raw/ifpga/base: get board info
[dpdk.git] / drivers / raw / ifpga / base / ifpga_fme.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2018 Intel Corporation
3  */
4
5 #include "ifpga_feature_dev.h"
6 #include "opae_spi.h"
7 #include "opae_intel_max10.h"
8 #include "opae_i2c.h"
9 #include "opae_at24_eeprom.h"
10
11 #define PWR_THRESHOLD_MAX       0x7F
12
13 int fme_get_prop(struct ifpga_fme_hw *fme, struct feature_prop *prop)
14 {
15         struct ifpga_feature *feature;
16
17         if (!fme)
18                 return -ENOENT;
19
20         feature = get_fme_feature_by_id(fme, prop->feature_id);
21
22         if (feature && feature->ops && feature->ops->get_prop)
23                 return feature->ops->get_prop(feature, prop);
24
25         return -ENOENT;
26 }
27
28 int fme_set_prop(struct ifpga_fme_hw *fme, struct feature_prop *prop)
29 {
30         struct ifpga_feature *feature;
31
32         if (!fme)
33                 return -ENOENT;
34
35         feature = get_fme_feature_by_id(fme, prop->feature_id);
36
37         if (feature && feature->ops && feature->ops->set_prop)
38                 return feature->ops->set_prop(feature, prop);
39
40         return -ENOENT;
41 }
42
43 int fme_set_irq(struct ifpga_fme_hw *fme, u32 feature_id, void *irq_set)
44 {
45         struct ifpga_feature *feature;
46
47         if (!fme)
48                 return -ENOENT;
49
50         feature = get_fme_feature_by_id(fme, feature_id);
51
52         if (feature && feature->ops && feature->ops->set_irq)
53                 return feature->ops->set_irq(feature, irq_set);
54
55         return -ENOENT;
56 }
57
58 /* fme private feature head */
59 static int fme_hdr_init(struct ifpga_feature *feature)
60 {
61         struct feature_fme_header *fme_hdr;
62
63         fme_hdr = (struct feature_fme_header *)feature->addr;
64
65         dev_info(NULL, "FME HDR Init.\n");
66         dev_info(NULL, "FME cap %llx.\n",
67                  (unsigned long long)fme_hdr->capability.csr);
68
69         return 0;
70 }
71
72 static void fme_hdr_uinit(struct ifpga_feature *feature)
73 {
74         UNUSED(feature);
75
76         dev_info(NULL, "FME HDR UInit.\n");
77 }
78
79 static int fme_hdr_get_revision(struct ifpga_fme_hw *fme, u64 *revision)
80 {
81         struct feature_fme_header *fme_hdr
82                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
83         struct feature_header header;
84
85         header.csr = readq(&fme_hdr->header);
86         *revision = header.revision;
87
88         return 0;
89 }
90
91 static int fme_hdr_get_ports_num(struct ifpga_fme_hw *fme, u64 *ports_num)
92 {
93         struct feature_fme_header *fme_hdr
94                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
95         struct feature_fme_capability fme_capability;
96
97         fme_capability.csr = readq(&fme_hdr->capability);
98         *ports_num = fme_capability.num_ports;
99
100         return 0;
101 }
102
103 static int fme_hdr_get_cache_size(struct ifpga_fme_hw *fme, u64 *cache_size)
104 {
105         struct feature_fme_header *fme_hdr
106                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
107         struct feature_fme_capability fme_capability;
108
109         fme_capability.csr = readq(&fme_hdr->capability);
110         *cache_size = fme_capability.cache_size;
111
112         return 0;
113 }
114
115 static int fme_hdr_get_version(struct ifpga_fme_hw *fme, u64 *version)
116 {
117         struct feature_fme_header *fme_hdr
118                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
119         struct feature_fme_capability fme_capability;
120
121         fme_capability.csr = readq(&fme_hdr->capability);
122         *version = fme_capability.fabric_verid;
123
124         return 0;
125 }
126
127 static int fme_hdr_get_socket_id(struct ifpga_fme_hw *fme, u64 *socket_id)
128 {
129         struct feature_fme_header *fme_hdr
130                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
131         struct feature_fme_capability fme_capability;
132
133         fme_capability.csr = readq(&fme_hdr->capability);
134         *socket_id = fme_capability.socket_id;
135
136         return 0;
137 }
138
139 static int fme_hdr_get_bitstream_id(struct ifpga_fme_hw *fme,
140                                     u64 *bitstream_id)
141 {
142         struct feature_fme_header *fme_hdr
143                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
144
145         *bitstream_id = readq(&fme_hdr->bitstream_id);
146
147         return 0;
148 }
149
150 static int fme_hdr_get_bitstream_metadata(struct ifpga_fme_hw *fme,
151                                           u64 *bitstream_metadata)
152 {
153         struct feature_fme_header *fme_hdr
154                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
155
156         *bitstream_metadata = readq(&fme_hdr->bitstream_md);
157
158         return 0;
159 }
160
161 static int
162 fme_hdr_get_prop(struct ifpga_feature *feature, struct feature_prop *prop)
163 {
164         struct ifpga_fme_hw *fme = feature->parent;
165
166         switch (prop->prop_id) {
167         case FME_HDR_PROP_REVISION:
168                 return fme_hdr_get_revision(fme, &prop->data);
169         case FME_HDR_PROP_PORTS_NUM:
170                 return fme_hdr_get_ports_num(fme, &prop->data);
171         case FME_HDR_PROP_CACHE_SIZE:
172                 return fme_hdr_get_cache_size(fme, &prop->data);
173         case FME_HDR_PROP_VERSION:
174                 return fme_hdr_get_version(fme, &prop->data);
175         case FME_HDR_PROP_SOCKET_ID:
176                 return fme_hdr_get_socket_id(fme, &prop->data);
177         case FME_HDR_PROP_BITSTREAM_ID:
178                 return fme_hdr_get_bitstream_id(fme, &prop->data);
179         case FME_HDR_PROP_BITSTREAM_METADATA:
180                 return fme_hdr_get_bitstream_metadata(fme, &prop->data);
181         }
182
183         return -ENOENT;
184 }
185
186 struct ifpga_feature_ops fme_hdr_ops = {
187         .init = fme_hdr_init,
188         .uinit = fme_hdr_uinit,
189         .get_prop = fme_hdr_get_prop,
190 };
191
192 /* thermal management */
193 static int fme_thermal_get_threshold1(struct ifpga_fme_hw *fme, u64 *thres1)
194 {
195         struct feature_fme_thermal *thermal;
196         struct feature_fme_tmp_threshold temp_threshold;
197
198         thermal = get_fme_feature_ioaddr_by_index(fme,
199                                                   FME_FEATURE_ID_THERMAL_MGMT);
200
201         temp_threshold.csr = readq(&thermal->threshold);
202         *thres1 = temp_threshold.tmp_thshold1;
203
204         return 0;
205 }
206
207 static int fme_thermal_set_threshold1(struct ifpga_fme_hw *fme, u64 thres1)
208 {
209         struct feature_fme_thermal *thermal;
210         struct feature_fme_header *fme_hdr;
211         struct feature_fme_tmp_threshold tmp_threshold;
212         struct feature_fme_capability fme_capability;
213
214         thermal = get_fme_feature_ioaddr_by_index(fme,
215                                                   FME_FEATURE_ID_THERMAL_MGMT);
216         fme_hdr = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
217
218         spinlock_lock(&fme->lock);
219         tmp_threshold.csr = readq(&thermal->threshold);
220         fme_capability.csr = readq(&fme_hdr->capability);
221
222         if (fme_capability.lock_bit == 1) {
223                 spinlock_unlock(&fme->lock);
224                 return -EBUSY;
225         } else if (thres1 > 100) {
226                 spinlock_unlock(&fme->lock);
227                 return -EINVAL;
228         } else if (thres1 == 0) {
229                 tmp_threshold.tmp_thshold1_enable = 0;
230                 tmp_threshold.tmp_thshold1 = thres1;
231         } else {
232                 tmp_threshold.tmp_thshold1_enable = 1;
233                 tmp_threshold.tmp_thshold1 = thres1;
234         }
235
236         writeq(tmp_threshold.csr, &thermal->threshold);
237         spinlock_unlock(&fme->lock);
238
239         return 0;
240 }
241
242 static int fme_thermal_get_threshold2(struct ifpga_fme_hw *fme, u64 *thres2)
243 {
244         struct feature_fme_thermal *thermal;
245         struct feature_fme_tmp_threshold temp_threshold;
246
247         thermal = get_fme_feature_ioaddr_by_index(fme,
248                                                   FME_FEATURE_ID_THERMAL_MGMT);
249
250         temp_threshold.csr = readq(&thermal->threshold);
251         *thres2 = temp_threshold.tmp_thshold2;
252
253         return 0;
254 }
255
256 static int fme_thermal_set_threshold2(struct ifpga_fme_hw *fme, u64 thres2)
257 {
258         struct feature_fme_thermal *thermal;
259         struct feature_fme_header *fme_hdr;
260         struct feature_fme_tmp_threshold tmp_threshold;
261         struct feature_fme_capability fme_capability;
262
263         thermal = get_fme_feature_ioaddr_by_index(fme,
264                                                   FME_FEATURE_ID_THERMAL_MGMT);
265         fme_hdr = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
266
267         spinlock_lock(&fme->lock);
268         tmp_threshold.csr = readq(&thermal->threshold);
269         fme_capability.csr = readq(&fme_hdr->capability);
270
271         if (fme_capability.lock_bit == 1) {
272                 spinlock_unlock(&fme->lock);
273                 return -EBUSY;
274         } else if (thres2 > 100) {
275                 spinlock_unlock(&fme->lock);
276                 return -EINVAL;
277         } else if (thres2 == 0) {
278                 tmp_threshold.tmp_thshold2_enable = 0;
279                 tmp_threshold.tmp_thshold2 = thres2;
280         } else {
281                 tmp_threshold.tmp_thshold2_enable = 1;
282                 tmp_threshold.tmp_thshold2 = thres2;
283         }
284
285         writeq(tmp_threshold.csr, &thermal->threshold);
286         spinlock_unlock(&fme->lock);
287
288         return 0;
289 }
290
291 static int fme_thermal_get_threshold_trip(struct ifpga_fme_hw *fme,
292                                           u64 *thres_trip)
293 {
294         struct feature_fme_thermal *thermal;
295         struct feature_fme_tmp_threshold temp_threshold;
296
297         thermal = get_fme_feature_ioaddr_by_index(fme,
298                                                   FME_FEATURE_ID_THERMAL_MGMT);
299
300         temp_threshold.csr = readq(&thermal->threshold);
301         *thres_trip = temp_threshold.therm_trip_thshold;
302
303         return 0;
304 }
305
306 static int fme_thermal_get_threshold1_reached(struct ifpga_fme_hw *fme,
307                                               u64 *thres1_reached)
308 {
309         struct feature_fme_thermal *thermal;
310         struct feature_fme_tmp_threshold temp_threshold;
311
312         thermal = get_fme_feature_ioaddr_by_index(fme,
313                                                   FME_FEATURE_ID_THERMAL_MGMT);
314
315         temp_threshold.csr = readq(&thermal->threshold);
316         *thres1_reached = temp_threshold.thshold1_status;
317
318         return 0;
319 }
320
321 static int fme_thermal_get_threshold2_reached(struct ifpga_fme_hw *fme,
322                                               u64 *thres1_reached)
323 {
324         struct feature_fme_thermal *thermal;
325         struct feature_fme_tmp_threshold temp_threshold;
326
327         thermal = get_fme_feature_ioaddr_by_index(fme,
328                                                   FME_FEATURE_ID_THERMAL_MGMT);
329
330         temp_threshold.csr = readq(&thermal->threshold);
331         *thres1_reached = temp_threshold.thshold2_status;
332
333         return 0;
334 }
335
336 static int fme_thermal_get_threshold1_policy(struct ifpga_fme_hw *fme,
337                                              u64 *thres1_policy)
338 {
339         struct feature_fme_thermal *thermal;
340         struct feature_fme_tmp_threshold temp_threshold;
341
342         thermal = get_fme_feature_ioaddr_by_index(fme,
343                                                   FME_FEATURE_ID_THERMAL_MGMT);
344
345         temp_threshold.csr = readq(&thermal->threshold);
346         *thres1_policy = temp_threshold.thshold_policy;
347
348         return 0;
349 }
350
351 static int fme_thermal_set_threshold1_policy(struct ifpga_fme_hw *fme,
352                                              u64 thres1_policy)
353 {
354         struct feature_fme_thermal *thermal;
355         struct feature_fme_tmp_threshold tmp_threshold;
356
357         thermal = get_fme_feature_ioaddr_by_index(fme,
358                                                   FME_FEATURE_ID_THERMAL_MGMT);
359
360         spinlock_lock(&fme->lock);
361         tmp_threshold.csr = readq(&thermal->threshold);
362
363         if (thres1_policy == 0) {
364                 tmp_threshold.thshold_policy = 0;
365         } else if (thres1_policy == 1) {
366                 tmp_threshold.thshold_policy = 1;
367         } else {
368                 spinlock_unlock(&fme->lock);
369                 return -EINVAL;
370         }
371
372         writeq(tmp_threshold.csr, &thermal->threshold);
373         spinlock_unlock(&fme->lock);
374
375         return 0;
376 }
377
378 static int fme_thermal_get_temperature(struct ifpga_fme_hw *fme, u64 *temp)
379 {
380         struct feature_fme_thermal *thermal;
381         struct feature_fme_temp_rdsensor_fmt1 temp_rdsensor_fmt1;
382
383         thermal = get_fme_feature_ioaddr_by_index(fme,
384                                                   FME_FEATURE_ID_THERMAL_MGMT);
385
386         temp_rdsensor_fmt1.csr = readq(&thermal->rdsensor_fm1);
387         *temp = temp_rdsensor_fmt1.fpga_temp;
388
389         return 0;
390 }
391
392 static int fme_thermal_get_revision(struct ifpga_fme_hw *fme, u64 *revision)
393 {
394         struct feature_fme_thermal *fme_thermal
395                 = get_fme_feature_ioaddr_by_index(fme,
396                                                   FME_FEATURE_ID_THERMAL_MGMT);
397         struct feature_header header;
398
399         header.csr = readq(&fme_thermal->header);
400         *revision = header.revision;
401
402         return 0;
403 }
404
405 #define FME_THERMAL_CAP_NO_TMP_THRESHOLD        0x1
406
407 static int fme_thermal_mgmt_init(struct ifpga_feature *feature)
408 {
409         struct feature_fme_thermal *fme_thermal;
410         struct feature_fme_tmp_threshold_cap thermal_cap;
411
412         UNUSED(feature);
413
414         dev_info(NULL, "FME thermal mgmt Init.\n");
415
416         fme_thermal = (struct feature_fme_thermal *)feature->addr;
417         thermal_cap.csr = readq(&fme_thermal->threshold_cap);
418
419         dev_info(NULL, "FME thermal cap %llx.\n",
420                  (unsigned long long)fme_thermal->threshold_cap.csr);
421
422         if (thermal_cap.tmp_thshold_disabled)
423                 feature->cap |= FME_THERMAL_CAP_NO_TMP_THRESHOLD;
424
425         return 0;
426 }
427
428 static void fme_thermal_mgmt_uinit(struct ifpga_feature *feature)
429 {
430         UNUSED(feature);
431
432         dev_info(NULL, "FME thermal mgmt UInit.\n");
433 }
434
435 static int
436 fme_thermal_set_prop(struct ifpga_feature *feature, struct feature_prop *prop)
437 {
438         struct ifpga_fme_hw *fme = feature->parent;
439
440         if (feature->cap & FME_THERMAL_CAP_NO_TMP_THRESHOLD)
441                 return -ENOENT;
442
443         switch (prop->prop_id) {
444         case FME_THERMAL_PROP_THRESHOLD1:
445                 return fme_thermal_set_threshold1(fme, prop->data);
446         case FME_THERMAL_PROP_THRESHOLD2:
447                 return fme_thermal_set_threshold2(fme, prop->data);
448         case FME_THERMAL_PROP_THRESHOLD1_POLICY:
449                 return fme_thermal_set_threshold1_policy(fme, prop->data);
450         }
451
452         return -ENOENT;
453 }
454
455 static int
456 fme_thermal_get_prop(struct ifpga_feature *feature, struct feature_prop *prop)
457 {
458         struct ifpga_fme_hw *fme = feature->parent;
459
460         if (feature->cap & FME_THERMAL_CAP_NO_TMP_THRESHOLD &&
461             prop->prop_id != FME_THERMAL_PROP_TEMPERATURE &&
462             prop->prop_id != FME_THERMAL_PROP_REVISION)
463                 return -ENOENT;
464
465         switch (prop->prop_id) {
466         case FME_THERMAL_PROP_THRESHOLD1:
467                 return fme_thermal_get_threshold1(fme, &prop->data);
468         case FME_THERMAL_PROP_THRESHOLD2:
469                 return fme_thermal_get_threshold2(fme, &prop->data);
470         case FME_THERMAL_PROP_THRESHOLD_TRIP:
471                 return fme_thermal_get_threshold_trip(fme, &prop->data);
472         case FME_THERMAL_PROP_THRESHOLD1_REACHED:
473                 return fme_thermal_get_threshold1_reached(fme, &prop->data);
474         case FME_THERMAL_PROP_THRESHOLD2_REACHED:
475                 return fme_thermal_get_threshold2_reached(fme, &prop->data);
476         case FME_THERMAL_PROP_THRESHOLD1_POLICY:
477                 return fme_thermal_get_threshold1_policy(fme, &prop->data);
478         case FME_THERMAL_PROP_TEMPERATURE:
479                 return fme_thermal_get_temperature(fme, &prop->data);
480         case FME_THERMAL_PROP_REVISION:
481                 return fme_thermal_get_revision(fme, &prop->data);
482         }
483
484         return -ENOENT;
485 }
486
487 struct ifpga_feature_ops fme_thermal_mgmt_ops = {
488         .init = fme_thermal_mgmt_init,
489         .uinit = fme_thermal_mgmt_uinit,
490         .get_prop = fme_thermal_get_prop,
491         .set_prop = fme_thermal_set_prop,
492 };
493
494 static int fme_pwr_get_consumed(struct ifpga_fme_hw *fme, u64 *consumed)
495 {
496         struct feature_fme_power *fme_power
497                 = get_fme_feature_ioaddr_by_index(fme,
498                                 FME_FEATURE_ID_POWER_MGMT);
499         struct feature_fme_pm_status pm_status;
500
501         pm_status.csr = readq(&fme_power->status);
502
503         *consumed = pm_status.pwr_consumed;
504
505         return 0;
506 }
507
508 static int fme_pwr_get_threshold1(struct ifpga_fme_hw *fme, u64 *threshold)
509 {
510         struct feature_fme_power *fme_power
511                 = get_fme_feature_ioaddr_by_index(fme,
512                                 FME_FEATURE_ID_POWER_MGMT);
513         struct feature_fme_pm_ap_threshold pm_ap_threshold;
514
515         pm_ap_threshold.csr = readq(&fme_power->threshold);
516
517         *threshold = pm_ap_threshold.threshold1;
518
519         return 0;
520 }
521
522 static int fme_pwr_set_threshold1(struct ifpga_fme_hw *fme, u64 threshold)
523 {
524         struct feature_fme_power *fme_power
525                 = get_fme_feature_ioaddr_by_index(fme,
526                                 FME_FEATURE_ID_POWER_MGMT);
527         struct feature_fme_pm_ap_threshold pm_ap_threshold;
528
529         spinlock_lock(&fme->lock);
530         pm_ap_threshold.csr = readq(&fme_power->threshold);
531
532         if (threshold <= PWR_THRESHOLD_MAX) {
533                 pm_ap_threshold.threshold1 = threshold;
534         } else {
535                 spinlock_unlock(&fme->lock);
536                 return -EINVAL;
537         }
538
539         writeq(pm_ap_threshold.csr, &fme_power->threshold);
540         spinlock_unlock(&fme->lock);
541
542         return 0;
543 }
544
545 static int fme_pwr_get_threshold2(struct ifpga_fme_hw *fme, u64 *threshold)
546 {
547         struct feature_fme_power *fme_power
548                 = get_fme_feature_ioaddr_by_index(fme,
549                                 FME_FEATURE_ID_POWER_MGMT);
550         struct feature_fme_pm_ap_threshold pm_ap_threshold;
551
552         pm_ap_threshold.csr = readq(&fme_power->threshold);
553
554         *threshold = pm_ap_threshold.threshold2;
555
556         return 0;
557 }
558
559 static int fme_pwr_set_threshold2(struct ifpga_fme_hw *fme, u64 threshold)
560 {
561         struct feature_fme_power *fme_power
562                 = get_fme_feature_ioaddr_by_index(fme,
563                                 FME_FEATURE_ID_POWER_MGMT);
564         struct feature_fme_pm_ap_threshold pm_ap_threshold;
565
566         spinlock_lock(&fme->lock);
567         pm_ap_threshold.csr = readq(&fme_power->threshold);
568
569         if (threshold <= PWR_THRESHOLD_MAX) {
570                 pm_ap_threshold.threshold2 = threshold;
571         } else {
572                 spinlock_unlock(&fme->lock);
573                 return -EINVAL;
574         }
575
576         writeq(pm_ap_threshold.csr, &fme_power->threshold);
577         spinlock_unlock(&fme->lock);
578
579         return 0;
580 }
581
582 static int fme_pwr_get_threshold1_status(struct ifpga_fme_hw *fme,
583                                          u64 *threshold_status)
584 {
585         struct feature_fme_power *fme_power
586                 = get_fme_feature_ioaddr_by_index(fme,
587                                 FME_FEATURE_ID_POWER_MGMT);
588         struct feature_fme_pm_ap_threshold pm_ap_threshold;
589
590         pm_ap_threshold.csr = readq(&fme_power->threshold);
591
592         *threshold_status = pm_ap_threshold.threshold1_status;
593
594         return 0;
595 }
596
597 static int fme_pwr_get_threshold2_status(struct ifpga_fme_hw *fme,
598                                          u64 *threshold_status)
599 {
600         struct feature_fme_power *fme_power
601                 = get_fme_feature_ioaddr_by_index(fme,
602                                 FME_FEATURE_ID_POWER_MGMT);
603         struct feature_fme_pm_ap_threshold pm_ap_threshold;
604
605         pm_ap_threshold.csr = readq(&fme_power->threshold);
606
607         *threshold_status = pm_ap_threshold.threshold2_status;
608
609         return 0;
610 }
611
612 static int fme_pwr_get_rtl(struct ifpga_fme_hw *fme, u64 *rtl)
613 {
614         struct feature_fme_power *fme_power
615                 = get_fme_feature_ioaddr_by_index(fme,
616                                 FME_FEATURE_ID_POWER_MGMT);
617         struct feature_fme_pm_status pm_status;
618
619         pm_status.csr = readq(&fme_power->status);
620
621         *rtl = pm_status.fpga_latency_report;
622
623         return 0;
624 }
625
626 static int fme_pwr_get_xeon_limit(struct ifpga_fme_hw *fme, u64 *limit)
627 {
628         struct feature_fme_power *fme_power
629                 = get_fme_feature_ioaddr_by_index(fme,
630                                 FME_FEATURE_ID_POWER_MGMT);
631         struct feature_fme_pm_xeon_limit xeon_limit;
632
633         xeon_limit.csr = readq(&fme_power->xeon_limit);
634
635         if (!xeon_limit.enable)
636                 xeon_limit.pwr_limit = 0;
637
638         *limit = xeon_limit.pwr_limit;
639
640         return 0;
641 }
642
643 static int fme_pwr_get_fpga_limit(struct ifpga_fme_hw *fme, u64 *limit)
644 {
645         struct feature_fme_power *fme_power
646                 = get_fme_feature_ioaddr_by_index(fme,
647                                 FME_FEATURE_ID_POWER_MGMT);
648         struct feature_fme_pm_fpga_limit fpga_limit;
649
650         fpga_limit.csr = readq(&fme_power->fpga_limit);
651
652         if (!fpga_limit.enable)
653                 fpga_limit.pwr_limit = 0;
654
655         *limit = fpga_limit.pwr_limit;
656
657         return 0;
658 }
659
660 static int fme_pwr_get_revision(struct ifpga_fme_hw *fme, u64 *revision)
661 {
662         struct feature_fme_power *fme_power
663                 = get_fme_feature_ioaddr_by_index(fme,
664                                                   FME_FEATURE_ID_POWER_MGMT);
665         struct feature_header header;
666
667         header.csr = readq(&fme_power->header);
668         *revision = header.revision;
669
670         return 0;
671 }
672
673 static int fme_power_mgmt_init(struct ifpga_feature *feature)
674 {
675         UNUSED(feature);
676
677         dev_info(NULL, "FME power mgmt Init.\n");
678
679         return 0;
680 }
681
682 static void fme_power_mgmt_uinit(struct ifpga_feature *feature)
683 {
684         UNUSED(feature);
685
686         dev_info(NULL, "FME power mgmt UInit.\n");
687 }
688
689 static int fme_power_mgmt_get_prop(struct ifpga_feature *feature,
690                                    struct feature_prop *prop)
691 {
692         struct ifpga_fme_hw *fme = feature->parent;
693
694         switch (prop->prop_id) {
695         case FME_PWR_PROP_CONSUMED:
696                 return fme_pwr_get_consumed(fme, &prop->data);
697         case FME_PWR_PROP_THRESHOLD1:
698                 return fme_pwr_get_threshold1(fme, &prop->data);
699         case FME_PWR_PROP_THRESHOLD2:
700                 return fme_pwr_get_threshold2(fme, &prop->data);
701         case FME_PWR_PROP_THRESHOLD1_STATUS:
702                 return fme_pwr_get_threshold1_status(fme, &prop->data);
703         case FME_PWR_PROP_THRESHOLD2_STATUS:
704                 return fme_pwr_get_threshold2_status(fme, &prop->data);
705         case FME_PWR_PROP_RTL:
706                 return fme_pwr_get_rtl(fme, &prop->data);
707         case FME_PWR_PROP_XEON_LIMIT:
708                 return fme_pwr_get_xeon_limit(fme, &prop->data);
709         case FME_PWR_PROP_FPGA_LIMIT:
710                 return fme_pwr_get_fpga_limit(fme, &prop->data);
711         case FME_PWR_PROP_REVISION:
712                 return fme_pwr_get_revision(fme, &prop->data);
713         }
714
715         return -ENOENT;
716 }
717
718 static int fme_power_mgmt_set_prop(struct ifpga_feature *feature,
719                                    struct feature_prop *prop)
720 {
721         struct ifpga_fme_hw *fme = feature->parent;
722
723         switch (prop->prop_id) {
724         case FME_PWR_PROP_THRESHOLD1:
725                 return fme_pwr_set_threshold1(fme, prop->data);
726         case FME_PWR_PROP_THRESHOLD2:
727                 return fme_pwr_set_threshold2(fme, prop->data);
728         }
729
730         return -ENOENT;
731 }
732
733 struct ifpga_feature_ops fme_power_mgmt_ops = {
734         .init = fme_power_mgmt_init,
735         .uinit = fme_power_mgmt_uinit,
736         .get_prop = fme_power_mgmt_get_prop,
737         .set_prop = fme_power_mgmt_set_prop,
738 };
739
740 static int fme_hssi_eth_init(struct ifpga_feature *feature)
741 {
742         UNUSED(feature);
743         return 0;
744 }
745
746 static void fme_hssi_eth_uinit(struct ifpga_feature *feature)
747 {
748         UNUSED(feature);
749 }
750
751 struct ifpga_feature_ops fme_hssi_eth_ops = {
752         .init = fme_hssi_eth_init,
753         .uinit = fme_hssi_eth_uinit,
754 };
755
756 static int fme_emif_init(struct ifpga_feature *feature)
757 {
758         UNUSED(feature);
759         return 0;
760 }
761
762 static void fme_emif_uinit(struct ifpga_feature *feature)
763 {
764         UNUSED(feature);
765 }
766
767 struct ifpga_feature_ops fme_emif_ops = {
768         .init = fme_emif_init,
769         .uinit = fme_emif_uinit,
770 };
771
772 static const char *board_type_to_string(u32 type)
773 {
774         switch (type) {
775         case VC_8_10G:
776                 return "VC_8x10G";
777         case VC_4_25G:
778                 return "VC_4x25G";
779         case VC_2_1_25:
780                 return "VC_2x1x25G";
781         case VC_4_25G_2_25G:
782                 return "VC_4x25G+2x25G";
783         case VC_2_2_25G:
784                 return "VC_2x2x25G";
785         }
786
787         return "unknown";
788 }
789
790 static const char *board_major_to_string(u32 major)
791 {
792         switch (major) {
793         case VISTA_CREEK:
794                 return "VISTA_CREEK";
795         case RUSH_CREEK:
796                 return "RUSH_CREEK";
797         case DARBY_CREEK:
798                 return "DARBY_CREEK";
799         }
800
801         return "unknown";
802 }
803
804 static int board_type_to_info(u32 type,
805                 struct opae_board_info *info)
806 {
807         switch (type) {
808         case VC_8_10G:
809                 info->nums_of_retimer = 2;
810                 info->ports_per_retimer = 4;
811                 info->nums_of_fvl = 2;
812                 info->ports_per_fvl = 4;
813                 break;
814         case VC_4_25G:
815                 info->nums_of_retimer = 1;
816                 info->ports_per_retimer = 4;
817                 info->nums_of_fvl = 2;
818                 info->ports_per_fvl = 2;
819                 break;
820         case VC_2_1_25:
821                 info->nums_of_retimer = 2;
822                 info->ports_per_retimer = 1;
823                 info->nums_of_fvl = 1;
824                 info->ports_per_fvl = 2;
825                 break;
826         case VC_2_2_25G:
827                 info->nums_of_retimer = 2;
828                 info->ports_per_retimer = 2;
829                 info->nums_of_fvl = 2;
830                 info->ports_per_fvl = 2;
831                 break;
832         default:
833                 return -EINVAL;
834         }
835
836         return 0;
837 }
838
839 static int fme_get_board_interface(struct ifpga_fme_hw *fme)
840 {
841         struct fme_bitstream_id id;
842         u32 val;
843
844         if (fme_hdr_get_bitstream_id(fme, &id.id))
845                 return -EINVAL;
846
847         fme->board_info.major = id.major;
848         fme->board_info.minor = id.minor;
849         fme->board_info.type = id.interface;
850         fme->board_info.fvl_bypass = id.fvl_bypass;
851         fme->board_info.mac_lightweight = id.mac_lightweight;
852         fme->board_info.lightweight = id.lightweiht;
853         fme->board_info.disaggregate = id.disagregate;
854         fme->board_info.seu = id.seu;
855         fme->board_info.ptp = id.ptp;
856
857         dev_info(fme, "found: board: %s type: %s\n",
858                         board_major_to_string(fme->board_info.major),
859                         board_type_to_string(fme->board_info.type));
860
861         dev_info(fme, "support feature:\n"
862                         "fvl_bypass:%s\n"
863                         "mac_lightweight:%s\n"
864                         "lightweight:%s\n"
865                         "disaggregate:%s\n"
866                         "seu:%s\n"
867                         "ptp1588:%s\n",
868                         check_support(fme->board_info.fvl_bypass),
869                         check_support(fme->board_info.mac_lightweight),
870                         check_support(fme->board_info.lightweight),
871                         check_support(fme->board_info.disaggregate),
872                         check_support(fme->board_info.seu),
873                         check_support(fme->board_info.ptp));
874
875
876         if (board_type_to_info(fme->board_info.type, &fme->board_info))
877                 return -EINVAL;
878
879         dev_info(fme, "get board info: nums_retimers %d ports_per_retimer %d nums_fvl %d ports_per_fvl %d\n",
880                         fme->board_info.nums_of_retimer,
881                         fme->board_info.ports_per_retimer,
882                         fme->board_info.nums_of_fvl,
883                         fme->board_info.ports_per_fvl);
884
885         if (max10_sys_read(MAX10_BUILD_VER, &val))
886                 return -EINVAL;
887         fme->board_info.max10_version = val & 0xffffff;
888
889         if (max10_sys_read(NIOS2_FW_VERSION, &val))
890                 return -EINVAL;
891         fme->board_info.nios_fw_version = val & 0xffffff;
892
893         dev_info(fme, "max10 version 0x%x, nios fw version 0x%x\n",
894                 fme->board_info.max10_version,
895                 fme->board_info.nios_fw_version);
896
897         return 0;
898 }
899
900 static int spi_self_checking(void)
901 {
902         u32 val;
903         int ret;
904
905         ret = max10_sys_read(MAX10_TEST_REG, &val);
906         if (ret)
907                 return -EIO;
908
909         dev_info(NULL, "Read MAX10 test register 0x%x\n", val);
910
911         return 0;
912 }
913
914 static int fme_spi_init(struct ifpga_feature *feature)
915 {
916         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
917         struct altera_spi_device *spi_master;
918         struct intel_max10_device *max10;
919         int ret = 0;
920
921         dev_info(fme, "FME SPI Master (Max10) Init.\n");
922         dev_debug(fme, "FME SPI base addr %p.\n",
923                         feature->addr);
924         dev_debug(fme, "spi param=0x%llx\n",
925                         (unsigned long long)opae_readq(feature->addr + 0x8));
926
927         spi_master = altera_spi_alloc(feature->addr, TYPE_SPI);
928         if (!spi_master)
929                 return -ENODEV;
930
931         altera_spi_init(spi_master);
932
933         max10 = intel_max10_device_probe(spi_master, 0);
934         if (!max10) {
935                 ret = -ENODEV;
936                 dev_err(fme, "max10 init fail\n");
937                 goto spi_fail;
938         }
939
940         fme->max10_dev = max10;
941
942         /* SPI self test */
943         if (spi_self_checking()) {
944                 ret = -EIO;
945                 goto max10_fail;
946         }
947
948         return ret;
949
950 max10_fail:
951         intel_max10_device_remove(fme->max10_dev);
952 spi_fail:
953         altera_spi_release(spi_master);
954         return ret;
955 }
956
957 static void fme_spi_uinit(struct ifpga_feature *feature)
958 {
959         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
960
961         if (fme->max10_dev)
962                 intel_max10_device_remove(fme->max10_dev);
963 }
964
965 struct ifpga_feature_ops fme_spi_master_ops = {
966         .init = fme_spi_init,
967         .uinit = fme_spi_uinit,
968 };
969
970 static int nios_spi_wait_init_done(struct altera_spi_device *dev)
971 {
972         u32 val = 0;
973         unsigned long timeout = msecs_to_timer_cycles(10000);
974         unsigned long ticks;
975         int major_version;
976
977         if (spi_reg_read(dev, NIOS_VERSION, &val))
978                 return -EIO;
979
980         major_version = (val >> NIOS_VERSION_MAJOR_SHIFT) &
981                 NIOS_VERSION_MAJOR;
982         dev_debug(dev, "A10 NIOS FW version %d\n", major_version);
983
984         if (major_version >= 3) {
985                 /* read NIOS_INIT to check if PKVL INIT done or not */
986                 if (spi_reg_read(dev, NIOS_INIT, &val))
987                         return -EIO;
988
989                 /* check if PKVLs are initialized already */
990                 if (val & NIOS_INIT_DONE || val & NIOS_INIT_START)
991                         goto nios_init_done;
992
993                 /* start to config the default FEC mode */
994                 val = NIOS_INIT_START;
995
996                 if (spi_reg_write(dev, NIOS_INIT, val))
997                         return -EIO;
998         }
999
1000 nios_init_done:
1001         do {
1002                 if (spi_reg_read(dev, NIOS_INIT, &val))
1003                         return -EIO;
1004                 if (val)
1005                         break;
1006
1007                 ticks = rte_get_timer_cycles();
1008                 if (time_after(ticks, timeout))
1009                         return -ETIMEDOUT;
1010                 msleep(100);
1011         } while (!val);
1012
1013         return 0;
1014 }
1015
1016 static int nios_spi_check_error(struct altera_spi_device *dev)
1017 {
1018         u32 value = 0;
1019
1020         if (spi_reg_read(dev, PKVL_A_MODE_STS, &value))
1021                 return -EIO;
1022
1023         dev_debug(dev, "PKVL A Mode Status 0x%x\n", value);
1024
1025         if (value >= 0x100)
1026                 return -EINVAL;
1027
1028         if (spi_reg_read(dev, PKVL_B_MODE_STS, &value))
1029                 return -EIO;
1030
1031         dev_debug(dev, "PKVL B Mode Status 0x%x\n", value);
1032
1033         if (value >= 0x100)
1034                 return -EINVAL;
1035
1036         return 0;
1037 }
1038
1039 static int fme_nios_spi_init(struct ifpga_feature *feature)
1040 {
1041         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
1042         struct altera_spi_device *spi_master;
1043         struct intel_max10_device *max10;
1044         int ret = 0;
1045
1046         dev_info(fme, "FME SPI Master (NIOS) Init.\n");
1047         dev_debug(fme, "FME SPI base addr %p.\n",
1048                         feature->addr);
1049         dev_debug(fme, "spi param=0x%llx\n",
1050                         (unsigned long long)opae_readq(feature->addr + 0x8));
1051
1052         spi_master = altera_spi_alloc(feature->addr, TYPE_NIOS_SPI);
1053         if (!spi_master)
1054                 return -ENODEV;
1055
1056         /**
1057          * 1. wait A10 NIOS initial finished and
1058          * release the SPI master to Host
1059          */
1060         ret = nios_spi_wait_init_done(spi_master);
1061         if (ret != 0) {
1062                 dev_err(fme, "FME NIOS_SPI init fail\n");
1063                 goto release_dev;
1064         }
1065
1066         dev_info(fme, "FME NIOS_SPI initial done\n");
1067
1068         /* 2. check if error occur? */
1069         if (nios_spi_check_error(spi_master))
1070                 dev_info(fme, "NIOS_SPI INIT done, but found some error\n");
1071
1072         /* 3. init the spi master*/
1073         altera_spi_init(spi_master);
1074
1075         /* init the max10 device */
1076         max10 = intel_max10_device_probe(spi_master, 0);
1077         if (!max10) {
1078                 ret = -ENODEV;
1079                 dev_err(fme, "max10 init fail\n");
1080                 goto release_dev;
1081         }
1082
1083         fme_get_board_interface(fme);
1084
1085         fme->max10_dev = max10;
1086
1087         /* SPI self test */
1088         if (spi_self_checking())
1089                 goto spi_fail;
1090
1091         return ret;
1092
1093 spi_fail:
1094         intel_max10_device_remove(fme->max10_dev);
1095 release_dev:
1096         altera_spi_release(spi_master);
1097         return -ENODEV;
1098 }
1099
1100 static void fme_nios_spi_uinit(struct ifpga_feature *feature)
1101 {
1102         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
1103
1104         if (fme->max10_dev)
1105                 intel_max10_device_remove(fme->max10_dev);
1106 }
1107
1108 struct ifpga_feature_ops fme_nios_spi_master_ops = {
1109         .init = fme_nios_spi_init,
1110         .uinit = fme_nios_spi_uinit,
1111 };
1112
1113 static int i2c_mac_rom_test(struct altera_i2c_dev *dev)
1114 {
1115         char buf[20];
1116         int ret;
1117         char read_buf[20] = {0,};
1118         const char *string = "1a2b3c4d5e";
1119
1120         opae_memcpy(buf, string, strlen(string));
1121
1122         ret = at24_eeprom_write(dev, AT24512_SLAVE_ADDR, 0,
1123                         (u8 *)buf, strlen(string));
1124         if (ret < 0) {
1125                 dev_err(NULL, "write i2c error:%d\n", ret);
1126                 return ret;
1127         }
1128
1129         ret = at24_eeprom_read(dev, AT24512_SLAVE_ADDR, 0,
1130                         (u8 *)read_buf, strlen(string));
1131         if (ret < 0) {
1132                 dev_err(NULL, "read i2c error:%d\n", ret);
1133                 return ret;
1134         }
1135
1136         if (memcmp(buf, read_buf, strlen(string))) {
1137                 dev_err(NULL, "%s test fail!\n", __func__);
1138                 return -EFAULT;
1139         }
1140
1141         dev_info(NULL, "%s test successful\n", __func__);
1142
1143         return 0;
1144 }
1145
1146 static int fme_i2c_init(struct ifpga_feature *feature)
1147 {
1148         struct feature_fme_i2c *i2c;
1149         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
1150
1151         i2c = (struct feature_fme_i2c *)feature->addr;
1152
1153         dev_info(NULL, "FME I2C Master Init.\n");
1154
1155         fme->i2c_master = altera_i2c_probe(i2c);
1156         if (!fme->i2c_master)
1157                 return -ENODEV;
1158
1159         /* MAC ROM self test */
1160         i2c_mac_rom_test(fme->i2c_master);
1161
1162         return 0;
1163 }
1164
1165 static void fme_i2c_uninit(struct ifpga_feature *feature)
1166 {
1167         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
1168
1169         altera_i2c_remove(fme->i2c_master);
1170 }
1171
1172 struct ifpga_feature_ops fme_i2c_master_ops = {
1173         .init = fme_i2c_init,
1174         .uinit = fme_i2c_uninit,
1175 };
1176
1177 static int fme_eth_group_init(struct ifpga_feature *feature)
1178 {
1179         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
1180         struct eth_group_device *dev;
1181
1182         dev = (struct eth_group_device *)eth_group_probe(feature->addr);
1183         if (!dev)
1184                 return -ENODEV;
1185
1186         fme->eth_dev[dev->group_id] = dev;
1187
1188         fme->eth_group_region[dev->group_id].addr =
1189                 feature->addr;
1190         fme->eth_group_region[dev->group_id].phys_addr =
1191                 feature->phys_addr;
1192         fme->eth_group_region[dev->group_id].len =
1193                 feature->size;
1194
1195         fme->nums_eth_dev++;
1196
1197         dev_info(NULL, "FME PHY Group %d Init.\n", dev->group_id);
1198         dev_info(NULL, "found %d eth group, addr %p phys_addr 0x%llx len %u\n",
1199                         dev->group_id, feature->addr,
1200                         (unsigned long long)feature->phys_addr,
1201                         feature->size);
1202
1203         return 0;
1204 }
1205
1206 static void fme_eth_group_uinit(struct ifpga_feature *feature)
1207 {
1208         UNUSED(feature);
1209 }
1210
1211 struct ifpga_feature_ops fme_eth_group_ops = {
1212         .init = fme_eth_group_init,
1213         .uinit = fme_eth_group_uinit,
1214 };
1215
1216 int fme_mgr_read_mac_rom(struct ifpga_fme_hw *fme, int offset,
1217                 void *buf, int size)
1218 {
1219         struct altera_i2c_dev *dev;
1220
1221         dev = fme->i2c_master;
1222         if (!dev)
1223                 return -ENODEV;
1224
1225         return at24_eeprom_read(dev, AT24512_SLAVE_ADDR, offset, buf, size);
1226 }
1227
1228 int fme_mgr_write_mac_rom(struct ifpga_fme_hw *fme, int offset,
1229                 void *buf, int size)
1230 {
1231         struct altera_i2c_dev *dev;
1232
1233         dev = fme->i2c_master;
1234         if (!dev)
1235                 return -ENODEV;
1236
1237         return at24_eeprom_write(dev, AT24512_SLAVE_ADDR, offset, buf, size);
1238 }
1239
1240 static struct eth_group_device *get_eth_group_dev(struct ifpga_fme_hw *fme,
1241                 u8 group_id)
1242 {
1243         struct eth_group_device *dev;
1244
1245         if (group_id > (MAX_ETH_GROUP_DEVICES - 1))
1246                 return NULL;
1247
1248         dev = (struct eth_group_device *)fme->eth_dev[group_id];
1249         if (!dev)
1250                 return NULL;
1251
1252         if (dev->status != ETH_GROUP_DEV_ATTACHED)
1253                 return NULL;
1254
1255         return dev;
1256 }
1257
1258 int fme_mgr_get_eth_group_nums(struct ifpga_fme_hw *fme)
1259 {
1260         return fme->nums_eth_dev;
1261 }
1262
1263 int fme_mgr_get_eth_group_info(struct ifpga_fme_hw *fme,
1264                 u8 group_id, struct opae_eth_group_info *info)
1265 {
1266         struct eth_group_device *dev;
1267
1268         dev = get_eth_group_dev(fme, group_id);
1269         if (!dev)
1270                 return -ENODEV;
1271
1272         info->group_id = group_id;
1273         info->speed = dev->speed;
1274         info->nums_of_mac = dev->mac_num;
1275         info->nums_of_phy = dev->phy_num;
1276
1277         return 0;
1278 }
1279
1280 int fme_mgr_eth_group_read_reg(struct ifpga_fme_hw *fme, u8 group_id,
1281                 u8 type, u8 index, u16 addr, u32 *data)
1282 {
1283         struct eth_group_device *dev;
1284
1285         dev = get_eth_group_dev(fme, group_id);
1286         if (!dev)
1287                 return -ENODEV;
1288
1289         return eth_group_read_reg(dev, type, index, addr, data);
1290 }
1291
1292 int fme_mgr_eth_group_write_reg(struct ifpga_fme_hw *fme, u8 group_id,
1293                 u8 type, u8 index, u16 addr, u32 data)
1294 {
1295         struct eth_group_device *dev;
1296
1297         dev = get_eth_group_dev(fme, group_id);
1298         if (!dev)
1299                 return -ENODEV;
1300
1301         return eth_group_write_reg(dev, type, index, addr, data);
1302 }
1303
1304 static int fme_get_eth_group_speed(struct ifpga_fme_hw *fme,
1305                 u8 group_id)
1306 {
1307         struct eth_group_device *dev;
1308
1309         dev = get_eth_group_dev(fme, group_id);
1310         if (!dev)
1311                 return -ENODEV;
1312
1313         return dev->speed;
1314 }
1315
1316 int fme_mgr_get_retimer_info(struct ifpga_fme_hw *fme,
1317                 struct opae_retimer_info *info)
1318 {
1319         struct intel_max10_device *dev;
1320
1321         dev = (struct intel_max10_device *)fme->max10_dev;
1322         if (!dev)
1323                 return -ENODEV;
1324
1325         info->nums_retimer = fme->board_info.nums_of_retimer;
1326         info->ports_per_retimer = fme->board_info.ports_per_retimer;
1327         info->nums_fvl = fme->board_info.nums_of_fvl;
1328         info->ports_per_fvl = fme->board_info.ports_per_fvl;
1329
1330         /* The speed of PKVL is identical the eth group's speed */
1331         info->support_speed = fme_get_eth_group_speed(fme,
1332                         LINE_SIDE_GROUP_ID);
1333
1334         return 0;
1335 }
1336
1337 int fme_mgr_get_retimer_status(struct ifpga_fme_hw *fme,
1338                 struct opae_retimer_status *status)
1339 {
1340         struct intel_max10_device *dev;
1341         unsigned int val;
1342
1343         dev = (struct intel_max10_device *)fme->max10_dev;
1344         if (!dev)
1345                 return -ENODEV;
1346
1347         if (max10_sys_read(PKVL_LINK_STATUS, &val)) {
1348                 dev_err(dev, "%s: read pkvl status fail\n", __func__);
1349                 return -EINVAL;
1350         }
1351
1352         /* The speed of PKVL is identical the eth group's speed */
1353         status->speed = fme_get_eth_group_speed(fme,
1354                         LINE_SIDE_GROUP_ID);
1355
1356         status->line_link_bitmap = val;
1357
1358         dev_debug(dev, "get retimer status: speed:%d. line_link_bitmap:0x%x\n",
1359                         status->speed,
1360                         status->line_link_bitmap);
1361
1362         return 0;
1363 }
1364
1365 int fme_mgr_get_sensor_value(struct ifpga_fme_hw *fme,
1366                 struct opae_sensor_info *sensor,
1367                 unsigned int *value)
1368 {
1369         struct intel_max10_device *dev;
1370
1371         dev = (struct intel_max10_device *)fme->max10_dev;
1372         if (!dev)
1373                 return -ENODEV;
1374
1375         if (max10_sys_read(sensor->value_reg, value)) {
1376                 dev_err(dev, "%s: read sensor value register 0x%x fail\n",
1377                                 __func__, sensor->value_reg);
1378                 return -EINVAL;
1379         }
1380
1381         *value *= sensor->multiplier;
1382
1383         return 0;
1384 }