ethdev: new Rx/Tx offloads API
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq *rxq)
43 {
44         rxq->state |= SFC_RXQ_FLUSHED;
45         rxq->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq *rxq)
50 {
51         rxq->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58         unsigned int free_space;
59         unsigned int bulks;
60         void *objs[SFC_RX_REFILL_BULK];
61         efsys_dma_addr_t addr[RTE_DIM(objs)];
62         unsigned int added = rxq->added;
63         unsigned int id;
64         unsigned int i;
65         struct sfc_efx_rx_sw_desc *rxd;
66         struct rte_mbuf *m;
67         uint16_t port_id = rxq->dp.dpq.port_id;
68
69         free_space = rxq->max_fill_level - (added - rxq->completed);
70
71         if (free_space < rxq->refill_threshold)
72                 return;
73
74         bulks = free_space / RTE_DIM(objs);
75         /* refill_threshold guarantees that bulks is positive */
76         SFC_ASSERT(bulks > 0);
77
78         id = added & rxq->ptr_mask;
79         do {
80                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81                                                   RTE_DIM(objs)) < 0)) {
82                         /*
83                          * It is hardly a safe way to increment counter
84                          * from different contexts, but all PMDs do it.
85                          */
86                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87                                 RTE_DIM(objs);
88                         /* Return if we have posted nothing yet */
89                         if (added == rxq->added)
90                                 return;
91                         /* Push posted */
92                         break;
93                 }
94
95                 for (i = 0; i < RTE_DIM(objs);
96                      ++i, id = (id + 1) & rxq->ptr_mask) {
97                         m = objs[i];
98
99                         rxd = &rxq->sw_desc[id];
100                         rxd->mbuf = m;
101
102                         SFC_ASSERT(rte_mbuf_refcnt_read(m) == 1);
103                         m->data_off = RTE_PKTMBUF_HEADROOM;
104                         SFC_ASSERT(m->next == NULL);
105                         SFC_ASSERT(m->nb_segs == 1);
106                         m->port = port_id;
107
108                         addr[i] = rte_pktmbuf_iova(m);
109                 }
110
111                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
112                              RTE_DIM(objs), rxq->completed, added);
113                 added += RTE_DIM(objs);
114         } while (--bulks > 0);
115
116         SFC_ASSERT(added != rxq->added);
117         rxq->added = added;
118         efx_rx_qpush(rxq->common, added, &rxq->pushed);
119 }
120
121 static uint64_t
122 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
123 {
124         uint64_t mbuf_flags = 0;
125
126         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
127         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
128                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
129                 break;
130         case EFX_PKT_IPV4:
131                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
132                 break;
133         default:
134                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
135                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
136                            PKT_RX_IP_CKSUM_UNKNOWN);
137                 break;
138         }
139
140         switch ((desc_flags &
141                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
142         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
143         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
144                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
145                 break;
146         case EFX_PKT_TCP:
147         case EFX_PKT_UDP:
148                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
149                 break;
150         default:
151                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
152                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
153                            PKT_RX_L4_CKSUM_UNKNOWN);
154                 break;
155         }
156
157         return mbuf_flags;
158 }
159
160 static uint32_t
161 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
162 {
163         return RTE_PTYPE_L2_ETHER |
164                 ((desc_flags & EFX_PKT_IPV4) ?
165                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
166                 ((desc_flags & EFX_PKT_IPV6) ?
167                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
168                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
169                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
170 }
171
172 static const uint32_t *
173 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
174 {
175         static const uint32_t ptypes[] = {
176                 RTE_PTYPE_L2_ETHER,
177                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
178                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
179                 RTE_PTYPE_L4_TCP,
180                 RTE_PTYPE_L4_UDP,
181                 RTE_PTYPE_UNKNOWN
182         };
183
184         return ptypes;
185 }
186
187 static void
188 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
189                         struct rte_mbuf *m)
190 {
191         uint8_t *mbuf_data;
192
193
194         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
195                 return;
196
197         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
198
199         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
200                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
201                                                       EFX_RX_HASHALG_TOEPLITZ,
202                                                       mbuf_data);
203
204                 m->ol_flags |= PKT_RX_RSS_HASH;
205         }
206 }
207
208 static uint16_t
209 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
210 {
211         struct sfc_dp_rxq *dp_rxq = rx_queue;
212         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
213         unsigned int completed;
214         unsigned int prefix_size = rxq->prefix_size;
215         unsigned int done_pkts = 0;
216         boolean_t discard_next = B_FALSE;
217         struct rte_mbuf *scatter_pkt = NULL;
218
219         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
220                 return 0;
221
222         sfc_ev_qpoll(rxq->evq);
223
224         completed = rxq->completed;
225         while (completed != rxq->pending && done_pkts < nb_pkts) {
226                 unsigned int id;
227                 struct sfc_efx_rx_sw_desc *rxd;
228                 struct rte_mbuf *m;
229                 unsigned int seg_len;
230                 unsigned int desc_flags;
231
232                 id = completed++ & rxq->ptr_mask;
233                 rxd = &rxq->sw_desc[id];
234                 m = rxd->mbuf;
235                 desc_flags = rxd->flags;
236
237                 if (discard_next)
238                         goto discard;
239
240                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
241                         goto discard;
242
243                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
244                         uint16_t tmp_size;
245                         int rc __rte_unused;
246
247                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
248                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
249                         SFC_ASSERT(rc == 0);
250                         seg_len = tmp_size;
251                 } else {
252                         seg_len = rxd->size - prefix_size;
253                 }
254
255                 rte_pktmbuf_data_len(m) = seg_len;
256                 rte_pktmbuf_pkt_len(m) = seg_len;
257
258                 if (scatter_pkt != NULL) {
259                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
260                                 rte_pktmbuf_free(scatter_pkt);
261                                 goto discard;
262                         }
263                         /* The packet to deliver */
264                         m = scatter_pkt;
265                 }
266
267                 if (desc_flags & EFX_PKT_CONT) {
268                         /* The packet is scattered, more fragments to come */
269                         scatter_pkt = m;
270                         /* Further fragments have no prefix */
271                         prefix_size = 0;
272                         continue;
273                 }
274
275                 /* Scattered packet is done */
276                 scatter_pkt = NULL;
277                 /* The first fragment of the packet has prefix */
278                 prefix_size = rxq->prefix_size;
279
280                 m->ol_flags =
281                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
282                 m->packet_type =
283                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
284
285                 /*
286                  * Extract RSS hash from the packet prefix and
287                  * set the corresponding field (if needed and possible)
288                  */
289                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
290
291                 m->data_off += prefix_size;
292
293                 *rx_pkts++ = m;
294                 done_pkts++;
295                 continue;
296
297 discard:
298                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
299                 rte_mempool_put(rxq->refill_mb_pool, m);
300                 rxd->mbuf = NULL;
301         }
302
303         /* pending is only moved when entire packet is received */
304         SFC_ASSERT(scatter_pkt == NULL);
305
306         rxq->completed = completed;
307
308         sfc_efx_rx_qrefill(rxq);
309
310         return done_pkts;
311 }
312
313 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
314 static unsigned int
315 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
316 {
317         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
318
319         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
320                 return 0;
321
322         sfc_ev_qpoll(rxq->evq);
323
324         return rxq->pending - rxq->completed;
325 }
326
327 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
328 static int
329 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
330 {
331         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
332
333         if (unlikely(offset > rxq->ptr_mask))
334                 return -EINVAL;
335
336         /*
337          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
338          * it is required for the queue to be running, but the
339          * check is omitted because API design assumes that it
340          * is the duty of the caller to satisfy all conditions
341          */
342         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
343                    SFC_EFX_RXQ_FLAG_RUNNING);
344         sfc_ev_qpoll(rxq->evq);
345
346         /*
347          * There is a handful of reserved entries in the ring,
348          * but an explicit check whether the offset points to
349          * a reserved entry is neglected since the two checks
350          * below rely on the figures which take the HW limits
351          * into account and thus if an entry is reserved, the
352          * checks will fail and UNAVAIL code will be returned
353          */
354
355         if (offset < (rxq->pending - rxq->completed))
356                 return RTE_ETH_RX_DESC_DONE;
357
358         if (offset < (rxq->added - rxq->completed))
359                 return RTE_ETH_RX_DESC_AVAIL;
360
361         return RTE_ETH_RX_DESC_UNAVAIL;
362 }
363
364 struct sfc_rxq *
365 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
366 {
367         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
368         struct rte_eth_dev *eth_dev;
369         struct sfc_adapter *sa;
370         struct sfc_rxq *rxq;
371
372         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
373         eth_dev = &rte_eth_devices[dpq->port_id];
374
375         sa = eth_dev->data->dev_private;
376
377         SFC_ASSERT(dpq->queue_id < sa->rxq_count);
378         rxq = sa->rxq_info[dpq->queue_id].rxq;
379
380         SFC_ASSERT(rxq != NULL);
381         return rxq;
382 }
383
384 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
385 static int
386 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
387                           __rte_unused struct rte_mempool *mb_pool,
388                           unsigned int *rxq_entries,
389                           unsigned int *evq_entries,
390                           unsigned int *rxq_max_fill_level)
391 {
392         *rxq_entries = nb_rx_desc;
393         *evq_entries = nb_rx_desc;
394         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
395         return 0;
396 }
397
398 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
399 static int
400 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
401                    const struct rte_pci_addr *pci_addr, int socket_id,
402                    const struct sfc_dp_rx_qcreate_info *info,
403                    struct sfc_dp_rxq **dp_rxqp)
404 {
405         struct sfc_efx_rxq *rxq;
406         int rc;
407
408         rc = ENOMEM;
409         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
410                                  RTE_CACHE_LINE_SIZE, socket_id);
411         if (rxq == NULL)
412                 goto fail_rxq_alloc;
413
414         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
415
416         rc = ENOMEM;
417         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
418                                          info->rxq_entries,
419                                          sizeof(*rxq->sw_desc),
420                                          RTE_CACHE_LINE_SIZE, socket_id);
421         if (rxq->sw_desc == NULL)
422                 goto fail_desc_alloc;
423
424         /* efx datapath is bound to efx control path */
425         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
426         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
427                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
428         rxq->ptr_mask = info->rxq_entries - 1;
429         rxq->batch_max = info->batch_max;
430         rxq->prefix_size = info->prefix_size;
431         rxq->max_fill_level = info->max_fill_level;
432         rxq->refill_threshold = info->refill_threshold;
433         rxq->buf_size = info->buf_size;
434         rxq->refill_mb_pool = info->refill_mb_pool;
435
436         *dp_rxqp = &rxq->dp;
437         return 0;
438
439 fail_desc_alloc:
440         rte_free(rxq);
441
442 fail_rxq_alloc:
443         return rc;
444 }
445
446 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
447 static void
448 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
449 {
450         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
451
452         rte_free(rxq->sw_desc);
453         rte_free(rxq);
454 }
455
456 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
457 static int
458 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
459                   __rte_unused unsigned int evq_read_ptr)
460 {
461         /* libefx-based datapath is specific to libefx-based PMD */
462         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
463         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
464
465         rxq->common = crxq->common;
466
467         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
468
469         sfc_efx_rx_qrefill(rxq);
470
471         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
472
473         return 0;
474 }
475
476 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
477 static void
478 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
479                  __rte_unused unsigned int *evq_read_ptr)
480 {
481         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
482
483         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
484
485         /* libefx-based datapath is bound to libefx-based PMD and uses
486          * event queue structure directly. So, there is no necessity to
487          * return EvQ read pointer.
488          */
489 }
490
491 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
492 static void
493 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
494 {
495         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
496         unsigned int i;
497         struct sfc_efx_rx_sw_desc *rxd;
498
499         for (i = rxq->completed; i != rxq->added; ++i) {
500                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
501                 rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
502                 rxd->mbuf = NULL;
503                 /* Packed stream relies on 0 in inactive SW desc.
504                  * Rx queue stop is not performance critical, so
505                  * there is no harm to do it always.
506                  */
507                 rxd->flags = 0;
508                 rxd->size = 0;
509         }
510
511         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
512 }
513
514 struct sfc_dp_rx sfc_efx_rx = {
515         .dp = {
516                 .name           = SFC_KVARG_DATAPATH_EFX,
517                 .type           = SFC_DP_RX,
518                 .hw_fw_caps     = 0,
519         },
520         .features               = SFC_DP_RX_FEAT_SCATTER,
521         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
522         .qcreate                = sfc_efx_rx_qcreate,
523         .qdestroy               = sfc_efx_rx_qdestroy,
524         .qstart                 = sfc_efx_rx_qstart,
525         .qstop                  = sfc_efx_rx_qstop,
526         .qpurge                 = sfc_efx_rx_qpurge,
527         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
528         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
529         .qdesc_status           = sfc_efx_rx_qdesc_status,
530         .pkt_burst              = sfc_efx_recv_pkts,
531 };
532
533 unsigned int
534 sfc_rx_qdesc_npending(struct sfc_adapter *sa, unsigned int sw_index)
535 {
536         struct sfc_rxq *rxq;
537
538         SFC_ASSERT(sw_index < sa->rxq_count);
539         rxq = sa->rxq_info[sw_index].rxq;
540
541         if (rxq == NULL || (rxq->state & SFC_RXQ_STARTED) == 0)
542                 return 0;
543
544         return sa->dp_rx->qdesc_npending(rxq->dp);
545 }
546
547 int
548 sfc_rx_qdesc_done(struct sfc_dp_rxq *dp_rxq, unsigned int offset)
549 {
550         struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
551
552         return offset < rxq->evq->sa->dp_rx->qdesc_npending(dp_rxq);
553 }
554
555 static void
556 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
557 {
558         struct sfc_rxq *rxq;
559         unsigned int retry_count;
560         unsigned int wait_count;
561         int rc;
562
563         rxq = sa->rxq_info[sw_index].rxq;
564         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
565
566         /*
567          * Retry Rx queue flushing in the case of flush failed or
568          * timeout. In the worst case it can delay for 6 seconds.
569          */
570         for (retry_count = 0;
571              ((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
572              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
573              ++retry_count) {
574                 rc = efx_rx_qflush(rxq->common);
575                 if (rc != 0) {
576                         rxq->state |= (rc == EALREADY) ?
577                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
578                         break;
579                 }
580                 rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
581                 rxq->state |= SFC_RXQ_FLUSHING;
582
583                 /*
584                  * Wait for Rx queue flush done or failed event at least
585                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
586                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
587                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
588                  */
589                 wait_count = 0;
590                 do {
591                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
592                         sfc_ev_qpoll(rxq->evq);
593                 } while ((rxq->state & SFC_RXQ_FLUSHING) &&
594                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
595
596                 if (rxq->state & SFC_RXQ_FLUSHING)
597                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
598
599                 if (rxq->state & SFC_RXQ_FLUSH_FAILED)
600                         sfc_err(sa, "RxQ %u flush failed", sw_index);
601
602                 if (rxq->state & SFC_RXQ_FLUSHED)
603                         sfc_notice(sa, "RxQ %u flushed", sw_index);
604         }
605
606         sa->dp_rx->qpurge(rxq->dp);
607 }
608
609 static int
610 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
611 {
612         struct sfc_rss *rss = &sa->rss;
613         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
614         struct sfc_port *port = &sa->port;
615         int rc;
616
617         /*
618          * If promiscuous or all-multicast mode has been requested, setting
619          * filter for the default Rx queue might fail, in particular, while
620          * running over PCI function which is not a member of corresponding
621          * privilege groups; if this occurs, few iterations will be made to
622          * repeat this step without promiscuous and all-multicast flags set
623          */
624 retry:
625         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
626         if (rc == 0)
627                 return 0;
628         else if (rc != EOPNOTSUPP)
629                 return rc;
630
631         if (port->promisc) {
632                 sfc_warn(sa, "promiscuous mode has been requested, "
633                              "but the HW rejects it");
634                 sfc_warn(sa, "promiscuous mode will be disabled");
635
636                 port->promisc = B_FALSE;
637                 rc = sfc_set_rx_mode(sa);
638                 if (rc != 0)
639                         return rc;
640
641                 goto retry;
642         }
643
644         if (port->allmulti) {
645                 sfc_warn(sa, "all-multicast mode has been requested, "
646                              "but the HW rejects it");
647                 sfc_warn(sa, "all-multicast mode will be disabled");
648
649                 port->allmulti = B_FALSE;
650                 rc = sfc_set_rx_mode(sa);
651                 if (rc != 0)
652                         return rc;
653
654                 goto retry;
655         }
656
657         return rc;
658 }
659
660 int
661 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
662 {
663         struct sfc_port *port = &sa->port;
664         struct sfc_rxq_info *rxq_info;
665         struct sfc_rxq *rxq;
666         struct sfc_evq *evq;
667         int rc;
668
669         sfc_log_init(sa, "sw_index=%u", sw_index);
670
671         SFC_ASSERT(sw_index < sa->rxq_count);
672
673         rxq_info = &sa->rxq_info[sw_index];
674         rxq = rxq_info->rxq;
675         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
676
677         evq = rxq->evq;
678
679         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
680         if (rc != 0)
681                 goto fail_ev_qstart;
682
683         switch (rxq_info->type) {
684         case EFX_RXQ_TYPE_DEFAULT:
685                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
686                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
687                         rxq_info->type_flags, evq->common, &rxq->common);
688                 break;
689         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
690                 struct rte_mempool *mp = rxq->refill_mb_pool;
691                 struct rte_mempool_info mp_info;
692
693                 rc = rte_mempool_ops_get_info(mp, &mp_info);
694                 if (rc != 0) {
695                         /* Positive errno is used in the driver */
696                         rc = -rc;
697                         goto fail_mp_get_info;
698                 }
699                 if (mp_info.contig_block_size <= 0) {
700                         rc = EINVAL;
701                         goto fail_bad_contig_block_size;
702                 }
703                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
704                         mp_info.contig_block_size, rxq->buf_size,
705                         mp->header_size + mp->elt_size + mp->trailer_size,
706                         sa->rxd_wait_timeout_ns,
707                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
708                         evq->common, &rxq->common);
709                 break;
710         }
711         default:
712                 rc = ENOTSUP;
713         }
714         if (rc != 0)
715                 goto fail_rx_qcreate;
716
717         efx_rx_qenable(rxq->common);
718
719         rc = sa->dp_rx->qstart(rxq->dp, evq->read_ptr);
720         if (rc != 0)
721                 goto fail_dp_qstart;
722
723         rxq->state |= SFC_RXQ_STARTED;
724
725         if ((sw_index == 0) && !port->isolated) {
726                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
727                 if (rc != 0)
728                         goto fail_mac_filter_default_rxq_set;
729         }
730
731         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
732         sa->eth_dev->data->rx_queue_state[sw_index] =
733                 RTE_ETH_QUEUE_STATE_STARTED;
734
735         return 0;
736
737 fail_mac_filter_default_rxq_set:
738         sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
739
740 fail_dp_qstart:
741         sfc_rx_qflush(sa, sw_index);
742
743 fail_rx_qcreate:
744 fail_bad_contig_block_size:
745 fail_mp_get_info:
746         sfc_ev_qstop(evq);
747
748 fail_ev_qstart:
749         return rc;
750 }
751
752 void
753 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
754 {
755         struct sfc_rxq_info *rxq_info;
756         struct sfc_rxq *rxq;
757
758         sfc_log_init(sa, "sw_index=%u", sw_index);
759
760         SFC_ASSERT(sw_index < sa->rxq_count);
761
762         rxq_info = &sa->rxq_info[sw_index];
763         rxq = rxq_info->rxq;
764
765         if (rxq->state == SFC_RXQ_INITIALIZED)
766                 return;
767         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
768
769         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
770         sa->eth_dev->data->rx_queue_state[sw_index] =
771                 RTE_ETH_QUEUE_STATE_STOPPED;
772
773         sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
774
775         if (sw_index == 0)
776                 efx_mac_filter_default_rxq_clear(sa->nic);
777
778         sfc_rx_qflush(sa, sw_index);
779
780         rxq->state = SFC_RXQ_INITIALIZED;
781
782         efx_rx_qdestroy(rxq->common);
783
784         sfc_ev_qstop(rxq->evq);
785 }
786
787 uint64_t
788 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
789 {
790         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
791         uint64_t caps = 0;
792
793         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
794         caps |= DEV_RX_OFFLOAD_CRC_STRIP;
795         caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
796         caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
797         caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
798
799         if (encp->enc_tunnel_encapsulations_supported &&
800             (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
801                 caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
802
803         return caps;
804 }
805
806 uint64_t
807 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
808 {
809         uint64_t caps = 0;
810
811         if (sa->dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
812                 caps |= DEV_RX_OFFLOAD_SCATTER;
813
814         return caps;
815 }
816
817 static int
818 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
819                    const struct rte_eth_rxconf *rx_conf,
820                    uint64_t offloads)
821 {
822         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
823                                       sfc_rx_get_queue_offload_caps(sa);
824         int rc = 0;
825
826         if (rx_conf->rx_thresh.pthresh != 0 ||
827             rx_conf->rx_thresh.hthresh != 0 ||
828             rx_conf->rx_thresh.wthresh != 0) {
829                 sfc_warn(sa,
830                         "RxQ prefetch/host/writeback thresholds are not supported");
831         }
832
833         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
834                 sfc_err(sa,
835                         "RxQ free threshold too large: %u vs maximum %u",
836                         rx_conf->rx_free_thresh, rxq_max_fill_level);
837                 rc = EINVAL;
838         }
839
840         if (rx_conf->rx_drop_en == 0) {
841                 sfc_err(sa, "RxQ drop disable is not supported");
842                 rc = EINVAL;
843         }
844
845         if ((offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
846             DEV_RX_OFFLOAD_CHECKSUM)
847                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
848
849         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
850             (~offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM))
851                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
852
853         return rc;
854 }
855
856 static unsigned int
857 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
858 {
859         uint32_t data_off;
860         uint32_t order;
861
862         /* The mbuf object itself is always cache line aligned */
863         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
864
865         /* Data offset from mbuf object start */
866         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
867                 RTE_PKTMBUF_HEADROOM;
868
869         order = MIN(order, rte_bsf32(data_off));
870
871         return 1u << order;
872 }
873
874 static uint16_t
875 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
876 {
877         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
878         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
879         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
880         uint16_t buf_size;
881         unsigned int buf_aligned;
882         unsigned int start_alignment;
883         unsigned int end_padding_alignment;
884
885         /* Below it is assumed that both alignments are power of 2 */
886         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
887         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
888
889         /*
890          * mbuf is always cache line aligned, double-check
891          * that it meets rx buffer start alignment requirements.
892          */
893
894         /* Start from mbuf pool data room size */
895         buf_size = rte_pktmbuf_data_room_size(mb_pool);
896
897         /* Remove headroom */
898         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
899                 sfc_err(sa,
900                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
901                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
902                 return 0;
903         }
904         buf_size -= RTE_PKTMBUF_HEADROOM;
905
906         /* Calculate guaranteed data start alignment */
907         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
908
909         /* Reserve space for start alignment */
910         if (buf_aligned < nic_align_start) {
911                 start_alignment = nic_align_start - buf_aligned;
912                 if (buf_size <= start_alignment) {
913                         sfc_err(sa,
914                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
915                                 mb_pool->name,
916                                 rte_pktmbuf_data_room_size(mb_pool),
917                                 RTE_PKTMBUF_HEADROOM, start_alignment);
918                         return 0;
919                 }
920                 buf_aligned = nic_align_start;
921                 buf_size -= start_alignment;
922         } else {
923                 start_alignment = 0;
924         }
925
926         /* Make sure that end padding does not write beyond the buffer */
927         if (buf_aligned < nic_align_end) {
928                 /*
929                  * Estimate space which can be lost. If guarnteed buffer
930                  * size is odd, lost space is (nic_align_end - 1). More
931                  * accurate formula is below.
932                  */
933                 end_padding_alignment = nic_align_end -
934                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
935                 if (buf_size <= end_padding_alignment) {
936                         sfc_err(sa,
937                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
938                                 mb_pool->name,
939                                 rte_pktmbuf_data_room_size(mb_pool),
940                                 RTE_PKTMBUF_HEADROOM, start_alignment,
941                                 end_padding_alignment);
942                         return 0;
943                 }
944                 buf_size -= end_padding_alignment;
945         } else {
946                 /*
947                  * Start is aligned the same or better than end,
948                  * just align length.
949                  */
950                 buf_size = P2ALIGN(buf_size, nic_align_end);
951         }
952
953         return buf_size;
954 }
955
956 int
957 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
958              uint16_t nb_rx_desc, unsigned int socket_id,
959              const struct rte_eth_rxconf *rx_conf,
960              struct rte_mempool *mb_pool)
961 {
962         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
963         struct sfc_rss *rss = &sa->rss;
964         int rc;
965         unsigned int rxq_entries;
966         unsigned int evq_entries;
967         unsigned int rxq_max_fill_level;
968         uint64_t offloads;
969         uint16_t buf_size;
970         struct sfc_rxq_info *rxq_info;
971         struct sfc_evq *evq;
972         struct sfc_rxq *rxq;
973         struct sfc_dp_rx_qcreate_info info;
974
975         rc = sa->dp_rx->qsize_up_rings(nb_rx_desc, mb_pool, &rxq_entries,
976                                        &evq_entries, &rxq_max_fill_level);
977         if (rc != 0)
978                 goto fail_size_up_rings;
979         SFC_ASSERT(rxq_entries >= EFX_RXQ_MINNDESCS);
980         SFC_ASSERT(rxq_entries <= EFX_RXQ_MAXNDESCS);
981         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
982
983         offloads = rx_conf->offloads |
984                 sa->eth_dev->data->dev_conf.rxmode.offloads;
985         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
986         if (rc != 0)
987                 goto fail_bad_conf;
988
989         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
990         if (buf_size == 0) {
991                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
992                         sw_index);
993                 rc = EINVAL;
994                 goto fail_bad_conf;
995         }
996
997         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
998             (~offloads & DEV_RX_OFFLOAD_SCATTER)) {
999                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
1000                         "object size is too small", sw_index);
1001                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1002                         "PDU size %u plus Rx prefix %u bytes",
1003                         sw_index, buf_size, (unsigned int)sa->port.pdu,
1004                         encp->enc_rx_prefix_size);
1005                 rc = EINVAL;
1006                 goto fail_bad_conf;
1007         }
1008
1009         SFC_ASSERT(sw_index < sa->rxq_count);
1010         rxq_info = &sa->rxq_info[sw_index];
1011
1012         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1013         rxq_info->entries = rxq_entries;
1014
1015         if (sa->dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1016                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1017         else
1018                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1019
1020         rxq_info->type_flags =
1021                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1022                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1023
1024         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1025             (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
1026                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1027
1028         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1029                           evq_entries, socket_id, &evq);
1030         if (rc != 0)
1031                 goto fail_ev_qinit;
1032
1033         rc = ENOMEM;
1034         rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
1035                                  socket_id);
1036         if (rxq == NULL)
1037                 goto fail_rxq_alloc;
1038
1039         rxq_info->rxq = rxq;
1040
1041         rxq->evq = evq;
1042         rxq->hw_index = sw_index;
1043         rxq->refill_threshold =
1044                 RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
1045         rxq->refill_mb_pool = mb_pool;
1046         rxq->buf_size = buf_size;
1047
1048         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
1049                            socket_id, &rxq->mem);
1050         if (rc != 0)
1051                 goto fail_dma_alloc;
1052
1053         memset(&info, 0, sizeof(info));
1054         info.refill_mb_pool = rxq->refill_mb_pool;
1055         info.max_fill_level = rxq_max_fill_level;
1056         info.refill_threshold = rxq->refill_threshold;
1057         info.buf_size = buf_size;
1058         info.batch_max = encp->enc_rx_batch_max;
1059         info.prefix_size = encp->enc_rx_prefix_size;
1060
1061         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1062                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1063
1064         info.rxq_entries = rxq_info->entries;
1065         info.rxq_hw_ring = rxq->mem.esm_base;
1066         info.evq_entries = evq_entries;
1067         info.evq_hw_ring = evq->mem.esm_base;
1068         info.hw_index = rxq->hw_index;
1069         info.mem_bar = sa->mem_bar.esb_base;
1070         info.vi_window_shift = encp->enc_vi_window_shift;
1071
1072         rc = sa->dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1073                                 &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1074                                 socket_id, &info, &rxq->dp);
1075         if (rc != 0)
1076                 goto fail_dp_rx_qcreate;
1077
1078         evq->dp_rxq = rxq->dp;
1079
1080         rxq->state = SFC_RXQ_INITIALIZED;
1081
1082         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1083
1084         return 0;
1085
1086 fail_dp_rx_qcreate:
1087         sfc_dma_free(sa, &rxq->mem);
1088
1089 fail_dma_alloc:
1090         rxq_info->rxq = NULL;
1091         rte_free(rxq);
1092
1093 fail_rxq_alloc:
1094         sfc_ev_qfini(evq);
1095
1096 fail_ev_qinit:
1097         rxq_info->entries = 0;
1098
1099 fail_bad_conf:
1100 fail_size_up_rings:
1101         sfc_log_init(sa, "failed %d", rc);
1102         return rc;
1103 }
1104
1105 void
1106 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1107 {
1108         struct sfc_rxq_info *rxq_info;
1109         struct sfc_rxq *rxq;
1110
1111         SFC_ASSERT(sw_index < sa->rxq_count);
1112
1113         rxq_info = &sa->rxq_info[sw_index];
1114
1115         rxq = rxq_info->rxq;
1116         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
1117
1118         sa->dp_rx->qdestroy(rxq->dp);
1119         rxq->dp = NULL;
1120
1121         rxq_info->rxq = NULL;
1122         rxq_info->entries = 0;
1123
1124         sfc_dma_free(sa, &rxq->mem);
1125
1126         sfc_ev_qfini(rxq->evq);
1127         rxq->evq = NULL;
1128
1129         rte_free(rxq);
1130 }
1131
1132 /*
1133  * Mapping between RTE RSS hash functions and their EFX counterparts.
1134  */
1135 struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1136         { ETH_RSS_NONFRAG_IPV4_TCP,
1137           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1138         { ETH_RSS_NONFRAG_IPV4_UDP,
1139           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1140         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1141           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1142         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1143           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1144         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1145           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1146           EFX_RX_HASH(IPV4, 2TUPLE) },
1147         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1148           ETH_RSS_IPV6_EX,
1149           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1150           EFX_RX_HASH(IPV6, 2TUPLE) }
1151 };
1152
1153 static efx_rx_hash_type_t
1154 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1155                             unsigned int *hash_type_flags_supported,
1156                             unsigned int nb_hash_type_flags_supported)
1157 {
1158         efx_rx_hash_type_t hash_type_masked = 0;
1159         unsigned int i, j;
1160
1161         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1162                 unsigned int class_tuple_lbn[] = {
1163                         EFX_RX_CLASS_IPV4_TCP_LBN,
1164                         EFX_RX_CLASS_IPV4_UDP_LBN,
1165                         EFX_RX_CLASS_IPV4_LBN,
1166                         EFX_RX_CLASS_IPV6_TCP_LBN,
1167                         EFX_RX_CLASS_IPV6_UDP_LBN,
1168                         EFX_RX_CLASS_IPV6_LBN
1169                 };
1170
1171                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1172                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1173                         unsigned int flag;
1174
1175                         tuple_mask <<= class_tuple_lbn[j];
1176                         flag = hash_type & tuple_mask;
1177
1178                         if (flag == hash_type_flags_supported[i])
1179                                 hash_type_masked |= flag;
1180                 }
1181         }
1182
1183         return hash_type_masked;
1184 }
1185
1186 int
1187 sfc_rx_hash_init(struct sfc_adapter *sa)
1188 {
1189         struct sfc_rss *rss = &sa->rss;
1190         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1191         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1192         efx_rx_hash_alg_t alg;
1193         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1194         unsigned int nb_flags_supp;
1195         struct sfc_rss_hf_rte_to_efx *hf_map;
1196         struct sfc_rss_hf_rte_to_efx *entry;
1197         efx_rx_hash_type_t efx_hash_types;
1198         unsigned int i;
1199         int rc;
1200
1201         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1202                 alg = EFX_RX_HASHALG_TOEPLITZ;
1203         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1204                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1205         else
1206                 return EINVAL;
1207
1208         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1209                                          &nb_flags_supp);
1210         if (rc != 0)
1211                 return rc;
1212
1213         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1214                                    RTE_DIM(sfc_rss_hf_map),
1215                                    sizeof(*hf_map), 0, sa->socket_id);
1216         if (hf_map == NULL)
1217                 return ENOMEM;
1218
1219         entry = hf_map;
1220         efx_hash_types = 0;
1221         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1222                 efx_rx_hash_type_t ht;
1223
1224                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1225                                                  flags_supp, nb_flags_supp);
1226                 if (ht != 0) {
1227                         entry->rte = sfc_rss_hf_map[i].rte;
1228                         entry->efx = ht;
1229                         efx_hash_types |= ht;
1230                         ++entry;
1231                 }
1232         }
1233
1234         rss->hash_alg = alg;
1235         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1236         rss->hf_map = hf_map;
1237         rss->hash_types = efx_hash_types;
1238
1239         return 0;
1240 }
1241
1242 void
1243 sfc_rx_hash_fini(struct sfc_adapter *sa)
1244 {
1245         struct sfc_rss *rss = &sa->rss;
1246
1247         rte_free(rss->hf_map);
1248 }
1249
1250 int
1251 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1252                      efx_rx_hash_type_t *efx)
1253 {
1254         struct sfc_rss *rss = &sa->rss;
1255         efx_rx_hash_type_t hash_types = 0;
1256         unsigned int i;
1257
1258         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1259                 uint64_t rte_mask = rss->hf_map[i].rte;
1260
1261                 if ((rte & rte_mask) != 0) {
1262                         rte &= ~rte_mask;
1263                         hash_types |= rss->hf_map[i].efx;
1264                 }
1265         }
1266
1267         if (rte != 0) {
1268                 sfc_err(sa, "unsupported hash functions requested");
1269                 return EINVAL;
1270         }
1271
1272         *efx = hash_types;
1273
1274         return 0;
1275 }
1276
1277 uint64_t
1278 sfc_rx_hf_efx_to_rte(struct sfc_adapter *sa, efx_rx_hash_type_t efx)
1279 {
1280         struct sfc_rss *rss = &sa->rss;
1281         uint64_t rte = 0;
1282         unsigned int i;
1283
1284         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1285                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1286
1287                 if ((efx & hash_type) == hash_type)
1288                         rte |= rss->hf_map[i].rte;
1289         }
1290
1291         return rte;
1292 }
1293
1294 static int
1295 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1296                             struct rte_eth_rss_conf *conf)
1297 {
1298         struct sfc_rss *rss = &sa->rss;
1299         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1300         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(sa, efx_hash_types);
1301         int rc;
1302
1303         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1304                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1305                     conf->rss_key != NULL)
1306                         return EINVAL;
1307         }
1308
1309         if (conf->rss_hf != 0) {
1310                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1311                 if (rc != 0)
1312                         return rc;
1313         }
1314
1315         if (conf->rss_key != NULL) {
1316                 if (conf->rss_key_len != sizeof(rss->key)) {
1317                         sfc_err(sa, "RSS key size is wrong (should be %lu)",
1318                                 sizeof(rss->key));
1319                         return EINVAL;
1320                 }
1321                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1322         }
1323
1324         rss->hash_types = efx_hash_types;
1325
1326         return 0;
1327 }
1328
1329 static int
1330 sfc_rx_rss_config(struct sfc_adapter *sa)
1331 {
1332         struct sfc_rss *rss = &sa->rss;
1333         int rc = 0;
1334
1335         if (rss->channels > 0) {
1336                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1337                                            rss->hash_alg, rss->hash_types,
1338                                            B_TRUE);
1339                 if (rc != 0)
1340                         goto finish;
1341
1342                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1343                                           rss->key, sizeof(rss->key));
1344                 if (rc != 0)
1345                         goto finish;
1346
1347                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1348                                           rss->tbl, RTE_DIM(rss->tbl));
1349         }
1350
1351 finish:
1352         return rc;
1353 }
1354
1355 int
1356 sfc_rx_start(struct sfc_adapter *sa)
1357 {
1358         unsigned int sw_index;
1359         int rc;
1360
1361         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1362
1363         rc = efx_rx_init(sa->nic);
1364         if (rc != 0)
1365                 goto fail_rx_init;
1366
1367         rc = sfc_rx_rss_config(sa);
1368         if (rc != 0)
1369                 goto fail_rss_config;
1370
1371         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
1372                 if ((!sa->rxq_info[sw_index].deferred_start ||
1373                      sa->rxq_info[sw_index].deferred_started)) {
1374                         rc = sfc_rx_qstart(sa, sw_index);
1375                         if (rc != 0)
1376                                 goto fail_rx_qstart;
1377                 }
1378         }
1379
1380         return 0;
1381
1382 fail_rx_qstart:
1383         while (sw_index-- > 0)
1384                 sfc_rx_qstop(sa, sw_index);
1385
1386 fail_rss_config:
1387         efx_rx_fini(sa->nic);
1388
1389 fail_rx_init:
1390         sfc_log_init(sa, "failed %d", rc);
1391         return rc;
1392 }
1393
1394 void
1395 sfc_rx_stop(struct sfc_adapter *sa)
1396 {
1397         unsigned int sw_index;
1398
1399         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1400
1401         sw_index = sa->rxq_count;
1402         while (sw_index-- > 0) {
1403                 if (sa->rxq_info[sw_index].rxq != NULL)
1404                         sfc_rx_qstop(sa, sw_index);
1405         }
1406
1407         efx_rx_fini(sa->nic);
1408 }
1409
1410 static int
1411 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1412 {
1413         struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
1414         unsigned int max_entries;
1415
1416         max_entries = EFX_RXQ_MAXNDESCS;
1417         SFC_ASSERT(rte_is_power_of_2(max_entries));
1418
1419         rxq_info->max_entries = max_entries;
1420
1421         return 0;
1422 }
1423
1424 static int
1425 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1426 {
1427         struct sfc_rss *rss = &sa->rss;
1428         int rc = 0;
1429
1430         switch (rxmode->mq_mode) {
1431         case ETH_MQ_RX_NONE:
1432                 /* No special checks are required */
1433                 break;
1434         case ETH_MQ_RX_RSS:
1435                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1436                         sfc_err(sa, "RSS is not available");
1437                         rc = EINVAL;
1438                 }
1439                 break;
1440         default:
1441                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1442                         rxmode->mq_mode);
1443                 rc = EINVAL;
1444         }
1445
1446         if (~rxmode->offloads & DEV_RX_OFFLOAD_CRC_STRIP) {
1447                 sfc_warn(sa, "FCS stripping cannot be disabled - always on");
1448                 rxmode->offloads |= DEV_RX_OFFLOAD_CRC_STRIP;
1449                 rxmode->hw_strip_crc = 1;
1450         }
1451
1452         return rc;
1453 }
1454
1455 /**
1456  * Destroy excess queues that are no longer needed after reconfiguration
1457  * or complete close.
1458  */
1459 static void
1460 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1461 {
1462         int sw_index;
1463
1464         SFC_ASSERT(nb_rx_queues <= sa->rxq_count);
1465
1466         sw_index = sa->rxq_count;
1467         while (--sw_index >= (int)nb_rx_queues) {
1468                 if (sa->rxq_info[sw_index].rxq != NULL)
1469                         sfc_rx_qfini(sa, sw_index);
1470         }
1471
1472         sa->rxq_count = nb_rx_queues;
1473 }
1474
1475 /**
1476  * Initialize Rx subsystem.
1477  *
1478  * Called at device (re)configuration stage when number of receive queues is
1479  * specified together with other device level receive configuration.
1480  *
1481  * It should be used to allocate NUMA-unaware resources.
1482  */
1483 int
1484 sfc_rx_configure(struct sfc_adapter *sa)
1485 {
1486         struct sfc_rss *rss = &sa->rss;
1487         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1488         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1489         int rc;
1490
1491         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1492                      nb_rx_queues, sa->rxq_count);
1493
1494         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1495         if (rc != 0)
1496                 goto fail_check_mode;
1497
1498         if (nb_rx_queues == sa->rxq_count)
1499                 goto done;
1500
1501         if (sa->rxq_info == NULL) {
1502                 rc = ENOMEM;
1503                 sa->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1504                                                  sizeof(sa->rxq_info[0]), 0,
1505                                                  sa->socket_id);
1506                 if (sa->rxq_info == NULL)
1507                         goto fail_rxqs_alloc;
1508         } else {
1509                 struct sfc_rxq_info *new_rxq_info;
1510
1511                 if (nb_rx_queues < sa->rxq_count)
1512                         sfc_rx_fini_queues(sa, nb_rx_queues);
1513
1514                 rc = ENOMEM;
1515                 new_rxq_info =
1516                         rte_realloc(sa->rxq_info,
1517                                     nb_rx_queues * sizeof(sa->rxq_info[0]), 0);
1518                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1519                         goto fail_rxqs_realloc;
1520
1521                 sa->rxq_info = new_rxq_info;
1522                 if (nb_rx_queues > sa->rxq_count)
1523                         memset(&sa->rxq_info[sa->rxq_count], 0,
1524                                (nb_rx_queues - sa->rxq_count) *
1525                                sizeof(sa->rxq_info[0]));
1526         }
1527
1528         while (sa->rxq_count < nb_rx_queues) {
1529                 rc = sfc_rx_qinit_info(sa, sa->rxq_count);
1530                 if (rc != 0)
1531                         goto fail_rx_qinit_info;
1532
1533                 sa->rxq_count++;
1534         }
1535
1536         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1537                          MIN(sa->rxq_count, EFX_MAXRSS) : 0;
1538
1539         if (rss->channels > 0) {
1540                 struct rte_eth_rss_conf *adv_conf_rss;
1541                 unsigned int sw_index;
1542
1543                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1544                         rss->tbl[sw_index] = sw_index % rss->channels;
1545
1546                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1547                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1548                 if (rc != 0)
1549                         goto fail_rx_process_adv_conf_rss;
1550         }
1551
1552 done:
1553         return 0;
1554
1555 fail_rx_process_adv_conf_rss:
1556 fail_rx_qinit_info:
1557 fail_rxqs_realloc:
1558 fail_rxqs_alloc:
1559         sfc_rx_close(sa);
1560
1561 fail_check_mode:
1562         sfc_log_init(sa, "failed %d", rc);
1563         return rc;
1564 }
1565
1566 /**
1567  * Shutdown Rx subsystem.
1568  *
1569  * Called at device close stage, for example, before device shutdown.
1570  */
1571 void
1572 sfc_rx_close(struct sfc_adapter *sa)
1573 {
1574         struct sfc_rss *rss = &sa->rss;
1575
1576         sfc_rx_fini_queues(sa, 0);
1577
1578         rss->channels = 0;
1579
1580         rte_free(sa->rxq_info);
1581         sa->rxq_info = NULL;
1582 }