net/sfc: remove conditional compilation for RSS
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq *rxq)
43 {
44         rxq->state |= SFC_RXQ_FLUSHED;
45         rxq->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq *rxq)
50 {
51         rxq->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58         unsigned int free_space;
59         unsigned int bulks;
60         void *objs[SFC_RX_REFILL_BULK];
61         efsys_dma_addr_t addr[RTE_DIM(objs)];
62         unsigned int added = rxq->added;
63         unsigned int id;
64         unsigned int i;
65         struct sfc_efx_rx_sw_desc *rxd;
66         struct rte_mbuf *m;
67         uint16_t port_id = rxq->dp.dpq.port_id;
68
69         free_space = rxq->max_fill_level - (added - rxq->completed);
70
71         if (free_space < rxq->refill_threshold)
72                 return;
73
74         bulks = free_space / RTE_DIM(objs);
75         /* refill_threshold guarantees that bulks is positive */
76         SFC_ASSERT(bulks > 0);
77
78         id = added & rxq->ptr_mask;
79         do {
80                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81                                                   RTE_DIM(objs)) < 0)) {
82                         /*
83                          * It is hardly a safe way to increment counter
84                          * from different contexts, but all PMDs do it.
85                          */
86                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87                                 RTE_DIM(objs);
88                         /* Return if we have posted nothing yet */
89                         if (added == rxq->added)
90                                 return;
91                         /* Push posted */
92                         break;
93                 }
94
95                 for (i = 0; i < RTE_DIM(objs);
96                      ++i, id = (id + 1) & rxq->ptr_mask) {
97                         m = objs[i];
98
99                         rxd = &rxq->sw_desc[id];
100                         rxd->mbuf = m;
101
102                         SFC_ASSERT(rte_mbuf_refcnt_read(m) == 1);
103                         m->data_off = RTE_PKTMBUF_HEADROOM;
104                         SFC_ASSERT(m->next == NULL);
105                         SFC_ASSERT(m->nb_segs == 1);
106                         m->port = port_id;
107
108                         addr[i] = rte_pktmbuf_iova(m);
109                 }
110
111                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
112                              RTE_DIM(objs), rxq->completed, added);
113                 added += RTE_DIM(objs);
114         } while (--bulks > 0);
115
116         SFC_ASSERT(added != rxq->added);
117         rxq->added = added;
118         efx_rx_qpush(rxq->common, added, &rxq->pushed);
119 }
120
121 static uint64_t
122 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
123 {
124         uint64_t mbuf_flags = 0;
125
126         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
127         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
128                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
129                 break;
130         case EFX_PKT_IPV4:
131                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
132                 break;
133         default:
134                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
135                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
136                            PKT_RX_IP_CKSUM_UNKNOWN);
137                 break;
138         }
139
140         switch ((desc_flags &
141                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
142         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
143         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
144                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
145                 break;
146         case EFX_PKT_TCP:
147         case EFX_PKT_UDP:
148                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
149                 break;
150         default:
151                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
152                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
153                            PKT_RX_L4_CKSUM_UNKNOWN);
154                 break;
155         }
156
157         return mbuf_flags;
158 }
159
160 static uint32_t
161 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
162 {
163         return RTE_PTYPE_L2_ETHER |
164                 ((desc_flags & EFX_PKT_IPV4) ?
165                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
166                 ((desc_flags & EFX_PKT_IPV6) ?
167                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
168                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
169                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
170 }
171
172 static const uint32_t *
173 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
174 {
175         static const uint32_t ptypes[] = {
176                 RTE_PTYPE_L2_ETHER,
177                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
178                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
179                 RTE_PTYPE_L4_TCP,
180                 RTE_PTYPE_L4_UDP,
181                 RTE_PTYPE_UNKNOWN
182         };
183
184         return ptypes;
185 }
186
187 static void
188 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
189                         struct rte_mbuf *m)
190 {
191         uint8_t *mbuf_data;
192
193
194         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
195                 return;
196
197         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
198
199         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
200                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
201                                                       EFX_RX_HASHALG_TOEPLITZ,
202                                                       mbuf_data);
203
204                 m->ol_flags |= PKT_RX_RSS_HASH;
205         }
206 }
207
208 static uint16_t
209 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
210 {
211         struct sfc_dp_rxq *dp_rxq = rx_queue;
212         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
213         unsigned int completed;
214         unsigned int prefix_size = rxq->prefix_size;
215         unsigned int done_pkts = 0;
216         boolean_t discard_next = B_FALSE;
217         struct rte_mbuf *scatter_pkt = NULL;
218
219         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
220                 return 0;
221
222         sfc_ev_qpoll(rxq->evq);
223
224         completed = rxq->completed;
225         while (completed != rxq->pending && done_pkts < nb_pkts) {
226                 unsigned int id;
227                 struct sfc_efx_rx_sw_desc *rxd;
228                 struct rte_mbuf *m;
229                 unsigned int seg_len;
230                 unsigned int desc_flags;
231
232                 id = completed++ & rxq->ptr_mask;
233                 rxd = &rxq->sw_desc[id];
234                 m = rxd->mbuf;
235                 desc_flags = rxd->flags;
236
237                 if (discard_next)
238                         goto discard;
239
240                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
241                         goto discard;
242
243                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
244                         uint16_t tmp_size;
245                         int rc __rte_unused;
246
247                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
248                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
249                         SFC_ASSERT(rc == 0);
250                         seg_len = tmp_size;
251                 } else {
252                         seg_len = rxd->size - prefix_size;
253                 }
254
255                 rte_pktmbuf_data_len(m) = seg_len;
256                 rte_pktmbuf_pkt_len(m) = seg_len;
257
258                 if (scatter_pkt != NULL) {
259                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
260                                 rte_pktmbuf_free(scatter_pkt);
261                                 goto discard;
262                         }
263                         /* The packet to deliver */
264                         m = scatter_pkt;
265                 }
266
267                 if (desc_flags & EFX_PKT_CONT) {
268                         /* The packet is scattered, more fragments to come */
269                         scatter_pkt = m;
270                         /* Further fragments have no prefix */
271                         prefix_size = 0;
272                         continue;
273                 }
274
275                 /* Scattered packet is done */
276                 scatter_pkt = NULL;
277                 /* The first fragment of the packet has prefix */
278                 prefix_size = rxq->prefix_size;
279
280                 m->ol_flags =
281                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
282                 m->packet_type =
283                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
284
285                 /*
286                  * Extract RSS hash from the packet prefix and
287                  * set the corresponding field (if needed and possible)
288                  */
289                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
290
291                 m->data_off += prefix_size;
292
293                 *rx_pkts++ = m;
294                 done_pkts++;
295                 continue;
296
297 discard:
298                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
299                 rte_mempool_put(rxq->refill_mb_pool, m);
300                 rxd->mbuf = NULL;
301         }
302
303         /* pending is only moved when entire packet is received */
304         SFC_ASSERT(scatter_pkt == NULL);
305
306         rxq->completed = completed;
307
308         sfc_efx_rx_qrefill(rxq);
309
310         return done_pkts;
311 }
312
313 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
314 static unsigned int
315 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
316 {
317         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
318
319         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
320                 return 0;
321
322         sfc_ev_qpoll(rxq->evq);
323
324         return rxq->pending - rxq->completed;
325 }
326
327 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
328 static int
329 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
330 {
331         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
332
333         if (unlikely(offset > rxq->ptr_mask))
334                 return -EINVAL;
335
336         /*
337          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
338          * it is required for the queue to be running, but the
339          * check is omitted because API design assumes that it
340          * is the duty of the caller to satisfy all conditions
341          */
342         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
343                    SFC_EFX_RXQ_FLAG_RUNNING);
344         sfc_ev_qpoll(rxq->evq);
345
346         /*
347          * There is a handful of reserved entries in the ring,
348          * but an explicit check whether the offset points to
349          * a reserved entry is neglected since the two checks
350          * below rely on the figures which take the HW limits
351          * into account and thus if an entry is reserved, the
352          * checks will fail and UNAVAIL code will be returned
353          */
354
355         if (offset < (rxq->pending - rxq->completed))
356                 return RTE_ETH_RX_DESC_DONE;
357
358         if (offset < (rxq->added - rxq->completed))
359                 return RTE_ETH_RX_DESC_AVAIL;
360
361         return RTE_ETH_RX_DESC_UNAVAIL;
362 }
363
364 struct sfc_rxq *
365 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
366 {
367         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
368         struct rte_eth_dev *eth_dev;
369         struct sfc_adapter *sa;
370         struct sfc_rxq *rxq;
371
372         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
373         eth_dev = &rte_eth_devices[dpq->port_id];
374
375         sa = eth_dev->data->dev_private;
376
377         SFC_ASSERT(dpq->queue_id < sa->rxq_count);
378         rxq = sa->rxq_info[dpq->queue_id].rxq;
379
380         SFC_ASSERT(rxq != NULL);
381         return rxq;
382 }
383
384 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
385 static int
386 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
387                           unsigned int *rxq_entries,
388                           unsigned int *evq_entries,
389                           unsigned int *rxq_max_fill_level)
390 {
391         *rxq_entries = nb_rx_desc;
392         *evq_entries = nb_rx_desc;
393         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
394         return 0;
395 }
396
397 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
398 static int
399 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
400                    const struct rte_pci_addr *pci_addr, int socket_id,
401                    const struct sfc_dp_rx_qcreate_info *info,
402                    struct sfc_dp_rxq **dp_rxqp)
403 {
404         struct sfc_efx_rxq *rxq;
405         int rc;
406
407         rc = ENOMEM;
408         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
409                                  RTE_CACHE_LINE_SIZE, socket_id);
410         if (rxq == NULL)
411                 goto fail_rxq_alloc;
412
413         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
414
415         rc = ENOMEM;
416         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
417                                          info->rxq_entries,
418                                          sizeof(*rxq->sw_desc),
419                                          RTE_CACHE_LINE_SIZE, socket_id);
420         if (rxq->sw_desc == NULL)
421                 goto fail_desc_alloc;
422
423         /* efx datapath is bound to efx control path */
424         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
425         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
426                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
427         rxq->ptr_mask = info->rxq_entries - 1;
428         rxq->batch_max = info->batch_max;
429         rxq->prefix_size = info->prefix_size;
430         rxq->max_fill_level = info->max_fill_level;
431         rxq->refill_threshold = info->refill_threshold;
432         rxq->buf_size = info->buf_size;
433         rxq->refill_mb_pool = info->refill_mb_pool;
434
435         *dp_rxqp = &rxq->dp;
436         return 0;
437
438 fail_desc_alloc:
439         rte_free(rxq);
440
441 fail_rxq_alloc:
442         return rc;
443 }
444
445 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
446 static void
447 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
448 {
449         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
450
451         rte_free(rxq->sw_desc);
452         rte_free(rxq);
453 }
454
455 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
456 static int
457 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
458                   __rte_unused unsigned int evq_read_ptr)
459 {
460         /* libefx-based datapath is specific to libefx-based PMD */
461         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
462         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
463
464         rxq->common = crxq->common;
465
466         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
467
468         sfc_efx_rx_qrefill(rxq);
469
470         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
471
472         return 0;
473 }
474
475 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
476 static void
477 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
478                  __rte_unused unsigned int *evq_read_ptr)
479 {
480         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
481
482         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
483
484         /* libefx-based datapath is bound to libefx-based PMD and uses
485          * event queue structure directly. So, there is no necessity to
486          * return EvQ read pointer.
487          */
488 }
489
490 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
491 static void
492 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
493 {
494         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
495         unsigned int i;
496         struct sfc_efx_rx_sw_desc *rxd;
497
498         for (i = rxq->completed; i != rxq->added; ++i) {
499                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
500                 rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
501                 rxd->mbuf = NULL;
502                 /* Packed stream relies on 0 in inactive SW desc.
503                  * Rx queue stop is not performance critical, so
504                  * there is no harm to do it always.
505                  */
506                 rxd->flags = 0;
507                 rxd->size = 0;
508         }
509
510         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
511 }
512
513 struct sfc_dp_rx sfc_efx_rx = {
514         .dp = {
515                 .name           = SFC_KVARG_DATAPATH_EFX,
516                 .type           = SFC_DP_RX,
517                 .hw_fw_caps     = 0,
518         },
519         .features               = SFC_DP_RX_FEAT_SCATTER,
520         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
521         .qcreate                = sfc_efx_rx_qcreate,
522         .qdestroy               = sfc_efx_rx_qdestroy,
523         .qstart                 = sfc_efx_rx_qstart,
524         .qstop                  = sfc_efx_rx_qstop,
525         .qpurge                 = sfc_efx_rx_qpurge,
526         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
527         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
528         .qdesc_status           = sfc_efx_rx_qdesc_status,
529         .pkt_burst              = sfc_efx_recv_pkts,
530 };
531
532 unsigned int
533 sfc_rx_qdesc_npending(struct sfc_adapter *sa, unsigned int sw_index)
534 {
535         struct sfc_rxq *rxq;
536
537         SFC_ASSERT(sw_index < sa->rxq_count);
538         rxq = sa->rxq_info[sw_index].rxq;
539
540         if (rxq == NULL || (rxq->state & SFC_RXQ_STARTED) == 0)
541                 return 0;
542
543         return sa->dp_rx->qdesc_npending(rxq->dp);
544 }
545
546 int
547 sfc_rx_qdesc_done(struct sfc_dp_rxq *dp_rxq, unsigned int offset)
548 {
549         struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
550
551         return offset < rxq->evq->sa->dp_rx->qdesc_npending(dp_rxq);
552 }
553
554 static void
555 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
556 {
557         struct sfc_rxq *rxq;
558         unsigned int retry_count;
559         unsigned int wait_count;
560         int rc;
561
562         rxq = sa->rxq_info[sw_index].rxq;
563         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
564
565         /*
566          * Retry Rx queue flushing in the case of flush failed or
567          * timeout. In the worst case it can delay for 6 seconds.
568          */
569         for (retry_count = 0;
570              ((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
571              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
572              ++retry_count) {
573                 rc = efx_rx_qflush(rxq->common);
574                 if (rc != 0) {
575                         rxq->state |= (rc == EALREADY) ?
576                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
577                         break;
578                 }
579                 rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
580                 rxq->state |= SFC_RXQ_FLUSHING;
581
582                 /*
583                  * Wait for Rx queue flush done or failed event at least
584                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
585                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
586                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
587                  */
588                 wait_count = 0;
589                 do {
590                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
591                         sfc_ev_qpoll(rxq->evq);
592                 } while ((rxq->state & SFC_RXQ_FLUSHING) &&
593                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
594
595                 if (rxq->state & SFC_RXQ_FLUSHING)
596                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
597
598                 if (rxq->state & SFC_RXQ_FLUSH_FAILED)
599                         sfc_err(sa, "RxQ %u flush failed", sw_index);
600
601                 if (rxq->state & SFC_RXQ_FLUSHED)
602                         sfc_notice(sa, "RxQ %u flushed", sw_index);
603         }
604
605         sa->dp_rx->qpurge(rxq->dp);
606 }
607
608 static int
609 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
610 {
611         boolean_t rss = (sa->rss_channels > 0) ? B_TRUE : B_FALSE;
612         struct sfc_port *port = &sa->port;
613         int rc;
614
615         /*
616          * If promiscuous or all-multicast mode has been requested, setting
617          * filter for the default Rx queue might fail, in particular, while
618          * running over PCI function which is not a member of corresponding
619          * privilege groups; if this occurs, few iterations will be made to
620          * repeat this step without promiscuous and all-multicast flags set
621          */
622 retry:
623         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, rss);
624         if (rc == 0)
625                 return 0;
626         else if (rc != EOPNOTSUPP)
627                 return rc;
628
629         if (port->promisc) {
630                 sfc_warn(sa, "promiscuous mode has been requested, "
631                              "but the HW rejects it");
632                 sfc_warn(sa, "promiscuous mode will be disabled");
633
634                 port->promisc = B_FALSE;
635                 rc = sfc_set_rx_mode(sa);
636                 if (rc != 0)
637                         return rc;
638
639                 goto retry;
640         }
641
642         if (port->allmulti) {
643                 sfc_warn(sa, "all-multicast mode has been requested, "
644                              "but the HW rejects it");
645                 sfc_warn(sa, "all-multicast mode will be disabled");
646
647                 port->allmulti = B_FALSE;
648                 rc = sfc_set_rx_mode(sa);
649                 if (rc != 0)
650                         return rc;
651
652                 goto retry;
653         }
654
655         return rc;
656 }
657
658 int
659 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
660 {
661         struct sfc_port *port = &sa->port;
662         struct sfc_rxq_info *rxq_info;
663         struct sfc_rxq *rxq;
664         struct sfc_evq *evq;
665         int rc;
666
667         sfc_log_init(sa, "sw_index=%u", sw_index);
668
669         SFC_ASSERT(sw_index < sa->rxq_count);
670
671         rxq_info = &sa->rxq_info[sw_index];
672         rxq = rxq_info->rxq;
673         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
674
675         evq = rxq->evq;
676
677         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
678         if (rc != 0)
679                 goto fail_ev_qstart;
680
681         rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
682                             &rxq->mem, rxq_info->entries,
683                             0 /* not used on EF10 */, rxq_info->type_flags,
684                             evq->common, &rxq->common);
685         if (rc != 0)
686                 goto fail_rx_qcreate;
687
688         efx_rx_qenable(rxq->common);
689
690         rc = sa->dp_rx->qstart(rxq->dp, evq->read_ptr);
691         if (rc != 0)
692                 goto fail_dp_qstart;
693
694         rxq->state |= SFC_RXQ_STARTED;
695
696         if ((sw_index == 0) && !port->isolated) {
697                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
698                 if (rc != 0)
699                         goto fail_mac_filter_default_rxq_set;
700         }
701
702         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
703         sa->eth_dev->data->rx_queue_state[sw_index] =
704                 RTE_ETH_QUEUE_STATE_STARTED;
705
706         return 0;
707
708 fail_mac_filter_default_rxq_set:
709         sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
710
711 fail_dp_qstart:
712         sfc_rx_qflush(sa, sw_index);
713
714 fail_rx_qcreate:
715         sfc_ev_qstop(evq);
716
717 fail_ev_qstart:
718         return rc;
719 }
720
721 void
722 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
723 {
724         struct sfc_rxq_info *rxq_info;
725         struct sfc_rxq *rxq;
726
727         sfc_log_init(sa, "sw_index=%u", sw_index);
728
729         SFC_ASSERT(sw_index < sa->rxq_count);
730
731         rxq_info = &sa->rxq_info[sw_index];
732         rxq = rxq_info->rxq;
733
734         if (rxq->state == SFC_RXQ_INITIALIZED)
735                 return;
736         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
737
738         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
739         sa->eth_dev->data->rx_queue_state[sw_index] =
740                 RTE_ETH_QUEUE_STATE_STOPPED;
741
742         sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
743
744         if (sw_index == 0)
745                 efx_mac_filter_default_rxq_clear(sa->nic);
746
747         sfc_rx_qflush(sa, sw_index);
748
749         rxq->state = SFC_RXQ_INITIALIZED;
750
751         efx_rx_qdestroy(rxq->common);
752
753         sfc_ev_qstop(rxq->evq);
754 }
755
756 uint64_t
757 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
758 {
759         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
760         uint64_t caps = 0;
761
762         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
763         caps |= DEV_RX_OFFLOAD_CRC_STRIP;
764         caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
765         caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
766         caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
767
768         if (encp->enc_tunnel_encapsulations_supported &&
769             (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
770                 caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
771
772         return caps;
773 }
774
775 uint64_t
776 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
777 {
778         uint64_t caps = 0;
779
780         if (sa->dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
781                 caps |= DEV_RX_OFFLOAD_SCATTER;
782
783         return caps;
784 }
785
786 static void
787 sfc_rx_log_offloads(struct sfc_adapter *sa, const char *offload_group,
788                     const char *verdict, uint64_t offloads)
789 {
790         unsigned long long bit;
791
792         while ((bit = __builtin_ffsll(offloads)) != 0) {
793                 uint64_t flag = (1ULL << --bit);
794
795                 sfc_err(sa, "Rx %s offload %s %s", offload_group,
796                         rte_eth_dev_rx_offload_name(flag), verdict);
797
798                 offloads &= ~flag;
799         }
800 }
801
802 static boolean_t
803 sfc_rx_queue_offloads_mismatch(struct sfc_adapter *sa, uint64_t requested)
804 {
805         uint64_t mandatory = sa->eth_dev->data->dev_conf.rxmode.offloads;
806         uint64_t supported = sfc_rx_get_dev_offload_caps(sa) |
807                              sfc_rx_get_queue_offload_caps(sa);
808         uint64_t rejected = requested & ~supported;
809         uint64_t missing = (requested & mandatory) ^ mandatory;
810         boolean_t mismatch = B_FALSE;
811
812         if (rejected) {
813                 sfc_rx_log_offloads(sa, "queue", "is unsupported", rejected);
814                 mismatch = B_TRUE;
815         }
816
817         if (missing) {
818                 sfc_rx_log_offloads(sa, "queue", "must be set", missing);
819                 mismatch = B_TRUE;
820         }
821
822         return mismatch;
823 }
824
825 static int
826 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
827                    const struct rte_eth_rxconf *rx_conf)
828 {
829         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
830                                       sfc_rx_get_queue_offload_caps(sa);
831         int rc = 0;
832
833         if (rx_conf->rx_thresh.pthresh != 0 ||
834             rx_conf->rx_thresh.hthresh != 0 ||
835             rx_conf->rx_thresh.wthresh != 0) {
836                 sfc_warn(sa,
837                         "RxQ prefetch/host/writeback thresholds are not supported");
838         }
839
840         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
841                 sfc_err(sa,
842                         "RxQ free threshold too large: %u vs maximum %u",
843                         rx_conf->rx_free_thresh, rxq_max_fill_level);
844                 rc = EINVAL;
845         }
846
847         if (rx_conf->rx_drop_en == 0) {
848                 sfc_err(sa, "RxQ drop disable is not supported");
849                 rc = EINVAL;
850         }
851
852         if ((rx_conf->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
853             DEV_RX_OFFLOAD_CHECKSUM)
854                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
855
856         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
857             (~rx_conf->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM))
858                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
859
860         if (sfc_rx_queue_offloads_mismatch(sa, rx_conf->offloads))
861                 rc = EINVAL;
862
863         return rc;
864 }
865
866 static unsigned int
867 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
868 {
869         uint32_t data_off;
870         uint32_t order;
871
872         /* The mbuf object itself is always cache line aligned */
873         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
874
875         /* Data offset from mbuf object start */
876         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
877                 RTE_PKTMBUF_HEADROOM;
878
879         order = MIN(order, rte_bsf32(data_off));
880
881         return 1u << order;
882 }
883
884 static uint16_t
885 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
886 {
887         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
888         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
889         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
890         uint16_t buf_size;
891         unsigned int buf_aligned;
892         unsigned int start_alignment;
893         unsigned int end_padding_alignment;
894
895         /* Below it is assumed that both alignments are power of 2 */
896         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
897         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
898
899         /*
900          * mbuf is always cache line aligned, double-check
901          * that it meets rx buffer start alignment requirements.
902          */
903
904         /* Start from mbuf pool data room size */
905         buf_size = rte_pktmbuf_data_room_size(mb_pool);
906
907         /* Remove headroom */
908         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
909                 sfc_err(sa,
910                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
911                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
912                 return 0;
913         }
914         buf_size -= RTE_PKTMBUF_HEADROOM;
915
916         /* Calculate guaranteed data start alignment */
917         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
918
919         /* Reserve space for start alignment */
920         if (buf_aligned < nic_align_start) {
921                 start_alignment = nic_align_start - buf_aligned;
922                 if (buf_size <= start_alignment) {
923                         sfc_err(sa,
924                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
925                                 mb_pool->name,
926                                 rte_pktmbuf_data_room_size(mb_pool),
927                                 RTE_PKTMBUF_HEADROOM, start_alignment);
928                         return 0;
929                 }
930                 buf_aligned = nic_align_start;
931                 buf_size -= start_alignment;
932         } else {
933                 start_alignment = 0;
934         }
935
936         /* Make sure that end padding does not write beyond the buffer */
937         if (buf_aligned < nic_align_end) {
938                 /*
939                  * Estimate space which can be lost. If guarnteed buffer
940                  * size is odd, lost space is (nic_align_end - 1). More
941                  * accurate formula is below.
942                  */
943                 end_padding_alignment = nic_align_end -
944                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
945                 if (buf_size <= end_padding_alignment) {
946                         sfc_err(sa,
947                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
948                                 mb_pool->name,
949                                 rte_pktmbuf_data_room_size(mb_pool),
950                                 RTE_PKTMBUF_HEADROOM, start_alignment,
951                                 end_padding_alignment);
952                         return 0;
953                 }
954                 buf_size -= end_padding_alignment;
955         } else {
956                 /*
957                  * Start is aligned the same or better than end,
958                  * just align length.
959                  */
960                 buf_size = P2ALIGN(buf_size, nic_align_end);
961         }
962
963         return buf_size;
964 }
965
966 int
967 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
968              uint16_t nb_rx_desc, unsigned int socket_id,
969              const struct rte_eth_rxconf *rx_conf,
970              struct rte_mempool *mb_pool)
971 {
972         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
973         int rc;
974         unsigned int rxq_entries;
975         unsigned int evq_entries;
976         unsigned int rxq_max_fill_level;
977         uint16_t buf_size;
978         struct sfc_rxq_info *rxq_info;
979         struct sfc_evq *evq;
980         struct sfc_rxq *rxq;
981         struct sfc_dp_rx_qcreate_info info;
982
983         rc = sa->dp_rx->qsize_up_rings(nb_rx_desc, &rxq_entries, &evq_entries,
984                                        &rxq_max_fill_level);
985         if (rc != 0)
986                 goto fail_size_up_rings;
987         SFC_ASSERT(rxq_entries >= EFX_RXQ_MINNDESCS);
988         SFC_ASSERT(rxq_entries <= EFX_RXQ_MAXNDESCS);
989         SFC_ASSERT(rxq_entries >= nb_rx_desc);
990         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
991
992         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf);
993         if (rc != 0)
994                 goto fail_bad_conf;
995
996         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
997         if (buf_size == 0) {
998                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
999                         sw_index);
1000                 rc = EINVAL;
1001                 goto fail_bad_conf;
1002         }
1003
1004         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
1005             (~rx_conf->offloads & DEV_RX_OFFLOAD_SCATTER)) {
1006                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
1007                         "object size is too small", sw_index);
1008                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1009                         "PDU size %u plus Rx prefix %u bytes",
1010                         sw_index, buf_size, (unsigned int)sa->port.pdu,
1011                         encp->enc_rx_prefix_size);
1012                 rc = EINVAL;
1013                 goto fail_bad_conf;
1014         }
1015
1016         SFC_ASSERT(sw_index < sa->rxq_count);
1017         rxq_info = &sa->rxq_info[sw_index];
1018
1019         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1020         rxq_info->entries = rxq_entries;
1021         rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1022         rxq_info->type_flags =
1023                 (rx_conf->offloads & DEV_RX_OFFLOAD_SCATTER) ?
1024                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1025
1026         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1027             (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
1028                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1029
1030         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1031                           evq_entries, socket_id, &evq);
1032         if (rc != 0)
1033                 goto fail_ev_qinit;
1034
1035         rc = ENOMEM;
1036         rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
1037                                  socket_id);
1038         if (rxq == NULL)
1039                 goto fail_rxq_alloc;
1040
1041         rxq_info->rxq = rxq;
1042
1043         rxq->evq = evq;
1044         rxq->hw_index = sw_index;
1045         rxq->refill_threshold =
1046                 RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
1047         rxq->refill_mb_pool = mb_pool;
1048
1049         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
1050                            socket_id, &rxq->mem);
1051         if (rc != 0)
1052                 goto fail_dma_alloc;
1053
1054         memset(&info, 0, sizeof(info));
1055         info.refill_mb_pool = rxq->refill_mb_pool;
1056         info.max_fill_level = rxq_max_fill_level;
1057         info.refill_threshold = rxq->refill_threshold;
1058         info.buf_size = buf_size;
1059         info.batch_max = encp->enc_rx_batch_max;
1060         info.prefix_size = encp->enc_rx_prefix_size;
1061
1062         if (sa->hash_support == EFX_RX_HASH_AVAILABLE && sa->rss_channels > 0)
1063                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1064
1065         info.rxq_entries = rxq_info->entries;
1066         info.rxq_hw_ring = rxq->mem.esm_base;
1067         info.evq_entries = evq_entries;
1068         info.evq_hw_ring = evq->mem.esm_base;
1069         info.hw_index = rxq->hw_index;
1070         info.mem_bar = sa->mem_bar.esb_base;
1071         info.vi_window_shift = encp->enc_vi_window_shift;
1072
1073         rc = sa->dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1074                                 &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1075                                 socket_id, &info, &rxq->dp);
1076         if (rc != 0)
1077                 goto fail_dp_rx_qcreate;
1078
1079         evq->dp_rxq = rxq->dp;
1080
1081         rxq->state = SFC_RXQ_INITIALIZED;
1082
1083         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1084
1085         return 0;
1086
1087 fail_dp_rx_qcreate:
1088         sfc_dma_free(sa, &rxq->mem);
1089
1090 fail_dma_alloc:
1091         rxq_info->rxq = NULL;
1092         rte_free(rxq);
1093
1094 fail_rxq_alloc:
1095         sfc_ev_qfini(evq);
1096
1097 fail_ev_qinit:
1098         rxq_info->entries = 0;
1099
1100 fail_bad_conf:
1101 fail_size_up_rings:
1102         sfc_log_init(sa, "failed %d", rc);
1103         return rc;
1104 }
1105
1106 void
1107 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1108 {
1109         struct sfc_rxq_info *rxq_info;
1110         struct sfc_rxq *rxq;
1111
1112         SFC_ASSERT(sw_index < sa->rxq_count);
1113
1114         rxq_info = &sa->rxq_info[sw_index];
1115
1116         rxq = rxq_info->rxq;
1117         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
1118
1119         sa->dp_rx->qdestroy(rxq->dp);
1120         rxq->dp = NULL;
1121
1122         rxq_info->rxq = NULL;
1123         rxq_info->entries = 0;
1124
1125         sfc_dma_free(sa, &rxq->mem);
1126
1127         sfc_ev_qfini(rxq->evq);
1128         rxq->evq = NULL;
1129
1130         rte_free(rxq);
1131 }
1132
1133 efx_rx_hash_type_t
1134 sfc_rte_to_efx_hash_type(uint64_t rss_hf)
1135 {
1136         efx_rx_hash_type_t efx_hash_types = 0;
1137
1138         if ((rss_hf & (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
1139                        ETH_RSS_NONFRAG_IPV4_OTHER)) != 0)
1140                 efx_hash_types |= EFX_RX_HASH_IPV4;
1141
1142         if ((rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) != 0)
1143                 efx_hash_types |= EFX_RX_HASH_TCPIPV4;
1144
1145         if ((rss_hf & (ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
1146                         ETH_RSS_NONFRAG_IPV6_OTHER | ETH_RSS_IPV6_EX)) != 0)
1147                 efx_hash_types |= EFX_RX_HASH_IPV6;
1148
1149         if ((rss_hf & (ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX)) != 0)
1150                 efx_hash_types |= EFX_RX_HASH_TCPIPV6;
1151
1152         return efx_hash_types;
1153 }
1154
1155 uint64_t
1156 sfc_efx_to_rte_hash_type(efx_rx_hash_type_t efx_hash_types)
1157 {
1158         uint64_t rss_hf = 0;
1159
1160         if ((efx_hash_types & EFX_RX_HASH_IPV4) != 0)
1161                 rss_hf |= (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
1162                            ETH_RSS_NONFRAG_IPV4_OTHER);
1163
1164         if ((efx_hash_types & EFX_RX_HASH_TCPIPV4) != 0)
1165                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1166
1167         if ((efx_hash_types & EFX_RX_HASH_IPV6) != 0)
1168                 rss_hf |= (ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
1169                            ETH_RSS_NONFRAG_IPV6_OTHER | ETH_RSS_IPV6_EX);
1170
1171         if ((efx_hash_types & EFX_RX_HASH_TCPIPV6) != 0)
1172                 rss_hf |= (ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX);
1173
1174         return rss_hf;
1175 }
1176
1177 static int
1178 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1179                             struct rte_eth_rss_conf *conf)
1180 {
1181         efx_rx_hash_type_t efx_hash_types = sa->rss_hash_types;
1182
1183         if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) {
1184                 if ((conf->rss_hf != 0 && conf->rss_hf != SFC_RSS_OFFLOADS) ||
1185                     conf->rss_key != NULL)
1186                         return EINVAL;
1187         }
1188
1189         if (conf->rss_hf != 0) {
1190                 if ((conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) {
1191                         sfc_err(sa, "unsupported hash functions requested");
1192                         return EINVAL;
1193                 }
1194
1195                 efx_hash_types = sfc_rte_to_efx_hash_type(conf->rss_hf);
1196         }
1197
1198         if (conf->rss_key != NULL) {
1199                 if (conf->rss_key_len != sizeof(sa->rss_key)) {
1200                         sfc_err(sa, "RSS key size is wrong (should be %lu)",
1201                                 sizeof(sa->rss_key));
1202                         return EINVAL;
1203                 }
1204                 rte_memcpy(sa->rss_key, conf->rss_key, sizeof(sa->rss_key));
1205         }
1206
1207         sa->rss_hash_types = efx_hash_types;
1208
1209         return 0;
1210 }
1211
1212 static int
1213 sfc_rx_rss_config(struct sfc_adapter *sa)
1214 {
1215         int rc = 0;
1216
1217         if (sa->rss_channels > 0) {
1218                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1219                                            EFX_RX_HASHALG_TOEPLITZ,
1220                                            sa->rss_hash_types, B_TRUE);
1221                 if (rc != 0)
1222                         goto finish;
1223
1224                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1225                                           sa->rss_key,
1226                                           sizeof(sa->rss_key));
1227                 if (rc != 0)
1228                         goto finish;
1229
1230                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1231                                           sa->rss_tbl, RTE_DIM(sa->rss_tbl));
1232         }
1233
1234 finish:
1235         return rc;
1236 }
1237
1238 int
1239 sfc_rx_start(struct sfc_adapter *sa)
1240 {
1241         unsigned int sw_index;
1242         int rc;
1243
1244         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1245
1246         rc = efx_rx_init(sa->nic);
1247         if (rc != 0)
1248                 goto fail_rx_init;
1249
1250         rc = sfc_rx_rss_config(sa);
1251         if (rc != 0)
1252                 goto fail_rss_config;
1253
1254         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
1255                 if ((!sa->rxq_info[sw_index].deferred_start ||
1256                      sa->rxq_info[sw_index].deferred_started)) {
1257                         rc = sfc_rx_qstart(sa, sw_index);
1258                         if (rc != 0)
1259                                 goto fail_rx_qstart;
1260                 }
1261         }
1262
1263         return 0;
1264
1265 fail_rx_qstart:
1266         while (sw_index-- > 0)
1267                 sfc_rx_qstop(sa, sw_index);
1268
1269 fail_rss_config:
1270         efx_rx_fini(sa->nic);
1271
1272 fail_rx_init:
1273         sfc_log_init(sa, "failed %d", rc);
1274         return rc;
1275 }
1276
1277 void
1278 sfc_rx_stop(struct sfc_adapter *sa)
1279 {
1280         unsigned int sw_index;
1281
1282         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1283
1284         sw_index = sa->rxq_count;
1285         while (sw_index-- > 0) {
1286                 if (sa->rxq_info[sw_index].rxq != NULL)
1287                         sfc_rx_qstop(sa, sw_index);
1288         }
1289
1290         efx_rx_fini(sa->nic);
1291 }
1292
1293 static int
1294 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1295 {
1296         struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
1297         unsigned int max_entries;
1298
1299         max_entries = EFX_RXQ_MAXNDESCS;
1300         SFC_ASSERT(rte_is_power_of_2(max_entries));
1301
1302         rxq_info->max_entries = max_entries;
1303
1304         return 0;
1305 }
1306
1307 static int
1308 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1309 {
1310         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1311                                       sfc_rx_get_queue_offload_caps(sa);
1312         uint64_t offloads_rejected = rxmode->offloads & ~offloads_supported;
1313         int rc = 0;
1314
1315         switch (rxmode->mq_mode) {
1316         case ETH_MQ_RX_NONE:
1317                 /* No special checks are required */
1318                 break;
1319         case ETH_MQ_RX_RSS:
1320                 if (sa->rss_support == EFX_RX_SCALE_UNAVAILABLE) {
1321                         sfc_err(sa, "RSS is not available");
1322                         rc = EINVAL;
1323                 }
1324                 break;
1325         default:
1326                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1327                         rxmode->mq_mode);
1328                 rc = EINVAL;
1329         }
1330
1331         if (offloads_rejected) {
1332                 sfc_rx_log_offloads(sa, "device", "is unsupported",
1333                                     offloads_rejected);
1334                 rc = EINVAL;
1335         }
1336
1337         if (~rxmode->offloads & DEV_RX_OFFLOAD_CRC_STRIP) {
1338                 sfc_warn(sa, "FCS stripping cannot be disabled - always on");
1339                 rxmode->offloads |= DEV_RX_OFFLOAD_CRC_STRIP;
1340                 rxmode->hw_strip_crc = 1;
1341         }
1342
1343         return rc;
1344 }
1345
1346 /**
1347  * Destroy excess queues that are no longer needed after reconfiguration
1348  * or complete close.
1349  */
1350 static void
1351 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1352 {
1353         int sw_index;
1354
1355         SFC_ASSERT(nb_rx_queues <= sa->rxq_count);
1356
1357         sw_index = sa->rxq_count;
1358         while (--sw_index >= (int)nb_rx_queues) {
1359                 if (sa->rxq_info[sw_index].rxq != NULL)
1360                         sfc_rx_qfini(sa, sw_index);
1361         }
1362
1363         sa->rxq_count = nb_rx_queues;
1364 }
1365
1366 /**
1367  * Initialize Rx subsystem.
1368  *
1369  * Called at device (re)configuration stage when number of receive queues is
1370  * specified together with other device level receive configuration.
1371  *
1372  * It should be used to allocate NUMA-unaware resources.
1373  */
1374 int
1375 sfc_rx_configure(struct sfc_adapter *sa)
1376 {
1377         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1378         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1379         int rc;
1380
1381         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1382                      nb_rx_queues, sa->rxq_count);
1383
1384         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1385         if (rc != 0)
1386                 goto fail_check_mode;
1387
1388         if (nb_rx_queues == sa->rxq_count)
1389                 goto done;
1390
1391         if (sa->rxq_info == NULL) {
1392                 rc = ENOMEM;
1393                 sa->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1394                                                  sizeof(sa->rxq_info[0]), 0,
1395                                                  sa->socket_id);
1396                 if (sa->rxq_info == NULL)
1397                         goto fail_rxqs_alloc;
1398         } else {
1399                 struct sfc_rxq_info *new_rxq_info;
1400
1401                 if (nb_rx_queues < sa->rxq_count)
1402                         sfc_rx_fini_queues(sa, nb_rx_queues);
1403
1404                 rc = ENOMEM;
1405                 new_rxq_info =
1406                         rte_realloc(sa->rxq_info,
1407                                     nb_rx_queues * sizeof(sa->rxq_info[0]), 0);
1408                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1409                         goto fail_rxqs_realloc;
1410
1411                 sa->rxq_info = new_rxq_info;
1412                 if (nb_rx_queues > sa->rxq_count)
1413                         memset(&sa->rxq_info[sa->rxq_count], 0,
1414                                (nb_rx_queues - sa->rxq_count) *
1415                                sizeof(sa->rxq_info[0]));
1416         }
1417
1418         while (sa->rxq_count < nb_rx_queues) {
1419                 rc = sfc_rx_qinit_info(sa, sa->rxq_count);
1420                 if (rc != 0)
1421                         goto fail_rx_qinit_info;
1422
1423                 sa->rxq_count++;
1424         }
1425
1426         sa->rss_channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1427                            MIN(sa->rxq_count, EFX_MAXRSS) : 0;
1428
1429         if (sa->rss_channels > 0) {
1430                 struct rte_eth_rss_conf *adv_conf_rss;
1431                 unsigned int sw_index;
1432
1433                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1434                         sa->rss_tbl[sw_index] = sw_index % sa->rss_channels;
1435
1436                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1437                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1438                 if (rc != 0)
1439                         goto fail_rx_process_adv_conf_rss;
1440         }
1441
1442 done:
1443         return 0;
1444
1445 fail_rx_process_adv_conf_rss:
1446 fail_rx_qinit_info:
1447 fail_rxqs_realloc:
1448 fail_rxqs_alloc:
1449         sfc_rx_close(sa);
1450
1451 fail_check_mode:
1452         sfc_log_init(sa, "failed %d", rc);
1453         return rc;
1454 }
1455
1456 /**
1457  * Shutdown Rx subsystem.
1458  *
1459  * Called at device close stage, for example, before device shutdown.
1460  */
1461 void
1462 sfc_rx_close(struct sfc_adapter *sa)
1463 {
1464         sfc_rx_fini_queues(sa, 0);
1465
1466         sa->rss_channels = 0;
1467
1468         rte_free(sa->rxq_info);
1469         sa->rxq_info = NULL;
1470 }