8af9d21482f298e1dd73d1e5a7e13b48fc688ec8
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44         rxq_info->state |= SFC_RXQ_FLUSHED;
45         rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51         rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58         unsigned int free_space;
59         unsigned int bulks;
60         void *objs[SFC_RX_REFILL_BULK];
61         efsys_dma_addr_t addr[RTE_DIM(objs)];
62         unsigned int added = rxq->added;
63         unsigned int id;
64         unsigned int i;
65         struct sfc_efx_rx_sw_desc *rxd;
66         struct rte_mbuf *m;
67         uint16_t port_id = rxq->dp.dpq.port_id;
68
69         free_space = rxq->max_fill_level - (added - rxq->completed);
70
71         if (free_space < rxq->refill_threshold)
72                 return;
73
74         bulks = free_space / RTE_DIM(objs);
75         /* refill_threshold guarantees that bulks is positive */
76         SFC_ASSERT(bulks > 0);
77
78         id = added & rxq->ptr_mask;
79         do {
80                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81                                                   RTE_DIM(objs)) < 0)) {
82                         /*
83                          * It is hardly a safe way to increment counter
84                          * from different contexts, but all PMDs do it.
85                          */
86                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87                                 RTE_DIM(objs);
88                         /* Return if we have posted nothing yet */
89                         if (added == rxq->added)
90                                 return;
91                         /* Push posted */
92                         break;
93                 }
94
95                 for (i = 0; i < RTE_DIM(objs);
96                      ++i, id = (id + 1) & rxq->ptr_mask) {
97                         m = objs[i];
98
99                         MBUF_RAW_ALLOC_CHECK(m);
100
101                         rxd = &rxq->sw_desc[id];
102                         rxd->mbuf = m;
103
104                         m->data_off = RTE_PKTMBUF_HEADROOM;
105                         m->port = port_id;
106
107                         addr[i] = rte_pktmbuf_iova(m);
108                 }
109
110                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
111                              RTE_DIM(objs), rxq->completed, added);
112                 added += RTE_DIM(objs);
113         } while (--bulks > 0);
114
115         SFC_ASSERT(added != rxq->added);
116         rxq->added = added;
117         efx_rx_qpush(rxq->common, added, &rxq->pushed);
118 }
119
120 static uint64_t
121 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
122 {
123         uint64_t mbuf_flags = 0;
124
125         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
126         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
127                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
128                 break;
129         case EFX_PKT_IPV4:
130                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
131                 break;
132         default:
133                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
134                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
135                            PKT_RX_IP_CKSUM_UNKNOWN);
136                 break;
137         }
138
139         switch ((desc_flags &
140                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
141         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
142         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
143                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
144                 break;
145         case EFX_PKT_TCP:
146         case EFX_PKT_UDP:
147                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
148                 break;
149         default:
150                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
151                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
152                            PKT_RX_L4_CKSUM_UNKNOWN);
153                 break;
154         }
155
156         return mbuf_flags;
157 }
158
159 static uint32_t
160 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
161 {
162         return RTE_PTYPE_L2_ETHER |
163                 ((desc_flags & EFX_PKT_IPV4) ?
164                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
165                 ((desc_flags & EFX_PKT_IPV6) ?
166                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
167                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
168                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
169 }
170
171 static const uint32_t *
172 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
173 {
174         static const uint32_t ptypes[] = {
175                 RTE_PTYPE_L2_ETHER,
176                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
177                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
178                 RTE_PTYPE_L4_TCP,
179                 RTE_PTYPE_L4_UDP,
180                 RTE_PTYPE_UNKNOWN
181         };
182
183         return ptypes;
184 }
185
186 static void
187 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
188                         struct rte_mbuf *m)
189 {
190         uint8_t *mbuf_data;
191
192
193         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
194                 return;
195
196         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
197
198         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
199                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
200                                                       EFX_RX_HASHALG_TOEPLITZ,
201                                                       mbuf_data);
202
203                 m->ol_flags |= PKT_RX_RSS_HASH;
204         }
205 }
206
207 static uint16_t
208 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
209 {
210         struct sfc_dp_rxq *dp_rxq = rx_queue;
211         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
212         unsigned int completed;
213         unsigned int prefix_size = rxq->prefix_size;
214         unsigned int done_pkts = 0;
215         boolean_t discard_next = B_FALSE;
216         struct rte_mbuf *scatter_pkt = NULL;
217
218         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
219                 return 0;
220
221         sfc_ev_qpoll(rxq->evq);
222
223         completed = rxq->completed;
224         while (completed != rxq->pending && done_pkts < nb_pkts) {
225                 unsigned int id;
226                 struct sfc_efx_rx_sw_desc *rxd;
227                 struct rte_mbuf *m;
228                 unsigned int seg_len;
229                 unsigned int desc_flags;
230
231                 id = completed++ & rxq->ptr_mask;
232                 rxd = &rxq->sw_desc[id];
233                 m = rxd->mbuf;
234                 desc_flags = rxd->flags;
235
236                 if (discard_next)
237                         goto discard;
238
239                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
240                         goto discard;
241
242                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
243                         uint16_t tmp_size;
244                         int rc __rte_unused;
245
246                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
247                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
248                         SFC_ASSERT(rc == 0);
249                         seg_len = tmp_size;
250                 } else {
251                         seg_len = rxd->size - prefix_size;
252                 }
253
254                 rte_pktmbuf_data_len(m) = seg_len;
255                 rte_pktmbuf_pkt_len(m) = seg_len;
256
257                 if (scatter_pkt != NULL) {
258                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
259                                 rte_pktmbuf_free(scatter_pkt);
260                                 goto discard;
261                         }
262                         /* The packet to deliver */
263                         m = scatter_pkt;
264                 }
265
266                 if (desc_flags & EFX_PKT_CONT) {
267                         /* The packet is scattered, more fragments to come */
268                         scatter_pkt = m;
269                         /* Further fragments have no prefix */
270                         prefix_size = 0;
271                         continue;
272                 }
273
274                 /* Scattered packet is done */
275                 scatter_pkt = NULL;
276                 /* The first fragment of the packet has prefix */
277                 prefix_size = rxq->prefix_size;
278
279                 m->ol_flags =
280                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
281                 m->packet_type =
282                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
283
284                 /*
285                  * Extract RSS hash from the packet prefix and
286                  * set the corresponding field (if needed and possible)
287                  */
288                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
289
290                 m->data_off += prefix_size;
291
292                 *rx_pkts++ = m;
293                 done_pkts++;
294                 continue;
295
296 discard:
297                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
298                 rte_mbuf_raw_free(m);
299                 rxd->mbuf = NULL;
300         }
301
302         /* pending is only moved when entire packet is received */
303         SFC_ASSERT(scatter_pkt == NULL);
304
305         rxq->completed = completed;
306
307         sfc_efx_rx_qrefill(rxq);
308
309         return done_pkts;
310 }
311
312 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
313 static unsigned int
314 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
315 {
316         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
317
318         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
319                 return 0;
320
321         sfc_ev_qpoll(rxq->evq);
322
323         return rxq->pending - rxq->completed;
324 }
325
326 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
327 static int
328 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
329 {
330         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
331
332         if (unlikely(offset > rxq->ptr_mask))
333                 return -EINVAL;
334
335         /*
336          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
337          * it is required for the queue to be running, but the
338          * check is omitted because API design assumes that it
339          * is the duty of the caller to satisfy all conditions
340          */
341         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
342                    SFC_EFX_RXQ_FLAG_RUNNING);
343         sfc_ev_qpoll(rxq->evq);
344
345         /*
346          * There is a handful of reserved entries in the ring,
347          * but an explicit check whether the offset points to
348          * a reserved entry is neglected since the two checks
349          * below rely on the figures which take the HW limits
350          * into account and thus if an entry is reserved, the
351          * checks will fail and UNAVAIL code will be returned
352          */
353
354         if (offset < (rxq->pending - rxq->completed))
355                 return RTE_ETH_RX_DESC_DONE;
356
357         if (offset < (rxq->added - rxq->completed))
358                 return RTE_ETH_RX_DESC_AVAIL;
359
360         return RTE_ETH_RX_DESC_UNAVAIL;
361 }
362
363 /** Get Rx datapath ops by the datapath RxQ handle */
364 const struct sfc_dp_rx *
365 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
366 {
367         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
368         struct rte_eth_dev *eth_dev;
369         struct sfc_adapter_priv *sap;
370
371         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
372         eth_dev = &rte_eth_devices[dpq->port_id];
373
374         sap = sfc_adapter_priv_by_eth_dev(eth_dev);
375
376         return sap->dp_rx;
377 }
378
379 struct sfc_rxq_info *
380 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
381 {
382         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
383         struct rte_eth_dev *eth_dev;
384         struct sfc_adapter_shared *sas;
385
386         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
387         eth_dev = &rte_eth_devices[dpq->port_id];
388
389         sas = sfc_adapter_shared_by_eth_dev(eth_dev);
390
391         SFC_ASSERT(dpq->queue_id < sas->rxq_count);
392         return &sas->rxq_info[dpq->queue_id];
393 }
394
395 struct sfc_rxq *
396 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
397 {
398         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
399         struct rte_eth_dev *eth_dev;
400         struct sfc_adapter *sa;
401
402         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
403         eth_dev = &rte_eth_devices[dpq->port_id];
404
405         sa = eth_dev->data->dev_private;
406
407         SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
408         return &sa->rxq_ctrl[dpq->queue_id];
409 }
410
411 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
412 static int
413 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
414                           __rte_unused struct rte_mempool *mb_pool,
415                           unsigned int *rxq_entries,
416                           unsigned int *evq_entries,
417                           unsigned int *rxq_max_fill_level)
418 {
419         *rxq_entries = nb_rx_desc;
420         *evq_entries = nb_rx_desc;
421         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
422         return 0;
423 }
424
425 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
426 static int
427 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
428                    const struct rte_pci_addr *pci_addr, int socket_id,
429                    const struct sfc_dp_rx_qcreate_info *info,
430                    struct sfc_dp_rxq **dp_rxqp)
431 {
432         struct sfc_efx_rxq *rxq;
433         int rc;
434
435         rc = ENOMEM;
436         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
437                                  RTE_CACHE_LINE_SIZE, socket_id);
438         if (rxq == NULL)
439                 goto fail_rxq_alloc;
440
441         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
442
443         rc = ENOMEM;
444         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
445                                          info->rxq_entries,
446                                          sizeof(*rxq->sw_desc),
447                                          RTE_CACHE_LINE_SIZE, socket_id);
448         if (rxq->sw_desc == NULL)
449                 goto fail_desc_alloc;
450
451         /* efx datapath is bound to efx control path */
452         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
453         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
454                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
455         rxq->ptr_mask = info->rxq_entries - 1;
456         rxq->batch_max = info->batch_max;
457         rxq->prefix_size = info->prefix_size;
458         rxq->max_fill_level = info->max_fill_level;
459         rxq->refill_threshold = info->refill_threshold;
460         rxq->buf_size = info->buf_size;
461         rxq->refill_mb_pool = info->refill_mb_pool;
462
463         *dp_rxqp = &rxq->dp;
464         return 0;
465
466 fail_desc_alloc:
467         rte_free(rxq);
468
469 fail_rxq_alloc:
470         return rc;
471 }
472
473 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
474 static void
475 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
476 {
477         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
478
479         rte_free(rxq->sw_desc);
480         rte_free(rxq);
481 }
482
483 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
484 static int
485 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
486                   __rte_unused unsigned int evq_read_ptr)
487 {
488         /* libefx-based datapath is specific to libefx-based PMD */
489         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
490         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
491
492         rxq->common = crxq->common;
493
494         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
495
496         sfc_efx_rx_qrefill(rxq);
497
498         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
499
500         return 0;
501 }
502
503 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
504 static void
505 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
506                  __rte_unused unsigned int *evq_read_ptr)
507 {
508         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
509
510         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
511
512         /* libefx-based datapath is bound to libefx-based PMD and uses
513          * event queue structure directly. So, there is no necessity to
514          * return EvQ read pointer.
515          */
516 }
517
518 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
519 static void
520 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
521 {
522         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
523         unsigned int i;
524         struct sfc_efx_rx_sw_desc *rxd;
525
526         for (i = rxq->completed; i != rxq->added; ++i) {
527                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
528                 rte_mbuf_raw_free(rxd->mbuf);
529                 rxd->mbuf = NULL;
530                 /* Packed stream relies on 0 in inactive SW desc.
531                  * Rx queue stop is not performance critical, so
532                  * there is no harm to do it always.
533                  */
534                 rxd->flags = 0;
535                 rxd->size = 0;
536         }
537
538         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
539 }
540
541 struct sfc_dp_rx sfc_efx_rx = {
542         .dp = {
543                 .name           = SFC_KVARG_DATAPATH_EFX,
544                 .type           = SFC_DP_RX,
545                 .hw_fw_caps     = 0,
546         },
547         .features               = SFC_DP_RX_FEAT_SCATTER |
548                                   SFC_DP_RX_FEAT_CHECKSUM,
549         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
550         .qcreate                = sfc_efx_rx_qcreate,
551         .qdestroy               = sfc_efx_rx_qdestroy,
552         .qstart                 = sfc_efx_rx_qstart,
553         .qstop                  = sfc_efx_rx_qstop,
554         .qpurge                 = sfc_efx_rx_qpurge,
555         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
556         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
557         .qdesc_status           = sfc_efx_rx_qdesc_status,
558         .pkt_burst              = sfc_efx_recv_pkts,
559 };
560
561 static void
562 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
563 {
564         struct sfc_rxq_info *rxq_info;
565         struct sfc_rxq *rxq;
566         unsigned int retry_count;
567         unsigned int wait_count;
568         int rc;
569
570         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
571         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
572
573         rxq = &sa->rxq_ctrl[sw_index];
574
575         /*
576          * Retry Rx queue flushing in the case of flush failed or
577          * timeout. In the worst case it can delay for 6 seconds.
578          */
579         for (retry_count = 0;
580              ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
581              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
582              ++retry_count) {
583                 rc = efx_rx_qflush(rxq->common);
584                 if (rc != 0) {
585                         rxq_info->state |= (rc == EALREADY) ?
586                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
587                         break;
588                 }
589                 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
590                 rxq_info->state |= SFC_RXQ_FLUSHING;
591
592                 /*
593                  * Wait for Rx queue flush done or failed event at least
594                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
595                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
596                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
597                  */
598                 wait_count = 0;
599                 do {
600                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
601                         sfc_ev_qpoll(rxq->evq);
602                 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
603                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
604
605                 if (rxq_info->state & SFC_RXQ_FLUSHING)
606                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
607
608                 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
609                         sfc_err(sa, "RxQ %u flush failed", sw_index);
610
611                 if (rxq_info->state & SFC_RXQ_FLUSHED)
612                         sfc_notice(sa, "RxQ %u flushed", sw_index);
613         }
614
615         sa->priv.dp_rx->qpurge(rxq_info->dp);
616 }
617
618 static int
619 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
620 {
621         struct sfc_rss *rss = &sa->rss;
622         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
623         struct sfc_port *port = &sa->port;
624         int rc;
625
626         /*
627          * If promiscuous or all-multicast mode has been requested, setting
628          * filter for the default Rx queue might fail, in particular, while
629          * running over PCI function which is not a member of corresponding
630          * privilege groups; if this occurs, few iterations will be made to
631          * repeat this step without promiscuous and all-multicast flags set
632          */
633 retry:
634         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
635         if (rc == 0)
636                 return 0;
637         else if (rc != EOPNOTSUPP)
638                 return rc;
639
640         if (port->promisc) {
641                 sfc_warn(sa, "promiscuous mode has been requested, "
642                              "but the HW rejects it");
643                 sfc_warn(sa, "promiscuous mode will be disabled");
644
645                 port->promisc = B_FALSE;
646                 rc = sfc_set_rx_mode(sa);
647                 if (rc != 0)
648                         return rc;
649
650                 goto retry;
651         }
652
653         if (port->allmulti) {
654                 sfc_warn(sa, "all-multicast mode has been requested, "
655                              "but the HW rejects it");
656                 sfc_warn(sa, "all-multicast mode will be disabled");
657
658                 port->allmulti = B_FALSE;
659                 rc = sfc_set_rx_mode(sa);
660                 if (rc != 0)
661                         return rc;
662
663                 goto retry;
664         }
665
666         return rc;
667 }
668
669 int
670 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
671 {
672         struct sfc_port *port = &sa->port;
673         struct sfc_rxq_info *rxq_info;
674         struct sfc_rxq *rxq;
675         struct sfc_evq *evq;
676         int rc;
677
678         sfc_log_init(sa, "sw_index=%u", sw_index);
679
680         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
681
682         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
683         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
684
685         rxq = &sa->rxq_ctrl[sw_index];
686         evq = rxq->evq;
687
688         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
689         if (rc != 0)
690                 goto fail_ev_qstart;
691
692         switch (rxq_info->type) {
693         case EFX_RXQ_TYPE_DEFAULT:
694                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
695                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
696                         rxq_info->type_flags, evq->common, &rxq->common);
697                 break;
698         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
699                 struct rte_mempool *mp = rxq_info->refill_mb_pool;
700                 struct rte_mempool_info mp_info;
701
702                 rc = rte_mempool_ops_get_info(mp, &mp_info);
703                 if (rc != 0) {
704                         /* Positive errno is used in the driver */
705                         rc = -rc;
706                         goto fail_mp_get_info;
707                 }
708                 if (mp_info.contig_block_size <= 0) {
709                         rc = EINVAL;
710                         goto fail_bad_contig_block_size;
711                 }
712                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
713                         mp_info.contig_block_size, rxq->buf_size,
714                         mp->header_size + mp->elt_size + mp->trailer_size,
715                         sa->rxd_wait_timeout_ns,
716                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
717                         evq->common, &rxq->common);
718                 break;
719         }
720         default:
721                 rc = ENOTSUP;
722         }
723         if (rc != 0)
724                 goto fail_rx_qcreate;
725
726         efx_rx_qenable(rxq->common);
727
728         rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
729         if (rc != 0)
730                 goto fail_dp_qstart;
731
732         rxq_info->state |= SFC_RXQ_STARTED;
733
734         if ((sw_index == 0) && !port->isolated) {
735                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
736                 if (rc != 0)
737                         goto fail_mac_filter_default_rxq_set;
738         }
739
740         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
741         sa->eth_dev->data->rx_queue_state[sw_index] =
742                 RTE_ETH_QUEUE_STATE_STARTED;
743
744         return 0;
745
746 fail_mac_filter_default_rxq_set:
747         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
748
749 fail_dp_qstart:
750         sfc_rx_qflush(sa, sw_index);
751
752 fail_rx_qcreate:
753 fail_bad_contig_block_size:
754 fail_mp_get_info:
755         sfc_ev_qstop(evq);
756
757 fail_ev_qstart:
758         return rc;
759 }
760
761 void
762 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
763 {
764         struct sfc_rxq_info *rxq_info;
765         struct sfc_rxq *rxq;
766
767         sfc_log_init(sa, "sw_index=%u", sw_index);
768
769         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
770
771         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
772
773         if (rxq_info->state == SFC_RXQ_INITIALIZED)
774                 return;
775         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
776
777         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
778         sa->eth_dev->data->rx_queue_state[sw_index] =
779                 RTE_ETH_QUEUE_STATE_STOPPED;
780
781         rxq = &sa->rxq_ctrl[sw_index];
782         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
783
784         if (sw_index == 0)
785                 efx_mac_filter_default_rxq_clear(sa->nic);
786
787         sfc_rx_qflush(sa, sw_index);
788
789         rxq_info->state = SFC_RXQ_INITIALIZED;
790
791         efx_rx_qdestroy(rxq->common);
792
793         sfc_ev_qstop(rxq->evq);
794 }
795
796 uint64_t
797 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
798 {
799         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
800         uint64_t caps = 0;
801
802         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
803
804         if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_CHECKSUM) {
805                 caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
806                 caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
807                 caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
808         }
809
810         if (encp->enc_tunnel_encapsulations_supported &&
811             (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
812                 caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
813
814         return caps;
815 }
816
817 uint64_t
818 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
819 {
820         uint64_t caps = 0;
821
822         if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
823                 caps |= DEV_RX_OFFLOAD_SCATTER;
824
825         return caps;
826 }
827
828 static int
829 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
830                    const struct rte_eth_rxconf *rx_conf,
831                    __rte_unused uint64_t offloads)
832 {
833         int rc = 0;
834
835         if (rx_conf->rx_thresh.pthresh != 0 ||
836             rx_conf->rx_thresh.hthresh != 0 ||
837             rx_conf->rx_thresh.wthresh != 0) {
838                 sfc_warn(sa,
839                         "RxQ prefetch/host/writeback thresholds are not supported");
840         }
841
842         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
843                 sfc_err(sa,
844                         "RxQ free threshold too large: %u vs maximum %u",
845                         rx_conf->rx_free_thresh, rxq_max_fill_level);
846                 rc = EINVAL;
847         }
848
849         if (rx_conf->rx_drop_en == 0) {
850                 sfc_err(sa, "RxQ drop disable is not supported");
851                 rc = EINVAL;
852         }
853
854         return rc;
855 }
856
857 static unsigned int
858 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
859 {
860         uint32_t data_off;
861         uint32_t order;
862
863         /* The mbuf object itself is always cache line aligned */
864         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
865
866         /* Data offset from mbuf object start */
867         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
868                 RTE_PKTMBUF_HEADROOM;
869
870         order = MIN(order, rte_bsf32(data_off));
871
872         return 1u << order;
873 }
874
875 static uint16_t
876 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
877 {
878         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
879         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
880         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
881         uint16_t buf_size;
882         unsigned int buf_aligned;
883         unsigned int start_alignment;
884         unsigned int end_padding_alignment;
885
886         /* Below it is assumed that both alignments are power of 2 */
887         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
888         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
889
890         /*
891          * mbuf is always cache line aligned, double-check
892          * that it meets rx buffer start alignment requirements.
893          */
894
895         /* Start from mbuf pool data room size */
896         buf_size = rte_pktmbuf_data_room_size(mb_pool);
897
898         /* Remove headroom */
899         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
900                 sfc_err(sa,
901                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
902                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
903                 return 0;
904         }
905         buf_size -= RTE_PKTMBUF_HEADROOM;
906
907         /* Calculate guaranteed data start alignment */
908         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
909
910         /* Reserve space for start alignment */
911         if (buf_aligned < nic_align_start) {
912                 start_alignment = nic_align_start - buf_aligned;
913                 if (buf_size <= start_alignment) {
914                         sfc_err(sa,
915                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
916                                 mb_pool->name,
917                                 rte_pktmbuf_data_room_size(mb_pool),
918                                 RTE_PKTMBUF_HEADROOM, start_alignment);
919                         return 0;
920                 }
921                 buf_aligned = nic_align_start;
922                 buf_size -= start_alignment;
923         } else {
924                 start_alignment = 0;
925         }
926
927         /* Make sure that end padding does not write beyond the buffer */
928         if (buf_aligned < nic_align_end) {
929                 /*
930                  * Estimate space which can be lost. If guarnteed buffer
931                  * size is odd, lost space is (nic_align_end - 1). More
932                  * accurate formula is below.
933                  */
934                 end_padding_alignment = nic_align_end -
935                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
936                 if (buf_size <= end_padding_alignment) {
937                         sfc_err(sa,
938                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
939                                 mb_pool->name,
940                                 rte_pktmbuf_data_room_size(mb_pool),
941                                 RTE_PKTMBUF_HEADROOM, start_alignment,
942                                 end_padding_alignment);
943                         return 0;
944                 }
945                 buf_size -= end_padding_alignment;
946         } else {
947                 /*
948                  * Start is aligned the same or better than end,
949                  * just align length.
950                  */
951                 buf_size = P2ALIGN(buf_size, nic_align_end);
952         }
953
954         return buf_size;
955 }
956
957 int
958 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
959              uint16_t nb_rx_desc, unsigned int socket_id,
960              const struct rte_eth_rxconf *rx_conf,
961              struct rte_mempool *mb_pool)
962 {
963         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
964         struct sfc_rss *rss = &sa->rss;
965         int rc;
966         unsigned int rxq_entries;
967         unsigned int evq_entries;
968         unsigned int rxq_max_fill_level;
969         uint64_t offloads;
970         uint16_t buf_size;
971         struct sfc_rxq_info *rxq_info;
972         struct sfc_evq *evq;
973         struct sfc_rxq *rxq;
974         struct sfc_dp_rx_qcreate_info info;
975
976         rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, mb_pool, &rxq_entries,
977                                             &evq_entries, &rxq_max_fill_level);
978         if (rc != 0)
979                 goto fail_size_up_rings;
980         SFC_ASSERT(rxq_entries >= EFX_RXQ_MINNDESCS);
981         SFC_ASSERT(rxq_entries <= EFX_RXQ_MAXNDESCS);
982         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
983
984         offloads = rx_conf->offloads |
985                 sa->eth_dev->data->dev_conf.rxmode.offloads;
986         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
987         if (rc != 0)
988                 goto fail_bad_conf;
989
990         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
991         if (buf_size == 0) {
992                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
993                         sw_index);
994                 rc = EINVAL;
995                 goto fail_bad_conf;
996         }
997
998         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
999             (~offloads & DEV_RX_OFFLOAD_SCATTER)) {
1000                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
1001                         "object size is too small", sw_index);
1002                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1003                         "PDU size %u plus Rx prefix %u bytes",
1004                         sw_index, buf_size, (unsigned int)sa->port.pdu,
1005                         encp->enc_rx_prefix_size);
1006                 rc = EINVAL;
1007                 goto fail_bad_conf;
1008         }
1009
1010         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1011         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1012
1013         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1014         rxq_info->entries = rxq_entries;
1015
1016         if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1017                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1018         else
1019                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1020
1021         rxq_info->type_flags =
1022                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1023                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1024
1025         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1026             (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
1027                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1028
1029         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1030                           evq_entries, socket_id, &evq);
1031         if (rc != 0)
1032                 goto fail_ev_qinit;
1033
1034         rxq = &sa->rxq_ctrl[sw_index];
1035         rxq->evq = evq;
1036         rxq->hw_index = sw_index;
1037         rxq_info->refill_threshold =
1038                 RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
1039         rxq_info->refill_mb_pool = mb_pool;
1040         rxq->buf_size = buf_size;
1041
1042         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
1043                            socket_id, &rxq->mem);
1044         if (rc != 0)
1045                 goto fail_dma_alloc;
1046
1047         memset(&info, 0, sizeof(info));
1048         info.refill_mb_pool = rxq_info->refill_mb_pool;
1049         info.max_fill_level = rxq_max_fill_level;
1050         info.refill_threshold = rxq_info->refill_threshold;
1051         info.buf_size = buf_size;
1052         info.batch_max = encp->enc_rx_batch_max;
1053         info.prefix_size = encp->enc_rx_prefix_size;
1054
1055         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1056                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1057
1058         info.rxq_entries = rxq_info->entries;
1059         info.rxq_hw_ring = rxq->mem.esm_base;
1060         info.evq_entries = evq_entries;
1061         info.evq_hw_ring = evq->mem.esm_base;
1062         info.hw_index = rxq->hw_index;
1063         info.mem_bar = sa->mem_bar.esb_base;
1064         info.vi_window_shift = encp->enc_vi_window_shift;
1065
1066         rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1067                                      &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1068                                      socket_id, &info, &rxq_info->dp);
1069         if (rc != 0)
1070                 goto fail_dp_rx_qcreate;
1071
1072         evq->dp_rxq = rxq_info->dp;
1073
1074         rxq_info->state = SFC_RXQ_INITIALIZED;
1075
1076         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1077
1078         return 0;
1079
1080 fail_dp_rx_qcreate:
1081         sfc_dma_free(sa, &rxq->mem);
1082
1083 fail_dma_alloc:
1084         sfc_ev_qfini(evq);
1085
1086 fail_ev_qinit:
1087         rxq_info->entries = 0;
1088
1089 fail_bad_conf:
1090 fail_size_up_rings:
1091         sfc_log_init(sa, "failed %d", rc);
1092         return rc;
1093 }
1094
1095 void
1096 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1097 {
1098         struct sfc_rxq_info *rxq_info;
1099         struct sfc_rxq *rxq;
1100
1101         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1102         sa->eth_dev->data->rx_queues[sw_index] = NULL;
1103
1104         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1105
1106         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1107
1108         sa->priv.dp_rx->qdestroy(rxq_info->dp);
1109         rxq_info->dp = NULL;
1110
1111         rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1112         rxq_info->entries = 0;
1113
1114         rxq = &sa->rxq_ctrl[sw_index];
1115
1116         sfc_dma_free(sa, &rxq->mem);
1117
1118         sfc_ev_qfini(rxq->evq);
1119         rxq->evq = NULL;
1120 }
1121
1122 /*
1123  * Mapping between RTE RSS hash functions and their EFX counterparts.
1124  */
1125 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1126         { ETH_RSS_NONFRAG_IPV4_TCP,
1127           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1128         { ETH_RSS_NONFRAG_IPV4_UDP,
1129           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1130         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1131           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1132         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1133           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1134         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1135           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1136           EFX_RX_HASH(IPV4, 2TUPLE) },
1137         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1138           ETH_RSS_IPV6_EX,
1139           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1140           EFX_RX_HASH(IPV6, 2TUPLE) }
1141 };
1142
1143 static efx_rx_hash_type_t
1144 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1145                             unsigned int *hash_type_flags_supported,
1146                             unsigned int nb_hash_type_flags_supported)
1147 {
1148         efx_rx_hash_type_t hash_type_masked = 0;
1149         unsigned int i, j;
1150
1151         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1152                 unsigned int class_tuple_lbn[] = {
1153                         EFX_RX_CLASS_IPV4_TCP_LBN,
1154                         EFX_RX_CLASS_IPV4_UDP_LBN,
1155                         EFX_RX_CLASS_IPV4_LBN,
1156                         EFX_RX_CLASS_IPV6_TCP_LBN,
1157                         EFX_RX_CLASS_IPV6_UDP_LBN,
1158                         EFX_RX_CLASS_IPV6_LBN
1159                 };
1160
1161                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1162                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1163                         unsigned int flag;
1164
1165                         tuple_mask <<= class_tuple_lbn[j];
1166                         flag = hash_type & tuple_mask;
1167
1168                         if (flag == hash_type_flags_supported[i])
1169                                 hash_type_masked |= flag;
1170                 }
1171         }
1172
1173         return hash_type_masked;
1174 }
1175
1176 int
1177 sfc_rx_hash_init(struct sfc_adapter *sa)
1178 {
1179         struct sfc_rss *rss = &sa->rss;
1180         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1181         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1182         efx_rx_hash_alg_t alg;
1183         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1184         unsigned int nb_flags_supp;
1185         struct sfc_rss_hf_rte_to_efx *hf_map;
1186         struct sfc_rss_hf_rte_to_efx *entry;
1187         efx_rx_hash_type_t efx_hash_types;
1188         unsigned int i;
1189         int rc;
1190
1191         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1192                 alg = EFX_RX_HASHALG_TOEPLITZ;
1193         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1194                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1195         else
1196                 return EINVAL;
1197
1198         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1199                                          RTE_DIM(flags_supp), &nb_flags_supp);
1200         if (rc != 0)
1201                 return rc;
1202
1203         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1204                                    RTE_DIM(sfc_rss_hf_map),
1205                                    sizeof(*hf_map), 0, sa->socket_id);
1206         if (hf_map == NULL)
1207                 return ENOMEM;
1208
1209         entry = hf_map;
1210         efx_hash_types = 0;
1211         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1212                 efx_rx_hash_type_t ht;
1213
1214                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1215                                                  flags_supp, nb_flags_supp);
1216                 if (ht != 0) {
1217                         entry->rte = sfc_rss_hf_map[i].rte;
1218                         entry->efx = ht;
1219                         efx_hash_types |= ht;
1220                         ++entry;
1221                 }
1222         }
1223
1224         rss->hash_alg = alg;
1225         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1226         rss->hf_map = hf_map;
1227         rss->hash_types = efx_hash_types;
1228
1229         return 0;
1230 }
1231
1232 void
1233 sfc_rx_hash_fini(struct sfc_adapter *sa)
1234 {
1235         struct sfc_rss *rss = &sa->rss;
1236
1237         rte_free(rss->hf_map);
1238 }
1239
1240 int
1241 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1242                      efx_rx_hash_type_t *efx)
1243 {
1244         struct sfc_rss *rss = &sa->rss;
1245         efx_rx_hash_type_t hash_types = 0;
1246         unsigned int i;
1247
1248         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1249                 uint64_t rte_mask = rss->hf_map[i].rte;
1250
1251                 if ((rte & rte_mask) != 0) {
1252                         rte &= ~rte_mask;
1253                         hash_types |= rss->hf_map[i].efx;
1254                 }
1255         }
1256
1257         if (rte != 0) {
1258                 sfc_err(sa, "unsupported hash functions requested");
1259                 return EINVAL;
1260         }
1261
1262         *efx = hash_types;
1263
1264         return 0;
1265 }
1266
1267 uint64_t
1268 sfc_rx_hf_efx_to_rte(struct sfc_adapter *sa, efx_rx_hash_type_t efx)
1269 {
1270         struct sfc_rss *rss = &sa->rss;
1271         uint64_t rte = 0;
1272         unsigned int i;
1273
1274         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1275                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1276
1277                 if ((efx & hash_type) == hash_type)
1278                         rte |= rss->hf_map[i].rte;
1279         }
1280
1281         return rte;
1282 }
1283
1284 static int
1285 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1286                             struct rte_eth_rss_conf *conf)
1287 {
1288         struct sfc_rss *rss = &sa->rss;
1289         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1290         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(sa, efx_hash_types);
1291         int rc;
1292
1293         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1294                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1295                     conf->rss_key != NULL)
1296                         return EINVAL;
1297         }
1298
1299         if (conf->rss_hf != 0) {
1300                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1301                 if (rc != 0)
1302                         return rc;
1303         }
1304
1305         if (conf->rss_key != NULL) {
1306                 if (conf->rss_key_len != sizeof(rss->key)) {
1307                         sfc_err(sa, "RSS key size is wrong (should be %lu)",
1308                                 sizeof(rss->key));
1309                         return EINVAL;
1310                 }
1311                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1312         }
1313
1314         rss->hash_types = efx_hash_types;
1315
1316         return 0;
1317 }
1318
1319 static int
1320 sfc_rx_rss_config(struct sfc_adapter *sa)
1321 {
1322         struct sfc_rss *rss = &sa->rss;
1323         int rc = 0;
1324
1325         if (rss->channels > 0) {
1326                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1327                                            rss->hash_alg, rss->hash_types,
1328                                            B_TRUE);
1329                 if (rc != 0)
1330                         goto finish;
1331
1332                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1333                                           rss->key, sizeof(rss->key));
1334                 if (rc != 0)
1335                         goto finish;
1336
1337                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1338                                           rss->tbl, RTE_DIM(rss->tbl));
1339         }
1340
1341 finish:
1342         return rc;
1343 }
1344
1345 int
1346 sfc_rx_start(struct sfc_adapter *sa)
1347 {
1348         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1349         unsigned int sw_index;
1350         int rc;
1351
1352         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1353
1354         rc = efx_rx_init(sa->nic);
1355         if (rc != 0)
1356                 goto fail_rx_init;
1357
1358         rc = sfc_rx_rss_config(sa);
1359         if (rc != 0)
1360                 goto fail_rss_config;
1361
1362         for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1363                 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1364                     (!sas->rxq_info[sw_index].deferred_start ||
1365                      sas->rxq_info[sw_index].deferred_started)) {
1366                         rc = sfc_rx_qstart(sa, sw_index);
1367                         if (rc != 0)
1368                                 goto fail_rx_qstart;
1369                 }
1370         }
1371
1372         return 0;
1373
1374 fail_rx_qstart:
1375         while (sw_index-- > 0)
1376                 sfc_rx_qstop(sa, sw_index);
1377
1378 fail_rss_config:
1379         efx_rx_fini(sa->nic);
1380
1381 fail_rx_init:
1382         sfc_log_init(sa, "failed %d", rc);
1383         return rc;
1384 }
1385
1386 void
1387 sfc_rx_stop(struct sfc_adapter *sa)
1388 {
1389         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1390         unsigned int sw_index;
1391
1392         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1393
1394         sw_index = sas->rxq_count;
1395         while (sw_index-- > 0) {
1396                 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1397                         sfc_rx_qstop(sa, sw_index);
1398         }
1399
1400         efx_rx_fini(sa->nic);
1401 }
1402
1403 static int
1404 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1405 {
1406         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1407         struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1408         unsigned int max_entries;
1409
1410         max_entries = EFX_RXQ_MAXNDESCS;
1411         SFC_ASSERT(rte_is_power_of_2(max_entries));
1412
1413         rxq_info->max_entries = max_entries;
1414
1415         return 0;
1416 }
1417
1418 static int
1419 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1420 {
1421         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1422                                       sfc_rx_get_queue_offload_caps(sa);
1423         struct sfc_rss *rss = &sa->rss;
1424         int rc = 0;
1425
1426         switch (rxmode->mq_mode) {
1427         case ETH_MQ_RX_NONE:
1428                 /* No special checks are required */
1429                 break;
1430         case ETH_MQ_RX_RSS:
1431                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1432                         sfc_err(sa, "RSS is not available");
1433                         rc = EINVAL;
1434                 }
1435                 break;
1436         default:
1437                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1438                         rxmode->mq_mode);
1439                 rc = EINVAL;
1440         }
1441
1442         /*
1443          * Requested offloads are validated against supported by ethdev,
1444          * so unsupported offloads cannot be added as the result of
1445          * below check.
1446          */
1447         if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1448             (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1449                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1450                 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1451         }
1452
1453         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1454             (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1455                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1456                 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1457         }
1458
1459         return rc;
1460 }
1461
1462 /**
1463  * Destroy excess queues that are no longer needed after reconfiguration
1464  * or complete close.
1465  */
1466 static void
1467 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1468 {
1469         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1470         int sw_index;
1471
1472         SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1473
1474         sw_index = sas->rxq_count;
1475         while (--sw_index >= (int)nb_rx_queues) {
1476                 if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1477                         sfc_rx_qfini(sa, sw_index);
1478         }
1479
1480         sas->rxq_count = nb_rx_queues;
1481 }
1482
1483 /**
1484  * Initialize Rx subsystem.
1485  *
1486  * Called at device (re)configuration stage when number of receive queues is
1487  * specified together with other device level receive configuration.
1488  *
1489  * It should be used to allocate NUMA-unaware resources.
1490  */
1491 int
1492 sfc_rx_configure(struct sfc_adapter *sa)
1493 {
1494         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1495         struct sfc_rss *rss = &sa->rss;
1496         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1497         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1498         int rc;
1499
1500         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1501                      nb_rx_queues, sas->rxq_count);
1502
1503         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1504         if (rc != 0)
1505                 goto fail_check_mode;
1506
1507         if (nb_rx_queues == sas->rxq_count)
1508                 goto configure_rss;
1509
1510         if (sas->rxq_info == NULL) {
1511                 rc = ENOMEM;
1512                 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1513                                                   sizeof(sas->rxq_info[0]), 0,
1514                                                   sa->socket_id);
1515                 if (sas->rxq_info == NULL)
1516                         goto fail_rxqs_alloc;
1517
1518                 /*
1519                  * Allocate primary process only RxQ control from heap
1520                  * since it should not be shared.
1521                  */
1522                 rc = ENOMEM;
1523                 sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1524                 if (sa->rxq_ctrl == NULL)
1525                         goto fail_rxqs_ctrl_alloc;
1526         } else {
1527                 struct sfc_rxq_info *new_rxq_info;
1528                 struct sfc_rxq *new_rxq_ctrl;
1529
1530                 if (nb_rx_queues < sas->rxq_count)
1531                         sfc_rx_fini_queues(sa, nb_rx_queues);
1532
1533                 rc = ENOMEM;
1534                 new_rxq_info =
1535                         rte_realloc(sas->rxq_info,
1536                                     nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1537                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1538                         goto fail_rxqs_realloc;
1539
1540                 rc = ENOMEM;
1541                 new_rxq_ctrl = realloc(sa->rxq_ctrl,
1542                                        nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1543                 if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1544                         goto fail_rxqs_ctrl_realloc;
1545
1546                 sas->rxq_info = new_rxq_info;
1547                 sa->rxq_ctrl = new_rxq_ctrl;
1548                 if (nb_rx_queues > sas->rxq_count) {
1549                         memset(&sas->rxq_info[sas->rxq_count], 0,
1550                                (nb_rx_queues - sas->rxq_count) *
1551                                sizeof(sas->rxq_info[0]));
1552                         memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1553                                (nb_rx_queues - sas->rxq_count) *
1554                                sizeof(sa->rxq_ctrl[0]));
1555                 }
1556         }
1557
1558         while (sas->rxq_count < nb_rx_queues) {
1559                 rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1560                 if (rc != 0)
1561                         goto fail_rx_qinit_info;
1562
1563                 sas->rxq_count++;
1564         }
1565
1566 configure_rss:
1567         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1568                          MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1569
1570         if (rss->channels > 0) {
1571                 struct rte_eth_rss_conf *adv_conf_rss;
1572                 unsigned int sw_index;
1573
1574                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1575                         rss->tbl[sw_index] = sw_index % rss->channels;
1576
1577                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1578                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1579                 if (rc != 0)
1580                         goto fail_rx_process_adv_conf_rss;
1581         }
1582
1583         return 0;
1584
1585 fail_rx_process_adv_conf_rss:
1586 fail_rx_qinit_info:
1587 fail_rxqs_ctrl_realloc:
1588 fail_rxqs_realloc:
1589 fail_rxqs_ctrl_alloc:
1590 fail_rxqs_alloc:
1591         sfc_rx_close(sa);
1592
1593 fail_check_mode:
1594         sfc_log_init(sa, "failed %d", rc);
1595         return rc;
1596 }
1597
1598 /**
1599  * Shutdown Rx subsystem.
1600  *
1601  * Called at device close stage, for example, before device shutdown.
1602  */
1603 void
1604 sfc_rx_close(struct sfc_adapter *sa)
1605 {
1606         struct sfc_rss *rss = &sa->rss;
1607
1608         sfc_rx_fini_queues(sa, 0);
1609
1610         rss->channels = 0;
1611
1612         free(sa->rxq_ctrl);
1613         sa->rxq_ctrl = NULL;
1614
1615         rte_free(sfc_sa2shared(sa)->rxq_info);
1616         sfc_sa2shared(sa)->rxq_info = NULL;
1617 }