net/sfc: support Rx interrupts for efx datapath
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44         rxq_info->state |= SFC_RXQ_FLUSHED;
45         rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51         rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static int
56 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
57 {
58         int rc = 0;
59
60         if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
61                 rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
62                 if (rc == 0)
63                         rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
64         }
65         return rc;
66 }
67
68 static void
69 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
70 {
71         unsigned int free_space;
72         unsigned int bulks;
73         void *objs[SFC_RX_REFILL_BULK];
74         efsys_dma_addr_t addr[RTE_DIM(objs)];
75         unsigned int added = rxq->added;
76         unsigned int id;
77         unsigned int i;
78         struct sfc_efx_rx_sw_desc *rxd;
79         struct rte_mbuf *m;
80         uint16_t port_id = rxq->dp.dpq.port_id;
81
82         free_space = rxq->max_fill_level - (added - rxq->completed);
83
84         if (free_space < rxq->refill_threshold)
85                 return;
86
87         bulks = free_space / RTE_DIM(objs);
88         /* refill_threshold guarantees that bulks is positive */
89         SFC_ASSERT(bulks > 0);
90
91         id = added & rxq->ptr_mask;
92         do {
93                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
94                                                   RTE_DIM(objs)) < 0)) {
95                         /*
96                          * It is hardly a safe way to increment counter
97                          * from different contexts, but all PMDs do it.
98                          */
99                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
100                                 RTE_DIM(objs);
101                         /* Return if we have posted nothing yet */
102                         if (added == rxq->added)
103                                 return;
104                         /* Push posted */
105                         break;
106                 }
107
108                 for (i = 0; i < RTE_DIM(objs);
109                      ++i, id = (id + 1) & rxq->ptr_mask) {
110                         m = objs[i];
111
112                         MBUF_RAW_ALLOC_CHECK(m);
113
114                         rxd = &rxq->sw_desc[id];
115                         rxd->mbuf = m;
116
117                         m->data_off = RTE_PKTMBUF_HEADROOM;
118                         m->port = port_id;
119
120                         addr[i] = rte_pktmbuf_iova(m);
121                 }
122
123                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
124                              RTE_DIM(objs), rxq->completed, added);
125                 added += RTE_DIM(objs);
126         } while (--bulks > 0);
127
128         SFC_ASSERT(added != rxq->added);
129         rxq->added = added;
130         efx_rx_qpush(rxq->common, added, &rxq->pushed);
131 }
132
133 static uint64_t
134 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
135 {
136         uint64_t mbuf_flags = 0;
137
138         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
139         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
140                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
141                 break;
142         case EFX_PKT_IPV4:
143                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
144                 break;
145         default:
146                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
147                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
148                            PKT_RX_IP_CKSUM_UNKNOWN);
149                 break;
150         }
151
152         switch ((desc_flags &
153                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
154         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
155         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
156                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
157                 break;
158         case EFX_PKT_TCP:
159         case EFX_PKT_UDP:
160                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
161                 break;
162         default:
163                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
164                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
165                            PKT_RX_L4_CKSUM_UNKNOWN);
166                 break;
167         }
168
169         return mbuf_flags;
170 }
171
172 static uint32_t
173 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
174 {
175         return RTE_PTYPE_L2_ETHER |
176                 ((desc_flags & EFX_PKT_IPV4) ?
177                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
178                 ((desc_flags & EFX_PKT_IPV6) ?
179                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
180                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
181                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
182 }
183
184 static const uint32_t *
185 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
186 {
187         static const uint32_t ptypes[] = {
188                 RTE_PTYPE_L2_ETHER,
189                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
190                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
191                 RTE_PTYPE_L4_TCP,
192                 RTE_PTYPE_L4_UDP,
193                 RTE_PTYPE_UNKNOWN
194         };
195
196         return ptypes;
197 }
198
199 static void
200 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
201                         struct rte_mbuf *m)
202 {
203         uint8_t *mbuf_data;
204
205
206         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
207                 return;
208
209         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
210
211         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
212                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
213                                                       EFX_RX_HASHALG_TOEPLITZ,
214                                                       mbuf_data);
215
216                 m->ol_flags |= PKT_RX_RSS_HASH;
217         }
218 }
219
220 static uint16_t
221 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
222 {
223         struct sfc_dp_rxq *dp_rxq = rx_queue;
224         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
225         unsigned int completed;
226         unsigned int prefix_size = rxq->prefix_size;
227         unsigned int done_pkts = 0;
228         boolean_t discard_next = B_FALSE;
229         struct rte_mbuf *scatter_pkt = NULL;
230
231         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
232                 return 0;
233
234         sfc_ev_qpoll(rxq->evq);
235
236         completed = rxq->completed;
237         while (completed != rxq->pending && done_pkts < nb_pkts) {
238                 unsigned int id;
239                 struct sfc_efx_rx_sw_desc *rxd;
240                 struct rte_mbuf *m;
241                 unsigned int seg_len;
242                 unsigned int desc_flags;
243
244                 id = completed++ & rxq->ptr_mask;
245                 rxd = &rxq->sw_desc[id];
246                 m = rxd->mbuf;
247                 desc_flags = rxd->flags;
248
249                 if (discard_next)
250                         goto discard;
251
252                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
253                         goto discard;
254
255                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
256                         uint16_t tmp_size;
257                         int rc __rte_unused;
258
259                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
260                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
261                         SFC_ASSERT(rc == 0);
262                         seg_len = tmp_size;
263                 } else {
264                         seg_len = rxd->size - prefix_size;
265                 }
266
267                 rte_pktmbuf_data_len(m) = seg_len;
268                 rte_pktmbuf_pkt_len(m) = seg_len;
269
270                 if (scatter_pkt != NULL) {
271                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
272                                 rte_pktmbuf_free(scatter_pkt);
273                                 goto discard;
274                         }
275                         /* The packet to deliver */
276                         m = scatter_pkt;
277                 }
278
279                 if (desc_flags & EFX_PKT_CONT) {
280                         /* The packet is scattered, more fragments to come */
281                         scatter_pkt = m;
282                         /* Further fragments have no prefix */
283                         prefix_size = 0;
284                         continue;
285                 }
286
287                 /* Scattered packet is done */
288                 scatter_pkt = NULL;
289                 /* The first fragment of the packet has prefix */
290                 prefix_size = rxq->prefix_size;
291
292                 m->ol_flags =
293                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
294                 m->packet_type =
295                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
296
297                 /*
298                  * Extract RSS hash from the packet prefix and
299                  * set the corresponding field (if needed and possible)
300                  */
301                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
302
303                 m->data_off += prefix_size;
304
305                 *rx_pkts++ = m;
306                 done_pkts++;
307                 continue;
308
309 discard:
310                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
311                 rte_mbuf_raw_free(m);
312                 rxd->mbuf = NULL;
313         }
314
315         /* pending is only moved when entire packet is received */
316         SFC_ASSERT(scatter_pkt == NULL);
317
318         rxq->completed = completed;
319
320         sfc_efx_rx_qrefill(rxq);
321
322         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
323                 sfc_efx_rx_qprime(rxq);
324
325         return done_pkts;
326 }
327
328 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
329 static unsigned int
330 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
331 {
332         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
333
334         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
335                 return 0;
336
337         sfc_ev_qpoll(rxq->evq);
338
339         return rxq->pending - rxq->completed;
340 }
341
342 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
343 static int
344 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
345 {
346         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
347
348         if (unlikely(offset > rxq->ptr_mask))
349                 return -EINVAL;
350
351         /*
352          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
353          * it is required for the queue to be running, but the
354          * check is omitted because API design assumes that it
355          * is the duty of the caller to satisfy all conditions
356          */
357         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
358                    SFC_EFX_RXQ_FLAG_RUNNING);
359         sfc_ev_qpoll(rxq->evq);
360
361         /*
362          * There is a handful of reserved entries in the ring,
363          * but an explicit check whether the offset points to
364          * a reserved entry is neglected since the two checks
365          * below rely on the figures which take the HW limits
366          * into account and thus if an entry is reserved, the
367          * checks will fail and UNAVAIL code will be returned
368          */
369
370         if (offset < (rxq->pending - rxq->completed))
371                 return RTE_ETH_RX_DESC_DONE;
372
373         if (offset < (rxq->added - rxq->completed))
374                 return RTE_ETH_RX_DESC_AVAIL;
375
376         return RTE_ETH_RX_DESC_UNAVAIL;
377 }
378
379 boolean_t
380 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
381                      boolean_t rx_scatter_enabled, const char **error)
382 {
383         if ((rx_buf_size < pdu + rx_prefix_size) && !rx_scatter_enabled) {
384                 *error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
385                 return B_FALSE;
386         }
387
388         return B_TRUE;
389 }
390
391 /** Get Rx datapath ops by the datapath RxQ handle */
392 const struct sfc_dp_rx *
393 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
394 {
395         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
396         struct rte_eth_dev *eth_dev;
397         struct sfc_adapter_priv *sap;
398
399         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
400         eth_dev = &rte_eth_devices[dpq->port_id];
401
402         sap = sfc_adapter_priv_by_eth_dev(eth_dev);
403
404         return sap->dp_rx;
405 }
406
407 struct sfc_rxq_info *
408 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
409 {
410         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
411         struct rte_eth_dev *eth_dev;
412         struct sfc_adapter_shared *sas;
413
414         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
415         eth_dev = &rte_eth_devices[dpq->port_id];
416
417         sas = sfc_adapter_shared_by_eth_dev(eth_dev);
418
419         SFC_ASSERT(dpq->queue_id < sas->rxq_count);
420         return &sas->rxq_info[dpq->queue_id];
421 }
422
423 struct sfc_rxq *
424 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
425 {
426         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
427         struct rte_eth_dev *eth_dev;
428         struct sfc_adapter *sa;
429
430         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
431         eth_dev = &rte_eth_devices[dpq->port_id];
432
433         sa = sfc_adapter_by_eth_dev(eth_dev);
434
435         SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
436         return &sa->rxq_ctrl[dpq->queue_id];
437 }
438
439 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
440 static int
441 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
442                           __rte_unused struct sfc_dp_rx_hw_limits *limits,
443                           __rte_unused struct rte_mempool *mb_pool,
444                           unsigned int *rxq_entries,
445                           unsigned int *evq_entries,
446                           unsigned int *rxq_max_fill_level)
447 {
448         *rxq_entries = nb_rx_desc;
449         *evq_entries = nb_rx_desc;
450         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
451         return 0;
452 }
453
454 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
455 static int
456 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
457                    const struct rte_pci_addr *pci_addr, int socket_id,
458                    const struct sfc_dp_rx_qcreate_info *info,
459                    struct sfc_dp_rxq **dp_rxqp)
460 {
461         struct sfc_efx_rxq *rxq;
462         int rc;
463
464         rc = ENOMEM;
465         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
466                                  RTE_CACHE_LINE_SIZE, socket_id);
467         if (rxq == NULL)
468                 goto fail_rxq_alloc;
469
470         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
471
472         rc = ENOMEM;
473         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
474                                          info->rxq_entries,
475                                          sizeof(*rxq->sw_desc),
476                                          RTE_CACHE_LINE_SIZE, socket_id);
477         if (rxq->sw_desc == NULL)
478                 goto fail_desc_alloc;
479
480         /* efx datapath is bound to efx control path */
481         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
482         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
483                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
484         rxq->ptr_mask = info->rxq_entries - 1;
485         rxq->batch_max = info->batch_max;
486         rxq->prefix_size = info->prefix_size;
487         rxq->max_fill_level = info->max_fill_level;
488         rxq->refill_threshold = info->refill_threshold;
489         rxq->buf_size = info->buf_size;
490         rxq->refill_mb_pool = info->refill_mb_pool;
491
492         *dp_rxqp = &rxq->dp;
493         return 0;
494
495 fail_desc_alloc:
496         rte_free(rxq);
497
498 fail_rxq_alloc:
499         return rc;
500 }
501
502 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
503 static void
504 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
505 {
506         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
507
508         rte_free(rxq->sw_desc);
509         rte_free(rxq);
510 }
511
512
513 /* Use qstop and qstart functions in the case of qstart failure */
514 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
515 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
516
517
518 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
519 static int
520 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
521                   __rte_unused unsigned int evq_read_ptr)
522 {
523         /* libefx-based datapath is specific to libefx-based PMD */
524         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
525         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
526         int rc;
527
528         rxq->common = crxq->common;
529
530         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
531
532         sfc_efx_rx_qrefill(rxq);
533
534         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
535
536         if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
537                 rc = sfc_efx_rx_qprime(rxq);
538                 if (rc != 0)
539                         goto fail_rx_qprime;
540         }
541
542         return 0;
543
544 fail_rx_qprime:
545         sfc_efx_rx_qstop(dp_rxq, NULL);
546         sfc_efx_rx_qpurge(dp_rxq);
547         return rc;
548 }
549
550 static void
551 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
552                  __rte_unused unsigned int *evq_read_ptr)
553 {
554         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
555
556         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
557
558         /* libefx-based datapath is bound to libefx-based PMD and uses
559          * event queue structure directly. So, there is no necessity to
560          * return EvQ read pointer.
561          */
562 }
563
564 static void
565 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
566 {
567         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
568         unsigned int i;
569         struct sfc_efx_rx_sw_desc *rxd;
570
571         for (i = rxq->completed; i != rxq->added; ++i) {
572                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
573                 rte_mbuf_raw_free(rxd->mbuf);
574                 rxd->mbuf = NULL;
575                 /* Packed stream relies on 0 in inactive SW desc.
576                  * Rx queue stop is not performance critical, so
577                  * there is no harm to do it always.
578                  */
579                 rxd->flags = 0;
580                 rxd->size = 0;
581         }
582
583         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
584 }
585
586 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
587 static int
588 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
589 {
590         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
591         int rc = 0;
592
593         rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
594         if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
595                 rc = sfc_efx_rx_qprime(rxq);
596                 if (rc != 0)
597                         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
598         }
599         return rc;
600 }
601
602 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
603 static int
604 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
605 {
606         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
607
608         /* Cannot disarm, just disable rearm */
609         rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
610         return 0;
611 }
612
613 struct sfc_dp_rx sfc_efx_rx = {
614         .dp = {
615                 .name           = SFC_KVARG_DATAPATH_EFX,
616                 .type           = SFC_DP_RX,
617                 .hw_fw_caps     = 0,
618         },
619         .features               = SFC_DP_RX_FEAT_INTR,
620         .dev_offload_capa       = DEV_RX_OFFLOAD_CHECKSUM,
621         .queue_offload_capa     = DEV_RX_OFFLOAD_SCATTER,
622         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
623         .qcreate                = sfc_efx_rx_qcreate,
624         .qdestroy               = sfc_efx_rx_qdestroy,
625         .qstart                 = sfc_efx_rx_qstart,
626         .qstop                  = sfc_efx_rx_qstop,
627         .qpurge                 = sfc_efx_rx_qpurge,
628         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
629         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
630         .qdesc_status           = sfc_efx_rx_qdesc_status,
631         .intr_enable            = sfc_efx_rx_intr_enable,
632         .intr_disable           = sfc_efx_rx_intr_disable,
633         .pkt_burst              = sfc_efx_recv_pkts,
634 };
635
636 static void
637 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
638 {
639         struct sfc_rxq_info *rxq_info;
640         struct sfc_rxq *rxq;
641         unsigned int retry_count;
642         unsigned int wait_count;
643         int rc;
644
645         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
646         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
647
648         rxq = &sa->rxq_ctrl[sw_index];
649
650         /*
651          * Retry Rx queue flushing in the case of flush failed or
652          * timeout. In the worst case it can delay for 6 seconds.
653          */
654         for (retry_count = 0;
655              ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
656              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
657              ++retry_count) {
658                 rc = efx_rx_qflush(rxq->common);
659                 if (rc != 0) {
660                         rxq_info->state |= (rc == EALREADY) ?
661                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
662                         break;
663                 }
664                 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
665                 rxq_info->state |= SFC_RXQ_FLUSHING;
666
667                 /*
668                  * Wait for Rx queue flush done or failed event at least
669                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
670                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
671                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
672                  */
673                 wait_count = 0;
674                 do {
675                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
676                         sfc_ev_qpoll(rxq->evq);
677                 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
678                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
679
680                 if (rxq_info->state & SFC_RXQ_FLUSHING)
681                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
682
683                 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
684                         sfc_err(sa, "RxQ %u flush failed", sw_index);
685
686                 if (rxq_info->state & SFC_RXQ_FLUSHED)
687                         sfc_notice(sa, "RxQ %u flushed", sw_index);
688         }
689
690         sa->priv.dp_rx->qpurge(rxq_info->dp);
691 }
692
693 static int
694 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
695 {
696         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
697         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
698         struct sfc_port *port = &sa->port;
699         int rc;
700
701         /*
702          * If promiscuous or all-multicast mode has been requested, setting
703          * filter for the default Rx queue might fail, in particular, while
704          * running over PCI function which is not a member of corresponding
705          * privilege groups; if this occurs, few iterations will be made to
706          * repeat this step without promiscuous and all-multicast flags set
707          */
708 retry:
709         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
710         if (rc == 0)
711                 return 0;
712         else if (rc != EOPNOTSUPP)
713                 return rc;
714
715         if (port->promisc) {
716                 sfc_warn(sa, "promiscuous mode has been requested, "
717                              "but the HW rejects it");
718                 sfc_warn(sa, "promiscuous mode will be disabled");
719
720                 port->promisc = B_FALSE;
721                 rc = sfc_set_rx_mode(sa);
722                 if (rc != 0)
723                         return rc;
724
725                 goto retry;
726         }
727
728         if (port->allmulti) {
729                 sfc_warn(sa, "all-multicast mode has been requested, "
730                              "but the HW rejects it");
731                 sfc_warn(sa, "all-multicast mode will be disabled");
732
733                 port->allmulti = B_FALSE;
734                 rc = sfc_set_rx_mode(sa);
735                 if (rc != 0)
736                         return rc;
737
738                 goto retry;
739         }
740
741         return rc;
742 }
743
744 int
745 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
746 {
747         struct sfc_rxq_info *rxq_info;
748         struct sfc_rxq *rxq;
749         struct sfc_evq *evq;
750         int rc;
751
752         sfc_log_init(sa, "sw_index=%u", sw_index);
753
754         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
755
756         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
757         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
758
759         rxq = &sa->rxq_ctrl[sw_index];
760         evq = rxq->evq;
761
762         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
763         if (rc != 0)
764                 goto fail_ev_qstart;
765
766         switch (rxq_info->type) {
767         case EFX_RXQ_TYPE_DEFAULT:
768                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
769                         rxq->buf_size,
770                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
771                         rxq_info->type_flags, evq->common, &rxq->common);
772                 break;
773         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
774                 struct rte_mempool *mp = rxq_info->refill_mb_pool;
775                 struct rte_mempool_info mp_info;
776
777                 rc = rte_mempool_ops_get_info(mp, &mp_info);
778                 if (rc != 0) {
779                         /* Positive errno is used in the driver */
780                         rc = -rc;
781                         goto fail_mp_get_info;
782                 }
783                 if (mp_info.contig_block_size <= 0) {
784                         rc = EINVAL;
785                         goto fail_bad_contig_block_size;
786                 }
787                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
788                         mp_info.contig_block_size, rxq->buf_size,
789                         mp->header_size + mp->elt_size + mp->trailer_size,
790                         sa->rxd_wait_timeout_ns,
791                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
792                         evq->common, &rxq->common);
793                 break;
794         }
795         default:
796                 rc = ENOTSUP;
797         }
798         if (rc != 0)
799                 goto fail_rx_qcreate;
800
801         efx_rx_qenable(rxq->common);
802
803         rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
804         if (rc != 0)
805                 goto fail_dp_qstart;
806
807         rxq_info->state |= SFC_RXQ_STARTED;
808
809         if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
810                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
811                 if (rc != 0)
812                         goto fail_mac_filter_default_rxq_set;
813         }
814
815         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
816         sa->eth_dev->data->rx_queue_state[sw_index] =
817                 RTE_ETH_QUEUE_STATE_STARTED;
818
819         return 0;
820
821 fail_mac_filter_default_rxq_set:
822         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
823
824 fail_dp_qstart:
825         sfc_rx_qflush(sa, sw_index);
826
827 fail_rx_qcreate:
828 fail_bad_contig_block_size:
829 fail_mp_get_info:
830         sfc_ev_qstop(evq);
831
832 fail_ev_qstart:
833         return rc;
834 }
835
836 void
837 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
838 {
839         struct sfc_rxq_info *rxq_info;
840         struct sfc_rxq *rxq;
841
842         sfc_log_init(sa, "sw_index=%u", sw_index);
843
844         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
845
846         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
847
848         if (rxq_info->state == SFC_RXQ_INITIALIZED)
849                 return;
850         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
851
852         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
853         sa->eth_dev->data->rx_queue_state[sw_index] =
854                 RTE_ETH_QUEUE_STATE_STOPPED;
855
856         rxq = &sa->rxq_ctrl[sw_index];
857         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
858
859         if (sw_index == 0)
860                 efx_mac_filter_default_rxq_clear(sa->nic);
861
862         sfc_rx_qflush(sa, sw_index);
863
864         rxq_info->state = SFC_RXQ_INITIALIZED;
865
866         efx_rx_qdestroy(rxq->common);
867
868         sfc_ev_qstop(rxq->evq);
869 }
870
871 static uint64_t
872 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
873 {
874         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
875         uint64_t no_caps = 0;
876
877         if (encp->enc_tunnel_encapsulations_supported == 0)
878                 no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
879
880         return ~no_caps;
881 }
882
883 uint64_t
884 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
885 {
886         uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
887
888         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
889
890         return caps & sfc_rx_get_offload_mask(sa);
891 }
892
893 uint64_t
894 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
895 {
896         return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
897 }
898
899 static int
900 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
901                    const struct rte_eth_rxconf *rx_conf,
902                    __rte_unused uint64_t offloads)
903 {
904         int rc = 0;
905
906         if (rx_conf->rx_thresh.pthresh != 0 ||
907             rx_conf->rx_thresh.hthresh != 0 ||
908             rx_conf->rx_thresh.wthresh != 0) {
909                 sfc_warn(sa,
910                         "RxQ prefetch/host/writeback thresholds are not supported");
911         }
912
913         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
914                 sfc_err(sa,
915                         "RxQ free threshold too large: %u vs maximum %u",
916                         rx_conf->rx_free_thresh, rxq_max_fill_level);
917                 rc = EINVAL;
918         }
919
920         if (rx_conf->rx_drop_en == 0) {
921                 sfc_err(sa, "RxQ drop disable is not supported");
922                 rc = EINVAL;
923         }
924
925         return rc;
926 }
927
928 static unsigned int
929 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
930 {
931         uint32_t data_off;
932         uint32_t order;
933
934         /* The mbuf object itself is always cache line aligned */
935         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
936
937         /* Data offset from mbuf object start */
938         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
939                 RTE_PKTMBUF_HEADROOM;
940
941         order = MIN(order, rte_bsf32(data_off));
942
943         return 1u << order;
944 }
945
946 static uint16_t
947 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
948 {
949         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
950         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
951         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
952         uint16_t buf_size;
953         unsigned int buf_aligned;
954         unsigned int start_alignment;
955         unsigned int end_padding_alignment;
956
957         /* Below it is assumed that both alignments are power of 2 */
958         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
959         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
960
961         /*
962          * mbuf is always cache line aligned, double-check
963          * that it meets rx buffer start alignment requirements.
964          */
965
966         /* Start from mbuf pool data room size */
967         buf_size = rte_pktmbuf_data_room_size(mb_pool);
968
969         /* Remove headroom */
970         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
971                 sfc_err(sa,
972                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
973                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
974                 return 0;
975         }
976         buf_size -= RTE_PKTMBUF_HEADROOM;
977
978         /* Calculate guaranteed data start alignment */
979         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
980
981         /* Reserve space for start alignment */
982         if (buf_aligned < nic_align_start) {
983                 start_alignment = nic_align_start - buf_aligned;
984                 if (buf_size <= start_alignment) {
985                         sfc_err(sa,
986                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
987                                 mb_pool->name,
988                                 rte_pktmbuf_data_room_size(mb_pool),
989                                 RTE_PKTMBUF_HEADROOM, start_alignment);
990                         return 0;
991                 }
992                 buf_aligned = nic_align_start;
993                 buf_size -= start_alignment;
994         } else {
995                 start_alignment = 0;
996         }
997
998         /* Make sure that end padding does not write beyond the buffer */
999         if (buf_aligned < nic_align_end) {
1000                 /*
1001                  * Estimate space which can be lost. If guarnteed buffer
1002                  * size is odd, lost space is (nic_align_end - 1). More
1003                  * accurate formula is below.
1004                  */
1005                 end_padding_alignment = nic_align_end -
1006                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1007                 if (buf_size <= end_padding_alignment) {
1008                         sfc_err(sa,
1009                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1010                                 mb_pool->name,
1011                                 rte_pktmbuf_data_room_size(mb_pool),
1012                                 RTE_PKTMBUF_HEADROOM, start_alignment,
1013                                 end_padding_alignment);
1014                         return 0;
1015                 }
1016                 buf_size -= end_padding_alignment;
1017         } else {
1018                 /*
1019                  * Start is aligned the same or better than end,
1020                  * just align length.
1021                  */
1022                 buf_size = P2ALIGN(buf_size, nic_align_end);
1023         }
1024
1025         return buf_size;
1026 }
1027
1028 int
1029 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
1030              uint16_t nb_rx_desc, unsigned int socket_id,
1031              const struct rte_eth_rxconf *rx_conf,
1032              struct rte_mempool *mb_pool)
1033 {
1034         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1035         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1036         int rc;
1037         unsigned int rxq_entries;
1038         unsigned int evq_entries;
1039         unsigned int rxq_max_fill_level;
1040         uint64_t offloads;
1041         uint16_t buf_size;
1042         struct sfc_rxq_info *rxq_info;
1043         struct sfc_evq *evq;
1044         struct sfc_rxq *rxq;
1045         struct sfc_dp_rx_qcreate_info info;
1046         struct sfc_dp_rx_hw_limits hw_limits;
1047         uint16_t rx_free_thresh;
1048         const char *error;
1049
1050         memset(&hw_limits, 0, sizeof(hw_limits));
1051         hw_limits.rxq_max_entries = sa->rxq_max_entries;
1052         hw_limits.rxq_min_entries = sa->rxq_min_entries;
1053         hw_limits.evq_max_entries = sa->evq_max_entries;
1054         hw_limits.evq_min_entries = sa->evq_min_entries;
1055
1056         rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1057                                             &rxq_entries, &evq_entries,
1058                                             &rxq_max_fill_level);
1059         if (rc != 0)
1060                 goto fail_size_up_rings;
1061         SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1062         SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1063         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1064
1065         offloads = rx_conf->offloads |
1066                 sa->eth_dev->data->dev_conf.rxmode.offloads;
1067         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1068         if (rc != 0)
1069                 goto fail_bad_conf;
1070
1071         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1072         if (buf_size == 0) {
1073                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
1074                         sw_index);
1075                 rc = EINVAL;
1076                 goto fail_bad_conf;
1077         }
1078
1079         if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1080                                   encp->enc_rx_prefix_size,
1081                                   (offloads & DEV_RX_OFFLOAD_SCATTER),
1082                                   &error)) {
1083                 sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error);
1084                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1085                         "PDU size %u plus Rx prefix %u bytes",
1086                         sw_index, buf_size, (unsigned int)sa->port.pdu,
1087                         encp->enc_rx_prefix_size);
1088                 rc = EINVAL;
1089                 goto fail_bad_conf;
1090         }
1091
1092         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1093         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1094
1095         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1096         rxq_info->entries = rxq_entries;
1097
1098         if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1099                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1100         else
1101                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1102
1103         rxq_info->type_flags =
1104                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1105                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1106
1107         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1108             (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1109              DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1110                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1111
1112         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1113                           evq_entries, socket_id, &evq);
1114         if (rc != 0)
1115                 goto fail_ev_qinit;
1116
1117         rxq = &sa->rxq_ctrl[sw_index];
1118         rxq->evq = evq;
1119         rxq->hw_index = sw_index;
1120         /*
1121          * If Rx refill threshold is specified (its value is non zero) in
1122          * Rx configuration, use specified value. Otherwise use 1/8 of
1123          * the Rx descriptors number as the default. It allows to keep
1124          * Rx ring full-enough and does not refill too aggressive if
1125          * packet rate is high.
1126          *
1127          * Since PMD refills in bulks waiting for full bulk may be
1128          * refilled (basically round down), it is better to round up
1129          * here to mitigate it a bit.
1130          */
1131         rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1132                 rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1133         /* Rx refill threshold cannot be smaller than refill bulk */
1134         rxq_info->refill_threshold =
1135                 RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1136         rxq_info->refill_mb_pool = mb_pool;
1137         rxq->buf_size = buf_size;
1138
1139         rc = sfc_dma_alloc(sa, "rxq", sw_index,
1140                            efx_rxq_size(sa->nic, rxq_info->entries),
1141                            socket_id, &rxq->mem);
1142         if (rc != 0)
1143                 goto fail_dma_alloc;
1144
1145         memset(&info, 0, sizeof(info));
1146         info.refill_mb_pool = rxq_info->refill_mb_pool;
1147         info.max_fill_level = rxq_max_fill_level;
1148         info.refill_threshold = rxq_info->refill_threshold;
1149         info.buf_size = buf_size;
1150         info.batch_max = encp->enc_rx_batch_max;
1151         info.prefix_size = encp->enc_rx_prefix_size;
1152
1153         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1154                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1155
1156         info.rxq_entries = rxq_info->entries;
1157         info.rxq_hw_ring = rxq->mem.esm_base;
1158         info.evq_hw_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
1159         info.evq_entries = evq_entries;
1160         info.evq_hw_ring = evq->mem.esm_base;
1161         info.hw_index = rxq->hw_index;
1162         info.mem_bar = sa->mem_bar.esb_base;
1163         info.vi_window_shift = encp->enc_vi_window_shift;
1164
1165         rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1166                                      &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1167                                      socket_id, &info, &rxq_info->dp);
1168         if (rc != 0)
1169                 goto fail_dp_rx_qcreate;
1170
1171         evq->dp_rxq = rxq_info->dp;
1172
1173         rxq_info->state = SFC_RXQ_INITIALIZED;
1174
1175         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1176
1177         return 0;
1178
1179 fail_dp_rx_qcreate:
1180         sfc_dma_free(sa, &rxq->mem);
1181
1182 fail_dma_alloc:
1183         sfc_ev_qfini(evq);
1184
1185 fail_ev_qinit:
1186         rxq_info->entries = 0;
1187
1188 fail_bad_conf:
1189 fail_size_up_rings:
1190         sfc_log_init(sa, "failed %d", rc);
1191         return rc;
1192 }
1193
1194 void
1195 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1196 {
1197         struct sfc_rxq_info *rxq_info;
1198         struct sfc_rxq *rxq;
1199
1200         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1201         sa->eth_dev->data->rx_queues[sw_index] = NULL;
1202
1203         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1204
1205         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1206
1207         sa->priv.dp_rx->qdestroy(rxq_info->dp);
1208         rxq_info->dp = NULL;
1209
1210         rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1211         rxq_info->entries = 0;
1212
1213         rxq = &sa->rxq_ctrl[sw_index];
1214
1215         sfc_dma_free(sa, &rxq->mem);
1216
1217         sfc_ev_qfini(rxq->evq);
1218         rxq->evq = NULL;
1219 }
1220
1221 /*
1222  * Mapping between RTE RSS hash functions and their EFX counterparts.
1223  */
1224 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1225         { ETH_RSS_NONFRAG_IPV4_TCP,
1226           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1227         { ETH_RSS_NONFRAG_IPV4_UDP,
1228           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1229         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1230           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1231         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1232           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1233         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1234           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1235           EFX_RX_HASH(IPV4, 2TUPLE) },
1236         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1237           ETH_RSS_IPV6_EX,
1238           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1239           EFX_RX_HASH(IPV6, 2TUPLE) }
1240 };
1241
1242 static efx_rx_hash_type_t
1243 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1244                             unsigned int *hash_type_flags_supported,
1245                             unsigned int nb_hash_type_flags_supported)
1246 {
1247         efx_rx_hash_type_t hash_type_masked = 0;
1248         unsigned int i, j;
1249
1250         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1251                 unsigned int class_tuple_lbn[] = {
1252                         EFX_RX_CLASS_IPV4_TCP_LBN,
1253                         EFX_RX_CLASS_IPV4_UDP_LBN,
1254                         EFX_RX_CLASS_IPV4_LBN,
1255                         EFX_RX_CLASS_IPV6_TCP_LBN,
1256                         EFX_RX_CLASS_IPV6_UDP_LBN,
1257                         EFX_RX_CLASS_IPV6_LBN
1258                 };
1259
1260                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1261                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1262                         unsigned int flag;
1263
1264                         tuple_mask <<= class_tuple_lbn[j];
1265                         flag = hash_type & tuple_mask;
1266
1267                         if (flag == hash_type_flags_supported[i])
1268                                 hash_type_masked |= flag;
1269                 }
1270         }
1271
1272         return hash_type_masked;
1273 }
1274
1275 int
1276 sfc_rx_hash_init(struct sfc_adapter *sa)
1277 {
1278         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1279         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1280         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1281         efx_rx_hash_alg_t alg;
1282         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1283         unsigned int nb_flags_supp;
1284         struct sfc_rss_hf_rte_to_efx *hf_map;
1285         struct sfc_rss_hf_rte_to_efx *entry;
1286         efx_rx_hash_type_t efx_hash_types;
1287         unsigned int i;
1288         int rc;
1289
1290         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1291                 alg = EFX_RX_HASHALG_TOEPLITZ;
1292         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1293                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1294         else
1295                 return EINVAL;
1296
1297         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1298                                          RTE_DIM(flags_supp), &nb_flags_supp);
1299         if (rc != 0)
1300                 return rc;
1301
1302         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1303                                    RTE_DIM(sfc_rss_hf_map),
1304                                    sizeof(*hf_map), 0, sa->socket_id);
1305         if (hf_map == NULL)
1306                 return ENOMEM;
1307
1308         entry = hf_map;
1309         efx_hash_types = 0;
1310         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1311                 efx_rx_hash_type_t ht;
1312
1313                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1314                                                  flags_supp, nb_flags_supp);
1315                 if (ht != 0) {
1316                         entry->rte = sfc_rss_hf_map[i].rte;
1317                         entry->efx = ht;
1318                         efx_hash_types |= ht;
1319                         ++entry;
1320                 }
1321         }
1322
1323         rss->hash_alg = alg;
1324         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1325         rss->hf_map = hf_map;
1326         rss->hash_types = efx_hash_types;
1327
1328         return 0;
1329 }
1330
1331 void
1332 sfc_rx_hash_fini(struct sfc_adapter *sa)
1333 {
1334         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1335
1336         rte_free(rss->hf_map);
1337 }
1338
1339 int
1340 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1341                      efx_rx_hash_type_t *efx)
1342 {
1343         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1344         efx_rx_hash_type_t hash_types = 0;
1345         unsigned int i;
1346
1347         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1348                 uint64_t rte_mask = rss->hf_map[i].rte;
1349
1350                 if ((rte & rte_mask) != 0) {
1351                         rte &= ~rte_mask;
1352                         hash_types |= rss->hf_map[i].efx;
1353                 }
1354         }
1355
1356         if (rte != 0) {
1357                 sfc_err(sa, "unsupported hash functions requested");
1358                 return EINVAL;
1359         }
1360
1361         *efx = hash_types;
1362
1363         return 0;
1364 }
1365
1366 uint64_t
1367 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1368 {
1369         uint64_t rte = 0;
1370         unsigned int i;
1371
1372         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1373                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1374
1375                 if ((efx & hash_type) == hash_type)
1376                         rte |= rss->hf_map[i].rte;
1377         }
1378
1379         return rte;
1380 }
1381
1382 static int
1383 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1384                             struct rte_eth_rss_conf *conf)
1385 {
1386         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1387         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1388         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1389         int rc;
1390
1391         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1392                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1393                     conf->rss_key != NULL)
1394                         return EINVAL;
1395         }
1396
1397         if (conf->rss_hf != 0) {
1398                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1399                 if (rc != 0)
1400                         return rc;
1401         }
1402
1403         if (conf->rss_key != NULL) {
1404                 if (conf->rss_key_len != sizeof(rss->key)) {
1405                         sfc_err(sa, "RSS key size is wrong (should be %lu)",
1406                                 sizeof(rss->key));
1407                         return EINVAL;
1408                 }
1409                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1410         }
1411
1412         rss->hash_types = efx_hash_types;
1413
1414         return 0;
1415 }
1416
1417 static int
1418 sfc_rx_rss_config(struct sfc_adapter *sa)
1419 {
1420         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1421         int rc = 0;
1422
1423         if (rss->channels > 0) {
1424                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1425                                            rss->hash_alg, rss->hash_types,
1426                                            B_TRUE);
1427                 if (rc != 0)
1428                         goto finish;
1429
1430                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1431                                           rss->key, sizeof(rss->key));
1432                 if (rc != 0)
1433                         goto finish;
1434
1435                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1436                                           rss->tbl, RTE_DIM(rss->tbl));
1437         }
1438
1439 finish:
1440         return rc;
1441 }
1442
1443 int
1444 sfc_rx_start(struct sfc_adapter *sa)
1445 {
1446         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1447         unsigned int sw_index;
1448         int rc;
1449
1450         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1451
1452         rc = efx_rx_init(sa->nic);
1453         if (rc != 0)
1454                 goto fail_rx_init;
1455
1456         rc = sfc_rx_rss_config(sa);
1457         if (rc != 0)
1458                 goto fail_rss_config;
1459
1460         for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1461                 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1462                     (!sas->rxq_info[sw_index].deferred_start ||
1463                      sas->rxq_info[sw_index].deferred_started)) {
1464                         rc = sfc_rx_qstart(sa, sw_index);
1465                         if (rc != 0)
1466                                 goto fail_rx_qstart;
1467                 }
1468         }
1469
1470         return 0;
1471
1472 fail_rx_qstart:
1473         while (sw_index-- > 0)
1474                 sfc_rx_qstop(sa, sw_index);
1475
1476 fail_rss_config:
1477         efx_rx_fini(sa->nic);
1478
1479 fail_rx_init:
1480         sfc_log_init(sa, "failed %d", rc);
1481         return rc;
1482 }
1483
1484 void
1485 sfc_rx_stop(struct sfc_adapter *sa)
1486 {
1487         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1488         unsigned int sw_index;
1489
1490         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1491
1492         sw_index = sas->rxq_count;
1493         while (sw_index-- > 0) {
1494                 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1495                         sfc_rx_qstop(sa, sw_index);
1496         }
1497
1498         efx_rx_fini(sa->nic);
1499 }
1500
1501 static int
1502 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1503 {
1504         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1505         struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1506         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1507         unsigned int max_entries;
1508
1509         max_entries = encp->enc_rxq_max_ndescs;
1510         SFC_ASSERT(rte_is_power_of_2(max_entries));
1511
1512         rxq_info->max_entries = max_entries;
1513
1514         return 0;
1515 }
1516
1517 static int
1518 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1519 {
1520         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1521         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1522                                       sfc_rx_get_queue_offload_caps(sa);
1523         struct sfc_rss *rss = &sas->rss;
1524         int rc = 0;
1525
1526         switch (rxmode->mq_mode) {
1527         case ETH_MQ_RX_NONE:
1528                 /* No special checks are required */
1529                 break;
1530         case ETH_MQ_RX_RSS:
1531                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1532                         sfc_err(sa, "RSS is not available");
1533                         rc = EINVAL;
1534                 }
1535                 break;
1536         default:
1537                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1538                         rxmode->mq_mode);
1539                 rc = EINVAL;
1540         }
1541
1542         /*
1543          * Requested offloads are validated against supported by ethdev,
1544          * so unsupported offloads cannot be added as the result of
1545          * below check.
1546          */
1547         if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1548             (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1549                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1550                 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1551         }
1552
1553         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1554             (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1555                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1556                 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1557         }
1558
1559         return rc;
1560 }
1561
1562 /**
1563  * Destroy excess queues that are no longer needed after reconfiguration
1564  * or complete close.
1565  */
1566 static void
1567 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1568 {
1569         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1570         int sw_index;
1571
1572         SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1573
1574         sw_index = sas->rxq_count;
1575         while (--sw_index >= (int)nb_rx_queues) {
1576                 if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1577                         sfc_rx_qfini(sa, sw_index);
1578         }
1579
1580         sas->rxq_count = nb_rx_queues;
1581 }
1582
1583 /**
1584  * Initialize Rx subsystem.
1585  *
1586  * Called at device (re)configuration stage when number of receive queues is
1587  * specified together with other device level receive configuration.
1588  *
1589  * It should be used to allocate NUMA-unaware resources.
1590  */
1591 int
1592 sfc_rx_configure(struct sfc_adapter *sa)
1593 {
1594         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1595         struct sfc_rss *rss = &sas->rss;
1596         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1597         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1598         int rc;
1599
1600         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1601                      nb_rx_queues, sas->rxq_count);
1602
1603         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1604         if (rc != 0)
1605                 goto fail_check_mode;
1606
1607         if (nb_rx_queues == sas->rxq_count)
1608                 goto configure_rss;
1609
1610         if (sas->rxq_info == NULL) {
1611                 rc = ENOMEM;
1612                 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1613                                                   sizeof(sas->rxq_info[0]), 0,
1614                                                   sa->socket_id);
1615                 if (sas->rxq_info == NULL)
1616                         goto fail_rxqs_alloc;
1617
1618                 /*
1619                  * Allocate primary process only RxQ control from heap
1620                  * since it should not be shared.
1621                  */
1622                 rc = ENOMEM;
1623                 sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1624                 if (sa->rxq_ctrl == NULL)
1625                         goto fail_rxqs_ctrl_alloc;
1626         } else {
1627                 struct sfc_rxq_info *new_rxq_info;
1628                 struct sfc_rxq *new_rxq_ctrl;
1629
1630                 if (nb_rx_queues < sas->rxq_count)
1631                         sfc_rx_fini_queues(sa, nb_rx_queues);
1632
1633                 rc = ENOMEM;
1634                 new_rxq_info =
1635                         rte_realloc(sas->rxq_info,
1636                                     nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1637                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1638                         goto fail_rxqs_realloc;
1639
1640                 rc = ENOMEM;
1641                 new_rxq_ctrl = realloc(sa->rxq_ctrl,
1642                                        nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1643                 if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1644                         goto fail_rxqs_ctrl_realloc;
1645
1646                 sas->rxq_info = new_rxq_info;
1647                 sa->rxq_ctrl = new_rxq_ctrl;
1648                 if (nb_rx_queues > sas->rxq_count) {
1649                         memset(&sas->rxq_info[sas->rxq_count], 0,
1650                                (nb_rx_queues - sas->rxq_count) *
1651                                sizeof(sas->rxq_info[0]));
1652                         memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1653                                (nb_rx_queues - sas->rxq_count) *
1654                                sizeof(sa->rxq_ctrl[0]));
1655                 }
1656         }
1657
1658         while (sas->rxq_count < nb_rx_queues) {
1659                 rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1660                 if (rc != 0)
1661                         goto fail_rx_qinit_info;
1662
1663                 sas->rxq_count++;
1664         }
1665
1666 configure_rss:
1667         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1668                          MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1669
1670         if (rss->channels > 0) {
1671                 struct rte_eth_rss_conf *adv_conf_rss;
1672                 unsigned int sw_index;
1673
1674                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1675                         rss->tbl[sw_index] = sw_index % rss->channels;
1676
1677                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1678                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1679                 if (rc != 0)
1680                         goto fail_rx_process_adv_conf_rss;
1681         }
1682
1683         return 0;
1684
1685 fail_rx_process_adv_conf_rss:
1686 fail_rx_qinit_info:
1687 fail_rxqs_ctrl_realloc:
1688 fail_rxqs_realloc:
1689 fail_rxqs_ctrl_alloc:
1690 fail_rxqs_alloc:
1691         sfc_rx_close(sa);
1692
1693 fail_check_mode:
1694         sfc_log_init(sa, "failed %d", rc);
1695         return rc;
1696 }
1697
1698 /**
1699  * Shutdown Rx subsystem.
1700  *
1701  * Called at device close stage, for example, before device shutdown.
1702  */
1703 void
1704 sfc_rx_close(struct sfc_adapter *sa)
1705 {
1706         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1707
1708         sfc_rx_fini_queues(sa, 0);
1709
1710         rss->channels = 0;
1711
1712         free(sa->rxq_ctrl);
1713         sa->rxq_ctrl = NULL;
1714
1715         rte_free(sfc_sa2shared(sa)->rxq_info);
1716         sfc_sa2shared(sa)->rxq_info = NULL;
1717 }