net/sfc: fix MTU change to check Rx scatter consistency
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44         rxq_info->state |= SFC_RXQ_FLUSHED;
45         rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51         rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58         unsigned int free_space;
59         unsigned int bulks;
60         void *objs[SFC_RX_REFILL_BULK];
61         efsys_dma_addr_t addr[RTE_DIM(objs)];
62         unsigned int added = rxq->added;
63         unsigned int id;
64         unsigned int i;
65         struct sfc_efx_rx_sw_desc *rxd;
66         struct rte_mbuf *m;
67         uint16_t port_id = rxq->dp.dpq.port_id;
68
69         free_space = rxq->max_fill_level - (added - rxq->completed);
70
71         if (free_space < rxq->refill_threshold)
72                 return;
73
74         bulks = free_space / RTE_DIM(objs);
75         /* refill_threshold guarantees that bulks is positive */
76         SFC_ASSERT(bulks > 0);
77
78         id = added & rxq->ptr_mask;
79         do {
80                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81                                                   RTE_DIM(objs)) < 0)) {
82                         /*
83                          * It is hardly a safe way to increment counter
84                          * from different contexts, but all PMDs do it.
85                          */
86                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87                                 RTE_DIM(objs);
88                         /* Return if we have posted nothing yet */
89                         if (added == rxq->added)
90                                 return;
91                         /* Push posted */
92                         break;
93                 }
94
95                 for (i = 0; i < RTE_DIM(objs);
96                      ++i, id = (id + 1) & rxq->ptr_mask) {
97                         m = objs[i];
98
99                         MBUF_RAW_ALLOC_CHECK(m);
100
101                         rxd = &rxq->sw_desc[id];
102                         rxd->mbuf = m;
103
104                         m->data_off = RTE_PKTMBUF_HEADROOM;
105                         m->port = port_id;
106
107                         addr[i] = rte_pktmbuf_iova(m);
108                 }
109
110                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
111                              RTE_DIM(objs), rxq->completed, added);
112                 added += RTE_DIM(objs);
113         } while (--bulks > 0);
114
115         SFC_ASSERT(added != rxq->added);
116         rxq->added = added;
117         efx_rx_qpush(rxq->common, added, &rxq->pushed);
118 }
119
120 static uint64_t
121 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
122 {
123         uint64_t mbuf_flags = 0;
124
125         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
126         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
127                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
128                 break;
129         case EFX_PKT_IPV4:
130                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
131                 break;
132         default:
133                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
134                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
135                            PKT_RX_IP_CKSUM_UNKNOWN);
136                 break;
137         }
138
139         switch ((desc_flags &
140                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
141         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
142         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
143                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
144                 break;
145         case EFX_PKT_TCP:
146         case EFX_PKT_UDP:
147                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
148                 break;
149         default:
150                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
151                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
152                            PKT_RX_L4_CKSUM_UNKNOWN);
153                 break;
154         }
155
156         return mbuf_flags;
157 }
158
159 static uint32_t
160 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
161 {
162         return RTE_PTYPE_L2_ETHER |
163                 ((desc_flags & EFX_PKT_IPV4) ?
164                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
165                 ((desc_flags & EFX_PKT_IPV6) ?
166                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
167                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
168                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
169 }
170
171 static const uint32_t *
172 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
173 {
174         static const uint32_t ptypes[] = {
175                 RTE_PTYPE_L2_ETHER,
176                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
177                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
178                 RTE_PTYPE_L4_TCP,
179                 RTE_PTYPE_L4_UDP,
180                 RTE_PTYPE_UNKNOWN
181         };
182
183         return ptypes;
184 }
185
186 static void
187 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
188                         struct rte_mbuf *m)
189 {
190         uint8_t *mbuf_data;
191
192
193         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
194                 return;
195
196         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
197
198         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
199                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
200                                                       EFX_RX_HASHALG_TOEPLITZ,
201                                                       mbuf_data);
202
203                 m->ol_flags |= PKT_RX_RSS_HASH;
204         }
205 }
206
207 static uint16_t
208 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
209 {
210         struct sfc_dp_rxq *dp_rxq = rx_queue;
211         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
212         unsigned int completed;
213         unsigned int prefix_size = rxq->prefix_size;
214         unsigned int done_pkts = 0;
215         boolean_t discard_next = B_FALSE;
216         struct rte_mbuf *scatter_pkt = NULL;
217
218         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
219                 return 0;
220
221         sfc_ev_qpoll(rxq->evq);
222
223         completed = rxq->completed;
224         while (completed != rxq->pending && done_pkts < nb_pkts) {
225                 unsigned int id;
226                 struct sfc_efx_rx_sw_desc *rxd;
227                 struct rte_mbuf *m;
228                 unsigned int seg_len;
229                 unsigned int desc_flags;
230
231                 id = completed++ & rxq->ptr_mask;
232                 rxd = &rxq->sw_desc[id];
233                 m = rxd->mbuf;
234                 desc_flags = rxd->flags;
235
236                 if (discard_next)
237                         goto discard;
238
239                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
240                         goto discard;
241
242                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
243                         uint16_t tmp_size;
244                         int rc __rte_unused;
245
246                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
247                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
248                         SFC_ASSERT(rc == 0);
249                         seg_len = tmp_size;
250                 } else {
251                         seg_len = rxd->size - prefix_size;
252                 }
253
254                 rte_pktmbuf_data_len(m) = seg_len;
255                 rte_pktmbuf_pkt_len(m) = seg_len;
256
257                 if (scatter_pkt != NULL) {
258                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
259                                 rte_pktmbuf_free(scatter_pkt);
260                                 goto discard;
261                         }
262                         /* The packet to deliver */
263                         m = scatter_pkt;
264                 }
265
266                 if (desc_flags & EFX_PKT_CONT) {
267                         /* The packet is scattered, more fragments to come */
268                         scatter_pkt = m;
269                         /* Further fragments have no prefix */
270                         prefix_size = 0;
271                         continue;
272                 }
273
274                 /* Scattered packet is done */
275                 scatter_pkt = NULL;
276                 /* The first fragment of the packet has prefix */
277                 prefix_size = rxq->prefix_size;
278
279                 m->ol_flags =
280                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
281                 m->packet_type =
282                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
283
284                 /*
285                  * Extract RSS hash from the packet prefix and
286                  * set the corresponding field (if needed and possible)
287                  */
288                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
289
290                 m->data_off += prefix_size;
291
292                 *rx_pkts++ = m;
293                 done_pkts++;
294                 continue;
295
296 discard:
297                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
298                 rte_mbuf_raw_free(m);
299                 rxd->mbuf = NULL;
300         }
301
302         /* pending is only moved when entire packet is received */
303         SFC_ASSERT(scatter_pkt == NULL);
304
305         rxq->completed = completed;
306
307         sfc_efx_rx_qrefill(rxq);
308
309         return done_pkts;
310 }
311
312 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
313 static unsigned int
314 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
315 {
316         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
317
318         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
319                 return 0;
320
321         sfc_ev_qpoll(rxq->evq);
322
323         return rxq->pending - rxq->completed;
324 }
325
326 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
327 static int
328 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
329 {
330         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
331
332         if (unlikely(offset > rxq->ptr_mask))
333                 return -EINVAL;
334
335         /*
336          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
337          * it is required for the queue to be running, but the
338          * check is omitted because API design assumes that it
339          * is the duty of the caller to satisfy all conditions
340          */
341         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
342                    SFC_EFX_RXQ_FLAG_RUNNING);
343         sfc_ev_qpoll(rxq->evq);
344
345         /*
346          * There is a handful of reserved entries in the ring,
347          * but an explicit check whether the offset points to
348          * a reserved entry is neglected since the two checks
349          * below rely on the figures which take the HW limits
350          * into account and thus if an entry is reserved, the
351          * checks will fail and UNAVAIL code will be returned
352          */
353
354         if (offset < (rxq->pending - rxq->completed))
355                 return RTE_ETH_RX_DESC_DONE;
356
357         if (offset < (rxq->added - rxq->completed))
358                 return RTE_ETH_RX_DESC_AVAIL;
359
360         return RTE_ETH_RX_DESC_UNAVAIL;
361 }
362
363 boolean_t
364 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
365                      boolean_t rx_scatter_enabled, const char **error)
366 {
367         if ((rx_buf_size < pdu + rx_prefix_size) && !rx_scatter_enabled) {
368                 *error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
369                 return B_FALSE;
370         }
371
372         return B_TRUE;
373 }
374
375 /** Get Rx datapath ops by the datapath RxQ handle */
376 const struct sfc_dp_rx *
377 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
378 {
379         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
380         struct rte_eth_dev *eth_dev;
381         struct sfc_adapter_priv *sap;
382
383         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
384         eth_dev = &rte_eth_devices[dpq->port_id];
385
386         sap = sfc_adapter_priv_by_eth_dev(eth_dev);
387
388         return sap->dp_rx;
389 }
390
391 struct sfc_rxq_info *
392 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
393 {
394         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
395         struct rte_eth_dev *eth_dev;
396         struct sfc_adapter_shared *sas;
397
398         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
399         eth_dev = &rte_eth_devices[dpq->port_id];
400
401         sas = sfc_adapter_shared_by_eth_dev(eth_dev);
402
403         SFC_ASSERT(dpq->queue_id < sas->rxq_count);
404         return &sas->rxq_info[dpq->queue_id];
405 }
406
407 struct sfc_rxq *
408 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
409 {
410         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
411         struct rte_eth_dev *eth_dev;
412         struct sfc_adapter *sa;
413
414         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
415         eth_dev = &rte_eth_devices[dpq->port_id];
416
417         sa = sfc_adapter_by_eth_dev(eth_dev);
418
419         SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
420         return &sa->rxq_ctrl[dpq->queue_id];
421 }
422
423 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
424 static int
425 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
426                           __rte_unused struct sfc_dp_rx_hw_limits *limits,
427                           __rte_unused struct rte_mempool *mb_pool,
428                           unsigned int *rxq_entries,
429                           unsigned int *evq_entries,
430                           unsigned int *rxq_max_fill_level)
431 {
432         *rxq_entries = nb_rx_desc;
433         *evq_entries = nb_rx_desc;
434         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
435         return 0;
436 }
437
438 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
439 static int
440 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
441                    const struct rte_pci_addr *pci_addr, int socket_id,
442                    const struct sfc_dp_rx_qcreate_info *info,
443                    struct sfc_dp_rxq **dp_rxqp)
444 {
445         struct sfc_efx_rxq *rxq;
446         int rc;
447
448         rc = ENOMEM;
449         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
450                                  RTE_CACHE_LINE_SIZE, socket_id);
451         if (rxq == NULL)
452                 goto fail_rxq_alloc;
453
454         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
455
456         rc = ENOMEM;
457         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
458                                          info->rxq_entries,
459                                          sizeof(*rxq->sw_desc),
460                                          RTE_CACHE_LINE_SIZE, socket_id);
461         if (rxq->sw_desc == NULL)
462                 goto fail_desc_alloc;
463
464         /* efx datapath is bound to efx control path */
465         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
466         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
467                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
468         rxq->ptr_mask = info->rxq_entries - 1;
469         rxq->batch_max = info->batch_max;
470         rxq->prefix_size = info->prefix_size;
471         rxq->max_fill_level = info->max_fill_level;
472         rxq->refill_threshold = info->refill_threshold;
473         rxq->buf_size = info->buf_size;
474         rxq->refill_mb_pool = info->refill_mb_pool;
475
476         *dp_rxqp = &rxq->dp;
477         return 0;
478
479 fail_desc_alloc:
480         rte_free(rxq);
481
482 fail_rxq_alloc:
483         return rc;
484 }
485
486 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
487 static void
488 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
489 {
490         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
491
492         rte_free(rxq->sw_desc);
493         rte_free(rxq);
494 }
495
496 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
497 static int
498 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
499                   __rte_unused unsigned int evq_read_ptr)
500 {
501         /* libefx-based datapath is specific to libefx-based PMD */
502         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
503         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
504
505         rxq->common = crxq->common;
506
507         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
508
509         sfc_efx_rx_qrefill(rxq);
510
511         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
512
513         return 0;
514 }
515
516 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
517 static void
518 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
519                  __rte_unused unsigned int *evq_read_ptr)
520 {
521         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
522
523         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
524
525         /* libefx-based datapath is bound to libefx-based PMD and uses
526          * event queue structure directly. So, there is no necessity to
527          * return EvQ read pointer.
528          */
529 }
530
531 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
532 static void
533 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
534 {
535         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
536         unsigned int i;
537         struct sfc_efx_rx_sw_desc *rxd;
538
539         for (i = rxq->completed; i != rxq->added; ++i) {
540                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
541                 rte_mbuf_raw_free(rxd->mbuf);
542                 rxd->mbuf = NULL;
543                 /* Packed stream relies on 0 in inactive SW desc.
544                  * Rx queue stop is not performance critical, so
545                  * there is no harm to do it always.
546                  */
547                 rxd->flags = 0;
548                 rxd->size = 0;
549         }
550
551         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
552 }
553
554 struct sfc_dp_rx sfc_efx_rx = {
555         .dp = {
556                 .name           = SFC_KVARG_DATAPATH_EFX,
557                 .type           = SFC_DP_RX,
558                 .hw_fw_caps     = 0,
559         },
560         .features               = SFC_DP_RX_FEAT_SCATTER |
561                                   SFC_DP_RX_FEAT_CHECKSUM,
562         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
563         .qcreate                = sfc_efx_rx_qcreate,
564         .qdestroy               = sfc_efx_rx_qdestroy,
565         .qstart                 = sfc_efx_rx_qstart,
566         .qstop                  = sfc_efx_rx_qstop,
567         .qpurge                 = sfc_efx_rx_qpurge,
568         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
569         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
570         .qdesc_status           = sfc_efx_rx_qdesc_status,
571         .pkt_burst              = sfc_efx_recv_pkts,
572 };
573
574 static void
575 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
576 {
577         struct sfc_rxq_info *rxq_info;
578         struct sfc_rxq *rxq;
579         unsigned int retry_count;
580         unsigned int wait_count;
581         int rc;
582
583         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
584         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
585
586         rxq = &sa->rxq_ctrl[sw_index];
587
588         /*
589          * Retry Rx queue flushing in the case of flush failed or
590          * timeout. In the worst case it can delay for 6 seconds.
591          */
592         for (retry_count = 0;
593              ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
594              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
595              ++retry_count) {
596                 rc = efx_rx_qflush(rxq->common);
597                 if (rc != 0) {
598                         rxq_info->state |= (rc == EALREADY) ?
599                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
600                         break;
601                 }
602                 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
603                 rxq_info->state |= SFC_RXQ_FLUSHING;
604
605                 /*
606                  * Wait for Rx queue flush done or failed event at least
607                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
608                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
609                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
610                  */
611                 wait_count = 0;
612                 do {
613                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
614                         sfc_ev_qpoll(rxq->evq);
615                 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
616                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
617
618                 if (rxq_info->state & SFC_RXQ_FLUSHING)
619                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
620
621                 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
622                         sfc_err(sa, "RxQ %u flush failed", sw_index);
623
624                 if (rxq_info->state & SFC_RXQ_FLUSHED)
625                         sfc_notice(sa, "RxQ %u flushed", sw_index);
626         }
627
628         sa->priv.dp_rx->qpurge(rxq_info->dp);
629 }
630
631 static int
632 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
633 {
634         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
635         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
636         struct sfc_port *port = &sa->port;
637         int rc;
638
639         /*
640          * If promiscuous or all-multicast mode has been requested, setting
641          * filter for the default Rx queue might fail, in particular, while
642          * running over PCI function which is not a member of corresponding
643          * privilege groups; if this occurs, few iterations will be made to
644          * repeat this step without promiscuous and all-multicast flags set
645          */
646 retry:
647         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
648         if (rc == 0)
649                 return 0;
650         else if (rc != EOPNOTSUPP)
651                 return rc;
652
653         if (port->promisc) {
654                 sfc_warn(sa, "promiscuous mode has been requested, "
655                              "but the HW rejects it");
656                 sfc_warn(sa, "promiscuous mode will be disabled");
657
658                 port->promisc = B_FALSE;
659                 rc = sfc_set_rx_mode(sa);
660                 if (rc != 0)
661                         return rc;
662
663                 goto retry;
664         }
665
666         if (port->allmulti) {
667                 sfc_warn(sa, "all-multicast mode has been requested, "
668                              "but the HW rejects it");
669                 sfc_warn(sa, "all-multicast mode will be disabled");
670
671                 port->allmulti = B_FALSE;
672                 rc = sfc_set_rx_mode(sa);
673                 if (rc != 0)
674                         return rc;
675
676                 goto retry;
677         }
678
679         return rc;
680 }
681
682 int
683 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
684 {
685         struct sfc_rxq_info *rxq_info;
686         struct sfc_rxq *rxq;
687         struct sfc_evq *evq;
688         int rc;
689
690         sfc_log_init(sa, "sw_index=%u", sw_index);
691
692         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
693
694         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
695         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
696
697         rxq = &sa->rxq_ctrl[sw_index];
698         evq = rxq->evq;
699
700         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
701         if (rc != 0)
702                 goto fail_ev_qstart;
703
704         switch (rxq_info->type) {
705         case EFX_RXQ_TYPE_DEFAULT:
706                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
707                         rxq->buf_size,
708                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
709                         rxq_info->type_flags, evq->common, &rxq->common);
710                 break;
711         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
712                 struct rte_mempool *mp = rxq_info->refill_mb_pool;
713                 struct rte_mempool_info mp_info;
714
715                 rc = rte_mempool_ops_get_info(mp, &mp_info);
716                 if (rc != 0) {
717                         /* Positive errno is used in the driver */
718                         rc = -rc;
719                         goto fail_mp_get_info;
720                 }
721                 if (mp_info.contig_block_size <= 0) {
722                         rc = EINVAL;
723                         goto fail_bad_contig_block_size;
724                 }
725                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
726                         mp_info.contig_block_size, rxq->buf_size,
727                         mp->header_size + mp->elt_size + mp->trailer_size,
728                         sa->rxd_wait_timeout_ns,
729                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
730                         evq->common, &rxq->common);
731                 break;
732         }
733         default:
734                 rc = ENOTSUP;
735         }
736         if (rc != 0)
737                 goto fail_rx_qcreate;
738
739         efx_rx_qenable(rxq->common);
740
741         rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
742         if (rc != 0)
743                 goto fail_dp_qstart;
744
745         rxq_info->state |= SFC_RXQ_STARTED;
746
747         if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
748                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
749                 if (rc != 0)
750                         goto fail_mac_filter_default_rxq_set;
751         }
752
753         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
754         sa->eth_dev->data->rx_queue_state[sw_index] =
755                 RTE_ETH_QUEUE_STATE_STARTED;
756
757         return 0;
758
759 fail_mac_filter_default_rxq_set:
760         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
761
762 fail_dp_qstart:
763         sfc_rx_qflush(sa, sw_index);
764
765 fail_rx_qcreate:
766 fail_bad_contig_block_size:
767 fail_mp_get_info:
768         sfc_ev_qstop(evq);
769
770 fail_ev_qstart:
771         return rc;
772 }
773
774 void
775 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
776 {
777         struct sfc_rxq_info *rxq_info;
778         struct sfc_rxq *rxq;
779
780         sfc_log_init(sa, "sw_index=%u", sw_index);
781
782         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
783
784         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
785
786         if (rxq_info->state == SFC_RXQ_INITIALIZED)
787                 return;
788         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
789
790         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
791         sa->eth_dev->data->rx_queue_state[sw_index] =
792                 RTE_ETH_QUEUE_STATE_STOPPED;
793
794         rxq = &sa->rxq_ctrl[sw_index];
795         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
796
797         if (sw_index == 0)
798                 efx_mac_filter_default_rxq_clear(sa->nic);
799
800         sfc_rx_qflush(sa, sw_index);
801
802         rxq_info->state = SFC_RXQ_INITIALIZED;
803
804         efx_rx_qdestroy(rxq->common);
805
806         sfc_ev_qstop(rxq->evq);
807 }
808
809 uint64_t
810 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
811 {
812         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
813         uint64_t caps = 0;
814
815         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
816
817         if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_CHECKSUM) {
818                 caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
819                 caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
820                 caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
821         }
822
823         if (encp->enc_tunnel_encapsulations_supported &&
824             (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
825                 caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
826
827         return caps;
828 }
829
830 uint64_t
831 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
832 {
833         uint64_t caps = 0;
834
835         if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
836                 caps |= DEV_RX_OFFLOAD_SCATTER;
837
838         return caps;
839 }
840
841 static int
842 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
843                    const struct rte_eth_rxconf *rx_conf,
844                    __rte_unused uint64_t offloads)
845 {
846         int rc = 0;
847
848         if (rx_conf->rx_thresh.pthresh != 0 ||
849             rx_conf->rx_thresh.hthresh != 0 ||
850             rx_conf->rx_thresh.wthresh != 0) {
851                 sfc_warn(sa,
852                         "RxQ prefetch/host/writeback thresholds are not supported");
853         }
854
855         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
856                 sfc_err(sa,
857                         "RxQ free threshold too large: %u vs maximum %u",
858                         rx_conf->rx_free_thresh, rxq_max_fill_level);
859                 rc = EINVAL;
860         }
861
862         if (rx_conf->rx_drop_en == 0) {
863                 sfc_err(sa, "RxQ drop disable is not supported");
864                 rc = EINVAL;
865         }
866
867         return rc;
868 }
869
870 static unsigned int
871 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
872 {
873         uint32_t data_off;
874         uint32_t order;
875
876         /* The mbuf object itself is always cache line aligned */
877         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
878
879         /* Data offset from mbuf object start */
880         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
881                 RTE_PKTMBUF_HEADROOM;
882
883         order = MIN(order, rte_bsf32(data_off));
884
885         return 1u << order;
886 }
887
888 static uint16_t
889 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
890 {
891         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
892         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
893         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
894         uint16_t buf_size;
895         unsigned int buf_aligned;
896         unsigned int start_alignment;
897         unsigned int end_padding_alignment;
898
899         /* Below it is assumed that both alignments are power of 2 */
900         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
901         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
902
903         /*
904          * mbuf is always cache line aligned, double-check
905          * that it meets rx buffer start alignment requirements.
906          */
907
908         /* Start from mbuf pool data room size */
909         buf_size = rte_pktmbuf_data_room_size(mb_pool);
910
911         /* Remove headroom */
912         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
913                 sfc_err(sa,
914                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
915                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
916                 return 0;
917         }
918         buf_size -= RTE_PKTMBUF_HEADROOM;
919
920         /* Calculate guaranteed data start alignment */
921         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
922
923         /* Reserve space for start alignment */
924         if (buf_aligned < nic_align_start) {
925                 start_alignment = nic_align_start - buf_aligned;
926                 if (buf_size <= start_alignment) {
927                         sfc_err(sa,
928                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
929                                 mb_pool->name,
930                                 rte_pktmbuf_data_room_size(mb_pool),
931                                 RTE_PKTMBUF_HEADROOM, start_alignment);
932                         return 0;
933                 }
934                 buf_aligned = nic_align_start;
935                 buf_size -= start_alignment;
936         } else {
937                 start_alignment = 0;
938         }
939
940         /* Make sure that end padding does not write beyond the buffer */
941         if (buf_aligned < nic_align_end) {
942                 /*
943                  * Estimate space which can be lost. If guarnteed buffer
944                  * size is odd, lost space is (nic_align_end - 1). More
945                  * accurate formula is below.
946                  */
947                 end_padding_alignment = nic_align_end -
948                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
949                 if (buf_size <= end_padding_alignment) {
950                         sfc_err(sa,
951                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
952                                 mb_pool->name,
953                                 rte_pktmbuf_data_room_size(mb_pool),
954                                 RTE_PKTMBUF_HEADROOM, start_alignment,
955                                 end_padding_alignment);
956                         return 0;
957                 }
958                 buf_size -= end_padding_alignment;
959         } else {
960                 /*
961                  * Start is aligned the same or better than end,
962                  * just align length.
963                  */
964                 buf_size = P2ALIGN(buf_size, nic_align_end);
965         }
966
967         return buf_size;
968 }
969
970 int
971 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
972              uint16_t nb_rx_desc, unsigned int socket_id,
973              const struct rte_eth_rxconf *rx_conf,
974              struct rte_mempool *mb_pool)
975 {
976         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
977         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
978         int rc;
979         unsigned int rxq_entries;
980         unsigned int evq_entries;
981         unsigned int rxq_max_fill_level;
982         uint64_t offloads;
983         uint16_t buf_size;
984         struct sfc_rxq_info *rxq_info;
985         struct sfc_evq *evq;
986         struct sfc_rxq *rxq;
987         struct sfc_dp_rx_qcreate_info info;
988         struct sfc_dp_rx_hw_limits hw_limits;
989         uint16_t rx_free_thresh;
990         const char *error;
991
992         memset(&hw_limits, 0, sizeof(hw_limits));
993         hw_limits.rxq_max_entries = sa->rxq_max_entries;
994         hw_limits.rxq_min_entries = sa->rxq_min_entries;
995         hw_limits.evq_max_entries = sa->evq_max_entries;
996         hw_limits.evq_min_entries = sa->evq_min_entries;
997
998         rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
999                                             &rxq_entries, &evq_entries,
1000                                             &rxq_max_fill_level);
1001         if (rc != 0)
1002                 goto fail_size_up_rings;
1003         SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1004         SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1005         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1006
1007         offloads = rx_conf->offloads |
1008                 sa->eth_dev->data->dev_conf.rxmode.offloads;
1009         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1010         if (rc != 0)
1011                 goto fail_bad_conf;
1012
1013         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1014         if (buf_size == 0) {
1015                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
1016                         sw_index);
1017                 rc = EINVAL;
1018                 goto fail_bad_conf;
1019         }
1020
1021         if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1022                                   encp->enc_rx_prefix_size,
1023                                   (offloads & DEV_RX_OFFLOAD_SCATTER),
1024                                   &error)) {
1025                 sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error);
1026                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1027                         "PDU size %u plus Rx prefix %u bytes",
1028                         sw_index, buf_size, (unsigned int)sa->port.pdu,
1029                         encp->enc_rx_prefix_size);
1030                 rc = EINVAL;
1031                 goto fail_bad_conf;
1032         }
1033
1034         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1035         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1036
1037         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1038         rxq_info->entries = rxq_entries;
1039
1040         if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1041                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1042         else
1043                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1044
1045         rxq_info->type_flags =
1046                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1047                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1048
1049         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1050             (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
1051                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1052
1053         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1054                           evq_entries, socket_id, &evq);
1055         if (rc != 0)
1056                 goto fail_ev_qinit;
1057
1058         rxq = &sa->rxq_ctrl[sw_index];
1059         rxq->evq = evq;
1060         rxq->hw_index = sw_index;
1061         /*
1062          * If Rx refill threshold is specified (its value is non zero) in
1063          * Rx configuration, use specified value. Otherwise use 1/8 of
1064          * the Rx descriptors number as the default. It allows to keep
1065          * Rx ring full-enough and does not refill too aggressive if
1066          * packet rate is high.
1067          *
1068          * Since PMD refills in bulks waiting for full bulk may be
1069          * refilled (basically round down), it is better to round up
1070          * here to mitigate it a bit.
1071          */
1072         rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1073                 rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1074         /* Rx refill threshold cannot be smaller than refill bulk */
1075         rxq_info->refill_threshold =
1076                 RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1077         rxq_info->refill_mb_pool = mb_pool;
1078         rxq->buf_size = buf_size;
1079
1080         rc = sfc_dma_alloc(sa, "rxq", sw_index,
1081                            efx_rxq_size(sa->nic, rxq_info->entries),
1082                            socket_id, &rxq->mem);
1083         if (rc != 0)
1084                 goto fail_dma_alloc;
1085
1086         memset(&info, 0, sizeof(info));
1087         info.refill_mb_pool = rxq_info->refill_mb_pool;
1088         info.max_fill_level = rxq_max_fill_level;
1089         info.refill_threshold = rxq_info->refill_threshold;
1090         info.buf_size = buf_size;
1091         info.batch_max = encp->enc_rx_batch_max;
1092         info.prefix_size = encp->enc_rx_prefix_size;
1093
1094         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1095                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1096
1097         info.rxq_entries = rxq_info->entries;
1098         info.rxq_hw_ring = rxq->mem.esm_base;
1099         info.evq_entries = evq_entries;
1100         info.evq_hw_ring = evq->mem.esm_base;
1101         info.hw_index = rxq->hw_index;
1102         info.mem_bar = sa->mem_bar.esb_base;
1103         info.vi_window_shift = encp->enc_vi_window_shift;
1104
1105         rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1106                                      &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1107                                      socket_id, &info, &rxq_info->dp);
1108         if (rc != 0)
1109                 goto fail_dp_rx_qcreate;
1110
1111         evq->dp_rxq = rxq_info->dp;
1112
1113         rxq_info->state = SFC_RXQ_INITIALIZED;
1114
1115         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1116
1117         return 0;
1118
1119 fail_dp_rx_qcreate:
1120         sfc_dma_free(sa, &rxq->mem);
1121
1122 fail_dma_alloc:
1123         sfc_ev_qfini(evq);
1124
1125 fail_ev_qinit:
1126         rxq_info->entries = 0;
1127
1128 fail_bad_conf:
1129 fail_size_up_rings:
1130         sfc_log_init(sa, "failed %d", rc);
1131         return rc;
1132 }
1133
1134 void
1135 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1136 {
1137         struct sfc_rxq_info *rxq_info;
1138         struct sfc_rxq *rxq;
1139
1140         SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1141         sa->eth_dev->data->rx_queues[sw_index] = NULL;
1142
1143         rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1144
1145         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1146
1147         sa->priv.dp_rx->qdestroy(rxq_info->dp);
1148         rxq_info->dp = NULL;
1149
1150         rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1151         rxq_info->entries = 0;
1152
1153         rxq = &sa->rxq_ctrl[sw_index];
1154
1155         sfc_dma_free(sa, &rxq->mem);
1156
1157         sfc_ev_qfini(rxq->evq);
1158         rxq->evq = NULL;
1159 }
1160
1161 /*
1162  * Mapping between RTE RSS hash functions and their EFX counterparts.
1163  */
1164 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1165         { ETH_RSS_NONFRAG_IPV4_TCP,
1166           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1167         { ETH_RSS_NONFRAG_IPV4_UDP,
1168           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1169         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1170           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1171         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1172           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1173         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1174           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1175           EFX_RX_HASH(IPV4, 2TUPLE) },
1176         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1177           ETH_RSS_IPV6_EX,
1178           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1179           EFX_RX_HASH(IPV6, 2TUPLE) }
1180 };
1181
1182 static efx_rx_hash_type_t
1183 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1184                             unsigned int *hash_type_flags_supported,
1185                             unsigned int nb_hash_type_flags_supported)
1186 {
1187         efx_rx_hash_type_t hash_type_masked = 0;
1188         unsigned int i, j;
1189
1190         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1191                 unsigned int class_tuple_lbn[] = {
1192                         EFX_RX_CLASS_IPV4_TCP_LBN,
1193                         EFX_RX_CLASS_IPV4_UDP_LBN,
1194                         EFX_RX_CLASS_IPV4_LBN,
1195                         EFX_RX_CLASS_IPV6_TCP_LBN,
1196                         EFX_RX_CLASS_IPV6_UDP_LBN,
1197                         EFX_RX_CLASS_IPV6_LBN
1198                 };
1199
1200                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1201                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1202                         unsigned int flag;
1203
1204                         tuple_mask <<= class_tuple_lbn[j];
1205                         flag = hash_type & tuple_mask;
1206
1207                         if (flag == hash_type_flags_supported[i])
1208                                 hash_type_masked |= flag;
1209                 }
1210         }
1211
1212         return hash_type_masked;
1213 }
1214
1215 int
1216 sfc_rx_hash_init(struct sfc_adapter *sa)
1217 {
1218         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1219         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1220         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1221         efx_rx_hash_alg_t alg;
1222         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1223         unsigned int nb_flags_supp;
1224         struct sfc_rss_hf_rte_to_efx *hf_map;
1225         struct sfc_rss_hf_rte_to_efx *entry;
1226         efx_rx_hash_type_t efx_hash_types;
1227         unsigned int i;
1228         int rc;
1229
1230         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1231                 alg = EFX_RX_HASHALG_TOEPLITZ;
1232         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1233                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1234         else
1235                 return EINVAL;
1236
1237         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1238                                          RTE_DIM(flags_supp), &nb_flags_supp);
1239         if (rc != 0)
1240                 return rc;
1241
1242         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1243                                    RTE_DIM(sfc_rss_hf_map),
1244                                    sizeof(*hf_map), 0, sa->socket_id);
1245         if (hf_map == NULL)
1246                 return ENOMEM;
1247
1248         entry = hf_map;
1249         efx_hash_types = 0;
1250         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1251                 efx_rx_hash_type_t ht;
1252
1253                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1254                                                  flags_supp, nb_flags_supp);
1255                 if (ht != 0) {
1256                         entry->rte = sfc_rss_hf_map[i].rte;
1257                         entry->efx = ht;
1258                         efx_hash_types |= ht;
1259                         ++entry;
1260                 }
1261         }
1262
1263         rss->hash_alg = alg;
1264         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1265         rss->hf_map = hf_map;
1266         rss->hash_types = efx_hash_types;
1267
1268         return 0;
1269 }
1270
1271 void
1272 sfc_rx_hash_fini(struct sfc_adapter *sa)
1273 {
1274         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1275
1276         rte_free(rss->hf_map);
1277 }
1278
1279 int
1280 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1281                      efx_rx_hash_type_t *efx)
1282 {
1283         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1284         efx_rx_hash_type_t hash_types = 0;
1285         unsigned int i;
1286
1287         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1288                 uint64_t rte_mask = rss->hf_map[i].rte;
1289
1290                 if ((rte & rte_mask) != 0) {
1291                         rte &= ~rte_mask;
1292                         hash_types |= rss->hf_map[i].efx;
1293                 }
1294         }
1295
1296         if (rte != 0) {
1297                 sfc_err(sa, "unsupported hash functions requested");
1298                 return EINVAL;
1299         }
1300
1301         *efx = hash_types;
1302
1303         return 0;
1304 }
1305
1306 uint64_t
1307 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1308 {
1309         uint64_t rte = 0;
1310         unsigned int i;
1311
1312         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1313                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1314
1315                 if ((efx & hash_type) == hash_type)
1316                         rte |= rss->hf_map[i].rte;
1317         }
1318
1319         return rte;
1320 }
1321
1322 static int
1323 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1324                             struct rte_eth_rss_conf *conf)
1325 {
1326         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1327         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1328         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1329         int rc;
1330
1331         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1332                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1333                     conf->rss_key != NULL)
1334                         return EINVAL;
1335         }
1336
1337         if (conf->rss_hf != 0) {
1338                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1339                 if (rc != 0)
1340                         return rc;
1341         }
1342
1343         if (conf->rss_key != NULL) {
1344                 if (conf->rss_key_len != sizeof(rss->key)) {
1345                         sfc_err(sa, "RSS key size is wrong (should be %lu)",
1346                                 sizeof(rss->key));
1347                         return EINVAL;
1348                 }
1349                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1350         }
1351
1352         rss->hash_types = efx_hash_types;
1353
1354         return 0;
1355 }
1356
1357 static int
1358 sfc_rx_rss_config(struct sfc_adapter *sa)
1359 {
1360         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1361         int rc = 0;
1362
1363         if (rss->channels > 0) {
1364                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1365                                            rss->hash_alg, rss->hash_types,
1366                                            B_TRUE);
1367                 if (rc != 0)
1368                         goto finish;
1369
1370                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1371                                           rss->key, sizeof(rss->key));
1372                 if (rc != 0)
1373                         goto finish;
1374
1375                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1376                                           rss->tbl, RTE_DIM(rss->tbl));
1377         }
1378
1379 finish:
1380         return rc;
1381 }
1382
1383 int
1384 sfc_rx_start(struct sfc_adapter *sa)
1385 {
1386         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1387         unsigned int sw_index;
1388         int rc;
1389
1390         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1391
1392         rc = efx_rx_init(sa->nic);
1393         if (rc != 0)
1394                 goto fail_rx_init;
1395
1396         rc = sfc_rx_rss_config(sa);
1397         if (rc != 0)
1398                 goto fail_rss_config;
1399
1400         for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1401                 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1402                     (!sas->rxq_info[sw_index].deferred_start ||
1403                      sas->rxq_info[sw_index].deferred_started)) {
1404                         rc = sfc_rx_qstart(sa, sw_index);
1405                         if (rc != 0)
1406                                 goto fail_rx_qstart;
1407                 }
1408         }
1409
1410         return 0;
1411
1412 fail_rx_qstart:
1413         while (sw_index-- > 0)
1414                 sfc_rx_qstop(sa, sw_index);
1415
1416 fail_rss_config:
1417         efx_rx_fini(sa->nic);
1418
1419 fail_rx_init:
1420         sfc_log_init(sa, "failed %d", rc);
1421         return rc;
1422 }
1423
1424 void
1425 sfc_rx_stop(struct sfc_adapter *sa)
1426 {
1427         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1428         unsigned int sw_index;
1429
1430         sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1431
1432         sw_index = sas->rxq_count;
1433         while (sw_index-- > 0) {
1434                 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1435                         sfc_rx_qstop(sa, sw_index);
1436         }
1437
1438         efx_rx_fini(sa->nic);
1439 }
1440
1441 static int
1442 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1443 {
1444         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1445         struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1446         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1447         unsigned int max_entries;
1448
1449         max_entries = encp->enc_rxq_max_ndescs;
1450         SFC_ASSERT(rte_is_power_of_2(max_entries));
1451
1452         rxq_info->max_entries = max_entries;
1453
1454         return 0;
1455 }
1456
1457 static int
1458 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1459 {
1460         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1461         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1462                                       sfc_rx_get_queue_offload_caps(sa);
1463         struct sfc_rss *rss = &sas->rss;
1464         int rc = 0;
1465
1466         switch (rxmode->mq_mode) {
1467         case ETH_MQ_RX_NONE:
1468                 /* No special checks are required */
1469                 break;
1470         case ETH_MQ_RX_RSS:
1471                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1472                         sfc_err(sa, "RSS is not available");
1473                         rc = EINVAL;
1474                 }
1475                 break;
1476         default:
1477                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1478                         rxmode->mq_mode);
1479                 rc = EINVAL;
1480         }
1481
1482         /*
1483          * Requested offloads are validated against supported by ethdev,
1484          * so unsupported offloads cannot be added as the result of
1485          * below check.
1486          */
1487         if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1488             (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1489                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1490                 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1491         }
1492
1493         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1494             (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1495                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1496                 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1497         }
1498
1499         return rc;
1500 }
1501
1502 /**
1503  * Destroy excess queues that are no longer needed after reconfiguration
1504  * or complete close.
1505  */
1506 static void
1507 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1508 {
1509         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1510         int sw_index;
1511
1512         SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1513
1514         sw_index = sas->rxq_count;
1515         while (--sw_index >= (int)nb_rx_queues) {
1516                 if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1517                         sfc_rx_qfini(sa, sw_index);
1518         }
1519
1520         sas->rxq_count = nb_rx_queues;
1521 }
1522
1523 /**
1524  * Initialize Rx subsystem.
1525  *
1526  * Called at device (re)configuration stage when number of receive queues is
1527  * specified together with other device level receive configuration.
1528  *
1529  * It should be used to allocate NUMA-unaware resources.
1530  */
1531 int
1532 sfc_rx_configure(struct sfc_adapter *sa)
1533 {
1534         struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1535         struct sfc_rss *rss = &sas->rss;
1536         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1537         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1538         int rc;
1539
1540         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1541                      nb_rx_queues, sas->rxq_count);
1542
1543         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1544         if (rc != 0)
1545                 goto fail_check_mode;
1546
1547         if (nb_rx_queues == sas->rxq_count)
1548                 goto configure_rss;
1549
1550         if (sas->rxq_info == NULL) {
1551                 rc = ENOMEM;
1552                 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1553                                                   sizeof(sas->rxq_info[0]), 0,
1554                                                   sa->socket_id);
1555                 if (sas->rxq_info == NULL)
1556                         goto fail_rxqs_alloc;
1557
1558                 /*
1559                  * Allocate primary process only RxQ control from heap
1560                  * since it should not be shared.
1561                  */
1562                 rc = ENOMEM;
1563                 sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1564                 if (sa->rxq_ctrl == NULL)
1565                         goto fail_rxqs_ctrl_alloc;
1566         } else {
1567                 struct sfc_rxq_info *new_rxq_info;
1568                 struct sfc_rxq *new_rxq_ctrl;
1569
1570                 if (nb_rx_queues < sas->rxq_count)
1571                         sfc_rx_fini_queues(sa, nb_rx_queues);
1572
1573                 rc = ENOMEM;
1574                 new_rxq_info =
1575                         rte_realloc(sas->rxq_info,
1576                                     nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1577                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1578                         goto fail_rxqs_realloc;
1579
1580                 rc = ENOMEM;
1581                 new_rxq_ctrl = realloc(sa->rxq_ctrl,
1582                                        nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1583                 if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1584                         goto fail_rxqs_ctrl_realloc;
1585
1586                 sas->rxq_info = new_rxq_info;
1587                 sa->rxq_ctrl = new_rxq_ctrl;
1588                 if (nb_rx_queues > sas->rxq_count) {
1589                         memset(&sas->rxq_info[sas->rxq_count], 0,
1590                                (nb_rx_queues - sas->rxq_count) *
1591                                sizeof(sas->rxq_info[0]));
1592                         memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1593                                (nb_rx_queues - sas->rxq_count) *
1594                                sizeof(sa->rxq_ctrl[0]));
1595                 }
1596         }
1597
1598         while (sas->rxq_count < nb_rx_queues) {
1599                 rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1600                 if (rc != 0)
1601                         goto fail_rx_qinit_info;
1602
1603                 sas->rxq_count++;
1604         }
1605
1606 configure_rss:
1607         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1608                          MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1609
1610         if (rss->channels > 0) {
1611                 struct rte_eth_rss_conf *adv_conf_rss;
1612                 unsigned int sw_index;
1613
1614                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1615                         rss->tbl[sw_index] = sw_index % rss->channels;
1616
1617                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1618                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1619                 if (rc != 0)
1620                         goto fail_rx_process_adv_conf_rss;
1621         }
1622
1623         return 0;
1624
1625 fail_rx_process_adv_conf_rss:
1626 fail_rx_qinit_info:
1627 fail_rxqs_ctrl_realloc:
1628 fail_rxqs_realloc:
1629 fail_rxqs_ctrl_alloc:
1630 fail_rxqs_alloc:
1631         sfc_rx_close(sa);
1632
1633 fail_check_mode:
1634         sfc_log_init(sa, "failed %d", rc);
1635         return rc;
1636 }
1637
1638 /**
1639  * Shutdown Rx subsystem.
1640  *
1641  * Called at device close stage, for example, before device shutdown.
1642  */
1643 void
1644 sfc_rx_close(struct sfc_adapter *sa)
1645 {
1646         struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1647
1648         sfc_rx_fini_queues(sa, 0);
1649
1650         rss->channels = 0;
1651
1652         free(sa->rxq_ctrl);
1653         sa->rxq_ctrl = NULL;
1654
1655         rte_free(sfc_sa2shared(sa)->rxq_info);
1656         sfc_sa2shared(sa)->rxq_info = NULL;
1657 }