count = nb_rx_queues;
1468 }
1469
1470 /**
1471  * Initialize Rx subsystem.
1472  *
1473  * Called at device (re)configuration stage when number of receive queues is
1474  * specified together with other device level receive configuration.
1475  *
1476  * It should be used to allocate NUMA-unaware resources.
1477  */
1478 int
1479 sfc_rx_configure(struct sfc_adapter *sa)
1480 {
1481         struct sfc_rss *rss = &sa->rss;
1482         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1483         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1484         int rc;
1485
1486         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1487                      nb_rx_queues, sa->rxq_count);
1488
1489         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1490         if (rc != 0)
1491                 goto fail_check_mode;
1492
1493         if (nb_rx_queues == sa->rxq_count)
1494                 goto configure_rss;
1495
1496         if (sa->rxq_info == NULL) {
1497                 rc = ENOMEM;
1498                 sa->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1499                                                  sizeof(sa->rxq_info[0]), 0,
1500                                                  sa->socket_id);
1501                 if (sa->rxq_info == NULL)
1502                         goto fail_rxqs_alloc;
1503         } else {
1504                 struct sfc_rxq_info *new_rxq_info;
1505
1506                 if (nb_rx_queues < sa->rxq_count)
1507                         sfc_rx_fini_queues(sa, nb_rx_queues);
1508
1509                 rc = ENOMEM;
1510                 new_rxq_info =
1511                         rte_realloc(sa->rxq_info,
1512                                     nb_rx_queues * sizeof(sa->rxq_info[0]), 0);
1513                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1514                         goto fail_rxqs_realloc;
1515
1516                 sa->rxq_info = new_rxq_info;
1517                 if (nb_rx_queues > sa->rxq_count)
1518                         memset(&sa->rxq_info[sa->rxq_count], 0,
1519                                (nb_rx_queues - sa->rxq_count) *
1520                                sizeof(sa->rxq_info[0]));
1521         }
1522
1523         while (sa->rxq_count < nb_rx_queues) {
1524                 rc = sfc_rx_qinit_info(sa, sa->rxq_count);
1525                 if (rc != 0)
1526                         goto fail_rx_qinit_info;
1527
1528                 sa->rxq_count++;
1529         }
1530
1531 configure_rss:
1532         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1533                          MIN(sa->rxq_count, EFX_MAXRSS) : 0;
1534
1535         if (rss->channels > 0) {
1536                 struct rte_eth_rss_conf *adv_conf_rss;
1537                 unsigned int sw_index;
1538
1539                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1540                         rss->tbl[sw_index] = sw_index % rss->channels;
1541
1542                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1543                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1544                 if (rc != 0)
1545                         goto fail_rx_process_adv_conf_rss;
1546         }
1547
1548         return 0;
1549
1550 fail_rx_process_adv_conf_rss:
1551 fail_rx_qinit_info:
1552 fail_rxqs_realloc:
1553 fail_rxqs_alloc:
1554         sfc_rx_close(sa);
1555
1556 fail_check_mode:
1557         sfc_log_init(sa, "failed %d", rc);
1558         return rc;
1559 }
1560
1561 /**
1562  * Shutdown Rx subsystem.
1563  *
1564  * Called at device close stage, for example, before device shutdown.
1565  */
1566 void
1567 sfc_rx_close(struct sfc_adapter *sa)
1568 {
1569         struct sfc_rss *rss = &sa->rss;
1570
1571         sfc_rx_fini_queues(sa, 0);
1572
1573         rss->channels = 0;
1574
1575         rte_free(sa->rxq_info);
1576         sa->rxq_info = NULL;
1577 }