net/sfc: move datapath ops pointers to process private data
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq *rxq)
43 {
44         rxq->state |= SFC_RXQ_FLUSHED;
45         rxq->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq *rxq)
50 {
51         rxq->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58         unsigned int free_space;
59         unsigned int bulks;
60         void *objs[SFC_RX_REFILL_BULK];
61         efsys_dma_addr_t addr[RTE_DIM(objs)];
62         unsigned int added = rxq->added;
63         unsigned int id;
64         unsigned int i;
65         struct sfc_efx_rx_sw_desc *rxd;
66         struct rte_mbuf *m;
67         uint16_t port_id = rxq->dp.dpq.port_id;
68
69         free_space = rxq->max_fill_level - (added - rxq->completed);
70
71         if (free_space < rxq->refill_threshold)
72                 return;
73
74         bulks = free_space / RTE_DIM(objs);
75         /* refill_threshold guarantees that bulks is positive */
76         SFC_ASSERT(bulks > 0);
77
78         id = added & rxq->ptr_mask;
79         do {
80                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81                                                   RTE_DIM(objs)) < 0)) {
82                         /*
83                          * It is hardly a safe way to increment counter
84                          * from different contexts, but all PMDs do it.
85                          */
86                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87                                 RTE_DIM(objs);
88                         /* Return if we have posted nothing yet */
89                         if (added == rxq->added)
90                                 return;
91                         /* Push posted */
92                         break;
93                 }
94
95                 for (i = 0; i < RTE_DIM(objs);
96                      ++i, id = (id + 1) & rxq->ptr_mask) {
97                         m = objs[i];
98
99                         MBUF_RAW_ALLOC_CHECK(m);
100
101                         rxd = &rxq->sw_desc[id];
102                         rxd->mbuf = m;
103
104                         m->data_off = RTE_PKTMBUF_HEADROOM;
105                         m->port = port_id;
106
107                         addr[i] = rte_pktmbuf_iova(m);
108                 }
109
110                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
111                              RTE_DIM(objs), rxq->completed, added);
112                 added += RTE_DIM(objs);
113         } while (--bulks > 0);
114
115         SFC_ASSERT(added != rxq->added);
116         rxq->added = added;
117         efx_rx_qpush(rxq->common, added, &rxq->pushed);
118 }
119
120 static uint64_t
121 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
122 {
123         uint64_t mbuf_flags = 0;
124
125         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
126         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
127                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
128                 break;
129         case EFX_PKT_IPV4:
130                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
131                 break;
132         default:
133                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
134                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
135                            PKT_RX_IP_CKSUM_UNKNOWN);
136                 break;
137         }
138
139         switch ((desc_flags &
140                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
141         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
142         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
143                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
144                 break;
145         case EFX_PKT_TCP:
146         case EFX_PKT_UDP:
147                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
148                 break;
149         default:
150                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
151                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
152                            PKT_RX_L4_CKSUM_UNKNOWN);
153                 break;
154         }
155
156         return mbuf_flags;
157 }
158
159 static uint32_t
160 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
161 {
162         return RTE_PTYPE_L2_ETHER |
163                 ((desc_flags & EFX_PKT_IPV4) ?
164                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
165                 ((desc_flags & EFX_PKT_IPV6) ?
166                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
167                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
168                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
169 }
170
171 static const uint32_t *
172 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
173 {
174         static const uint32_t ptypes[] = {
175                 RTE_PTYPE_L2_ETHER,
176                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
177                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
178                 RTE_PTYPE_L4_TCP,
179                 RTE_PTYPE_L4_UDP,
180                 RTE_PTYPE_UNKNOWN
181         };
182
183         return ptypes;
184 }
185
186 static void
187 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
188                         struct rte_mbuf *m)
189 {
190         uint8_t *mbuf_data;
191
192
193         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
194                 return;
195
196         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
197
198         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
199                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
200                                                       EFX_RX_HASHALG_TOEPLITZ,
201                                                       mbuf_data);
202
203                 m->ol_flags |= PKT_RX_RSS_HASH;
204         }
205 }
206
207 static uint16_t
208 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
209 {
210         struct sfc_dp_rxq *dp_rxq = rx_queue;
211         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
212         unsigned int completed;
213         unsigned int prefix_size = rxq->prefix_size;
214         unsigned int done_pkts = 0;
215         boolean_t discard_next = B_FALSE;
216         struct rte_mbuf *scatter_pkt = NULL;
217
218         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
219                 return 0;
220
221         sfc_ev_qpoll(rxq->evq);
222
223         completed = rxq->completed;
224         while (completed != rxq->pending && done_pkts < nb_pkts) {
225                 unsigned int id;
226                 struct sfc_efx_rx_sw_desc *rxd;
227                 struct rte_mbuf *m;
228                 unsigned int seg_len;
229                 unsigned int desc_flags;
230
231                 id = completed++ & rxq->ptr_mask;
232                 rxd = &rxq->sw_desc[id];
233                 m = rxd->mbuf;
234                 desc_flags = rxd->flags;
235
236                 if (discard_next)
237                         goto discard;
238
239                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
240                         goto discard;
241
242                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
243                         uint16_t tmp_size;
244                         int rc __rte_unused;
245
246                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
247                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
248                         SFC_ASSERT(rc == 0);
249                         seg_len = tmp_size;
250                 } else {
251                         seg_len = rxd->size - prefix_size;
252                 }
253
254                 rte_pktmbuf_data_len(m) = seg_len;
255                 rte_pktmbuf_pkt_len(m) = seg_len;
256
257                 if (scatter_pkt != NULL) {
258                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
259                                 rte_pktmbuf_free(scatter_pkt);
260                                 goto discard;
261                         }
262                         /* The packet to deliver */
263                         m = scatter_pkt;
264                 }
265
266                 if (desc_flags & EFX_PKT_CONT) {
267                         /* The packet is scattered, more fragments to come */
268                         scatter_pkt = m;
269                         /* Further fragments have no prefix */
270                         prefix_size = 0;
271                         continue;
272                 }
273
274                 /* Scattered packet is done */
275                 scatter_pkt = NULL;
276                 /* The first fragment of the packet has prefix */
277                 prefix_size = rxq->prefix_size;
278
279                 m->ol_flags =
280                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
281                 m->packet_type =
282                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
283
284                 /*
285                  * Extract RSS hash from the packet prefix and
286                  * set the corresponding field (if needed and possible)
287                  */
288                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
289
290                 m->data_off += prefix_size;
291
292                 *rx_pkts++ = m;
293                 done_pkts++;
294                 continue;
295
296 discard:
297                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
298                 rte_mbuf_raw_free(m);
299                 rxd->mbuf = NULL;
300         }
301
302         /* pending is only moved when entire packet is received */
303         SFC_ASSERT(scatter_pkt == NULL);
304
305         rxq->completed = completed;
306
307         sfc_efx_rx_qrefill(rxq);
308
309         return done_pkts;
310 }
311
312 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
313 static unsigned int
314 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
315 {
316         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
317
318         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
319                 return 0;
320
321         sfc_ev_qpoll(rxq->evq);
322
323         return rxq->pending - rxq->completed;
324 }
325
326 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
327 static int
328 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
329 {
330         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
331
332         if (unlikely(offset > rxq->ptr_mask))
333                 return -EINVAL;
334
335         /*
336          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
337          * it is required for the queue to be running, but the
338          * check is omitted because API design assumes that it
339          * is the duty of the caller to satisfy all conditions
340          */
341         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
342                    SFC_EFX_RXQ_FLAG_RUNNING);
343         sfc_ev_qpoll(rxq->evq);
344
345         /*
346          * There is a handful of reserved entries in the ring,
347          * but an explicit check whether the offset points to
348          * a reserved entry is neglected since the two checks
349          * below rely on the figures which take the HW limits
350          * into account and thus if an entry is reserved, the
351          * checks will fail and UNAVAIL code will be returned
352          */
353
354         if (offset < (rxq->pending - rxq->completed))
355                 return RTE_ETH_RX_DESC_DONE;
356
357         if (offset < (rxq->added - rxq->completed))
358                 return RTE_ETH_RX_DESC_AVAIL;
359
360         return RTE_ETH_RX_DESC_UNAVAIL;
361 }
362
363 struct sfc_rxq *
364 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
365 {
366         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
367         struct rte_eth_dev *eth_dev;
368         struct sfc_adapter *sa;
369         struct sfc_rxq *rxq;
370
371         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
372         eth_dev = &rte_eth_devices[dpq->port_id];
373
374         sa = eth_dev->data->dev_private;
375
376         SFC_ASSERT(dpq->queue_id < sa->rxq_count);
377         rxq = sa->rxq_info[dpq->queue_id].rxq;
378
379         SFC_ASSERT(rxq != NULL);
380         return rxq;
381 }
382
383 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
384 static int
385 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
386                           __rte_unused struct rte_mempool *mb_pool,
387                           unsigned int *rxq_entries,
388                           unsigned int *evq_entries,
389                           unsigned int *rxq_max_fill_level)
390 {
391         *rxq_entries = nb_rx_desc;
392         *evq_entries = nb_rx_desc;
393         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
394         return 0;
395 }
396
397 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
398 static int
399 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
400                    const struct rte_pci_addr *pci_addr, int socket_id,
401                    const struct sfc_dp_rx_qcreate_info *info,
402                    struct sfc_dp_rxq **dp_rxqp)
403 {
404         struct sfc_efx_rxq *rxq;
405         int rc;
406
407         rc = ENOMEM;
408         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
409                                  RTE_CACHE_LINE_SIZE, socket_id);
410         if (rxq == NULL)
411                 goto fail_rxq_alloc;
412
413         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
414
415         rc = ENOMEM;
416         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
417                                          info->rxq_entries,
418                                          sizeof(*rxq->sw_desc),
419                                          RTE_CACHE_LINE_SIZE, socket_id);
420         if (rxq->sw_desc == NULL)
421                 goto fail_desc_alloc;
422
423         /* efx datapath is bound to efx control path */
424         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
425         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
426                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
427         rxq->ptr_mask = info->rxq_entries - 1;
428         rxq->batch_max = info->batch_max;
429         rxq->prefix_size = info->prefix_size;
430         rxq->max_fill_level = info->max_fill_level;
431         rxq->refill_threshold = info->refill_threshold;
432         rxq->buf_size = info->buf_size;
433         rxq->refill_mb_pool = info->refill_mb_pool;
434
435         *dp_rxqp = &rxq->dp;
436         return 0;
437
438 fail_desc_alloc:
439         rte_free(rxq);
440
441 fail_rxq_alloc:
442         return rc;
443 }
444
445 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
446 static void
447 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
448 {
449         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
450
451         rte_free(rxq->sw_desc);
452         rte_free(rxq);
453 }
454
455 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
456 static int
457 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
458                   __rte_unused unsigned int evq_read_ptr)
459 {
460         /* libefx-based datapath is specific to libefx-based PMD */
461         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
462         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
463
464         rxq->common = crxq->common;
465
466         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
467
468         sfc_efx_rx_qrefill(rxq);
469
470         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
471
472         return 0;
473 }
474
475 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
476 static void
477 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
478                  __rte_unused unsigned int *evq_read_ptr)
479 {
480         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
481
482         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
483
484         /* libefx-based datapath is bound to libefx-based PMD and uses
485          * event queue structure directly. So, there is no necessity to
486          * return EvQ read pointer.
487          */
488 }
489
490 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
491 static void
492 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
493 {
494         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
495         unsigned int i;
496         struct sfc_efx_rx_sw_desc *rxd;
497
498         for (i = rxq->completed; i != rxq->added; ++i) {
499                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
500                 rte_mbuf_raw_free(rxd->mbuf);
501                 rxd->mbuf = NULL;
502                 /* Packed stream relies on 0 in inactive SW desc.
503                  * Rx queue stop is not performance critical, so
504                  * there is no harm to do it always.
505                  */
506                 rxd->flags = 0;
507                 rxd->size = 0;
508         }
509
510         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
511 }
512
513 struct sfc_dp_rx sfc_efx_rx = {
514         .dp = {
515                 .name           = SFC_KVARG_DATAPATH_EFX,
516                 .type           = SFC_DP_RX,
517                 .hw_fw_caps     = 0,
518         },
519         .features               = SFC_DP_RX_FEAT_SCATTER |
520                                   SFC_DP_RX_FEAT_CHECKSUM,
521         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
522         .qcreate                = sfc_efx_rx_qcreate,
523         .qdestroy               = sfc_efx_rx_qdestroy,
524         .qstart                 = sfc_efx_rx_qstart,
525         .qstop                  = sfc_efx_rx_qstop,
526         .qpurge                 = sfc_efx_rx_qpurge,
527         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
528         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
529         .qdesc_status           = sfc_efx_rx_qdesc_status,
530         .pkt_burst              = sfc_efx_recv_pkts,
531 };
532
533 static void
534 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
535 {
536         struct sfc_rxq *rxq;
537         unsigned int retry_count;
538         unsigned int wait_count;
539         int rc;
540
541         rxq = sa->rxq_info[sw_index].rxq;
542         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
543
544         /*
545          * Retry Rx queue flushing in the case of flush failed or
546          * timeout. In the worst case it can delay for 6 seconds.
547          */
548         for (retry_count = 0;
549              ((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
550              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
551              ++retry_count) {
552                 rc = efx_rx_qflush(rxq->common);
553                 if (rc != 0) {
554                         rxq->state |= (rc == EALREADY) ?
555                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
556                         break;
557                 }
558                 rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
559                 rxq->state |= SFC_RXQ_FLUSHING;
560
561                 /*
562                  * Wait for Rx queue flush done or failed event at least
563                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
564                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
565                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
566                  */
567                 wait_count = 0;
568                 do {
569                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
570                         sfc_ev_qpoll(rxq->evq);
571                 } while ((rxq->state & SFC_RXQ_FLUSHING) &&
572                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
573
574                 if (rxq->state & SFC_RXQ_FLUSHING)
575                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
576
577                 if (rxq->state & SFC_RXQ_FLUSH_FAILED)
578                         sfc_err(sa, "RxQ %u flush failed", sw_index);
579
580                 if (rxq->state & SFC_RXQ_FLUSHED)
581                         sfc_notice(sa, "RxQ %u flushed", sw_index);
582         }
583
584         sa->priv.dp_rx->qpurge(rxq->dp);
585 }
586
587 static int
588 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
589 {
590         struct sfc_rss *rss = &sa->rss;
591         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
592         struct sfc_port *port = &sa->port;
593         int rc;
594
595         /*
596          * If promiscuous or all-multicast mode has been requested, setting
597          * filter for the default Rx queue might fail, in particular, while
598          * running over PCI function which is not a member of corresponding
599          * privilege groups; if this occurs, few iterations will be made to
600          * repeat this step without promiscuous and all-multicast flags set
601          */
602 retry:
603         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
604         if (rc == 0)
605                 return 0;
606         else if (rc != EOPNOTSUPP)
607                 return rc;
608
609         if (port->promisc) {
610                 sfc_warn(sa, "promiscuous mode has been requested, "
611                              "but the HW rejects it");
612                 sfc_warn(sa, "promiscuous mode will be disabled");
613
614                 port->promisc = B_FALSE;
615                 rc = sfc_set_rx_mode(sa);
616                 if (rc != 0)
617                         return rc;
618
619                 goto retry;
620         }
621
622         if (port->allmulti) {
623                 sfc_warn(sa, "all-multicast mode has been requested, "
624                              "but the HW rejects it");
625                 sfc_warn(sa, "all-multicast mode will be disabled");
626
627                 port->allmulti = B_FALSE;
628                 rc = sfc_set_rx_mode(sa);
629                 if (rc != 0)
630                         return rc;
631
632                 goto retry;
633         }
634
635         return rc;
636 }
637
638 int
639 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
640 {
641         struct sfc_port *port = &sa->port;
642         struct sfc_rxq_info *rxq_info;
643         struct sfc_rxq *rxq;
644         struct sfc_evq *evq;
645         int rc;
646
647         sfc_log_init(sa, "sw_index=%u", sw_index);
648
649         SFC_ASSERT(sw_index < sa->rxq_count);
650
651         rxq_info = &sa->rxq_info[sw_index];
652         rxq = rxq_info->rxq;
653         SFC_ASSERT(rxq != NULL);
654         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
655
656         evq = rxq->evq;
657
658         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
659         if (rc != 0)
660                 goto fail_ev_qstart;
661
662         switch (rxq_info->type) {
663         case EFX_RXQ_TYPE_DEFAULT:
664                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
665                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
666                         rxq_info->type_flags, evq->common, &rxq->common);
667                 break;
668         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
669                 struct rte_mempool *mp = rxq_info->refill_mb_pool;
670                 struct rte_mempool_info mp_info;
671
672                 rc = rte_mempool_ops_get_info(mp, &mp_info);
673                 if (rc != 0) {
674                         /* Positive errno is used in the driver */
675                         rc = -rc;
676                         goto fail_mp_get_info;
677                 }
678                 if (mp_info.contig_block_size <= 0) {
679                         rc = EINVAL;
680                         goto fail_bad_contig_block_size;
681                 }
682                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
683                         mp_info.contig_block_size, rxq->buf_size,
684                         mp->header_size + mp->elt_size + mp->trailer_size,
685                         sa->rxd_wait_timeout_ns,
686                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
687                         evq->common, &rxq->common);
688                 break;
689         }
690         default:
691                 rc = ENOTSUP;
692         }
693         if (rc != 0)
694                 goto fail_rx_qcreate;
695
696         efx_rx_qenable(rxq->common);
697
698         rc = sa->priv.dp_rx->qstart(rxq->dp, evq->read_ptr);
699         if (rc != 0)
700                 goto fail_dp_qstart;
701
702         rxq->state |= SFC_RXQ_STARTED;
703
704         if ((sw_index == 0) && !port->isolated) {
705                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
706                 if (rc != 0)
707                         goto fail_mac_filter_default_rxq_set;
708         }
709
710         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
711         sa->eth_dev->data->rx_queue_state[sw_index] =
712                 RTE_ETH_QUEUE_STATE_STARTED;
713
714         return 0;
715
716 fail_mac_filter_default_rxq_set:
717         sa->priv.dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
718
719 fail_dp_qstart:
720         sfc_rx_qflush(sa, sw_index);
721
722 fail_rx_qcreate:
723 fail_bad_contig_block_size:
724 fail_mp_get_info:
725         sfc_ev_qstop(evq);
726
727 fail_ev_qstart:
728         return rc;
729 }
730
731 void
732 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
733 {
734         struct sfc_rxq_info *rxq_info;
735         struct sfc_rxq *rxq;
736
737         sfc_log_init(sa, "sw_index=%u", sw_index);
738
739         SFC_ASSERT(sw_index < sa->rxq_count);
740
741         rxq_info = &sa->rxq_info[sw_index];
742         rxq = rxq_info->rxq;
743
744         if (rxq == NULL || rxq->state == SFC_RXQ_INITIALIZED)
745                 return;
746         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
747
748         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
749         sa->eth_dev->data->rx_queue_state[sw_index] =
750                 RTE_ETH_QUEUE_STATE_STOPPED;
751
752         sa->priv.dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
753
754         if (sw_index == 0)
755                 efx_mac_filter_default_rxq_clear(sa->nic);
756
757         sfc_rx_qflush(sa, sw_index);
758
759         rxq->state = SFC_RXQ_INITIALIZED;
760
761         efx_rx_qdestroy(rxq->common);
762
763         sfc_ev_qstop(rxq->evq);
764 }
765
766 uint64_t
767 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
768 {
769         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
770         uint64_t caps = 0;
771
772         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
773
774         if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_CHECKSUM) {
775                 caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
776                 caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
777                 caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
778         }
779
780         if (encp->enc_tunnel_encapsulations_supported &&
781             (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
782                 caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
783
784         return caps;
785 }
786
787 uint64_t
788 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
789 {
790         uint64_t caps = 0;
791
792         if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
793                 caps |= DEV_RX_OFFLOAD_SCATTER;
794
795         return caps;
796 }
797
798 static int
799 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
800                    const struct rte_eth_rxconf *rx_conf,
801                    __rte_unused uint64_t offloads)
802 {
803         int rc = 0;
804
805         if (rx_conf->rx_thresh.pthresh != 0 ||
806             rx_conf->rx_thresh.hthresh != 0 ||
807             rx_conf->rx_thresh.wthresh != 0) {
808                 sfc_warn(sa,
809                         "RxQ prefetch/host/writeback thresholds are not supported");
810         }
811
812         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
813                 sfc_err(sa,
814                         "RxQ free threshold too large: %u vs maximum %u",
815                         rx_conf->rx_free_thresh, rxq_max_fill_level);
816                 rc = EINVAL;
817         }
818
819         if (rx_conf->rx_drop_en == 0) {
820                 sfc_err(sa, "RxQ drop disable is not supported");
821                 rc = EINVAL;
822         }
823
824         return rc;
825 }
826
827 static unsigned int
828 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
829 {
830         uint32_t data_off;
831         uint32_t order;
832
833         /* The mbuf object itself is always cache line aligned */
834         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
835
836         /* Data offset from mbuf object start */
837         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
838                 RTE_PKTMBUF_HEADROOM;
839
840         order = MIN(order, rte_bsf32(data_off));
841
842         return 1u << order;
843 }
844
845 static uint16_t
846 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
847 {
848         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
849         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
850         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
851         uint16_t buf_size;
852         unsigned int buf_aligned;
853         unsigned int start_alignment;
854         unsigned int end_padding_alignment;
855
856         /* Below it is assumed that both alignments are power of 2 */
857         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
858         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
859
860         /*
861          * mbuf is always cache line aligned, double-check
862          * that it meets rx buffer start alignment requirements.
863          */
864
865         /* Start from mbuf pool data room size */
866         buf_size = rte_pktmbuf_data_room_size(mb_pool);
867
868         /* Remove headroom */
869         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
870                 sfc_err(sa,
871                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
872                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
873                 return 0;
874         }
875         buf_size -= RTE_PKTMBUF_HEADROOM;
876
877         /* Calculate guaranteed data start alignment */
878         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
879
880         /* Reserve space for start alignment */
881         if (buf_aligned < nic_align_start) {
882                 start_alignment = nic_align_start - buf_aligned;
883                 if (buf_size <= start_alignment) {
884                         sfc_err(sa,
885                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
886                                 mb_pool->name,
887                                 rte_pktmbuf_data_room_size(mb_pool),
888                                 RTE_PKTMBUF_HEADROOM, start_alignment);
889                         return 0;
890                 }
891                 buf_aligned = nic_align_start;
892                 buf_size -= start_alignment;
893         } else {
894                 start_alignment = 0;
895         }
896
897         /* Make sure that end padding does not write beyond the buffer */
898         if (buf_aligned < nic_align_end) {
899                 /*
900                  * Estimate space which can be lost. If guarnteed buffer
901                  * size is odd, lost space is (nic_align_end - 1). More
902                  * accurate formula is below.
903                  */
904                 end_padding_alignment = nic_align_end -
905                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
906                 if (buf_size <= end_padding_alignment) {
907                         sfc_err(sa,
908                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
909                                 mb_pool->name,
910                                 rte_pktmbuf_data_room_size(mb_pool),
911                                 RTE_PKTMBUF_HEADROOM, start_alignment,
912                                 end_padding_alignment);
913                         return 0;
914                 }
915                 buf_size -= end_padding_alignment;
916         } else {
917                 /*
918                  * Start is aligned the same or better than end,
919                  * just align length.
920                  */
921                 buf_size = P2ALIGN(buf_size, nic_align_end);
922         }
923
924         return buf_size;
925 }
926
927 int
928 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
929              uint16_t nb_rx_desc, unsigned int socket_id,
930              const struct rte_eth_rxconf *rx_conf,
931              struct rte_mempool *mb_pool)
932 {
933         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
934         struct sfc_rss *rss = &sa->rss;
935         int rc;
936         unsigned int rxq_entries;
937         unsigned int evq_entries;
938         unsigned int rxq_max_fill_level;
939         uint64_t offloads;
940         uint16_t buf_size;
941         struct sfc_rxq_info *rxq_info;
942         struct sfc_evq *evq;
943         struct sfc_rxq *rxq;
944         struct sfc_dp_rx_qcreate_info info;
945
946         rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, mb_pool, &rxq_entries,
947                                             &evq_entries, &rxq_max_fill_level);
948         if (rc != 0)
949                 goto fail_size_up_rings;
950         SFC_ASSERT(rxq_entries >= EFX_RXQ_MINNDESCS);
951         SFC_ASSERT(rxq_entries <= EFX_RXQ_MAXNDESCS);
952         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
953
954         offloads = rx_conf->offloads |
955                 sa->eth_dev->data->dev_conf.rxmode.offloads;
956         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
957         if (rc != 0)
958                 goto fail_bad_conf;
959
960         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
961         if (buf_size == 0) {
962                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
963                         sw_index);
964                 rc = EINVAL;
965                 goto fail_bad_conf;
966         }
967
968         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
969             (~offloads & DEV_RX_OFFLOAD_SCATTER)) {
970                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
971                         "object size is too small", sw_index);
972                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
973                         "PDU size %u plus Rx prefix %u bytes",
974                         sw_index, buf_size, (unsigned int)sa->port.pdu,
975                         encp->enc_rx_prefix_size);
976                 rc = EINVAL;
977                 goto fail_bad_conf;
978         }
979
980         SFC_ASSERT(sw_index < sa->rxq_count);
981         rxq_info = &sa->rxq_info[sw_index];
982
983         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
984         rxq_info->entries = rxq_entries;
985
986         if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
987                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
988         else
989                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
990
991         rxq_info->type_flags =
992                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
993                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
994
995         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
996             (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
997                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
998
999         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1000                           evq_entries, socket_id, &evq);
1001         if (rc != 0)
1002                 goto fail_ev_qinit;
1003
1004         rc = ENOMEM;
1005         rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
1006                                  socket_id);
1007         if (rxq == NULL)
1008                 goto fail_rxq_alloc;
1009
1010         rxq_info->rxq = rxq;
1011
1012         rxq->evq = evq;
1013         rxq->hw_index = sw_index;
1014         rxq_info->refill_threshold =
1015                 RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
1016         rxq_info->refill_mb_pool = mb_pool;
1017         rxq->buf_size = buf_size;
1018
1019         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
1020                            socket_id, &rxq->mem);
1021         if (rc != 0)
1022                 goto fail_dma_alloc;
1023
1024         memset(&info, 0, sizeof(info));
1025         info.refill_mb_pool = rxq_info->refill_mb_pool;
1026         info.max_fill_level = rxq_max_fill_level;
1027         info.refill_threshold = rxq_info->refill_threshold;
1028         info.buf_size = buf_size;
1029         info.batch_max = encp->enc_rx_batch_max;
1030         info.prefix_size = encp->enc_rx_prefix_size;
1031
1032         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1033                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1034
1035         info.rxq_entries = rxq_info->entries;
1036         info.rxq_hw_ring = rxq->mem.esm_base;
1037         info.evq_entries = evq_entries;
1038         info.evq_hw_ring = evq->mem.esm_base;
1039         info.hw_index = rxq->hw_index;
1040         info.mem_bar = sa->mem_bar.esb_base;
1041         info.vi_window_shift = encp->enc_vi_window_shift;
1042
1043         rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1044                                      &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1045                                      socket_id, &info, &rxq->dp);
1046         if (rc != 0)
1047                 goto fail_dp_rx_qcreate;
1048
1049         evq->dp_rxq = rxq->dp;
1050
1051         rxq->state = SFC_RXQ_INITIALIZED;
1052
1053         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1054
1055         return 0;
1056
1057 fail_dp_rx_qcreate:
1058         sfc_dma_free(sa, &rxq->mem);
1059
1060 fail_dma_alloc:
1061         rxq_info->rxq = NULL;
1062         rte_free(rxq);
1063
1064 fail_rxq_alloc:
1065         sfc_ev_qfini(evq);
1066
1067 fail_ev_qinit:
1068         rxq_info->entries = 0;
1069
1070 fail_bad_conf:
1071 fail_size_up_rings:
1072         sfc_log_init(sa, "failed %d", rc);
1073         return rc;
1074 }
1075
1076 void
1077 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1078 {
1079         struct sfc_rxq_info *rxq_info;
1080         struct sfc_rxq *rxq;
1081
1082         SFC_ASSERT(sw_index < sa->rxq_count);
1083         sa->eth_dev->data->rx_queues[sw_index] = NULL;
1084
1085         rxq_info = &sa->rxq_info[sw_index];
1086
1087         rxq = rxq_info->rxq;
1088         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
1089
1090         sa->priv.dp_rx->qdestroy(rxq->dp);
1091         rxq->dp = NULL;
1092
1093         rxq_info->rxq = NULL;
1094         rxq_info->entries = 0;
1095
1096         sfc_dma_free(sa, &rxq->mem);
1097
1098         sfc_ev_qfini(rxq->evq);
1099         rxq->evq = NULL;
1100
1101         rte_free(rxq);
1102 }
1103
1104 /*
1105  * Mapping between RTE RSS hash functions and their EFX counterparts.
1106  */
1107 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1108         { ETH_RSS_NONFRAG_IPV4_TCP,
1109           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1110         { ETH_RSS_NONFRAG_IPV4_UDP,
1111           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1112         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1113           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1114         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1115           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1116         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1117           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1118           EFX_RX_HASH(IPV4, 2TUPLE) },
1119         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1120           ETH_RSS_IPV6_EX,
1121           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1122           EFX_RX_HASH(IPV6, 2TUPLE) }
1123 };
1124
1125 static efx_rx_hash_type_t
1126 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1127                             unsigned int *hash_type_flags_supported,
1128                             unsigned int nb_hash_type_flags_supported)
1129 {
1130         efx_rx_hash_type_t hash_type_masked = 0;
1131         unsigned int i, j;
1132
1133         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1134                 unsigned int class_tuple_lbn[] = {
1135                         EFX_RX_CLASS_IPV4_TCP_LBN,
1136                         EFX_RX_CLASS_IPV4_UDP_LBN,
1137                         EFX_RX_CLASS_IPV4_LBN,
1138                         EFX_RX_CLASS_IPV6_TCP_LBN,
1139                         EFX_RX_CLASS_IPV6_UDP_LBN,
1140                         EFX_RX_CLASS_IPV6_LBN
1141                 };
1142
1143                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1144                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1145                         unsigned int flag;
1146
1147                         tuple_mask <<= class_tuple_lbn[j];
1148                         flag = hash_type & tuple_mask;
1149
1150                         if (flag == hash_type_flags_supported[i])
1151                                 hash_type_masked |= flag;
1152                 }
1153         }
1154
1155         return hash_type_masked;
1156 }
1157
1158 int
1159 sfc_rx_hash_init(struct sfc_adapter *sa)
1160 {
1161         struct sfc_rss *rss = &sa->rss;
1162         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1163         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1164         efx_rx_hash_alg_t alg;
1165         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1166         unsigned int nb_flags_supp;
1167         struct sfc_rss_hf_rte_to_efx *hf_map;
1168         struct sfc_rss_hf_rte_to_efx *entry;
1169         efx_rx_hash_type_t efx_hash_types;
1170         unsigned int i;
1171         int rc;
1172
1173         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1174                 alg = EFX_RX_HASHALG_TOEPLITZ;
1175         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1176                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1177         else
1178                 return EINVAL;
1179
1180         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1181                                          RTE_DIM(flags_supp), &nb_flags_supp);
1182         if (rc != 0)
1183                 return rc;
1184
1185         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1186                                    RTE_DIM(sfc_rss_hf_map),
1187                                    sizeof(*hf_map), 0, sa->socket_id);
1188         if (hf_map == NULL)
1189                 return ENOMEM;
1190
1191         entry = hf_map;
1192         efx_hash_types = 0;
1193         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1194                 efx_rx_hash_type_t ht;
1195
1196                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1197                                                  flags_supp, nb_flags_supp);
1198                 if (ht != 0) {
1199                         entry->rte = sfc_rss_hf_map[i].rte;
1200                         entry->efx = ht;
1201                         efx_hash_types |= ht;
1202                         ++entry;
1203                 }
1204         }
1205
1206         rss->hash_alg = alg;
1207         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1208         rss->hf_map = hf_map;
1209         rss->hash_types = efx_hash_types;
1210
1211         return 0;
1212 }
1213
1214 void
1215 sfc_rx_hash_fini(struct sfc_adapter *sa)
1216 {
1217         struct sfc_rss *rss = &sa->rss;
1218
1219         rte_free(rss->hf_map);
1220 }
1221
1222 int
1223 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1224                      efx_rx_hash_type_t *efx)
1225 {
1226         struct sfc_rss *rss = &sa->rss;
1227         efx_rx_hash_type_t hash_types = 0;
1228         unsigned int i;
1229
1230         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1231                 uint64_t rte_mask = rss->hf_map[i].rte;
1232
1233                 if ((rte & rte_mask) != 0) {
1234                         rte &= ~rte_mask;
1235                         hash_types |= rss->hf_map[i].efx;
1236                 }
1237         }
1238
1239         if (rte != 0) {
1240                 sfc_err(sa, "unsupported hash functions requested");
1241                 return EINVAL;
1242         }
1243
1244         *efx = hash_types;
1245
1246         return 0;
1247 }
1248
1249 uint64_t
1250 sfc_rx_hf_efx_to_rte(struct sfc_adapter *sa, efx_rx_hash_type_t efx)
1251 {
1252         struct sfc_rss *rss = &sa->rss;
1253         uint64_t rte = 0;
1254         unsigned int i;
1255
1256         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1257                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1258
1259                 if ((efx & hash_type) == hash_type)
1260                         rte |= rss->hf_map[i].rte;
1261         }
1262
1263         return rte;
1264 }
1265
1266 static int
1267 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1268                             struct rte_eth_rss_conf *conf)
1269 {
1270         struct sfc_rss *rss = &sa->rss;
1271         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1272         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(sa, efx_hash_types);
1273         int rc;
1274
1275         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1276                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1277                     conf->rss_key != NULL)
1278                         return EINVAL;
1279         }
1280
1281         if (conf->rss_hf != 0) {
1282                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1283                 if (rc != 0)
1284                         return rc;
1285         }
1286
1287         if (conf->rss_key != NULL) {
1288                 if (conf->rss_key_len != sizeof(rss->key)) {
1289                         sfc_err(sa, "RSS key size is wrong (should be %lu)",
1290                                 sizeof(rss->key));
1291                         return EINVAL;
1292                 }
1293                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1294         }
1295
1296         rss->hash_types = efx_hash_types;
1297
1298         return 0;
1299 }
1300
1301 static int
1302 sfc_rx_rss_config(struct sfc_adapter *sa)
1303 {
1304         struct sfc_rss *rss = &sa->rss;
1305         int rc = 0;
1306
1307         if (rss->channels > 0) {
1308                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1309                                            rss->hash_alg, rss->hash_types,
1310                                            B_TRUE);
1311                 if (rc != 0)
1312                         goto finish;
1313
1314                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1315                                           rss->key, sizeof(rss->key));
1316                 if (rc != 0)
1317                         goto finish;
1318
1319                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1320                                           rss->tbl, RTE_DIM(rss->tbl));
1321         }
1322
1323 finish:
1324         return rc;
1325 }
1326
1327 int
1328 sfc_rx_start(struct sfc_adapter *sa)
1329 {
1330         unsigned int sw_index;
1331         int rc;
1332
1333         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1334
1335         rc = efx_rx_init(sa->nic);
1336         if (rc != 0)
1337                 goto fail_rx_init;
1338
1339         rc = sfc_rx_rss_config(sa);
1340         if (rc != 0)
1341                 goto fail_rss_config;
1342
1343         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
1344                 if (sa->rxq_info[sw_index].rxq != NULL &&
1345                     (!sa->rxq_info[sw_index].deferred_start ||
1346                      sa->rxq_info[sw_index].deferred_started)) {
1347                         rc = sfc_rx_qstart(sa, sw_index);
1348                         if (rc != 0)
1349                                 goto fail_rx_qstart;
1350                 }
1351         }
1352
1353         return 0;
1354
1355 fail_rx_qstart:
1356         while (sw_index-- > 0)
1357                 sfc_rx_qstop(sa, sw_index);
1358
1359 fail_rss_config:
1360         efx_rx_fini(sa->nic);
1361
1362 fail_rx_init:
1363         sfc_log_init(sa, "failed %d", rc);
1364         return rc;
1365 }
1366
1367 void
1368 sfc_rx_stop(struct sfc_adapter *sa)
1369 {
1370         unsigned int sw_index;
1371
1372         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1373
1374         sw_index = sa->rxq_count;
1375         while (sw_index-- > 0) {
1376                 if (sa->rxq_info[sw_index].rxq != NULL)
1377                         sfc_rx_qstop(sa, sw_index);
1378         }
1379
1380         efx_rx_fini(sa->nic);
1381 }
1382
1383 static int
1384 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1385 {
1386         struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
1387         unsigned int max_entries;
1388
1389         max_entries = EFX_RXQ_MAXNDESCS;
1390         SFC_ASSERT(rte_is_power_of_2(max_entries));
1391
1392         rxq_info->max_entries = max_entries;
1393
1394         return 0;
1395 }
1396
1397 static int
1398 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1399 {
1400         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1401                                       sfc_rx_get_queue_offload_caps(sa);
1402         struct sfc_rss *rss = &sa->rss;
1403         int rc = 0;
1404
1405         switch (rxmode->mq_mode) {
1406         case ETH_MQ_RX_NONE:
1407                 /* No special checks are required */
1408                 break;
1409         case ETH_MQ_RX_RSS:
1410                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1411                         sfc_err(sa, "RSS is not available");
1412                         rc = EINVAL;
1413                 }
1414                 break;
1415         default:
1416                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1417                         rxmode->mq_mode);
1418                 rc = EINVAL;
1419         }
1420
1421         /*
1422          * Requested offloads are validated against supported by ethdev,
1423          * so unsupported offloads cannot be added as the result of
1424          * below check.
1425          */
1426         if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1427             (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1428                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1429                 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1430         }
1431
1432         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1433             (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1434                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1435                 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1436         }
1437
1438         return rc;
1439 }
1440
1441 /**
1442  * Destroy excess queues that are no longer needed after reconfiguration
1443  * or complete close.
1444  */
1445 static void
1446 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1447 {
1448         int sw_index;
1449
1450         SFC_ASSERT(nb_rx_queues <= sa->rxq_count);
1451
1452         sw_index = sa->rxq_count;
1453         while (--sw_index >= (int)nb_rx_queues) {
1454                 if (sa->rxq_info[sw_index].rxq != NULL)
1455                         sfc_rx_qfini(sa, sw_index);
1456         }
1457
1458         sa->rxq_count = nb_rx_queues;
1459 }
1460
1461 /**
1462  * Initialize Rx subsystem.
1463  *
1464  * Called at device (re)configuration stage when number of receive queues is
1465  * specified together with other device level receive configuration.
1466  *
1467  * It should be used to allocate NUMA-unaware resources.
1468  */
1469 int
1470 sfc_rx_configure(struct sfc_adapter *sa)
1471 {
1472         struct sfc_rss *rss = &sa->rss;
1473         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1474         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1475         int rc;
1476
1477         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1478                      nb_rx_queues, sa->rxq_count);
1479
1480         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1481         if (rc != 0)
1482                 goto fail_check_mode;
1483
1484         if (nb_rx_queues == sa->rxq_count)
1485                 goto configure_rss;
1486
1487         if (sa->rxq_info == NULL) {
1488                 rc = ENOMEM;
1489                 sa->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1490                                                  sizeof(sa->rxq_info[0]), 0,
1491                                                  sa->socket_id);
1492                 if (sa->rxq_info == NULL)
1493                         goto fail_rxqs_alloc;
1494         } else {
1495                 struct sfc_rxq_info *new_rxq_info;
1496
1497                 if (nb_rx_queues < sa->rxq_count)
1498                         sfc_rx_fini_queues(sa, nb_rx_queues);
1499
1500                 rc = ENOMEM;
1501                 new_rxq_info =
1502                         rte_realloc(sa->rxq_info,
1503                                     nb_rx_queues * sizeof(sa->rxq_info[0]), 0);
1504                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1505                         goto fail_rxqs_realloc;
1506
1507                 sa->rxq_info = new_rxq_info;
1508                 if (nb_rx_queues > sa->rxq_count)
1509                         memset(&sa->rxq_info[sa->rxq_count], 0,
1510                                (nb_rx_queues - sa->rxq_count) *
1511                                sizeof(sa->rxq_info[0]));
1512         }
1513
1514         while (sa->rxq_count < nb_rx_queues) {
1515                 rc = sfc_rx_qinit_info(sa, sa->rxq_count);
1516                 if (rc != 0)
1517                         goto fail_rx_qinit_info;
1518
1519                 sa->rxq_count++;
1520         }
1521
1522 configure_rss:
1523         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1524                          MIN(sa->rxq_count, EFX_MAXRSS) : 0;
1525
1526         if (rss->channels > 0) {
1527                 struct rte_eth_rss_conf *adv_conf_rss;
1528                 unsigned int sw_index;
1529
1530                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1531                         rss->tbl[sw_index] = sw_index % rss->channels;
1532
1533                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1534                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1535                 if (rc != 0)
1536                         goto fail_rx_process_adv_conf_rss;
1537         }
1538
1539         return 0;
1540
1541 fail_rx_process_adv_conf_rss:
1542 fail_rx_qinit_info:
1543 fail_rxqs_realloc:
1544 fail_rxqs_alloc:
1545         sfc_rx_close(sa);
1546
1547 fail_check_mode:
1548         sfc_log_init(sa, "failed %d", rc);
1549         return rc;
1550 }
1551
1552 /**
1553  * Shutdown Rx subsystem.
1554  *
1555  * Called at device close stage, for example, before device shutdown.
1556  */
1557 void
1558 sfc_rx_close(struct sfc_adapter *sa)
1559 {
1560         struct sfc_rss *rss = &sa->rss;
1561
1562         sfc_rx_fini_queues(sa, 0);
1563
1564         rss->channels = 0;
1565
1566         rte_free(sa->rxq_info);
1567         sa->rxq_info = NULL;
1568 }