net/sfc: support Rx descriptor status in secondary process
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
27
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
33
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44         rxq_info->state |= SFC_RXQ_FLUSHED;
45         rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51         rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52         rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58         unsigned int free_space;
59         unsigned int bulks;
60         void *objs[SFC_RX_REFILL_BULK];
61         efsys_dma_addr_t addr[RTE_DIM(objs)];
62         unsigned int added = rxq->added;
63         unsigned int id;
64         unsigned int i;
65         struct sfc_efx_rx_sw_desc *rxd;
66         struct rte_mbuf *m;
67         uint16_t port_id = rxq->dp.dpq.port_id;
68
69         free_space = rxq->max_fill_level - (added - rxq->completed);
70
71         if (free_space < rxq->refill_threshold)
72                 return;
73
74         bulks = free_space / RTE_DIM(objs);
75         /* refill_threshold guarantees that bulks is positive */
76         SFC_ASSERT(bulks > 0);
77
78         id = added & rxq->ptr_mask;
79         do {
80                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81                                                   RTE_DIM(objs)) < 0)) {
82                         /*
83                          * It is hardly a safe way to increment counter
84                          * from different contexts, but all PMDs do it.
85                          */
86                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87                                 RTE_DIM(objs);
88                         /* Return if we have posted nothing yet */
89                         if (added == rxq->added)
90                                 return;
91                         /* Push posted */
92                         break;
93                 }
94
95                 for (i = 0; i < RTE_DIM(objs);
96                      ++i, id = (id + 1) & rxq->ptr_mask) {
97                         m = objs[i];
98
99                         MBUF_RAW_ALLOC_CHECK(m);
100
101                         rxd = &rxq->sw_desc[id];
102                         rxd->mbuf = m;
103
104                         m->data_off = RTE_PKTMBUF_HEADROOM;
105                         m->port = port_id;
106
107                         addr[i] = rte_pktmbuf_iova(m);
108                 }
109
110                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
111                              RTE_DIM(objs), rxq->completed, added);
112                 added += RTE_DIM(objs);
113         } while (--bulks > 0);
114
115         SFC_ASSERT(added != rxq->added);
116         rxq->added = added;
117         efx_rx_qpush(rxq->common, added, &rxq->pushed);
118 }
119
120 static uint64_t
121 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
122 {
123         uint64_t mbuf_flags = 0;
124
125         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
126         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
127                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
128                 break;
129         case EFX_PKT_IPV4:
130                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
131                 break;
132         default:
133                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
134                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
135                            PKT_RX_IP_CKSUM_UNKNOWN);
136                 break;
137         }
138
139         switch ((desc_flags &
140                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
141         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
142         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
143                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
144                 break;
145         case EFX_PKT_TCP:
146         case EFX_PKT_UDP:
147                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
148                 break;
149         default:
150                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
151                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
152                            PKT_RX_L4_CKSUM_UNKNOWN);
153                 break;
154         }
155
156         return mbuf_flags;
157 }
158
159 static uint32_t
160 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
161 {
162         return RTE_PTYPE_L2_ETHER |
163                 ((desc_flags & EFX_PKT_IPV4) ?
164                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
165                 ((desc_flags & EFX_PKT_IPV6) ?
166                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
167                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
168                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
169 }
170
171 static const uint32_t *
172 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
173 {
174         static const uint32_t ptypes[] = {
175                 RTE_PTYPE_L2_ETHER,
176                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
177                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
178                 RTE_PTYPE_L4_TCP,
179                 RTE_PTYPE_L4_UDP,
180                 RTE_PTYPE_UNKNOWN
181         };
182
183         return ptypes;
184 }
185
186 static void
187 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
188                         struct rte_mbuf *m)
189 {
190         uint8_t *mbuf_data;
191
192
193         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
194                 return;
195
196         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
197
198         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
199                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
200                                                       EFX_RX_HASHALG_TOEPLITZ,
201                                                       mbuf_data);
202
203                 m->ol_flags |= PKT_RX_RSS_HASH;
204         }
205 }
206
207 static uint16_t
208 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
209 {
210         struct sfc_dp_rxq *dp_rxq = rx_queue;
211         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
212         unsigned int completed;
213         unsigned int prefix_size = rxq->prefix_size;
214         unsigned int done_pkts = 0;
215         boolean_t discard_next = B_FALSE;
216         struct rte_mbuf *scatter_pkt = NULL;
217
218         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
219                 return 0;
220
221         sfc_ev_qpoll(rxq->evq);
222
223         completed = rxq->completed;
224         while (completed != rxq->pending && done_pkts < nb_pkts) {
225                 unsigned int id;
226                 struct sfc_efx_rx_sw_desc *rxd;
227                 struct rte_mbuf *m;
228                 unsigned int seg_len;
229                 unsigned int desc_flags;
230
231                 id = completed++ & rxq->ptr_mask;
232                 rxd = &rxq->sw_desc[id];
233                 m = rxd->mbuf;
234                 desc_flags = rxd->flags;
235
236                 if (discard_next)
237                         goto discard;
238
239                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
240                         goto discard;
241
242                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
243                         uint16_t tmp_size;
244                         int rc __rte_unused;
245
246                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
247                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
248                         SFC_ASSERT(rc == 0);
249                         seg_len = tmp_size;
250                 } else {
251                         seg_len = rxd->size - prefix_size;
252                 }
253
254                 rte_pktmbuf_data_len(m) = seg_len;
255                 rte_pktmbuf_pkt_len(m) = seg_len;
256
257                 if (scatter_pkt != NULL) {
258                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
259                                 rte_pktmbuf_free(scatter_pkt);
260                                 goto discard;
261                         }
262                         /* The packet to deliver */
263                         m = scatter_pkt;
264                 }
265
266                 if (desc_flags & EFX_PKT_CONT) {
267                         /* The packet is scattered, more fragments to come */
268                         scatter_pkt = m;
269                         /* Further fragments have no prefix */
270                         prefix_size = 0;
271                         continue;
272                 }
273
274                 /* Scattered packet is done */
275                 scatter_pkt = NULL;
276                 /* The first fragment of the packet has prefix */
277                 prefix_size = rxq->prefix_size;
278
279                 m->ol_flags =
280                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
281                 m->packet_type =
282                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
283
284                 /*
285                  * Extract RSS hash from the packet prefix and
286                  * set the corresponding field (if needed and possible)
287                  */
288                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
289
290                 m->data_off += prefix_size;
291
292                 *rx_pkts++ = m;
293                 done_pkts++;
294                 continue;
295
296 discard:
297                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
298                 rte_mbuf_raw_free(m);
299                 rxd->mbuf = NULL;
300         }
301
302         /* pending is only moved when entire packet is received */
303         SFC_ASSERT(scatter_pkt == NULL);
304
305         rxq->completed = completed;
306
307         sfc_efx_rx_qrefill(rxq);
308
309         return done_pkts;
310 }
311
312 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
313 static unsigned int
314 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
315 {
316         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
317
318         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
319                 return 0;
320
321         sfc_ev_qpoll(rxq->evq);
322
323         return rxq->pending - rxq->completed;
324 }
325
326 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
327 static int
328 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
329 {
330         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
331
332         if (unlikely(offset > rxq->ptr_mask))
333                 return -EINVAL;
334
335         /*
336          * Poll EvQ to derive up-to-date 'rxq->pending' figure;
337          * it is required for the queue to be running, but the
338          * check is omitted because API design assumes that it
339          * is the duty of the caller to satisfy all conditions
340          */
341         SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
342                    SFC_EFX_RXQ_FLAG_RUNNING);
343         sfc_ev_qpoll(rxq->evq);
344
345         /*
346          * There is a handful of reserved entries in the ring,
347          * but an explicit check whether the offset points to
348          * a reserved entry is neglected since the two checks
349          * below rely on the figures which take the HW limits
350          * into account and thus if an entry is reserved, the
351          * checks will fail and UNAVAIL code will be returned
352          */
353
354         if (offset < (rxq->pending - rxq->completed))
355                 return RTE_ETH_RX_DESC_DONE;
356
357         if (offset < (rxq->added - rxq->completed))
358                 return RTE_ETH_RX_DESC_AVAIL;
359
360         return RTE_ETH_RX_DESC_UNAVAIL;
361 }
362
363 /** Get Rx datapath ops by the datapath RxQ handle */
364 const struct sfc_dp_rx *
365 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
366 {
367         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
368         struct rte_eth_dev *eth_dev;
369         struct sfc_adapter_priv *sap;
370
371         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
372         eth_dev = &rte_eth_devices[dpq->port_id];
373
374         sap = sfc_adapter_priv_by_eth_dev(eth_dev);
375
376         return sap->dp_rx;
377 }
378
379 struct sfc_rxq_info *
380 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
381 {
382         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
383         struct rte_eth_dev *eth_dev;
384         struct sfc_adapter *sa;
385
386         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
387         eth_dev = &rte_eth_devices[dpq->port_id];
388
389         sa = eth_dev->data->dev_private;
390
391         SFC_ASSERT(dpq->queue_id < sa->rxq_count);
392         return &sa->rxq_info[dpq->queue_id];
393 }
394
395 struct sfc_rxq *
396 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
397 {
398         struct sfc_rxq_info *rxq_info;
399
400         rxq_info = sfc_rxq_info_by_dp_rxq(dp_rxq);
401
402         SFC_ASSERT(rxq_info->rxq != NULL);
403         return rxq_info->rxq;
404 }
405
406 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
407 static int
408 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
409                           __rte_unused struct rte_mempool *mb_pool,
410                           unsigned int *rxq_entries,
411                           unsigned int *evq_entries,
412                           unsigned int *rxq_max_fill_level)
413 {
414         *rxq_entries = nb_rx_desc;
415         *evq_entries = nb_rx_desc;
416         *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
417         return 0;
418 }
419
420 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
421 static int
422 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
423                    const struct rte_pci_addr *pci_addr, int socket_id,
424                    const struct sfc_dp_rx_qcreate_info *info,
425                    struct sfc_dp_rxq **dp_rxqp)
426 {
427         struct sfc_efx_rxq *rxq;
428         int rc;
429
430         rc = ENOMEM;
431         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
432                                  RTE_CACHE_LINE_SIZE, socket_id);
433         if (rxq == NULL)
434                 goto fail_rxq_alloc;
435
436         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
437
438         rc = ENOMEM;
439         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
440                                          info->rxq_entries,
441                                          sizeof(*rxq->sw_desc),
442                                          RTE_CACHE_LINE_SIZE, socket_id);
443         if (rxq->sw_desc == NULL)
444                 goto fail_desc_alloc;
445
446         /* efx datapath is bound to efx control path */
447         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
448         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
449                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
450         rxq->ptr_mask = info->rxq_entries - 1;
451         rxq->batch_max = info->batch_max;
452         rxq->prefix_size = info->prefix_size;
453         rxq->max_fill_level = info->max_fill_level;
454         rxq->refill_threshold = info->refill_threshold;
455         rxq->buf_size = info->buf_size;
456         rxq->refill_mb_pool = info->refill_mb_pool;
457
458         *dp_rxqp = &rxq->dp;
459         return 0;
460
461 fail_desc_alloc:
462         rte_free(rxq);
463
464 fail_rxq_alloc:
465         return rc;
466 }
467
468 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
469 static void
470 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
471 {
472         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
473
474         rte_free(rxq->sw_desc);
475         rte_free(rxq);
476 }
477
478 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
479 static int
480 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
481                   __rte_unused unsigned int evq_read_ptr)
482 {
483         /* libefx-based datapath is specific to libefx-based PMD */
484         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
485         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
486
487         rxq->common = crxq->common;
488
489         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
490
491         sfc_efx_rx_qrefill(rxq);
492
493         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
494
495         return 0;
496 }
497
498 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
499 static void
500 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
501                  __rte_unused unsigned int *evq_read_ptr)
502 {
503         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
504
505         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
506
507         /* libefx-based datapath is bound to libefx-based PMD and uses
508          * event queue structure directly. So, there is no necessity to
509          * return EvQ read pointer.
510          */
511 }
512
513 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
514 static void
515 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
516 {
517         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
518         unsigned int i;
519         struct sfc_efx_rx_sw_desc *rxd;
520
521         for (i = rxq->completed; i != rxq->added; ++i) {
522                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
523                 rte_mbuf_raw_free(rxd->mbuf);
524                 rxd->mbuf = NULL;
525                 /* Packed stream relies on 0 in inactive SW desc.
526                  * Rx queue stop is not performance critical, so
527                  * there is no harm to do it always.
528                  */
529                 rxd->flags = 0;
530                 rxd->size = 0;
531         }
532
533         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
534 }
535
536 struct sfc_dp_rx sfc_efx_rx = {
537         .dp = {
538                 .name           = SFC_KVARG_DATAPATH_EFX,
539                 .type           = SFC_DP_RX,
540                 .hw_fw_caps     = 0,
541         },
542         .features               = SFC_DP_RX_FEAT_SCATTER |
543                                   SFC_DP_RX_FEAT_CHECKSUM,
544         .qsize_up_rings         = sfc_efx_rx_qsize_up_rings,
545         .qcreate                = sfc_efx_rx_qcreate,
546         .qdestroy               = sfc_efx_rx_qdestroy,
547         .qstart                 = sfc_efx_rx_qstart,
548         .qstop                  = sfc_efx_rx_qstop,
549         .qpurge                 = sfc_efx_rx_qpurge,
550         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
551         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
552         .qdesc_status           = sfc_efx_rx_qdesc_status,
553         .pkt_burst              = sfc_efx_recv_pkts,
554 };
555
556 static void
557 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
558 {
559         struct sfc_rxq_info *rxq_info;
560         struct sfc_rxq *rxq;
561         unsigned int retry_count;
562         unsigned int wait_count;
563         int rc;
564
565         rxq_info = &sa->rxq_info[sw_index];
566         rxq = rxq_info->rxq;
567         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
568
569         /*
570          * Retry Rx queue flushing in the case of flush failed or
571          * timeout. In the worst case it can delay for 6 seconds.
572          */
573         for (retry_count = 0;
574              ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
575              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
576              ++retry_count) {
577                 rc = efx_rx_qflush(rxq->common);
578                 if (rc != 0) {
579                         rxq_info->state |= (rc == EALREADY) ?
580                                 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
581                         break;
582                 }
583                 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
584                 rxq_info->state |= SFC_RXQ_FLUSHING;
585
586                 /*
587                  * Wait for Rx queue flush done or failed event at least
588                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
589                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
590                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
591                  */
592                 wait_count = 0;
593                 do {
594                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
595                         sfc_ev_qpoll(rxq->evq);
596                 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
597                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
598
599                 if (rxq_info->state & SFC_RXQ_FLUSHING)
600                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
601
602                 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
603                         sfc_err(sa, "RxQ %u flush failed", sw_index);
604
605                 if (rxq_info->state & SFC_RXQ_FLUSHED)
606                         sfc_notice(sa, "RxQ %u flushed", sw_index);
607         }
608
609         sa->priv.dp_rx->qpurge(rxq_info->dp);
610 }
611
612 static int
613 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
614 {
615         struct sfc_rss *rss = &sa->rss;
616         boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
617         struct sfc_port *port = &sa->port;
618         int rc;
619
620         /*
621          * If promiscuous or all-multicast mode has been requested, setting
622          * filter for the default Rx queue might fail, in particular, while
623          * running over PCI function which is not a member of corresponding
624          * privilege groups; if this occurs, few iterations will be made to
625          * repeat this step without promiscuous and all-multicast flags set
626          */
627 retry:
628         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
629         if (rc == 0)
630                 return 0;
631         else if (rc != EOPNOTSUPP)
632                 return rc;
633
634         if (port->promisc) {
635                 sfc_warn(sa, "promiscuous mode has been requested, "
636                              "but the HW rejects it");
637                 sfc_warn(sa, "promiscuous mode will be disabled");
638
639                 port->promisc = B_FALSE;
640                 rc = sfc_set_rx_mode(sa);
641                 if (rc != 0)
642                         return rc;
643
644                 goto retry;
645         }
646
647         if (port->allmulti) {
648                 sfc_warn(sa, "all-multicast mode has been requested, "
649                              "but the HW rejects it");
650                 sfc_warn(sa, "all-multicast mode will be disabled");
651
652                 port->allmulti = B_FALSE;
653                 rc = sfc_set_rx_mode(sa);
654                 if (rc != 0)
655                         return rc;
656
657                 goto retry;
658         }
659
660         return rc;
661 }
662
663 int
664 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
665 {
666         struct sfc_port *port = &sa->port;
667         struct sfc_rxq_info *rxq_info;
668         struct sfc_rxq *rxq;
669         struct sfc_evq *evq;
670         int rc;
671
672         sfc_log_init(sa, "sw_index=%u", sw_index);
673
674         SFC_ASSERT(sw_index < sa->rxq_count);
675
676         rxq_info = &sa->rxq_info[sw_index];
677         rxq = rxq_info->rxq;
678         SFC_ASSERT(rxq != NULL);
679         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
680
681         evq = rxq->evq;
682
683         rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
684         if (rc != 0)
685                 goto fail_ev_qstart;
686
687         switch (rxq_info->type) {
688         case EFX_RXQ_TYPE_DEFAULT:
689                 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
690                         &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
691                         rxq_info->type_flags, evq->common, &rxq->common);
692                 break;
693         case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
694                 struct rte_mempool *mp = rxq_info->refill_mb_pool;
695                 struct rte_mempool_info mp_info;
696
697                 rc = rte_mempool_ops_get_info(mp, &mp_info);
698                 if (rc != 0) {
699                         /* Positive errno is used in the driver */
700                         rc = -rc;
701                         goto fail_mp_get_info;
702                 }
703                 if (mp_info.contig_block_size <= 0) {
704                         rc = EINVAL;
705                         goto fail_bad_contig_block_size;
706                 }
707                 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
708                         mp_info.contig_block_size, rxq->buf_size,
709                         mp->header_size + mp->elt_size + mp->trailer_size,
710                         sa->rxd_wait_timeout_ns,
711                         &rxq->mem, rxq_info->entries, rxq_info->type_flags,
712                         evq->common, &rxq->common);
713                 break;
714         }
715         default:
716                 rc = ENOTSUP;
717         }
718         if (rc != 0)
719                 goto fail_rx_qcreate;
720
721         efx_rx_qenable(rxq->common);
722
723         rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
724         if (rc != 0)
725                 goto fail_dp_qstart;
726
727         rxq_info->state |= SFC_RXQ_STARTED;
728
729         if ((sw_index == 0) && !port->isolated) {
730                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
731                 if (rc != 0)
732                         goto fail_mac_filter_default_rxq_set;
733         }
734
735         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
736         sa->eth_dev->data->rx_queue_state[sw_index] =
737                 RTE_ETH_QUEUE_STATE_STARTED;
738
739         return 0;
740
741 fail_mac_filter_default_rxq_set:
742         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
743
744 fail_dp_qstart:
745         sfc_rx_qflush(sa, sw_index);
746
747 fail_rx_qcreate:
748 fail_bad_contig_block_size:
749 fail_mp_get_info:
750         sfc_ev_qstop(evq);
751
752 fail_ev_qstart:
753         return rc;
754 }
755
756 void
757 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
758 {
759         struct sfc_rxq_info *rxq_info;
760         struct sfc_rxq *rxq;
761
762         sfc_log_init(sa, "sw_index=%u", sw_index);
763
764         SFC_ASSERT(sw_index < sa->rxq_count);
765
766         rxq_info = &sa->rxq_info[sw_index];
767         rxq = rxq_info->rxq;
768
769         if (rxq == NULL || rxq_info->state == SFC_RXQ_INITIALIZED)
770                 return;
771         SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
772
773         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
774         sa->eth_dev->data->rx_queue_state[sw_index] =
775                 RTE_ETH_QUEUE_STATE_STOPPED;
776
777         sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
778
779         if (sw_index == 0)
780                 efx_mac_filter_default_rxq_clear(sa->nic);
781
782         sfc_rx_qflush(sa, sw_index);
783
784         rxq_info->state = SFC_RXQ_INITIALIZED;
785
786         efx_rx_qdestroy(rxq->common);
787
788         sfc_ev_qstop(rxq->evq);
789 }
790
791 uint64_t
792 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
793 {
794         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
795         uint64_t caps = 0;
796
797         caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
798
799         if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_CHECKSUM) {
800                 caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
801                 caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
802                 caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
803         }
804
805         if (encp->enc_tunnel_encapsulations_supported &&
806             (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
807                 caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
808
809         return caps;
810 }
811
812 uint64_t
813 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
814 {
815         uint64_t caps = 0;
816
817         if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
818                 caps |= DEV_RX_OFFLOAD_SCATTER;
819
820         return caps;
821 }
822
823 static int
824 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
825                    const struct rte_eth_rxconf *rx_conf,
826                    __rte_unused uint64_t offloads)
827 {
828         int rc = 0;
829
830         if (rx_conf->rx_thresh.pthresh != 0 ||
831             rx_conf->rx_thresh.hthresh != 0 ||
832             rx_conf->rx_thresh.wthresh != 0) {
833                 sfc_warn(sa,
834                         "RxQ prefetch/host/writeback thresholds are not supported");
835         }
836
837         if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
838                 sfc_err(sa,
839                         "RxQ free threshold too large: %u vs maximum %u",
840                         rx_conf->rx_free_thresh, rxq_max_fill_level);
841                 rc = EINVAL;
842         }
843
844         if (rx_conf->rx_drop_en == 0) {
845                 sfc_err(sa, "RxQ drop disable is not supported");
846                 rc = EINVAL;
847         }
848
849         return rc;
850 }
851
852 static unsigned int
853 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
854 {
855         uint32_t data_off;
856         uint32_t order;
857
858         /* The mbuf object itself is always cache line aligned */
859         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
860
861         /* Data offset from mbuf object start */
862         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
863                 RTE_PKTMBUF_HEADROOM;
864
865         order = MIN(order, rte_bsf32(data_off));
866
867         return 1u << order;
868 }
869
870 static uint16_t
871 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
872 {
873         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
874         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
875         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
876         uint16_t buf_size;
877         unsigned int buf_aligned;
878         unsigned int start_alignment;
879         unsigned int end_padding_alignment;
880
881         /* Below it is assumed that both alignments are power of 2 */
882         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
883         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
884
885         /*
886          * mbuf is always cache line aligned, double-check
887          * that it meets rx buffer start alignment requirements.
888          */
889
890         /* Start from mbuf pool data room size */
891         buf_size = rte_pktmbuf_data_room_size(mb_pool);
892
893         /* Remove headroom */
894         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
895                 sfc_err(sa,
896                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
897                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
898                 return 0;
899         }
900         buf_size -= RTE_PKTMBUF_HEADROOM;
901
902         /* Calculate guaranteed data start alignment */
903         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
904
905         /* Reserve space for start alignment */
906         if (buf_aligned < nic_align_start) {
907                 start_alignment = nic_align_start - buf_aligned;
908                 if (buf_size <= start_alignment) {
909                         sfc_err(sa,
910                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
911                                 mb_pool->name,
912                                 rte_pktmbuf_data_room_size(mb_pool),
913                                 RTE_PKTMBUF_HEADROOM, start_alignment);
914                         return 0;
915                 }
916                 buf_aligned = nic_align_start;
917                 buf_size -= start_alignment;
918         } else {
919                 start_alignment = 0;
920         }
921
922         /* Make sure that end padding does not write beyond the buffer */
923         if (buf_aligned < nic_align_end) {
924                 /*
925                  * Estimate space which can be lost. If guarnteed buffer
926                  * size is odd, lost space is (nic_align_end - 1). More
927                  * accurate formula is below.
928                  */
929                 end_padding_alignment = nic_align_end -
930                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
931                 if (buf_size <= end_padding_alignment) {
932                         sfc_err(sa,
933                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
934                                 mb_pool->name,
935                                 rte_pktmbuf_data_room_size(mb_pool),
936                                 RTE_PKTMBUF_HEADROOM, start_alignment,
937                                 end_padding_alignment);
938                         return 0;
939                 }
940                 buf_size -= end_padding_alignment;
941         } else {
942                 /*
943                  * Start is aligned the same or better than end,
944                  * just align length.
945                  */
946                 buf_size = P2ALIGN(buf_size, nic_align_end);
947         }
948
949         return buf_size;
950 }
951
952 int
953 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
954              uint16_t nb_rx_desc, unsigned int socket_id,
955              const struct rte_eth_rxconf *rx_conf,
956              struct rte_mempool *mb_pool)
957 {
958         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
959         struct sfc_rss *rss = &sa->rss;
960         int rc;
961         unsigned int rxq_entries;
962         unsigned int evq_entries;
963         unsigned int rxq_max_fill_level;
964         uint64_t offloads;
965         uint16_t buf_size;
966         struct sfc_rxq_info *rxq_info;
967         struct sfc_evq *evq;
968         struct sfc_rxq *rxq;
969         struct sfc_dp_rx_qcreate_info info;
970
971         rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, mb_pool, &rxq_entries,
972                                             &evq_entries, &rxq_max_fill_level);
973         if (rc != 0)
974                 goto fail_size_up_rings;
975         SFC_ASSERT(rxq_entries >= EFX_RXQ_MINNDESCS);
976         SFC_ASSERT(rxq_entries <= EFX_RXQ_MAXNDESCS);
977         SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
978
979         offloads = rx_conf->offloads |
980                 sa->eth_dev->data->dev_conf.rxmode.offloads;
981         rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
982         if (rc != 0)
983                 goto fail_bad_conf;
984
985         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
986         if (buf_size == 0) {
987                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
988                         sw_index);
989                 rc = EINVAL;
990                 goto fail_bad_conf;
991         }
992
993         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
994             (~offloads & DEV_RX_OFFLOAD_SCATTER)) {
995                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
996                         "object size is too small", sw_index);
997                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
998                         "PDU size %u plus Rx prefix %u bytes",
999                         sw_index, buf_size, (unsigned int)sa->port.pdu,
1000                         encp->enc_rx_prefix_size);
1001                 rc = EINVAL;
1002                 goto fail_bad_conf;
1003         }
1004
1005         SFC_ASSERT(sw_index < sa->rxq_count);
1006         rxq_info = &sa->rxq_info[sw_index];
1007
1008         SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1009         rxq_info->entries = rxq_entries;
1010
1011         if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1012                 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1013         else
1014                 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1015
1016         rxq_info->type_flags =
1017                 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1018                 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1019
1020         if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1021             (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
1022                 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1023
1024         rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1025                           evq_entries, socket_id, &evq);
1026         if (rc != 0)
1027                 goto fail_ev_qinit;
1028
1029         rc = ENOMEM;
1030         rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
1031                                  socket_id);
1032         if (rxq == NULL)
1033                 goto fail_rxq_alloc;
1034
1035         rxq_info->rxq = rxq;
1036
1037         rxq->evq = evq;
1038         rxq->hw_index = sw_index;
1039         rxq_info->refill_threshold =
1040                 RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
1041         rxq_info->refill_mb_pool = mb_pool;
1042         rxq->buf_size = buf_size;
1043
1044         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
1045                            socket_id, &rxq->mem);
1046         if (rc != 0)
1047                 goto fail_dma_alloc;
1048
1049         memset(&info, 0, sizeof(info));
1050         info.refill_mb_pool = rxq_info->refill_mb_pool;
1051         info.max_fill_level = rxq_max_fill_level;
1052         info.refill_threshold = rxq_info->refill_threshold;
1053         info.buf_size = buf_size;
1054         info.batch_max = encp->enc_rx_batch_max;
1055         info.prefix_size = encp->enc_rx_prefix_size;
1056
1057         if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1058                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1059
1060         info.rxq_entries = rxq_info->entries;
1061         info.rxq_hw_ring = rxq->mem.esm_base;
1062         info.evq_entries = evq_entries;
1063         info.evq_hw_ring = evq->mem.esm_base;
1064         info.hw_index = rxq->hw_index;
1065         info.mem_bar = sa->mem_bar.esb_base;
1066         info.vi_window_shift = encp->enc_vi_window_shift;
1067
1068         rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1069                                      &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1070                                      socket_id, &info, &rxq_info->dp);
1071         if (rc != 0)
1072                 goto fail_dp_rx_qcreate;
1073
1074         evq->dp_rxq = rxq_info->dp;
1075
1076         rxq_info->state = SFC_RXQ_INITIALIZED;
1077
1078         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1079
1080         return 0;
1081
1082 fail_dp_rx_qcreate:
1083         sfc_dma_free(sa, &rxq->mem);
1084
1085 fail_dma_alloc:
1086         rxq_info->rxq = NULL;
1087         rte_free(rxq);
1088
1089 fail_rxq_alloc:
1090         sfc_ev_qfini(evq);
1091
1092 fail_ev_qinit:
1093         rxq_info->entries = 0;
1094
1095 fail_bad_conf:
1096 fail_size_up_rings:
1097         sfc_log_init(sa, "failed %d", rc);
1098         return rc;
1099 }
1100
1101 void
1102 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1103 {
1104         struct sfc_rxq_info *rxq_info;
1105         struct sfc_rxq *rxq;
1106
1107         SFC_ASSERT(sw_index < sa->rxq_count);
1108         sa->eth_dev->data->rx_queues[sw_index] = NULL;
1109
1110         rxq_info = &sa->rxq_info[sw_index];
1111
1112         rxq = rxq_info->rxq;
1113         SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1114
1115         sa->priv.dp_rx->qdestroy(rxq_info->dp);
1116         rxq_info->dp = NULL;
1117
1118         rxq_info->rxq = NULL;
1119         rxq_info->entries = 0;
1120
1121         sfc_dma_free(sa, &rxq->mem);
1122
1123         sfc_ev_qfini(rxq->evq);
1124         rxq->evq = NULL;
1125
1126         rte_free(rxq);
1127 }
1128
1129 /*
1130  * Mapping between RTE RSS hash functions and their EFX counterparts.
1131  */
1132 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1133         { ETH_RSS_NONFRAG_IPV4_TCP,
1134           EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1135         { ETH_RSS_NONFRAG_IPV4_UDP,
1136           EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1137         { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1138           EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1139         { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1140           EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1141         { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1142           EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1143           EFX_RX_HASH(IPV4, 2TUPLE) },
1144         { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1145           ETH_RSS_IPV6_EX,
1146           EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1147           EFX_RX_HASH(IPV6, 2TUPLE) }
1148 };
1149
1150 static efx_rx_hash_type_t
1151 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1152                             unsigned int *hash_type_flags_supported,
1153                             unsigned int nb_hash_type_flags_supported)
1154 {
1155         efx_rx_hash_type_t hash_type_masked = 0;
1156         unsigned int i, j;
1157
1158         for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1159                 unsigned int class_tuple_lbn[] = {
1160                         EFX_RX_CLASS_IPV4_TCP_LBN,
1161                         EFX_RX_CLASS_IPV4_UDP_LBN,
1162                         EFX_RX_CLASS_IPV4_LBN,
1163                         EFX_RX_CLASS_IPV6_TCP_LBN,
1164                         EFX_RX_CLASS_IPV6_UDP_LBN,
1165                         EFX_RX_CLASS_IPV6_LBN
1166                 };
1167
1168                 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1169                         unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1170                         unsigned int flag;
1171
1172                         tuple_mask <<= class_tuple_lbn[j];
1173                         flag = hash_type & tuple_mask;
1174
1175                         if (flag == hash_type_flags_supported[i])
1176                                 hash_type_masked |= flag;
1177                 }
1178         }
1179
1180         return hash_type_masked;
1181 }
1182
1183 int
1184 sfc_rx_hash_init(struct sfc_adapter *sa)
1185 {
1186         struct sfc_rss *rss = &sa->rss;
1187         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1188         uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1189         efx_rx_hash_alg_t alg;
1190         unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1191         unsigned int nb_flags_supp;
1192         struct sfc_rss_hf_rte_to_efx *hf_map;
1193         struct sfc_rss_hf_rte_to_efx *entry;
1194         efx_rx_hash_type_t efx_hash_types;
1195         unsigned int i;
1196         int rc;
1197
1198         if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1199                 alg = EFX_RX_HASHALG_TOEPLITZ;
1200         else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1201                 alg = EFX_RX_HASHALG_PACKED_STREAM;
1202         else
1203                 return EINVAL;
1204
1205         rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1206                                          RTE_DIM(flags_supp), &nb_flags_supp);
1207         if (rc != 0)
1208                 return rc;
1209
1210         hf_map = rte_calloc_socket("sfc-rss-hf-map",
1211                                    RTE_DIM(sfc_rss_hf_map),
1212                                    sizeof(*hf_map), 0, sa->socket_id);
1213         if (hf_map == NULL)
1214                 return ENOMEM;
1215
1216         entry = hf_map;
1217         efx_hash_types = 0;
1218         for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1219                 efx_rx_hash_type_t ht;
1220
1221                 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1222                                                  flags_supp, nb_flags_supp);
1223                 if (ht != 0) {
1224                         entry->rte = sfc_rss_hf_map[i].rte;
1225                         entry->efx = ht;
1226                         efx_hash_types |= ht;
1227                         ++entry;
1228                 }
1229         }
1230
1231         rss->hash_alg = alg;
1232         rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1233         rss->hf_map = hf_map;
1234         rss->hash_types = efx_hash_types;
1235
1236         return 0;
1237 }
1238
1239 void
1240 sfc_rx_hash_fini(struct sfc_adapter *sa)
1241 {
1242         struct sfc_rss *rss = &sa->rss;
1243
1244         rte_free(rss->hf_map);
1245 }
1246
1247 int
1248 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1249                      efx_rx_hash_type_t *efx)
1250 {
1251         struct sfc_rss *rss = &sa->rss;
1252         efx_rx_hash_type_t hash_types = 0;
1253         unsigned int i;
1254
1255         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1256                 uint64_t rte_mask = rss->hf_map[i].rte;
1257
1258                 if ((rte & rte_mask) != 0) {
1259                         rte &= ~rte_mask;
1260                         hash_types |= rss->hf_map[i].efx;
1261                 }
1262         }
1263
1264         if (rte != 0) {
1265                 sfc_err(sa, "unsupported hash functions requested");
1266                 return EINVAL;
1267         }
1268
1269         *efx = hash_types;
1270
1271         return 0;
1272 }
1273
1274 uint64_t
1275 sfc_rx_hf_efx_to_rte(struct sfc_adapter *sa, efx_rx_hash_type_t efx)
1276 {
1277         struct sfc_rss *rss = &sa->rss;
1278         uint64_t rte = 0;
1279         unsigned int i;
1280
1281         for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1282                 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1283
1284                 if ((efx & hash_type) == hash_type)
1285                         rte |= rss->hf_map[i].rte;
1286         }
1287
1288         return rte;
1289 }
1290
1291 static int
1292 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1293                             struct rte_eth_rss_conf *conf)
1294 {
1295         struct sfc_rss *rss = &sa->rss;
1296         efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1297         uint64_t rss_hf = sfc_rx_hf_efx_to_rte(sa, efx_hash_types);
1298         int rc;
1299
1300         if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1301                 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1302                     conf->rss_key != NULL)
1303                         return EINVAL;
1304         }
1305
1306         if (conf->rss_hf != 0) {
1307                 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1308                 if (rc != 0)
1309                         return rc;
1310         }
1311
1312         if (conf->rss_key != NULL) {
1313                 if (conf->rss_key_len != sizeof(rss->key)) {
1314                         sfc_err(sa, "RSS key size is wrong (should be %lu)",
1315                                 sizeof(rss->key));
1316                         return EINVAL;
1317                 }
1318                 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1319         }
1320
1321         rss->hash_types = efx_hash_types;
1322
1323         return 0;
1324 }
1325
1326 static int
1327 sfc_rx_rss_config(struct sfc_adapter *sa)
1328 {
1329         struct sfc_rss *rss = &sa->rss;
1330         int rc = 0;
1331
1332         if (rss->channels > 0) {
1333                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1334                                            rss->hash_alg, rss->hash_types,
1335                                            B_TRUE);
1336                 if (rc != 0)
1337                         goto finish;
1338
1339                 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1340                                           rss->key, sizeof(rss->key));
1341                 if (rc != 0)
1342                         goto finish;
1343
1344                 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1345                                           rss->tbl, RTE_DIM(rss->tbl));
1346         }
1347
1348 finish:
1349         return rc;
1350 }
1351
1352 int
1353 sfc_rx_start(struct sfc_adapter *sa)
1354 {
1355         unsigned int sw_index;
1356         int rc;
1357
1358         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1359
1360         rc = efx_rx_init(sa->nic);
1361         if (rc != 0)
1362                 goto fail_rx_init;
1363
1364         rc = sfc_rx_rss_config(sa);
1365         if (rc != 0)
1366                 goto fail_rss_config;
1367
1368         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
1369                 if (sa->rxq_info[sw_index].rxq != NULL &&
1370                     (!sa->rxq_info[sw_index].deferred_start ||
1371                      sa->rxq_info[sw_index].deferred_started)) {
1372                         rc = sfc_rx_qstart(sa, sw_index);
1373                         if (rc != 0)
1374                                 goto fail_rx_qstart;
1375                 }
1376         }
1377
1378         return 0;
1379
1380 fail_rx_qstart:
1381         while (sw_index-- > 0)
1382                 sfc_rx_qstop(sa, sw_index);
1383
1384 fail_rss_config:
1385         efx_rx_fini(sa->nic);
1386
1387 fail_rx_init:
1388         sfc_log_init(sa, "failed %d", rc);
1389         return rc;
1390 }
1391
1392 void
1393 sfc_rx_stop(struct sfc_adapter *sa)
1394 {
1395         unsigned int sw_index;
1396
1397         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1398
1399         sw_index = sa->rxq_count;
1400         while (sw_index-- > 0) {
1401                 if (sa->rxq_info[sw_index].rxq != NULL)
1402                         sfc_rx_qstop(sa, sw_index);
1403         }
1404
1405         efx_rx_fini(sa->nic);
1406 }
1407
1408 static int
1409 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1410 {
1411         struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
1412         unsigned int max_entries;
1413
1414         max_entries = EFX_RXQ_MAXNDESCS;
1415         SFC_ASSERT(rte_is_power_of_2(max_entries));
1416
1417         rxq_info->max_entries = max_entries;
1418
1419         return 0;
1420 }
1421
1422 static int
1423 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1424 {
1425         uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1426                                       sfc_rx_get_queue_offload_caps(sa);
1427         struct sfc_rss *rss = &sa->rss;
1428         int rc = 0;
1429
1430         switch (rxmode->mq_mode) {
1431         case ETH_MQ_RX_NONE:
1432                 /* No special checks are required */
1433                 break;
1434         case ETH_MQ_RX_RSS:
1435                 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1436                         sfc_err(sa, "RSS is not available");
1437                         rc = EINVAL;
1438                 }
1439                 break;
1440         default:
1441                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1442                         rxmode->mq_mode);
1443                 rc = EINVAL;
1444         }
1445
1446         /*
1447          * Requested offloads are validated against supported by ethdev,
1448          * so unsupported offloads cannot be added as the result of
1449          * below check.
1450          */
1451         if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1452             (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1453                 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1454                 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1455         }
1456
1457         if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1458             (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1459                 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1460                 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1461         }
1462
1463         return rc;
1464 }
1465
1466 /**
1467  * Destroy excess queues that are no longer needed after reconfiguration
1468  * or complete close.
1469  */
1470 static void
1471 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1472 {
1473         int sw_index;
1474
1475         SFC_ASSERT(nb_rx_queues <= sa->rxq_count);
1476
1477         sw_index = sa->rxq_count;
1478         while (--sw_index >= (int)nb_rx_queues) {
1479                 if (sa->rxq_info[sw_index].rxq != NULL)
1480                         sfc_rx_qfini(sa, sw_index);
1481         }
1482
1483         sa->rxq_count = nb_rx_queues;
1484 }
1485
1486 /**
1487  * Initialize Rx subsystem.
1488  *
1489  * Called at device (re)configuration stage when number of receive queues is
1490  * specified together with other device level receive configuration.
1491  *
1492  * It should be used to allocate NUMA-unaware resources.
1493  */
1494 int
1495 sfc_rx_configure(struct sfc_adapter *sa)
1496 {
1497         struct sfc_rss *rss = &sa->rss;
1498         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1499         const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1500         int rc;
1501
1502         sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1503                      nb_rx_queues, sa->rxq_count);
1504
1505         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1506         if (rc != 0)
1507                 goto fail_check_mode;
1508
1509         if (nb_rx_queues == sa->rxq_count)
1510                 goto configure_rss;
1511
1512         if (sa->rxq_info == NULL) {
1513                 rc = ENOMEM;
1514                 sa->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1515                                                  sizeof(sa->rxq_info[0]), 0,
1516                                                  sa->socket_id);
1517                 if (sa->rxq_info == NULL)
1518                         goto fail_rxqs_alloc;
1519         } else {
1520                 struct sfc_rxq_info *new_rxq_info;
1521
1522                 if (nb_rx_queues < sa->rxq_count)
1523                         sfc_rx_fini_queues(sa, nb_rx_queues);
1524
1525                 rc = ENOMEM;
1526                 new_rxq_info =
1527                         rte_realloc(sa->rxq_info,
1528                                     nb_rx_queues * sizeof(sa->rxq_info[0]), 0);
1529                 if (new_rxq_info == NULL && nb_rx_queues > 0)
1530                         goto fail_rxqs_realloc;
1531
1532                 sa->rxq_info = new_rxq_info;
1533                 if (nb_rx_queues > sa->rxq_count)
1534                         memset(&sa->rxq_info[sa->rxq_count], 0,
1535                                (nb_rx_queues - sa->rxq_count) *
1536                                sizeof(sa->rxq_info[0]));
1537         }
1538
1539         while (sa->rxq_count < nb_rx_queues) {
1540                 rc = sfc_rx_qinit_info(sa, sa->rxq_count);
1541                 if (rc != 0)
1542                         goto fail_rx_qinit_info;
1543
1544                 sa->rxq_count++;
1545         }
1546
1547 configure_rss:
1548         rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1549                          MIN(sa->rxq_count, EFX_MAXRSS) : 0;
1550
1551         if (rss->channels > 0) {
1552                 struct rte_eth_rss_conf *adv_conf_rss;
1553                 unsigned int sw_index;
1554
1555                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1556                         rss->tbl[sw_index] = sw_index % rss->channels;
1557
1558                 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1559                 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1560                 if (rc != 0)
1561                         goto fail_rx_process_adv_conf_rss;
1562         }
1563
1564         return 0;
1565
1566 fail_rx_process_adv_conf_rss:
1567 fail_rx_qinit_info:
1568 fail_rxqs_realloc:
1569 fail_rxqs_alloc:
1570         sfc_rx_close(sa);
1571
1572 fail_check_mode:
1573         sfc_log_init(sa, "failed %d", rc);
1574         return rc;
1575 }
1576
1577 /**
1578  * Shutdown Rx subsystem.
1579  *
1580  * Called at device close stage, for example, before device shutdown.
1581  */
1582 void
1583 sfc_rx_close(struct sfc_adapter *sa)
1584 {
1585         struct sfc_rss *rss = &sa->rss;
1586
1587         sfc_rx_fini_queues(sa, 0);
1588
1589         rss->channels = 0;
1590
1591         rte_free(sa->rxq_info);
1592         sa->rxq_info = NULL;
1593 }