net/tap: free mempool when closing
[dpdk.git] / drivers / net / tap / rte_eth_tap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_atomic.h>
6 #include <rte_branch_prediction.h>
7 #include <rte_byteorder.h>
8 #include <rte_common.h>
9 #include <rte_mbuf.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_bus_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_net.h>
16 #include <rte_debug.h>
17 #include <rte_ip.h>
18 #include <rte_string_fns.h>
19 #include <rte_ethdev.h>
20 #include <rte_errno.h>
21 #include <rte_cycles.h>
22
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <sys/socket.h>
26 #include <sys/ioctl.h>
27 #include <sys/utsname.h>
28 #include <sys/mman.h>
29 #include <errno.h>
30 #include <signal.h>
31 #include <stdbool.h>
32 #include <stdint.h>
33 #include <sys/uio.h>
34 #include <unistd.h>
35 #include <arpa/inet.h>
36 #include <net/if.h>
37 #include <linux/if_tun.h>
38 #include <linux/if_ether.h>
39 #include <fcntl.h>
40 #include <ctype.h>
41
42 #include <tap_rss.h>
43 #include <rte_eth_tap.h>
44 #include <tap_flow.h>
45 #include <tap_netlink.h>
46 #include <tap_tcmsgs.h>
47
48 /* Linux based path to the TUN device */
49 #define TUN_TAP_DEV_PATH        "/dev/net/tun"
50 #define DEFAULT_TAP_NAME        "dtap"
51 #define DEFAULT_TUN_NAME        "dtun"
52
53 #define ETH_TAP_IFACE_ARG       "iface"
54 #define ETH_TAP_REMOTE_ARG      "remote"
55 #define ETH_TAP_MAC_ARG         "mac"
56 #define ETH_TAP_MAC_FIXED       "fixed"
57
58 #define ETH_TAP_USR_MAC_FMT     "xx:xx:xx:xx:xx:xx"
59 #define ETH_TAP_CMP_MAC_FMT     "0123456789ABCDEFabcdef"
60 #define ETH_TAP_MAC_ARG_FMT     ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT
61
62 #define TAP_GSO_MBUFS_PER_CORE  128
63 #define TAP_GSO_MBUF_SEG_SIZE   128
64 #define TAP_GSO_MBUF_CACHE_SIZE 4
65 #define TAP_GSO_MBUFS_NUM \
66         (TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE)
67
68 /* IPC key for queue fds sync */
69 #define TAP_MP_KEY "tap_mp_sync_queues"
70
71 #define TAP_IOV_DEFAULT_MAX 1024
72
73 static int tap_devices_count;
74
75 static const char *valid_arguments[] = {
76         ETH_TAP_IFACE_ARG,
77         ETH_TAP_REMOTE_ARG,
78         ETH_TAP_MAC_ARG,
79         NULL
80 };
81
82 static volatile uint32_t tap_trigger;   /* Rx trigger */
83
84 static struct rte_eth_link pmd_link = {
85         .link_speed = ETH_SPEED_NUM_10G,
86         .link_duplex = ETH_LINK_FULL_DUPLEX,
87         .link_status = ETH_LINK_DOWN,
88         .link_autoneg = ETH_LINK_FIXED,
89 };
90
91 static void
92 tap_trigger_cb(int sig __rte_unused)
93 {
94         /* Valid trigger values are nonzero */
95         tap_trigger = (tap_trigger + 1) | 0x80000000;
96 }
97
98 /* Specifies on what netdevices the ioctl should be applied */
99 enum ioctl_mode {
100         LOCAL_AND_REMOTE,
101         LOCAL_ONLY,
102         REMOTE_ONLY,
103 };
104
105 /* Message header to synchronize queues via IPC */
106 struct ipc_queues {
107         char port_name[RTE_DEV_NAME_MAX_LEN];
108         int rxq_count;
109         int txq_count;
110         /*
111          * The file descriptors are in the dedicated part
112          * of the Unix message to be translated by the kernel.
113          */
114 };
115
116 static int tap_intr_handle_set(struct rte_eth_dev *dev, int set);
117
118 /**
119  * Tun/Tap allocation routine
120  *
121  * @param[in] pmd
122  *   Pointer to private structure.
123  *
124  * @param[in] is_keepalive
125  *   Keepalive flag
126  *
127  * @return
128  *   -1 on failure, fd on success
129  */
130 static int
131 tun_alloc(struct pmd_internals *pmd, int is_keepalive)
132 {
133         struct ifreq ifr;
134 #ifdef IFF_MULTI_QUEUE
135         unsigned int features;
136 #endif
137         int fd, signo, flags;
138
139         memset(&ifr, 0, sizeof(struct ifreq));
140
141         /*
142          * Do not set IFF_NO_PI as packet information header will be needed
143          * to check if a received packet has been truncated.
144          */
145         ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ?
146                 IFF_TAP : IFF_TUN | IFF_POINTOPOINT;
147         strlcpy(ifr.ifr_name, pmd->name, IFNAMSIZ);
148
149         fd = open(TUN_TAP_DEV_PATH, O_RDWR);
150         if (fd < 0) {
151                 TAP_LOG(ERR, "Unable to open %s interface", TUN_TAP_DEV_PATH);
152                 goto error;
153         }
154
155 #ifdef IFF_MULTI_QUEUE
156         /* Grab the TUN features to verify we can work multi-queue */
157         if (ioctl(fd, TUNGETFEATURES, &features) < 0) {
158                 TAP_LOG(ERR, "unable to get TUN/TAP features");
159                 goto error;
160         }
161         TAP_LOG(DEBUG, "%s Features %08x", TUN_TAP_DEV_PATH, features);
162
163         if (features & IFF_MULTI_QUEUE) {
164                 TAP_LOG(DEBUG, "  Multi-queue support for %d queues",
165                         RTE_PMD_TAP_MAX_QUEUES);
166                 ifr.ifr_flags |= IFF_MULTI_QUEUE;
167         } else
168 #endif
169         {
170                 ifr.ifr_flags |= IFF_ONE_QUEUE;
171                 TAP_LOG(DEBUG, "  Single queue only support");
172         }
173
174         /* Set the TUN/TAP configuration and set the name if needed */
175         if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) {
176                 TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s",
177                         ifr.ifr_name, strerror(errno));
178                 goto error;
179         }
180
181         /*
182          * Name passed to kernel might be wildcard like dtun%d
183          * and need to find the resulting device.
184          */
185         TAP_LOG(DEBUG, "Device name is '%s'", ifr.ifr_name);
186         strlcpy(pmd->name, ifr.ifr_name, RTE_ETH_NAME_MAX_LEN);
187
188         if (is_keepalive) {
189                 /*
190                  * Detach the TUN/TAP keep-alive queue
191                  * to avoid traffic through it
192                  */
193                 ifr.ifr_flags = IFF_DETACH_QUEUE;
194                 if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) {
195                         TAP_LOG(WARNING,
196                                 "Unable to detach keep-alive queue for %s: %s",
197                                 ifr.ifr_name, strerror(errno));
198                         goto error;
199                 }
200         }
201
202         flags = fcntl(fd, F_GETFL);
203         if (flags == -1) {
204                 TAP_LOG(WARNING,
205                         "Unable to get %s current flags\n",
206                         ifr.ifr_name);
207                 goto error;
208         }
209
210         /* Always set the file descriptor to non-blocking */
211         flags |= O_NONBLOCK;
212         if (fcntl(fd, F_SETFL, flags) < 0) {
213                 TAP_LOG(WARNING,
214                         "Unable to set %s to nonblocking: %s",
215                         ifr.ifr_name, strerror(errno));
216                 goto error;
217         }
218
219         /* Find a free realtime signal */
220         for (signo = SIGRTMIN + 1; signo < SIGRTMAX; signo++) {
221                 struct sigaction sa;
222
223                 if (sigaction(signo, NULL, &sa) == -1) {
224                         TAP_LOG(WARNING,
225                                 "Unable to get current rt-signal %d handler",
226                                 signo);
227                         goto error;
228                 }
229
230                 /* Already have the handler we want on this signal  */
231                 if (sa.sa_handler == tap_trigger_cb)
232                         break;
233
234                 /* Is handler in use by application */
235                 if (sa.sa_handler != SIG_DFL) {
236                         TAP_LOG(DEBUG,
237                                 "Skipping used rt-signal %d", signo);
238                         continue;
239                 }
240
241                 sa = (struct sigaction) {
242                         .sa_flags = SA_RESTART,
243                         .sa_handler = tap_trigger_cb,
244                 };
245
246                 if (sigaction(signo, &sa, NULL) == -1) {
247                         TAP_LOG(WARNING,
248                                 "Unable to set rt-signal %d handler\n", signo);
249                         goto error;
250                 }
251
252                 /* Found a good signal to use */
253                 TAP_LOG(DEBUG,
254                         "Using rt-signal %d", signo);
255                 break;
256         }
257
258         if (signo == SIGRTMAX) {
259                 TAP_LOG(WARNING, "All rt-signals are in use\n");
260
261                 /* Disable trigger globally in case of error */
262                 tap_trigger = 0;
263                 TAP_LOG(NOTICE, "No Rx trigger signal available\n");
264         } else {
265                 /* Enable signal on file descriptor */
266                 if (fcntl(fd, F_SETSIG, signo) < 0) {
267                         TAP_LOG(WARNING, "Unable to set signo %d for fd %d: %s",
268                                 signo, fd, strerror(errno));
269                         goto error;
270                 }
271                 if (fcntl(fd, F_SETFL, flags | O_ASYNC) < 0) {
272                         TAP_LOG(WARNING, "Unable to set fcntl flags: %s",
273                                 strerror(errno));
274                         goto error;
275                 }
276
277                 if (fcntl(fd, F_SETOWN, getpid()) < 0) {
278                         TAP_LOG(WARNING, "Unable to set fcntl owner: %s",
279                                 strerror(errno));
280                         goto error;
281                 }
282         }
283         return fd;
284
285 error:
286         if (fd >= 0)
287                 close(fd);
288         return -1;
289 }
290
291 static void
292 tap_verify_csum(struct rte_mbuf *mbuf)
293 {
294         uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK;
295         uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK;
296         uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK;
297         unsigned int l2_len = sizeof(struct rte_ether_hdr);
298         unsigned int l3_len;
299         uint16_t cksum = 0;
300         void *l3_hdr;
301         void *l4_hdr;
302
303         if (l2 == RTE_PTYPE_L2_ETHER_VLAN)
304                 l2_len += 4;
305         else if (l2 == RTE_PTYPE_L2_ETHER_QINQ)
306                 l2_len += 8;
307         /* Don't verify checksum for packets with discontinuous L2 header */
308         if (unlikely(l2_len + sizeof(struct rte_ipv4_hdr) >
309                      rte_pktmbuf_data_len(mbuf)))
310                 return;
311         l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len);
312         if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
313                 struct rte_ipv4_hdr *iph = l3_hdr;
314
315                 /* ihl contains the number of 4-byte words in the header */
316                 l3_len = 4 * (iph->version_ihl & 0xf);
317                 if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf)))
318                         return;
319                 /* check that the total length reported by header is not
320                  * greater than the total received size
321                  */
322                 if (l2_len + rte_be_to_cpu_16(iph->total_length) >
323                                 rte_pktmbuf_data_len(mbuf))
324                         return;
325
326                 cksum = ~rte_raw_cksum(iph, l3_len);
327                 mbuf->ol_flags |= cksum ?
328                         PKT_RX_IP_CKSUM_BAD :
329                         PKT_RX_IP_CKSUM_GOOD;
330         } else if (l3 == RTE_PTYPE_L3_IPV6) {
331                 struct rte_ipv6_hdr *iph = l3_hdr;
332
333                 l3_len = sizeof(struct rte_ipv6_hdr);
334                 /* check that the total length reported by header is not
335                  * greater than the total received size
336                  */
337                 if (l2_len + l3_len + rte_be_to_cpu_16(iph->payload_len) >
338                                 rte_pktmbuf_data_len(mbuf))
339                         return;
340         } else {
341                 /* IPv6 extensions are not supported */
342                 return;
343         }
344         if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) {
345                 l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len);
346                 /* Don't verify checksum for multi-segment packets. */
347                 if (mbuf->nb_segs > 1)
348                         return;
349                 if (l3 == RTE_PTYPE_L3_IPV4)
350                         cksum = ~rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
351                 else if (l3 == RTE_PTYPE_L3_IPV6)
352                         cksum = ~rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
353                 mbuf->ol_flags |= cksum ?
354                         PKT_RX_L4_CKSUM_BAD :
355                         PKT_RX_L4_CKSUM_GOOD;
356         }
357 }
358
359 static uint64_t
360 tap_rx_offload_get_port_capa(void)
361 {
362         /*
363          * No specific port Rx offload capabilities.
364          */
365         return 0;
366 }
367
368 static uint64_t
369 tap_rx_offload_get_queue_capa(void)
370 {
371         return DEV_RX_OFFLOAD_SCATTER |
372                DEV_RX_OFFLOAD_IPV4_CKSUM |
373                DEV_RX_OFFLOAD_UDP_CKSUM |
374                DEV_RX_OFFLOAD_TCP_CKSUM;
375 }
376
377 static void
378 tap_rxq_pool_free(struct rte_mbuf *pool)
379 {
380         struct rte_mbuf *mbuf = pool;
381         uint16_t nb_segs = 1;
382
383         if (mbuf == NULL)
384                 return;
385
386         while (mbuf->next) {
387                 mbuf = mbuf->next;
388                 nb_segs++;
389         }
390         pool->nb_segs = nb_segs;
391         rte_pktmbuf_free(pool);
392 }
393
394 /* Callback to handle the rx burst of packets to the correct interface and
395  * file descriptor(s) in a multi-queue setup.
396  */
397 static uint16_t
398 pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
399 {
400         struct rx_queue *rxq = queue;
401         struct pmd_process_private *process_private;
402         uint16_t num_rx;
403         unsigned long num_rx_bytes = 0;
404         uint32_t trigger = tap_trigger;
405
406         if (trigger == rxq->trigger_seen)
407                 return 0;
408
409         process_private = rte_eth_devices[rxq->in_port].process_private;
410         for (num_rx = 0; num_rx < nb_pkts; ) {
411                 struct rte_mbuf *mbuf = rxq->pool;
412                 struct rte_mbuf *seg = NULL;
413                 struct rte_mbuf *new_tail = NULL;
414                 uint16_t data_off = rte_pktmbuf_headroom(mbuf);
415                 int len;
416
417                 len = readv(process_private->rxq_fds[rxq->queue_id],
418                         *rxq->iovecs,
419                         1 + (rxq->rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ?
420                              rxq->nb_rx_desc : 1));
421                 if (len < (int)sizeof(struct tun_pi))
422                         break;
423
424                 /* Packet couldn't fit in the provided mbuf */
425                 if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) {
426                         rxq->stats.ierrors++;
427                         continue;
428                 }
429
430                 len -= sizeof(struct tun_pi);
431
432                 mbuf->pkt_len = len;
433                 mbuf->port = rxq->in_port;
434                 while (1) {
435                         struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
436
437                         if (unlikely(!buf)) {
438                                 rxq->stats.rx_nombuf++;
439                                 /* No new buf has been allocated: do nothing */
440                                 if (!new_tail || !seg)
441                                         goto end;
442
443                                 seg->next = NULL;
444                                 tap_rxq_pool_free(mbuf);
445
446                                 goto end;
447                         }
448                         seg = seg ? seg->next : mbuf;
449                         if (rxq->pool == mbuf)
450                                 rxq->pool = buf;
451                         if (new_tail)
452                                 new_tail->next = buf;
453                         new_tail = buf;
454                         new_tail->next = seg->next;
455
456                         /* iovecs[0] is reserved for packet info (pi) */
457                         (*rxq->iovecs)[mbuf->nb_segs].iov_len =
458                                 buf->buf_len - data_off;
459                         (*rxq->iovecs)[mbuf->nb_segs].iov_base =
460                                 (char *)buf->buf_addr + data_off;
461
462                         seg->data_len = RTE_MIN(seg->buf_len - data_off, len);
463                         seg->data_off = data_off;
464
465                         len -= seg->data_len;
466                         if (len <= 0)
467                                 break;
468                         mbuf->nb_segs++;
469                         /* First segment has headroom, not the others */
470                         data_off = 0;
471                 }
472                 seg->next = NULL;
473                 mbuf->packet_type = rte_net_get_ptype(mbuf, NULL,
474                                                       RTE_PTYPE_ALL_MASK);
475                 if (rxq->rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
476                         tap_verify_csum(mbuf);
477
478                 /* account for the receive frame */
479                 bufs[num_rx++] = mbuf;
480                 num_rx_bytes += mbuf->pkt_len;
481         }
482 end:
483         rxq->stats.ipackets += num_rx;
484         rxq->stats.ibytes += num_rx_bytes;
485
486         if (trigger && num_rx < nb_pkts)
487                 rxq->trigger_seen = trigger;
488
489         return num_rx;
490 }
491
492 static uint64_t
493 tap_tx_offload_get_port_capa(void)
494 {
495         /*
496          * No specific port Tx offload capabilities.
497          */
498         return 0;
499 }
500
501 static uint64_t
502 tap_tx_offload_get_queue_capa(void)
503 {
504         return DEV_TX_OFFLOAD_MULTI_SEGS |
505                DEV_TX_OFFLOAD_IPV4_CKSUM |
506                DEV_TX_OFFLOAD_UDP_CKSUM |
507                DEV_TX_OFFLOAD_TCP_CKSUM |
508                DEV_TX_OFFLOAD_TCP_TSO;
509 }
510
511 /* Finalize l4 checksum calculation */
512 static void
513 tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum,
514                 uint32_t l4_raw_cksum)
515 {
516         if (l4_cksum) {
517                 uint32_t cksum;
518
519                 cksum = __rte_raw_cksum_reduce(l4_raw_cksum);
520                 cksum += l4_phdr_cksum;
521
522                 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff);
523                 cksum = (~cksum) & 0xffff;
524                 if (cksum == 0)
525                         cksum = 0xffff;
526                 *l4_cksum = cksum;
527         }
528 }
529
530 /* Accumaulate L4 raw checksums */
531 static void
532 tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum,
533                         uint32_t *l4_raw_cksum)
534 {
535         if (l4_cksum == NULL)
536                 return;
537
538         *l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum);
539 }
540
541 /* L3 and L4 pseudo headers checksum offloads */
542 static void
543 tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len,
544                 unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum,
545                 uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum)
546 {
547         void *l3_hdr = packet + l2_len;
548
549         if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4)) {
550                 struct rte_ipv4_hdr *iph = l3_hdr;
551                 uint16_t cksum;
552
553                 iph->hdr_checksum = 0;
554                 cksum = rte_raw_cksum(iph, l3_len);
555                 iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum;
556         }
557         if (ol_flags & PKT_TX_L4_MASK) {
558                 void *l4_hdr;
559
560                 l4_hdr = packet + l2_len + l3_len;
561                 if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM)
562                         *l4_cksum = &((struct rte_udp_hdr *)l4_hdr)->dgram_cksum;
563                 else if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM)
564                         *l4_cksum = &((struct rte_tcp_hdr *)l4_hdr)->cksum;
565                 else
566                         return;
567                 **l4_cksum = 0;
568                 if (ol_flags & PKT_TX_IPV4)
569                         *l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0);
570                 else
571                         *l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0);
572                 *l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0);
573         }
574 }
575
576 static inline int
577 tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs,
578                         struct rte_mbuf **pmbufs,
579                         uint16_t *num_packets, unsigned long *num_tx_bytes)
580 {
581         int i;
582         uint16_t l234_hlen;
583         struct pmd_process_private *process_private;
584
585         process_private = rte_eth_devices[txq->out_port].process_private;
586
587         for (i = 0; i < num_mbufs; i++) {
588                 struct rte_mbuf *mbuf = pmbufs[i];
589                 struct iovec iovecs[mbuf->nb_segs + 2];
590                 struct tun_pi pi = { .flags = 0, .proto = 0x00 };
591                 struct rte_mbuf *seg = mbuf;
592                 char m_copy[mbuf->data_len];
593                 int proto;
594                 int n;
595                 int j;
596                 int k; /* current index in iovecs for copying segments */
597                 uint16_t seg_len; /* length of first segment */
598                 uint16_t nb_segs;
599                 uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */
600                 uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */
601                 uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */
602                 uint16_t is_cksum = 0; /* in case cksum should be offloaded */
603
604                 l4_cksum = NULL;
605                 if (txq->type == ETH_TUNTAP_TYPE_TUN) {
606                         /*
607                          * TUN and TAP are created with IFF_NO_PI disabled.
608                          * For TUN PMD this mandatory as fields are used by
609                          * Kernel tun.c to determine whether its IP or non IP
610                          * packets.
611                          *
612                          * The logic fetches the first byte of data from mbuf
613                          * then compares whether its v4 or v6. If first byte
614                          * is 4 or 6, then protocol field is updated.
615                          */
616                         char *buff_data = rte_pktmbuf_mtod(seg, void *);
617                         proto = (*buff_data & 0xf0);
618                         pi.proto = (proto == 0x40) ?
619                                 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4) :
620                                 ((proto == 0x60) ?
621                                         rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6) :
622                                         0x00);
623                 }
624
625                 k = 0;
626                 iovecs[k].iov_base = &pi;
627                 iovecs[k].iov_len = sizeof(pi);
628                 k++;
629
630                 nb_segs = mbuf->nb_segs;
631                 if (txq->csum &&
632                     ((mbuf->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4) ||
633                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM ||
634                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM))) {
635                         is_cksum = 1;
636
637                         /* Support only packets with at least layer 4
638                          * header included in the first segment
639                          */
640                         seg_len = rte_pktmbuf_data_len(mbuf);
641                         l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
642                         if (seg_len < l234_hlen)
643                                 return -1;
644
645                         /* To change checksums, work on a * copy of l2, l3
646                          * headers + l4 pseudo header
647                          */
648                         rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *),
649                                         l234_hlen);
650                         tap_tx_l3_cksum(m_copy, mbuf->ol_flags,
651                                        mbuf->l2_len, mbuf->l3_len, mbuf->l4_len,
652                                        &l4_cksum, &l4_phdr_cksum,
653                                        &l4_raw_cksum);
654                         iovecs[k].iov_base = m_copy;
655                         iovecs[k].iov_len = l234_hlen;
656                         k++;
657
658                         /* Update next iovecs[] beyond l2, l3, l4 headers */
659                         if (seg_len > l234_hlen) {
660                                 iovecs[k].iov_len = seg_len - l234_hlen;
661                                 iovecs[k].iov_base =
662                                         rte_pktmbuf_mtod(seg, char *) +
663                                                 l234_hlen;
664                                 tap_tx_l4_add_rcksum(iovecs[k].iov_base,
665                                         iovecs[k].iov_len, l4_cksum,
666                                         &l4_raw_cksum);
667                                 k++;
668                                 nb_segs++;
669                         }
670                         seg = seg->next;
671                 }
672
673                 for (j = k; j <= nb_segs; j++) {
674                         iovecs[j].iov_len = rte_pktmbuf_data_len(seg);
675                         iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *);
676                         if (is_cksum)
677                                 tap_tx_l4_add_rcksum(iovecs[j].iov_base,
678                                         iovecs[j].iov_len, l4_cksum,
679                                         &l4_raw_cksum);
680                         seg = seg->next;
681                 }
682
683                 if (is_cksum)
684                         tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum);
685
686                 /* copy the tx frame data */
687                 n = writev(process_private->txq_fds[txq->queue_id], iovecs, j);
688                 if (n <= 0)
689                         return -1;
690
691                 (*num_packets)++;
692                 (*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf);
693         }
694         return 0;
695 }
696
697 /* Callback to handle sending packets from the tap interface
698  */
699 static uint16_t
700 pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
701 {
702         struct tx_queue *txq = queue;
703         uint16_t num_tx = 0;
704         uint16_t num_packets = 0;
705         unsigned long num_tx_bytes = 0;
706         uint32_t max_size;
707         int i;
708
709         if (unlikely(nb_pkts == 0))
710                 return 0;
711
712         struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS];
713         max_size = *txq->mtu + (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + 4);
714         for (i = 0; i < nb_pkts; i++) {
715                 struct rte_mbuf *mbuf_in = bufs[num_tx];
716                 struct rte_mbuf **mbuf;
717                 uint16_t num_mbufs = 0;
718                 uint16_t tso_segsz = 0;
719                 int ret;
720                 int num_tso_mbufs;
721                 uint16_t hdrs_len;
722                 uint64_t tso;
723
724                 tso = mbuf_in->ol_flags & PKT_TX_TCP_SEG;
725                 if (tso) {
726                         struct rte_gso_ctx *gso_ctx = &txq->gso_ctx;
727
728                         /* TCP segmentation implies TCP checksum offload */
729                         mbuf_in->ol_flags |= PKT_TX_TCP_CKSUM;
730
731                         /* gso size is calculated without RTE_ETHER_CRC_LEN */
732                         hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len +
733                                         mbuf_in->l4_len;
734                         tso_segsz = mbuf_in->tso_segsz + hdrs_len;
735                         if (unlikely(tso_segsz == hdrs_len) ||
736                                 tso_segsz > *txq->mtu) {
737                                 txq->stats.errs++;
738                                 break;
739                         }
740                         gso_ctx->gso_size = tso_segsz;
741                         /* 'mbuf_in' packet to segment */
742                         num_tso_mbufs = rte_gso_segment(mbuf_in,
743                                 gso_ctx, /* gso control block */
744                                 (struct rte_mbuf **)&gso_mbufs, /* out mbufs */
745                                 RTE_DIM(gso_mbufs)); /* max tso mbufs */
746
747                         /* ret contains the number of new created mbufs */
748                         if (num_tso_mbufs < 0)
749                                 break;
750
751                         mbuf = gso_mbufs;
752                         num_mbufs = num_tso_mbufs;
753                 } else {
754                         /* stats.errs will be incremented */
755                         if (rte_pktmbuf_pkt_len(mbuf_in) > max_size)
756                                 break;
757
758                         /* ret 0 indicates no new mbufs were created */
759                         num_tso_mbufs = 0;
760                         mbuf = &mbuf_in;
761                         num_mbufs = 1;
762                 }
763
764                 ret = tap_write_mbufs(txq, num_mbufs, mbuf,
765                                 &num_packets, &num_tx_bytes);
766                 if (ret == -1) {
767                         txq->stats.errs++;
768                         /* free tso mbufs */
769                         if (num_tso_mbufs > 0)
770                                 rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
771                         break;
772                 }
773                 num_tx++;
774                 /* free original mbuf */
775                 rte_pktmbuf_free(mbuf_in);
776                 /* free tso mbufs */
777                 if (num_tso_mbufs > 0)
778                         rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
779         }
780
781         txq->stats.opackets += num_packets;
782         txq->stats.errs += nb_pkts - num_tx;
783         txq->stats.obytes += num_tx_bytes;
784
785         return num_tx;
786 }
787
788 static const char *
789 tap_ioctl_req2str(unsigned long request)
790 {
791         switch (request) {
792         case SIOCSIFFLAGS:
793                 return "SIOCSIFFLAGS";
794         case SIOCGIFFLAGS:
795                 return "SIOCGIFFLAGS";
796         case SIOCGIFHWADDR:
797                 return "SIOCGIFHWADDR";
798         case SIOCSIFHWADDR:
799                 return "SIOCSIFHWADDR";
800         case SIOCSIFMTU:
801                 return "SIOCSIFMTU";
802         }
803         return "UNKNOWN";
804 }
805
806 static int
807 tap_ioctl(struct pmd_internals *pmd, unsigned long request,
808           struct ifreq *ifr, int set, enum ioctl_mode mode)
809 {
810         short req_flags = ifr->ifr_flags;
811         int remote = pmd->remote_if_index &&
812                 (mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE);
813
814         if (!pmd->remote_if_index && mode == REMOTE_ONLY)
815                 return 0;
816         /*
817          * If there is a remote netdevice, apply ioctl on it, then apply it on
818          * the tap netdevice.
819          */
820 apply:
821         if (remote)
822                 strlcpy(ifr->ifr_name, pmd->remote_iface, IFNAMSIZ);
823         else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE)
824                 strlcpy(ifr->ifr_name, pmd->name, IFNAMSIZ);
825         switch (request) {
826         case SIOCSIFFLAGS:
827                 /* fetch current flags to leave other flags untouched */
828                 if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0)
829                         goto error;
830                 if (set)
831                         ifr->ifr_flags |= req_flags;
832                 else
833                         ifr->ifr_flags &= ~req_flags;
834                 break;
835         case SIOCGIFFLAGS:
836         case SIOCGIFHWADDR:
837         case SIOCSIFHWADDR:
838         case SIOCSIFMTU:
839                 break;
840         default:
841                 TAP_LOG(WARNING, "%s: ioctl() called with wrong arg",
842                         pmd->name);
843                 return -EINVAL;
844         }
845         if (ioctl(pmd->ioctl_sock, request, ifr) < 0)
846                 goto error;
847         if (remote-- && mode == LOCAL_AND_REMOTE)
848                 goto apply;
849         return 0;
850
851 error:
852         TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name,
853                 tap_ioctl_req2str(request), strerror(errno), errno);
854         return -errno;
855 }
856
857 static int
858 tap_link_set_down(struct rte_eth_dev *dev)
859 {
860         struct pmd_internals *pmd = dev->data->dev_private;
861         struct ifreq ifr = { .ifr_flags = IFF_UP };
862
863         dev->data->dev_link.link_status = ETH_LINK_DOWN;
864         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY);
865 }
866
867 static int
868 tap_link_set_up(struct rte_eth_dev *dev)
869 {
870         struct pmd_internals *pmd = dev->data->dev_private;
871         struct ifreq ifr = { .ifr_flags = IFF_UP };
872
873         dev->data->dev_link.link_status = ETH_LINK_UP;
874         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
875 }
876
877 static int
878 tap_dev_start(struct rte_eth_dev *dev)
879 {
880         int err, i;
881
882         err = tap_intr_handle_set(dev, 1);
883         if (err)
884                 return err;
885
886         err = tap_link_set_up(dev);
887         if (err)
888                 return err;
889
890         for (i = 0; i < dev->data->nb_tx_queues; i++)
891                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
892         for (i = 0; i < dev->data->nb_rx_queues; i++)
893                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
894
895         return err;
896 }
897
898 /* This function gets called when the current port gets stopped.
899  */
900 static void
901 tap_dev_stop(struct rte_eth_dev *dev)
902 {
903         int i;
904
905         for (i = 0; i < dev->data->nb_tx_queues; i++)
906                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
907         for (i = 0; i < dev->data->nb_rx_queues; i++)
908                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
909
910         tap_intr_handle_set(dev, 0);
911         tap_link_set_down(dev);
912 }
913
914 static int
915 tap_dev_configure(struct rte_eth_dev *dev)
916 {
917         struct pmd_internals *pmd = dev->data->dev_private;
918
919         if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) {
920                 TAP_LOG(ERR,
921                         "%s: number of rx queues %d exceeds max num of queues %d",
922                         dev->device->name,
923                         dev->data->nb_rx_queues,
924                         RTE_PMD_TAP_MAX_QUEUES);
925                 return -1;
926         }
927         if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) {
928                 TAP_LOG(ERR,
929                         "%s: number of tx queues %d exceeds max num of queues %d",
930                         dev->device->name,
931                         dev->data->nb_tx_queues,
932                         RTE_PMD_TAP_MAX_QUEUES);
933                 return -1;
934         }
935
936         TAP_LOG(INFO, "%s: %s: TX configured queues number: %u",
937                 dev->device->name, pmd->name, dev->data->nb_tx_queues);
938
939         TAP_LOG(INFO, "%s: %s: RX configured queues number: %u",
940                 dev->device->name, pmd->name, dev->data->nb_rx_queues);
941
942         return 0;
943 }
944
945 static uint32_t
946 tap_dev_speed_capa(void)
947 {
948         uint32_t speed = pmd_link.link_speed;
949         uint32_t capa = 0;
950
951         if (speed >= ETH_SPEED_NUM_10M)
952                 capa |= ETH_LINK_SPEED_10M;
953         if (speed >= ETH_SPEED_NUM_100M)
954                 capa |= ETH_LINK_SPEED_100M;
955         if (speed >= ETH_SPEED_NUM_1G)
956                 capa |= ETH_LINK_SPEED_1G;
957         if (speed >= ETH_SPEED_NUM_5G)
958                 capa |= ETH_LINK_SPEED_2_5G;
959         if (speed >= ETH_SPEED_NUM_5G)
960                 capa |= ETH_LINK_SPEED_5G;
961         if (speed >= ETH_SPEED_NUM_10G)
962                 capa |= ETH_LINK_SPEED_10G;
963         if (speed >= ETH_SPEED_NUM_20G)
964                 capa |= ETH_LINK_SPEED_20G;
965         if (speed >= ETH_SPEED_NUM_25G)
966                 capa |= ETH_LINK_SPEED_25G;
967         if (speed >= ETH_SPEED_NUM_40G)
968                 capa |= ETH_LINK_SPEED_40G;
969         if (speed >= ETH_SPEED_NUM_50G)
970                 capa |= ETH_LINK_SPEED_50G;
971         if (speed >= ETH_SPEED_NUM_56G)
972                 capa |= ETH_LINK_SPEED_56G;
973         if (speed >= ETH_SPEED_NUM_100G)
974                 capa |= ETH_LINK_SPEED_100G;
975
976         return capa;
977 }
978
979 static int
980 tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
981 {
982         struct pmd_internals *internals = dev->data->dev_private;
983
984         dev_info->if_index = internals->if_index;
985         dev_info->max_mac_addrs = 1;
986         dev_info->max_rx_pktlen = (uint32_t)RTE_ETHER_MAX_VLAN_FRAME_LEN;
987         dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES;
988         dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES;
989         dev_info->min_rx_bufsize = 0;
990         dev_info->speed_capa = tap_dev_speed_capa();
991         dev_info->rx_queue_offload_capa = tap_rx_offload_get_queue_capa();
992         dev_info->rx_offload_capa = tap_rx_offload_get_port_capa() |
993                                     dev_info->rx_queue_offload_capa;
994         dev_info->tx_queue_offload_capa = tap_tx_offload_get_queue_capa();
995         dev_info->tx_offload_capa = tap_tx_offload_get_port_capa() |
996                                     dev_info->tx_queue_offload_capa;
997         dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE;
998         /*
999          * limitation: TAP supports all of IP, UDP and TCP hash
1000          * functions together and not in partial combinations
1001          */
1002         dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK;
1003
1004         return 0;
1005 }
1006
1007 static int
1008 tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats)
1009 {
1010         unsigned int i, imax;
1011         unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
1012         unsigned long rx_bytes_total = 0, tx_bytes_total = 0;
1013         unsigned long rx_nombuf = 0, ierrors = 0;
1014         const struct pmd_internals *pmd = dev->data->dev_private;
1015
1016         /* rx queue statistics */
1017         imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
1018                 dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
1019         for (i = 0; i < imax; i++) {
1020                 tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets;
1021                 tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes;
1022                 rx_total += tap_stats->q_ipackets[i];
1023                 rx_bytes_total += tap_stats->q_ibytes[i];
1024                 rx_nombuf += pmd->rxq[i].stats.rx_nombuf;
1025                 ierrors += pmd->rxq[i].stats.ierrors;
1026         }
1027
1028         /* tx queue statistics */
1029         imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
1030                 dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
1031
1032         for (i = 0; i < imax; i++) {
1033                 tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets;
1034                 tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes;
1035                 tx_total += tap_stats->q_opackets[i];
1036                 tx_err_total += pmd->txq[i].stats.errs;
1037                 tx_bytes_total += tap_stats->q_obytes[i];
1038         }
1039
1040         tap_stats->ipackets = rx_total;
1041         tap_stats->ibytes = rx_bytes_total;
1042         tap_stats->ierrors = ierrors;
1043         tap_stats->rx_nombuf = rx_nombuf;
1044         tap_stats->opackets = tx_total;
1045         tap_stats->oerrors = tx_err_total;
1046         tap_stats->obytes = tx_bytes_total;
1047         return 0;
1048 }
1049
1050 static int
1051 tap_stats_reset(struct rte_eth_dev *dev)
1052 {
1053         int i;
1054         struct pmd_internals *pmd = dev->data->dev_private;
1055
1056         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1057                 pmd->rxq[i].stats.ipackets = 0;
1058                 pmd->rxq[i].stats.ibytes = 0;
1059                 pmd->rxq[i].stats.ierrors = 0;
1060                 pmd->rxq[i].stats.rx_nombuf = 0;
1061
1062                 pmd->txq[i].stats.opackets = 0;
1063                 pmd->txq[i].stats.errs = 0;
1064                 pmd->txq[i].stats.obytes = 0;
1065         }
1066
1067         return 0;
1068 }
1069
1070 static void
1071 tap_dev_close(struct rte_eth_dev *dev)
1072 {
1073         int i;
1074         struct pmd_internals *internals = dev->data->dev_private;
1075         struct pmd_process_private *process_private = dev->process_private;
1076         struct rx_queue *rxq;
1077
1078         tap_link_set_down(dev);
1079         if (internals->nlsk_fd != -1) {
1080                 tap_flow_flush(dev, NULL);
1081                 tap_flow_implicit_flush(internals, NULL);
1082                 tap_nl_final(internals->nlsk_fd);
1083                 internals->nlsk_fd = -1;
1084         }
1085
1086         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1087                 if (process_private->rxq_fds[i] != -1) {
1088                         rxq = &internals->rxq[i];
1089                         close(process_private->rxq_fds[i]);
1090                         process_private->rxq_fds[i] = -1;
1091                         tap_rxq_pool_free(rxq->pool);
1092                         rte_free(rxq->iovecs);
1093                         rxq->pool = NULL;
1094                         rxq->iovecs = NULL;
1095                 }
1096                 if (process_private->txq_fds[i] != -1) {
1097                         close(process_private->txq_fds[i]);
1098                         process_private->txq_fds[i] = -1;
1099                 }
1100         }
1101
1102         if (internals->remote_if_index) {
1103                 /* Restore initial remote state */
1104                 ioctl(internals->ioctl_sock, SIOCSIFFLAGS,
1105                                 &internals->remote_initial_flags);
1106         }
1107
1108         rte_mempool_free(internals->gso_ctx_mp);
1109         internals->gso_ctx_mp = NULL;
1110
1111         if (internals->ka_fd != -1) {
1112                 close(internals->ka_fd);
1113                 internals->ka_fd = -1;
1114         }
1115         /*
1116          * Since TUN device has no more opened file descriptors
1117          * it will be removed from kernel
1118          */
1119 }
1120
1121 static void
1122 tap_rx_queue_release(void *queue)
1123 {
1124         struct rx_queue *rxq = queue;
1125         struct pmd_process_private *process_private;
1126
1127         if (!rxq)
1128                 return;
1129         process_private = rte_eth_devices[rxq->in_port].process_private;
1130         if (process_private->rxq_fds[rxq->queue_id] != -1) {
1131                 close(process_private->rxq_fds[rxq->queue_id]);
1132                 process_private->rxq_fds[rxq->queue_id] = -1;
1133                 tap_rxq_pool_free(rxq->pool);
1134                 rte_free(rxq->iovecs);
1135                 rxq->pool = NULL;
1136                 rxq->iovecs = NULL;
1137         }
1138 }
1139
1140 static void
1141 tap_tx_queue_release(void *queue)
1142 {
1143         struct tx_queue *txq = queue;
1144         struct pmd_process_private *process_private;
1145
1146         if (!txq)
1147                 return;
1148         process_private = rte_eth_devices[txq->out_port].process_private;
1149
1150         if (process_private->txq_fds[txq->queue_id] != -1) {
1151                 close(process_private->txq_fds[txq->queue_id]);
1152                 process_private->txq_fds[txq->queue_id] = -1;
1153         }
1154 }
1155
1156 static int
1157 tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
1158 {
1159         struct rte_eth_link *dev_link = &dev->data->dev_link;
1160         struct pmd_internals *pmd = dev->data->dev_private;
1161         struct ifreq ifr = { .ifr_flags = 0 };
1162
1163         if (pmd->remote_if_index) {
1164                 tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY);
1165                 if (!(ifr.ifr_flags & IFF_UP) ||
1166                     !(ifr.ifr_flags & IFF_RUNNING)) {
1167                         dev_link->link_status = ETH_LINK_DOWN;
1168                         return 0;
1169                 }
1170         }
1171         tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY);
1172         dev_link->link_status =
1173                 ((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ?
1174                  ETH_LINK_UP :
1175                  ETH_LINK_DOWN);
1176         return 0;
1177 }
1178
1179 static int
1180 tap_promisc_enable(struct rte_eth_dev *dev)
1181 {
1182         struct pmd_internals *pmd = dev->data->dev_private;
1183         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1184         int ret;
1185
1186         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1187         if (ret != 0)
1188                 return ret;
1189
1190         if (pmd->remote_if_index && !pmd->flow_isolate) {
1191                 dev->data->promiscuous = 1;
1192                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC);
1193                 if (ret != 0) {
1194                         /* Rollback promisc flag */
1195                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1196                         /*
1197                          * rte_eth_dev_promiscuous_enable() rollback
1198                          * dev->data->promiscuous in the case of failure.
1199                          */
1200                         return ret;
1201                 }
1202         }
1203
1204         return 0;
1205 }
1206
1207 static int
1208 tap_promisc_disable(struct rte_eth_dev *dev)
1209 {
1210         struct pmd_internals *pmd = dev->data->dev_private;
1211         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1212         int ret;
1213
1214         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1215         if (ret != 0)
1216                 return ret;
1217
1218         if (pmd->remote_if_index && !pmd->flow_isolate) {
1219                 dev->data->promiscuous = 0;
1220                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC);
1221                 if (ret != 0) {
1222                         /* Rollback promisc flag */
1223                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1224                         /*
1225                          * rte_eth_dev_promiscuous_disable() rollback
1226                          * dev->data->promiscuous in the case of failure.
1227                          */
1228                         return ret;
1229                 }
1230         }
1231
1232         return 0;
1233 }
1234
1235 static int
1236 tap_allmulti_enable(struct rte_eth_dev *dev)
1237 {
1238         struct pmd_internals *pmd = dev->data->dev_private;
1239         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1240         int ret;
1241
1242         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1243         if (ret != 0)
1244                 return ret;
1245
1246         if (pmd->remote_if_index && !pmd->flow_isolate) {
1247                 dev->data->all_multicast = 1;
1248                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI);
1249                 if (ret != 0) {
1250                         /* Rollback allmulti flag */
1251                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1252                         /*
1253                          * rte_eth_dev_allmulticast_enable() rollback
1254                          * dev->data->all_multicast in the case of failure.
1255                          */
1256                         return ret;
1257                 }
1258         }
1259
1260         return 0;
1261 }
1262
1263 static int
1264 tap_allmulti_disable(struct rte_eth_dev *dev)
1265 {
1266         struct pmd_internals *pmd = dev->data->dev_private;
1267         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1268         int ret;
1269
1270         ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1271         if (ret != 0)
1272                 return ret;
1273
1274         if (pmd->remote_if_index && !pmd->flow_isolate) {
1275                 dev->data->all_multicast = 0;
1276                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI);
1277                 if (ret != 0) {
1278                         /* Rollback allmulti flag */
1279                         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1280                         /*
1281                          * rte_eth_dev_allmulticast_disable() rollback
1282                          * dev->data->all_multicast in the case of failure.
1283                          */
1284                         return ret;
1285                 }
1286         }
1287
1288         return 0;
1289 }
1290
1291 static int
1292 tap_mac_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1293 {
1294         struct pmd_internals *pmd = dev->data->dev_private;
1295         enum ioctl_mode mode = LOCAL_ONLY;
1296         struct ifreq ifr;
1297         int ret;
1298
1299         if (pmd->type == ETH_TUNTAP_TYPE_TUN) {
1300                 TAP_LOG(ERR, "%s: can't MAC address for TUN",
1301                         dev->device->name);
1302                 return -ENOTSUP;
1303         }
1304
1305         if (rte_is_zero_ether_addr(mac_addr)) {
1306                 TAP_LOG(ERR, "%s: can't set an empty MAC address",
1307                         dev->device->name);
1308                 return -EINVAL;
1309         }
1310         /* Check the actual current MAC address on the tap netdevice */
1311         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY);
1312         if (ret < 0)
1313                 return ret;
1314         if (rte_is_same_ether_addr(
1315                         (struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1316                         mac_addr))
1317                 return 0;
1318         /* Check the current MAC address on the remote */
1319         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY);
1320         if (ret < 0)
1321                 return ret;
1322         if (!rte_is_same_ether_addr(
1323                         (struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1324                         mac_addr))
1325                 mode = LOCAL_AND_REMOTE;
1326         ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1327         rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, RTE_ETHER_ADDR_LEN);
1328         ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode);
1329         if (ret < 0)
1330                 return ret;
1331         rte_memcpy(&pmd->eth_addr, mac_addr, RTE_ETHER_ADDR_LEN);
1332         if (pmd->remote_if_index && !pmd->flow_isolate) {
1333                 /* Replace MAC redirection rule after a MAC change */
1334                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC);
1335                 if (ret < 0) {
1336                         TAP_LOG(ERR,
1337                                 "%s: Couldn't delete MAC redirection rule",
1338                                 dev->device->name);
1339                         return ret;
1340                 }
1341                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC);
1342                 if (ret < 0) {
1343                         TAP_LOG(ERR,
1344                                 "%s: Couldn't add MAC redirection rule",
1345                                 dev->device->name);
1346                         return ret;
1347                 }
1348         }
1349
1350         return 0;
1351 }
1352
1353 static int
1354 tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev)
1355 {
1356         uint32_t gso_types;
1357         char pool_name[64];
1358         struct pmd_internals *pmd = dev->data->dev_private;
1359         int ret;
1360
1361         /* initialize GSO context */
1362         gso_types = DEV_TX_OFFLOAD_TCP_TSO;
1363         if (!pmd->gso_ctx_mp) {
1364                 /*
1365                  * Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE
1366                  * bytes size per mbuf use this pool for both direct and
1367                  * indirect mbufs
1368                  */
1369                 ret = snprintf(pool_name, sizeof(pool_name), "mp_%s",
1370                                 dev->device->name);
1371                 if (ret < 0 || ret >= (int)sizeof(pool_name)) {
1372                         TAP_LOG(ERR,
1373                                 "%s: failed to create mbuf pool name for device %s,"
1374                                 "device name too long or output error, ret: %d\n",
1375                                 pmd->name, dev->device->name, ret);
1376                         return -ENAMETOOLONG;
1377                 }
1378                 pmd->gso_ctx_mp = rte_pktmbuf_pool_create(pool_name,
1379                         TAP_GSO_MBUFS_NUM, TAP_GSO_MBUF_CACHE_SIZE, 0,
1380                         RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE,
1381                         SOCKET_ID_ANY);
1382                 if (!pmd->gso_ctx_mp) {
1383                         TAP_LOG(ERR,
1384                                 "%s: failed to create mbuf pool for device %s\n",
1385                                 pmd->name, dev->device->name);
1386                         return -1;
1387                 }
1388         }
1389
1390         gso_ctx->direct_pool = pmd->gso_ctx_mp;
1391         gso_ctx->indirect_pool = pmd->gso_ctx_mp;
1392         gso_ctx->gso_types = gso_types;
1393         gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */
1394         gso_ctx->flag = 0;
1395
1396         return 0;
1397 }
1398
1399 static int
1400 tap_setup_queue(struct rte_eth_dev *dev,
1401                 struct pmd_internals *internals,
1402                 uint16_t qid,
1403                 int is_rx)
1404 {
1405         int ret;
1406         int *fd;
1407         int *other_fd;
1408         const char *dir;
1409         struct pmd_internals *pmd = dev->data->dev_private;
1410         struct pmd_process_private *process_private = dev->process_private;
1411         struct rx_queue *rx = &internals->rxq[qid];
1412         struct tx_queue *tx = &internals->txq[qid];
1413         struct rte_gso_ctx *gso_ctx;
1414
1415         if (is_rx) {
1416                 fd = &process_private->rxq_fds[qid];
1417                 other_fd = &process_private->txq_fds[qid];
1418                 dir = "rx";
1419                 gso_ctx = NULL;
1420         } else {
1421                 fd = &process_private->txq_fds[qid];
1422                 other_fd = &process_private->rxq_fds[qid];
1423                 dir = "tx";
1424                 gso_ctx = &tx->gso_ctx;
1425         }
1426         if (*fd != -1) {
1427                 /* fd for this queue already exists */
1428                 TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists",
1429                         pmd->name, *fd, dir, qid);
1430                 gso_ctx = NULL;
1431         } else if (*other_fd != -1) {
1432                 /* Only other_fd exists. dup it */
1433                 *fd = dup(*other_fd);
1434                 if (*fd < 0) {
1435                         *fd = -1;
1436                         TAP_LOG(ERR, "%s: dup() failed.", pmd->name);
1437                         return -1;
1438                 }
1439                 TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)",
1440                         pmd->name, *other_fd, dir, qid, *fd);
1441         } else {
1442                 /* Both RX and TX fds do not exist (equal -1). Create fd */
1443                 *fd = tun_alloc(pmd, 0);
1444                 if (*fd < 0) {
1445                         *fd = -1; /* restore original value */
1446                         TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name);
1447                         return -1;
1448                 }
1449                 TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d",
1450                         pmd->name, dir, qid, *fd);
1451         }
1452
1453         tx->mtu = &dev->data->mtu;
1454         rx->rxmode = &dev->data->dev_conf.rxmode;
1455         if (gso_ctx) {
1456                 ret = tap_gso_ctx_setup(gso_ctx, dev);
1457                 if (ret)
1458                         return -1;
1459         }
1460
1461         tx->type = pmd->type;
1462
1463         return *fd;
1464 }
1465
1466 static int
1467 tap_rx_queue_setup(struct rte_eth_dev *dev,
1468                    uint16_t rx_queue_id,
1469                    uint16_t nb_rx_desc,
1470                    unsigned int socket_id,
1471                    const struct rte_eth_rxconf *rx_conf __rte_unused,
1472                    struct rte_mempool *mp)
1473 {
1474         struct pmd_internals *internals = dev->data->dev_private;
1475         struct pmd_process_private *process_private = dev->process_private;
1476         struct rx_queue *rxq = &internals->rxq[rx_queue_id];
1477         struct rte_mbuf **tmp = &rxq->pool;
1478         long iov_max = sysconf(_SC_IOV_MAX);
1479
1480         if (iov_max <= 0) {
1481                 TAP_LOG(WARNING,
1482                         "_SC_IOV_MAX is not defined. Using %d as default",
1483                         TAP_IOV_DEFAULT_MAX);
1484                 iov_max = TAP_IOV_DEFAULT_MAX;
1485         }
1486         uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1);
1487         struct iovec (*iovecs)[nb_desc + 1];
1488         int data_off = RTE_PKTMBUF_HEADROOM;
1489         int ret = 0;
1490         int fd;
1491         int i;
1492
1493         if (rx_queue_id >= dev->data->nb_rx_queues || !mp) {
1494                 TAP_LOG(WARNING,
1495                         "nb_rx_queues %d too small or mempool NULL",
1496                         dev->data->nb_rx_queues);
1497                 return -1;
1498         }
1499
1500         rxq->mp = mp;
1501         rxq->trigger_seen = 1; /* force initial burst */
1502         rxq->in_port = dev->data->port_id;
1503         rxq->queue_id = rx_queue_id;
1504         rxq->nb_rx_desc = nb_desc;
1505         iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0,
1506                                     socket_id);
1507         if (!iovecs) {
1508                 TAP_LOG(WARNING,
1509                         "%s: Couldn't allocate %d RX descriptors",
1510                         dev->device->name, nb_desc);
1511                 return -ENOMEM;
1512         }
1513         rxq->iovecs = iovecs;
1514
1515         dev->data->rx_queues[rx_queue_id] = rxq;
1516         fd = tap_setup_queue(dev, internals, rx_queue_id, 1);
1517         if (fd == -1) {
1518                 ret = fd;
1519                 goto error;
1520         }
1521
1522         (*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi);
1523         (*rxq->iovecs)[0].iov_base = &rxq->pi;
1524
1525         for (i = 1; i <= nb_desc; i++) {
1526                 *tmp = rte_pktmbuf_alloc(rxq->mp);
1527                 if (!*tmp) {
1528                         TAP_LOG(WARNING,
1529                                 "%s: couldn't allocate memory for queue %d",
1530                                 dev->device->name, rx_queue_id);
1531                         ret = -ENOMEM;
1532                         goto error;
1533                 }
1534                 (*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off;
1535                 (*rxq->iovecs)[i].iov_base =
1536                         (char *)(*tmp)->buf_addr + data_off;
1537                 data_off = 0;
1538                 tmp = &(*tmp)->next;
1539         }
1540
1541         TAP_LOG(DEBUG, "  RX TUNTAP device name %s, qid %d on fd %d",
1542                 internals->name, rx_queue_id,
1543                 process_private->rxq_fds[rx_queue_id]);
1544
1545         return 0;
1546
1547 error:
1548         tap_rxq_pool_free(rxq->pool);
1549         rxq->pool = NULL;
1550         rte_free(rxq->iovecs);
1551         rxq->iovecs = NULL;
1552         return ret;
1553 }
1554
1555 static int
1556 tap_tx_queue_setup(struct rte_eth_dev *dev,
1557                    uint16_t tx_queue_id,
1558                    uint16_t nb_tx_desc __rte_unused,
1559                    unsigned int socket_id __rte_unused,
1560                    const struct rte_eth_txconf *tx_conf)
1561 {
1562         struct pmd_internals *internals = dev->data->dev_private;
1563         struct pmd_process_private *process_private = dev->process_private;
1564         struct tx_queue *txq;
1565         int ret;
1566         uint64_t offloads;
1567
1568         if (tx_queue_id >= dev->data->nb_tx_queues)
1569                 return -1;
1570         dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id];
1571         txq = dev->data->tx_queues[tx_queue_id];
1572         txq->out_port = dev->data->port_id;
1573         txq->queue_id = tx_queue_id;
1574
1575         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1576         txq->csum = !!(offloads &
1577                         (DEV_TX_OFFLOAD_IPV4_CKSUM |
1578                          DEV_TX_OFFLOAD_UDP_CKSUM |
1579                          DEV_TX_OFFLOAD_TCP_CKSUM));
1580
1581         ret = tap_setup_queue(dev, internals, tx_queue_id, 0);
1582         if (ret == -1)
1583                 return -1;
1584         TAP_LOG(DEBUG,
1585                 "  TX TUNTAP device name %s, qid %d on fd %d csum %s",
1586                 internals->name, tx_queue_id,
1587                 process_private->txq_fds[tx_queue_id],
1588                 txq->csum ? "on" : "off");
1589
1590         return 0;
1591 }
1592
1593 static int
1594 tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1595 {
1596         struct pmd_internals *pmd = dev->data->dev_private;
1597         struct ifreq ifr = { .ifr_mtu = mtu };
1598         int err = 0;
1599
1600         err = tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE);
1601         if (!err)
1602                 dev->data->mtu = mtu;
1603
1604         return err;
1605 }
1606
1607 static int
1608 tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused,
1609                      struct rte_ether_addr *mc_addr_set __rte_unused,
1610                      uint32_t nb_mc_addr __rte_unused)
1611 {
1612         /*
1613          * Nothing to do actually: the tap has no filtering whatsoever, every
1614          * packet is received.
1615          */
1616         return 0;
1617 }
1618
1619 static int
1620 tap_nl_msg_handler(struct nlmsghdr *nh, void *arg)
1621 {
1622         struct rte_eth_dev *dev = arg;
1623         struct pmd_internals *pmd = dev->data->dev_private;
1624         struct ifinfomsg *info = NLMSG_DATA(nh);
1625
1626         if (nh->nlmsg_type != RTM_NEWLINK ||
1627             (info->ifi_index != pmd->if_index &&
1628              info->ifi_index != pmd->remote_if_index))
1629                 return 0;
1630         return tap_link_update(dev, 0);
1631 }
1632
1633 static void
1634 tap_dev_intr_handler(void *cb_arg)
1635 {
1636         struct rte_eth_dev *dev = cb_arg;
1637         struct pmd_internals *pmd = dev->data->dev_private;
1638
1639         tap_nl_recv(pmd->intr_handle.fd, tap_nl_msg_handler, dev);
1640 }
1641
1642 static int
1643 tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set)
1644 {
1645         struct pmd_internals *pmd = dev->data->dev_private;
1646         int ret;
1647
1648         /* In any case, disable interrupt if the conf is no longer there. */
1649         if (!dev->data->dev_conf.intr_conf.lsc) {
1650                 if (pmd->intr_handle.fd != -1) {
1651                         goto clean;
1652                 }
1653                 return 0;
1654         }
1655         if (set) {
1656                 pmd->intr_handle.fd = tap_nl_init(RTMGRP_LINK);
1657                 if (unlikely(pmd->intr_handle.fd == -1))
1658                         return -EBADF;
1659                 return rte_intr_callback_register(
1660                         &pmd->intr_handle, tap_dev_intr_handler, dev);
1661         }
1662
1663 clean:
1664         do {
1665                 ret = rte_intr_callback_unregister(&pmd->intr_handle,
1666                         tap_dev_intr_handler, dev);
1667                 if (ret >= 0) {
1668                         break;
1669                 } else if (ret == -EAGAIN) {
1670                         rte_delay_ms(100);
1671                 } else {
1672                         TAP_LOG(ERR, "intr callback unregister failed: %d",
1673                                      ret);
1674                         break;
1675                 }
1676         } while (true);
1677
1678         tap_nl_final(pmd->intr_handle.fd);
1679         pmd->intr_handle.fd = -1;
1680
1681         return 0;
1682 }
1683
1684 static int
1685 tap_intr_handle_set(struct rte_eth_dev *dev, int set)
1686 {
1687         int err;
1688
1689         err = tap_lsc_intr_handle_set(dev, set);
1690         if (err < 0) {
1691                 if (!set)
1692                         tap_rx_intr_vec_set(dev, 0);
1693                 return err;
1694         }
1695         err = tap_rx_intr_vec_set(dev, set);
1696         if (err && set)
1697                 tap_lsc_intr_handle_set(dev, 0);
1698         return err;
1699 }
1700
1701 static const uint32_t*
1702 tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1703 {
1704         static const uint32_t ptypes[] = {
1705                 RTE_PTYPE_INNER_L2_ETHER,
1706                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1707                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
1708                 RTE_PTYPE_INNER_L3_IPV4,
1709                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1710                 RTE_PTYPE_INNER_L3_IPV6,
1711                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1712                 RTE_PTYPE_INNER_L4_FRAG,
1713                 RTE_PTYPE_INNER_L4_UDP,
1714                 RTE_PTYPE_INNER_L4_TCP,
1715                 RTE_PTYPE_INNER_L4_SCTP,
1716                 RTE_PTYPE_L2_ETHER,
1717                 RTE_PTYPE_L2_ETHER_VLAN,
1718                 RTE_PTYPE_L2_ETHER_QINQ,
1719                 RTE_PTYPE_L3_IPV4,
1720                 RTE_PTYPE_L3_IPV4_EXT,
1721                 RTE_PTYPE_L3_IPV6_EXT,
1722                 RTE_PTYPE_L3_IPV6,
1723                 RTE_PTYPE_L4_FRAG,
1724                 RTE_PTYPE_L4_UDP,
1725                 RTE_PTYPE_L4_TCP,
1726                 RTE_PTYPE_L4_SCTP,
1727         };
1728
1729         return ptypes;
1730 }
1731
1732 static int
1733 tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused,
1734                   struct rte_eth_fc_conf *fc_conf)
1735 {
1736         fc_conf->mode = RTE_FC_NONE;
1737         return 0;
1738 }
1739
1740 static int
1741 tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused,
1742                   struct rte_eth_fc_conf *fc_conf)
1743 {
1744         if (fc_conf->mode != RTE_FC_NONE)
1745                 return -ENOTSUP;
1746         return 0;
1747 }
1748
1749 /**
1750  * DPDK callback to update the RSS hash configuration.
1751  *
1752  * @param dev
1753  *   Pointer to Ethernet device structure.
1754  * @param[in] rss_conf
1755  *   RSS configuration data.
1756  *
1757  * @return
1758  *   0 on success, a negative errno value otherwise and rte_errno is set.
1759  */
1760 static int
1761 tap_rss_hash_update(struct rte_eth_dev *dev,
1762                 struct rte_eth_rss_conf *rss_conf)
1763 {
1764         if (rss_conf->rss_hf & TAP_RSS_HF_MASK) {
1765                 rte_errno = EINVAL;
1766                 return -rte_errno;
1767         }
1768         if (rss_conf->rss_key && rss_conf->rss_key_len) {
1769                 /*
1770                  * Currently TAP RSS key is hard coded
1771                  * and cannot be updated
1772                  */
1773                 TAP_LOG(ERR,
1774                         "port %u RSS key cannot be updated",
1775                         dev->data->port_id);
1776                 rte_errno = EINVAL;
1777                 return -rte_errno;
1778         }
1779         return 0;
1780 }
1781
1782 static int
1783 tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1784 {
1785         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1786
1787         return 0;
1788 }
1789
1790 static int
1791 tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1792 {
1793         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1794
1795         return 0;
1796 }
1797
1798 static int
1799 tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1800 {
1801         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1802
1803         return 0;
1804 }
1805
1806 static int
1807 tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1808 {
1809         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1810
1811         return 0;
1812 }
1813 static const struct eth_dev_ops ops = {
1814         .dev_start              = tap_dev_start,
1815         .dev_stop               = tap_dev_stop,
1816         .dev_close              = tap_dev_close,
1817         .dev_configure          = tap_dev_configure,
1818         .dev_infos_get          = tap_dev_info,
1819         .rx_queue_setup         = tap_rx_queue_setup,
1820         .tx_queue_setup         = tap_tx_queue_setup,
1821         .rx_queue_start         = tap_rx_queue_start,
1822         .tx_queue_start         = tap_tx_queue_start,
1823         .rx_queue_stop          = tap_rx_queue_stop,
1824         .tx_queue_stop          = tap_tx_queue_stop,
1825         .rx_queue_release       = tap_rx_queue_release,
1826         .tx_queue_release       = tap_tx_queue_release,
1827         .flow_ctrl_get          = tap_flow_ctrl_get,
1828         .flow_ctrl_set          = tap_flow_ctrl_set,
1829         .link_update            = tap_link_update,
1830         .dev_set_link_up        = tap_link_set_up,
1831         .dev_set_link_down      = tap_link_set_down,
1832         .promiscuous_enable     = tap_promisc_enable,
1833         .promiscuous_disable    = tap_promisc_disable,
1834         .allmulticast_enable    = tap_allmulti_enable,
1835         .allmulticast_disable   = tap_allmulti_disable,
1836         .mac_addr_set           = tap_mac_set,
1837         .mtu_set                = tap_mtu_set,
1838         .set_mc_addr_list       = tap_set_mc_addr_list,
1839         .stats_get              = tap_stats_get,
1840         .stats_reset            = tap_stats_reset,
1841         .dev_supported_ptypes_get = tap_dev_supported_ptypes_get,
1842         .rss_hash_update        = tap_rss_hash_update,
1843         .filter_ctrl            = tap_dev_filter_ctrl,
1844 };
1845
1846 static const char *tuntap_types[ETH_TUNTAP_TYPE_MAX] = {
1847         "UNKNOWN", "TUN", "TAP"
1848 };
1849
1850 static int
1851 eth_dev_tap_create(struct rte_vdev_device *vdev, const char *tap_name,
1852                    char *remote_iface, struct rte_ether_addr *mac_addr,
1853                    enum rte_tuntap_type type)
1854 {
1855         int numa_node = rte_socket_id();
1856         struct rte_eth_dev *dev;
1857         struct pmd_internals *pmd;
1858         struct pmd_process_private *process_private;
1859         const char *tuntap_name = tuntap_types[type];
1860         struct rte_eth_dev_data *data;
1861         struct ifreq ifr;
1862         int i;
1863
1864         TAP_LOG(DEBUG, "%s device on numa %u", tuntap_name, rte_socket_id());
1865
1866         dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
1867         if (!dev) {
1868                 TAP_LOG(ERR, "%s Unable to allocate device struct",
1869                                 tuntap_name);
1870                 goto error_exit_nodev;
1871         }
1872
1873         process_private = (struct pmd_process_private *)
1874                 rte_zmalloc_socket(tap_name, sizeof(struct pmd_process_private),
1875                         RTE_CACHE_LINE_SIZE, dev->device->numa_node);
1876
1877         if (process_private == NULL) {
1878                 TAP_LOG(ERR, "Failed to alloc memory for process private");
1879                 return -1;
1880         }
1881         pmd = dev->data->dev_private;
1882         dev->process_private = process_private;
1883         pmd->dev = dev;
1884         strlcpy(pmd->name, tap_name, sizeof(pmd->name));
1885         pmd->type = type;
1886         pmd->ka_fd = -1;
1887         pmd->nlsk_fd = -1;
1888         pmd->gso_ctx_mp = NULL;
1889
1890         pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0);
1891         if (pmd->ioctl_sock == -1) {
1892                 TAP_LOG(ERR,
1893                         "%s Unable to get a socket for management: %s",
1894                         tuntap_name, strerror(errno));
1895                 goto error_exit;
1896         }
1897
1898         /* Setup some default values */
1899         data = dev->data;
1900         data->dev_private = pmd;
1901         data->dev_flags = RTE_ETH_DEV_INTR_LSC;
1902         data->numa_node = numa_node;
1903
1904         data->dev_link = pmd_link;
1905         data->mac_addrs = &pmd->eth_addr;
1906         /* Set the number of RX and TX queues */
1907         data->nb_rx_queues = 0;
1908         data->nb_tx_queues = 0;
1909
1910         dev->dev_ops = &ops;
1911         dev->rx_pkt_burst = pmd_rx_burst;
1912         dev->tx_pkt_burst = pmd_tx_burst;
1913
1914         pmd->intr_handle.type = RTE_INTR_HANDLE_EXT;
1915         pmd->intr_handle.fd = -1;
1916         dev->intr_handle = &pmd->intr_handle;
1917
1918         /* Presetup the fds to -1 as being not valid */
1919         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1920                 process_private->rxq_fds[i] = -1;
1921                 process_private->txq_fds[i] = -1;
1922         }
1923
1924         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1925                 if (rte_is_zero_ether_addr(mac_addr))
1926                         rte_eth_random_addr((uint8_t *)&pmd->eth_addr);
1927                 else
1928                         rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr));
1929         }
1930
1931         /*
1932          * Allocate a TUN device keep-alive file descriptor that will only be
1933          * closed when the TUN device itself is closed or removed.
1934          * This keep-alive file descriptor will guarantee that the TUN device
1935          * exists even when all of its queues are closed
1936          */
1937         pmd->ka_fd = tun_alloc(pmd, 1);
1938         if (pmd->ka_fd == -1) {
1939                 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
1940                 goto error_exit;
1941         }
1942         TAP_LOG(DEBUG, "allocated %s", pmd->name);
1943
1944         ifr.ifr_mtu = dev->data->mtu;
1945         if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0)
1946                 goto error_exit;
1947
1948         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1949                 memset(&ifr, 0, sizeof(struct ifreq));
1950                 ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1951                 rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr,
1952                                 RTE_ETHER_ADDR_LEN);
1953                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0)
1954                         goto error_exit;
1955         }
1956
1957         /*
1958          * Set up everything related to rte_flow:
1959          * - netlink socket
1960          * - tap / remote if_index
1961          * - mandatory QDISCs
1962          * - rte_flow actual/implicit lists
1963          * - implicit rules
1964          */
1965         pmd->nlsk_fd = tap_nl_init(0);
1966         if (pmd->nlsk_fd == -1) {
1967                 TAP_LOG(WARNING, "%s: failed to create netlink socket.",
1968                         pmd->name);
1969                 goto disable_rte_flow;
1970         }
1971         pmd->if_index = if_nametoindex(pmd->name);
1972         if (!pmd->if_index) {
1973                 TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name);
1974                 goto disable_rte_flow;
1975         }
1976         if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) {
1977                 TAP_LOG(ERR, "%s: failed to create multiq qdisc.",
1978                         pmd->name);
1979                 goto disable_rte_flow;
1980         }
1981         if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) {
1982                 TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
1983                         pmd->name);
1984                 goto disable_rte_flow;
1985         }
1986         LIST_INIT(&pmd->flows);
1987
1988         if (strlen(remote_iface)) {
1989                 pmd->remote_if_index = if_nametoindex(remote_iface);
1990                 if (!pmd->remote_if_index) {
1991                         TAP_LOG(ERR, "%s: failed to get %s if_index.",
1992                                 pmd->name, remote_iface);
1993                         goto error_remote;
1994                 }
1995                 strlcpy(pmd->remote_iface, remote_iface, RTE_ETH_NAME_MAX_LEN);
1996
1997                 /* Save state of remote device */
1998                 tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY);
1999
2000                 /* Replicate remote MAC address */
2001                 if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) {
2002                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
2003                                 pmd->name, pmd->remote_iface);
2004                         goto error_remote;
2005                 }
2006                 rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data,
2007                            RTE_ETHER_ADDR_LEN);
2008                 /* The desired MAC is already in ifreq after SIOCGIFHWADDR. */
2009                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) {
2010                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
2011                                 pmd->name, remote_iface);
2012                         goto error_remote;
2013                 }
2014
2015                 /*
2016                  * Flush usually returns negative value because it tries to
2017                  * delete every QDISC (and on a running device, one QDISC at
2018                  * least is needed). Ignore negative return value.
2019                  */
2020                 qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index);
2021                 if (qdisc_create_ingress(pmd->nlsk_fd,
2022                                          pmd->remote_if_index) < 0) {
2023                         TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
2024                                 pmd->remote_iface);
2025                         goto error_remote;
2026                 }
2027                 LIST_INIT(&pmd->implicit_flows);
2028                 if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 ||
2029                     tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 ||
2030                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 ||
2031                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) {
2032                         TAP_LOG(ERR,
2033                                 "%s: failed to create implicit rules.",
2034                                 pmd->name);
2035                         goto error_remote;
2036                 }
2037         }
2038
2039         rte_eth_dev_probing_finish(dev);
2040         return 0;
2041
2042 disable_rte_flow:
2043         TAP_LOG(ERR, " Disabling rte flow support: %s(%d)",
2044                 strerror(errno), errno);
2045         if (strlen(remote_iface)) {
2046                 TAP_LOG(ERR, "Remote feature requires flow support.");
2047                 goto error_exit;
2048         }
2049         rte_eth_dev_probing_finish(dev);
2050         return 0;
2051
2052 error_remote:
2053         TAP_LOG(ERR, " Can't set up remote feature: %s(%d)",
2054                 strerror(errno), errno);
2055         tap_flow_implicit_flush(pmd, NULL);
2056
2057 error_exit:
2058         if (pmd->nlsk_fd != -1)
2059                 close(pmd->nlsk_fd);
2060         if (pmd->ka_fd != -1)
2061                 close(pmd->ka_fd);
2062         if (pmd->ioctl_sock != -1)
2063                 close(pmd->ioctl_sock);
2064         /* mac_addrs must not be freed alone because part of dev_private */
2065         dev->data->mac_addrs = NULL;
2066         rte_eth_dev_release_port(dev);
2067
2068 error_exit_nodev:
2069         TAP_LOG(ERR, "%s Unable to initialize %s",
2070                 tuntap_name, rte_vdev_device_name(vdev));
2071
2072         return -EINVAL;
2073 }
2074
2075 /* make sure name is a possible Linux network device name */
2076 static bool
2077 is_valid_iface(const char *name)
2078 {
2079         if (*name == '\0')
2080                 return false;
2081
2082         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
2083                 return false;
2084
2085         while (*name) {
2086                 if (*name == '/' || *name == ':' || isspace(*name))
2087                         return false;
2088                 name++;
2089         }
2090         return true;
2091 }
2092
2093 static int
2094 set_interface_name(const char *key __rte_unused,
2095                    const char *value,
2096                    void *extra_args)
2097 {
2098         char *name = (char *)extra_args;
2099
2100         if (value) {
2101                 if (!is_valid_iface(value)) {
2102                         TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2103                                 value);
2104                         return -1;
2105                 }
2106                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2107         } else {
2108                 /* use tap%d which causes kernel to choose next available */
2109                 strlcpy(name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2110         }
2111         return 0;
2112 }
2113
2114 static int
2115 set_remote_iface(const char *key __rte_unused,
2116                  const char *value,
2117                  void *extra_args)
2118 {
2119         char *name = (char *)extra_args;
2120
2121         if (value) {
2122                 if (!is_valid_iface(value)) {
2123                         TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2124                                 value);
2125                         return -1;
2126                 }
2127                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2128         }
2129
2130         return 0;
2131 }
2132
2133 static int parse_user_mac(struct rte_ether_addr *user_mac,
2134                 const char *value)
2135 {
2136         unsigned int index = 0;
2137         char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL;
2138
2139         if (user_mac == NULL || value == NULL)
2140                 return 0;
2141
2142         strlcpy(mac_temp, value, sizeof(mac_temp));
2143         mac_byte = strtok(mac_temp, ":");
2144
2145         while ((mac_byte != NULL) &&
2146                         (strlen(mac_byte) <= 2) &&
2147                         (strlen(mac_byte) == strspn(mac_byte,
2148                                         ETH_TAP_CMP_MAC_FMT))) {
2149                 user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16);
2150                 mac_byte = strtok(NULL, ":");
2151         }
2152
2153         return index;
2154 }
2155
2156 static int
2157 set_mac_type(const char *key __rte_unused,
2158              const char *value,
2159              void *extra_args)
2160 {
2161         struct rte_ether_addr *user_mac = extra_args;
2162
2163         if (!value)
2164                 return 0;
2165
2166         if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) {
2167                 static int iface_idx;
2168
2169                 /* fixed mac = 00:64:74:61:70:<iface_idx> */
2170                 memcpy((char *)user_mac->addr_bytes, "\0dtap",
2171                         RTE_ETHER_ADDR_LEN);
2172                 user_mac->addr_bytes[RTE_ETHER_ADDR_LEN - 1] =
2173                         iface_idx++ + '0';
2174                 goto success;
2175         }
2176
2177         if (parse_user_mac(user_mac, value) != 6)
2178                 goto error;
2179 success:
2180         TAP_LOG(DEBUG, "TAP user MAC param (%s)", value);
2181         return 0;
2182
2183 error:
2184         TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)",
2185                 value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT);
2186         return -1;
2187 }
2188
2189 /*
2190  * Open a TUN interface device. TUN PMD
2191  * 1) sets tap_type as false
2192  * 2) intakes iface as argument.
2193  * 3) as interface is virtual set speed to 10G
2194  */
2195 static int
2196 rte_pmd_tun_probe(struct rte_vdev_device *dev)
2197 {
2198         const char *name, *params;
2199         int ret;
2200         struct rte_kvargs *kvlist = NULL;
2201         char tun_name[RTE_ETH_NAME_MAX_LEN];
2202         char remote_iface[RTE_ETH_NAME_MAX_LEN];
2203         struct rte_eth_dev *eth_dev;
2204
2205         name = rte_vdev_device_name(dev);
2206         params = rte_vdev_device_args(dev);
2207         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2208
2209         if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
2210             strlen(params) == 0) {
2211                 eth_dev = rte_eth_dev_attach_secondary(name);
2212                 if (!eth_dev) {
2213                         TAP_LOG(ERR, "Failed to probe %s", name);
2214                         return -1;
2215                 }
2216                 eth_dev->dev_ops = &ops;
2217                 eth_dev->device = &dev->device;
2218                 rte_eth_dev_probing_finish(eth_dev);
2219                 return 0;
2220         }
2221
2222         /* use tun%d which causes kernel to choose next available */
2223         strlcpy(tun_name, DEFAULT_TUN_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2224
2225         if (params && (params[0] != '\0')) {
2226                 TAP_LOG(DEBUG, "parameters (%s)", params);
2227
2228                 kvlist = rte_kvargs_parse(params, valid_arguments);
2229                 if (kvlist) {
2230                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2231                                 ret = rte_kvargs_process(kvlist,
2232                                         ETH_TAP_IFACE_ARG,
2233                                         &set_interface_name,
2234                                         tun_name);
2235
2236                                 if (ret == -1)
2237                                         goto leave;
2238                         }
2239                 }
2240         }
2241         pmd_link.link_speed = ETH_SPEED_NUM_10G;
2242
2243         TAP_LOG(DEBUG, "Initializing pmd_tun for %s", name);
2244
2245         ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0,
2246                                  ETH_TUNTAP_TYPE_TUN);
2247
2248 leave:
2249         if (ret == -1) {
2250                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2251                         name, tun_name);
2252         }
2253         rte_kvargs_free(kvlist);
2254
2255         return ret;
2256 }
2257
2258 /* Request queue file descriptors from secondary to primary. */
2259 static int
2260 tap_mp_attach_queues(const char *port_name, struct rte_eth_dev *dev)
2261 {
2262         int ret;
2263         struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0};
2264         struct rte_mp_msg request, *reply;
2265         struct rte_mp_reply replies;
2266         struct ipc_queues *request_param = (struct ipc_queues *)request.param;
2267         struct ipc_queues *reply_param;
2268         struct pmd_process_private *process_private = dev->process_private;
2269         int queue, fd_iterator;
2270
2271         /* Prepare the request */
2272         memset(&request, 0, sizeof(request));
2273         strlcpy(request.name, TAP_MP_KEY, sizeof(request.name));
2274         strlcpy(request_param->port_name, port_name,
2275                 sizeof(request_param->port_name));
2276         request.len_param = sizeof(*request_param);
2277         /* Send request and receive reply */
2278         ret = rte_mp_request_sync(&request, &replies, &timeout);
2279         if (ret < 0 || replies.nb_received != 1) {
2280                 TAP_LOG(ERR, "Failed to request queues from primary: %d",
2281                         rte_errno);
2282                 return -1;
2283         }
2284         reply = &replies.msgs[0];
2285         reply_param = (struct ipc_queues *)reply->param;
2286         TAP_LOG(DEBUG, "Received IPC reply for %s", reply_param->port_name);
2287
2288         /* Attach the queues from received file descriptors */
2289         if (reply_param->rxq_count + reply_param->txq_count != reply->num_fds) {
2290                 TAP_LOG(ERR, "Unexpected number of fds received");
2291                 return -1;
2292         }
2293
2294         dev->data->nb_rx_queues = reply_param->rxq_count;
2295         dev->data->nb_tx_queues = reply_param->txq_count;
2296         fd_iterator = 0;
2297         for (queue = 0; queue < reply_param->rxq_count; queue++)
2298                 process_private->rxq_fds[queue] = reply->fds[fd_iterator++];
2299         for (queue = 0; queue < reply_param->txq_count; queue++)
2300                 process_private->txq_fds[queue] = reply->fds[fd_iterator++];
2301         free(reply);
2302         return 0;
2303 }
2304
2305 /* Send the queue file descriptors from the primary process to secondary. */
2306 static int
2307 tap_mp_sync_queues(const struct rte_mp_msg *request, const void *peer)
2308 {
2309         struct rte_eth_dev *dev;
2310         struct pmd_process_private *process_private;
2311         struct rte_mp_msg reply;
2312         const struct ipc_queues *request_param =
2313                 (const struct ipc_queues *)request->param;
2314         struct ipc_queues *reply_param =
2315                 (struct ipc_queues *)reply.param;
2316         uint16_t port_id;
2317         int queue;
2318         int ret;
2319
2320         /* Get requested port */
2321         TAP_LOG(DEBUG, "Received IPC request for %s", request_param->port_name);
2322         ret = rte_eth_dev_get_port_by_name(request_param->port_name, &port_id);
2323         if (ret) {
2324                 TAP_LOG(ERR, "Failed to get port id for %s",
2325                         request_param->port_name);
2326                 return -1;
2327         }
2328         dev = &rte_eth_devices[port_id];
2329         process_private = dev->process_private;
2330
2331         /* Fill file descriptors for all queues */
2332         reply.num_fds = 0;
2333         reply_param->rxq_count = 0;
2334         if (dev->data->nb_rx_queues + dev->data->nb_tx_queues >
2335                         RTE_MP_MAX_FD_NUM){
2336                 TAP_LOG(ERR, "Number of rx/tx queues exceeds max number of fds");
2337                 return -1;
2338         }
2339
2340         for (queue = 0; queue < dev->data->nb_rx_queues; queue++) {
2341                 reply.fds[reply.num_fds++] = process_private->rxq_fds[queue];
2342                 reply_param->rxq_count++;
2343         }
2344         RTE_ASSERT(reply_param->rxq_count == dev->data->nb_rx_queues);
2345
2346         reply_param->txq_count = 0;
2347         for (queue = 0; queue < dev->data->nb_tx_queues; queue++) {
2348                 reply.fds[reply.num_fds++] = process_private->txq_fds[queue];
2349                 reply_param->txq_count++;
2350         }
2351         RTE_ASSERT(reply_param->txq_count == dev->data->nb_tx_queues);
2352
2353         /* Send reply */
2354         strlcpy(reply.name, request->name, sizeof(reply.name));
2355         strlcpy(reply_param->port_name, request_param->port_name,
2356                 sizeof(reply_param->port_name));
2357         reply.len_param = sizeof(*reply_param);
2358         if (rte_mp_reply(&reply, peer) < 0) {
2359                 TAP_LOG(ERR, "Failed to reply an IPC request to sync queues");
2360                 return -1;
2361         }
2362         return 0;
2363 }
2364
2365 /* Open a TAP interface device.
2366  */
2367 static int
2368 rte_pmd_tap_probe(struct rte_vdev_device *dev)
2369 {
2370         const char *name, *params;
2371         int ret;
2372         struct rte_kvargs *kvlist = NULL;
2373         int speed;
2374         char tap_name[RTE_ETH_NAME_MAX_LEN];
2375         char remote_iface[RTE_ETH_NAME_MAX_LEN];
2376         struct rte_ether_addr user_mac = { .addr_bytes = {0} };
2377         struct rte_eth_dev *eth_dev;
2378         int tap_devices_count_increased = 0;
2379
2380         name = rte_vdev_device_name(dev);
2381         params = rte_vdev_device_args(dev);
2382
2383         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
2384                 eth_dev = rte_eth_dev_attach_secondary(name);
2385                 if (!eth_dev) {
2386                         TAP_LOG(ERR, "Failed to probe %s", name);
2387                         return -1;
2388                 }
2389                 eth_dev->dev_ops = &ops;
2390                 eth_dev->device = &dev->device;
2391                 eth_dev->rx_pkt_burst = pmd_rx_burst;
2392                 eth_dev->tx_pkt_burst = pmd_tx_burst;
2393                 if (!rte_eal_primary_proc_alive(NULL)) {
2394                         TAP_LOG(ERR, "Primary process is missing");
2395                         return -1;
2396                 }
2397                 eth_dev->process_private = (struct pmd_process_private *)
2398                         rte_zmalloc_socket(name,
2399                                 sizeof(struct pmd_process_private),
2400                                 RTE_CACHE_LINE_SIZE,
2401                                 eth_dev->device->numa_node);
2402                 if (eth_dev->process_private == NULL) {
2403                         TAP_LOG(ERR,
2404                                 "Failed to alloc memory for process private");
2405                         return -1;
2406                 }
2407
2408                 ret = tap_mp_attach_queues(name, eth_dev);
2409                 if (ret != 0)
2410                         return -1;
2411                 rte_eth_dev_probing_finish(eth_dev);
2412                 return 0;
2413         }
2414
2415         speed = ETH_SPEED_NUM_10G;
2416
2417         /* use tap%d which causes kernel to choose next available */
2418         strlcpy(tap_name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2419         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2420
2421         if (params && (params[0] != '\0')) {
2422                 TAP_LOG(DEBUG, "parameters (%s)", params);
2423
2424                 kvlist = rte_kvargs_parse(params, valid_arguments);
2425                 if (kvlist) {
2426                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2427                                 ret = rte_kvargs_process(kvlist,
2428                                                          ETH_TAP_IFACE_ARG,
2429                                                          &set_interface_name,
2430                                                          tap_name);
2431                                 if (ret == -1)
2432                                         goto leave;
2433                         }
2434
2435                         if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) {
2436                                 ret = rte_kvargs_process(kvlist,
2437                                                          ETH_TAP_REMOTE_ARG,
2438                                                          &set_remote_iface,
2439                                                          remote_iface);
2440                                 if (ret == -1)
2441                                         goto leave;
2442                         }
2443
2444                         if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) {
2445                                 ret = rte_kvargs_process(kvlist,
2446                                                          ETH_TAP_MAC_ARG,
2447                                                          &set_mac_type,
2448                                                          &user_mac);
2449                                 if (ret == -1)
2450                                         goto leave;
2451                         }
2452                 }
2453         }
2454         pmd_link.link_speed = speed;
2455
2456         TAP_LOG(DEBUG, "Initializing pmd_tap for %s", name);
2457
2458         /* Register IPC feed callback */
2459         if (!tap_devices_count) {
2460                 ret = rte_mp_action_register(TAP_MP_KEY, tap_mp_sync_queues);
2461                 if (ret < 0 && rte_errno != ENOTSUP) {
2462                         TAP_LOG(ERR, "tap: Failed to register IPC callback: %s",
2463                                 strerror(rte_errno));
2464                         goto leave;
2465                 }
2466         }
2467         tap_devices_count++;
2468         tap_devices_count_increased = 1;
2469         ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac,
2470                 ETH_TUNTAP_TYPE_TAP);
2471
2472 leave:
2473         if (ret == -1) {
2474                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2475                         name, tap_name);
2476                 if (tap_devices_count_increased == 1) {
2477                         if (tap_devices_count == 1)
2478                                 rte_mp_action_unregister(TAP_MP_KEY);
2479                         tap_devices_count--;
2480                 }
2481         }
2482         rte_kvargs_free(kvlist);
2483
2484         return ret;
2485 }
2486
2487 /* detach a TUNTAP device.
2488  */
2489 static int
2490 rte_pmd_tap_remove(struct rte_vdev_device *dev)
2491 {
2492         struct rte_eth_dev *eth_dev = NULL;
2493         struct pmd_internals *internals;
2494
2495         /* find the ethdev entry */
2496         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
2497         if (!eth_dev)
2498                 return -ENODEV;
2499
2500         /* mac_addrs must not be freed alone because part of dev_private */
2501         eth_dev->data->mac_addrs = NULL;
2502
2503         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2504                 return rte_eth_dev_release_port(eth_dev);
2505
2506         tap_dev_close(eth_dev);
2507
2508         internals = eth_dev->data->dev_private;
2509         TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u",
2510                 tuntap_types[internals->type], rte_socket_id());
2511
2512         close(internals->ioctl_sock);
2513         rte_free(eth_dev->process_private);
2514         if (tap_devices_count == 1)
2515                 rte_mp_action_unregister(TAP_MP_KEY);
2516         tap_devices_count--;
2517         rte_eth_dev_release_port(eth_dev);
2518
2519         return 0;
2520 }
2521
2522 static struct rte_vdev_driver pmd_tun_drv = {
2523         .probe = rte_pmd_tun_probe,
2524         .remove = rte_pmd_tap_remove,
2525 };
2526
2527 static struct rte_vdev_driver pmd_tap_drv = {
2528         .probe = rte_pmd_tap_probe,
2529         .remove = rte_pmd_tap_remove,
2530 };
2531
2532 RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv);
2533 RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv);
2534 RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap);
2535 RTE_PMD_REGISTER_PARAM_STRING(net_tun,
2536                               ETH_TAP_IFACE_ARG "=<string> ");
2537 RTE_PMD_REGISTER_PARAM_STRING(net_tap,
2538                               ETH_TAP_IFACE_ARG "=<string> "
2539                               ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " "
2540                               ETH_TAP_REMOTE_ARG "=<string>");
2541 RTE_LOG_REGISTER(tap_logtype, pmd.net.tap, NOTICE);