common/mlx5: split PCI relaxed ordering for read and write
[dpdk.git] / drivers / vdpa / mlx5 / mlx5_vdpa_mem.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2019 Mellanox Technologies, Ltd
3  */
4 #include <stdlib.h>
5
6 #include <rte_malloc.h>
7 #include <rte_errno.h>
8 #include <rte_common.h>
9 #include <rte_sched_common.h>
10
11 #include <mlx5_prm.h>
12 #include <mlx5_common.h>
13
14 #include "mlx5_vdpa_utils.h"
15 #include "mlx5_vdpa.h"
16
17 void
18 mlx5_vdpa_mem_dereg(struct mlx5_vdpa_priv *priv)
19 {
20         struct mlx5_vdpa_query_mr *entry;
21         struct mlx5_vdpa_query_mr *next;
22
23         entry = SLIST_FIRST(&priv->mr_list);
24         while (entry) {
25                 next = SLIST_NEXT(entry, next);
26                 claim_zero(mlx5_devx_cmd_destroy(entry->mkey));
27                 if (!entry->is_indirect)
28                         claim_zero(mlx5_glue->devx_umem_dereg(entry->umem));
29                 SLIST_REMOVE(&priv->mr_list, entry, mlx5_vdpa_query_mr, next);
30                 rte_free(entry);
31                 entry = next;
32         }
33         SLIST_INIT(&priv->mr_list);
34         if (priv->null_mr) {
35                 claim_zero(mlx5_glue->dereg_mr(priv->null_mr));
36                 priv->null_mr = NULL;
37         }
38         if (priv->vmem) {
39                 free(priv->vmem);
40                 priv->vmem = NULL;
41         }
42 }
43
44 static int
45 mlx5_vdpa_regions_addr_cmp(const void *a, const void *b)
46 {
47         const struct rte_vhost_mem_region *region_a = a;
48         const struct rte_vhost_mem_region *region_b = b;
49
50         if (region_a->guest_phys_addr < region_b->guest_phys_addr)
51                 return -1;
52         if (region_a->guest_phys_addr > region_b->guest_phys_addr)
53                 return 1;
54         return 0;
55 }
56
57 #define KLM_NUM_MAX_ALIGN(sz) (RTE_ALIGN_CEIL(sz, MLX5_MAX_KLM_BYTE_COUNT) / \
58                                MLX5_MAX_KLM_BYTE_COUNT)
59
60 /*
61  * Allocate and sort the region list and choose indirect mkey mode:
62  *   1. Calculate GCD, guest memory size and indirect mkey entries num per mode.
63  *   2. Align GCD to the maximum allowed size(2G) and to be power of 2.
64  *   2. Decide the indirect mkey mode according to the next rules:
65  *         a. If both KLM_FBS entries number and KLM entries number are bigger
66  *            than the maximum allowed(MLX5_DEVX_MAX_KLM_ENTRIES) - error.
67  *         b. KLM mode if KLM_FBS entries number is bigger than the maximum
68  *            allowed(MLX5_DEVX_MAX_KLM_ENTRIES).
69  *         c. KLM mode if GCD is smaller than the minimum allowed(4K).
70  *         d. KLM mode if the total size of KLM entries is in one cache line
71  *            and the total size of KLM_FBS entries is not in one cache line.
72  *         e. Otherwise, KLM_FBS mode.
73  */
74 static struct rte_vhost_memory *
75 mlx5_vdpa_vhost_mem_regions_prepare(int vid, uint8_t *mode, uint64_t *mem_size,
76                                     uint64_t *gcd, uint32_t *entries_num)
77 {
78         struct rte_vhost_memory *mem;
79         uint64_t size;
80         uint64_t klm_entries_num = 0;
81         uint64_t klm_fbs_entries_num;
82         uint32_t i;
83         int ret = rte_vhost_get_mem_table(vid, &mem);
84
85         if (ret < 0) {
86                 DRV_LOG(ERR, "Failed to get VM memory layout vid =%d.", vid);
87                 rte_errno = EINVAL;
88                 return NULL;
89         }
90         qsort(mem->regions, mem->nregions, sizeof(mem->regions[0]),
91               mlx5_vdpa_regions_addr_cmp);
92         *mem_size = (mem->regions[(mem->nregions - 1)].guest_phys_addr) +
93                                       (mem->regions[(mem->nregions - 1)].size) -
94                                               (mem->regions[0].guest_phys_addr);
95         *gcd = 0;
96         for (i = 0; i < mem->nregions; ++i) {
97                 DRV_LOG(INFO,  "Region %u: HVA 0x%" PRIx64 ", GPA 0x%" PRIx64
98                         ", size 0x%" PRIx64 ".", i,
99                         mem->regions[i].host_user_addr,
100                         mem->regions[i].guest_phys_addr, mem->regions[i].size);
101                 if (i > 0) {
102                         /* Hole handle. */
103                         size = mem->regions[i].guest_phys_addr -
104                                 (mem->regions[i - 1].guest_phys_addr +
105                                  mem->regions[i - 1].size);
106                         *gcd = rte_get_gcd(*gcd, size);
107                         klm_entries_num += KLM_NUM_MAX_ALIGN(size);
108                 }
109                 size = mem->regions[i].size;
110                 *gcd = rte_get_gcd(*gcd, size);
111                 klm_entries_num += KLM_NUM_MAX_ALIGN(size);
112         }
113         if (*gcd > MLX5_MAX_KLM_BYTE_COUNT)
114                 *gcd = rte_get_gcd(*gcd, MLX5_MAX_KLM_BYTE_COUNT);
115         if (!RTE_IS_POWER_OF_2(*gcd)) {
116                 uint64_t candidate_gcd = rte_align64prevpow2(*gcd);
117
118                 while (candidate_gcd > 1 && (*gcd % candidate_gcd))
119                         candidate_gcd /= 2;
120                 DRV_LOG(DEBUG, "GCD 0x%" PRIx64 " is not power of 2. Adjusted "
121                         "GCD is 0x%" PRIx64 ".", *gcd, candidate_gcd);
122                 *gcd = candidate_gcd;
123         }
124         klm_fbs_entries_num = *mem_size / *gcd;
125         if (*gcd < MLX5_MIN_KLM_FIXED_BUFFER_SIZE || klm_fbs_entries_num >
126             MLX5_DEVX_MAX_KLM_ENTRIES ||
127             ((klm_entries_num * sizeof(struct mlx5_klm)) <=
128             RTE_CACHE_LINE_SIZE && (klm_fbs_entries_num *
129                                     sizeof(struct mlx5_klm)) >
130                                                         RTE_CACHE_LINE_SIZE)) {
131                 *mode = MLX5_MKC_ACCESS_MODE_KLM;
132                 *entries_num = klm_entries_num;
133                 DRV_LOG(INFO, "Indirect mkey mode is KLM.");
134         } else {
135                 *mode = MLX5_MKC_ACCESS_MODE_KLM_FBS;
136                 *entries_num = klm_fbs_entries_num;
137                 DRV_LOG(INFO, "Indirect mkey mode is KLM Fixed Buffer Size.");
138         }
139         DRV_LOG(DEBUG, "Memory registration information: nregions = %u, "
140                 "mem_size = 0x%" PRIx64 ", GCD = 0x%" PRIx64
141                 ", klm_fbs_entries_num = 0x%" PRIx64 ", klm_entries_num = 0x%"
142                 PRIx64 ".", mem->nregions, *mem_size, *gcd, klm_fbs_entries_num,
143                 klm_entries_num);
144         if (*entries_num > MLX5_DEVX_MAX_KLM_ENTRIES) {
145                 DRV_LOG(ERR, "Failed to prepare memory of vid %d - memory is "
146                         "too fragmented.", vid);
147                 free(mem);
148                 return NULL;
149         }
150         return mem;
151 }
152
153 #define KLM_SIZE_MAX_ALIGN(sz) ((sz) > MLX5_MAX_KLM_BYTE_COUNT ? \
154                                 MLX5_MAX_KLM_BYTE_COUNT : (sz))
155
156 /*
157  * The target here is to group all the physical memory regions of the
158  * virtio device in one indirect mkey.
159  * For KLM Fixed Buffer Size mode (HW find the translation entry in one
160  * read according to the guest phisical address):
161  * All the sub-direct mkeys of it must be in the same size, hence, each
162  * one of them should be in the GCD size of all the virtio memory
163  * regions and the holes between them.
164  * For KLM mode (each entry may be in different size so HW must iterate
165  * the entries):
166  * Each virtio memory region and each hole between them have one entry,
167  * just need to cover the maximum allowed size(2G) by splitting entries
168  * which their associated memory regions are bigger than 2G.
169  * It means that each virtio memory region may be mapped to more than
170  * one direct mkey in the 2 modes.
171  * All the holes of invalid memory between the virtio memory regions
172  * will be mapped to the null memory region for security.
173  */
174 int
175 mlx5_vdpa_mem_register(struct mlx5_vdpa_priv *priv)
176 {
177         struct mlx5_devx_mkey_attr mkey_attr;
178         struct mlx5_vdpa_query_mr *entry = NULL;
179         struct rte_vhost_mem_region *reg = NULL;
180         uint8_t mode;
181         uint32_t entries_num = 0;
182         uint32_t i;
183         uint64_t gcd;
184         uint64_t klm_size;
185         uint64_t mem_size;
186         uint64_t k;
187         int klm_index = 0;
188         int ret;
189         struct rte_vhost_memory *mem = mlx5_vdpa_vhost_mem_regions_prepare
190                               (priv->vid, &mode, &mem_size, &gcd, &entries_num);
191         struct mlx5_klm klm_array[entries_num];
192
193         if (!mem)
194                 return -rte_errno;
195         priv->vmem = mem;
196         priv->null_mr = mlx5_glue->alloc_null_mr(priv->pd);
197         if (!priv->null_mr) {
198                 DRV_LOG(ERR, "Failed to allocate null MR.");
199                 ret = -errno;
200                 goto error;
201         }
202         DRV_LOG(DEBUG, "Dump fill Mkey = %u.", priv->null_mr->lkey);
203         for (i = 0; i < mem->nregions; i++) {
204                 reg = &mem->regions[i];
205                 entry = rte_zmalloc(__func__, sizeof(*entry), 0);
206                 if (!entry) {
207                         ret = -ENOMEM;
208                         DRV_LOG(ERR, "Failed to allocate mem entry memory.");
209                         goto error;
210                 }
211                 entry->umem = mlx5_glue->devx_umem_reg(priv->ctx,
212                                          (void *)(uintptr_t)reg->host_user_addr,
213                                              reg->size, IBV_ACCESS_LOCAL_WRITE);
214                 if (!entry->umem) {
215                         DRV_LOG(ERR, "Failed to register Umem by Devx.");
216                         ret = -errno;
217                         goto error;
218                 }
219                 mkey_attr.addr = (uintptr_t)(reg->guest_phys_addr);
220                 mkey_attr.size = reg->size;
221                 mkey_attr.umem_id = entry->umem->umem_id;
222                 mkey_attr.pd = priv->pdn;
223                 mkey_attr.pg_access = 1;
224                 mkey_attr.klm_array = NULL;
225                 mkey_attr.klm_num = 0;
226                 mkey_attr.relaxed_ordering_read = 0;
227                 mkey_attr.relaxed_ordering_write = 0;
228                 entry->mkey = mlx5_devx_cmd_mkey_create(priv->ctx, &mkey_attr);
229                 if (!entry->mkey) {
230                         DRV_LOG(ERR, "Failed to create direct Mkey.");
231                         ret = -rte_errno;
232                         goto error;
233                 }
234                 entry->addr = (void *)(uintptr_t)(reg->host_user_addr);
235                 entry->length = reg->size;
236                 entry->is_indirect = 0;
237                 if (i > 0) {
238                         uint64_t sadd;
239                         uint64_t empty_region_sz = reg->guest_phys_addr -
240                                           (mem->regions[i - 1].guest_phys_addr +
241                                            mem->regions[i - 1].size);
242
243                         if (empty_region_sz > 0) {
244                                 sadd = mem->regions[i - 1].guest_phys_addr +
245                                        mem->regions[i - 1].size;
246                                 klm_size = mode == MLX5_MKC_ACCESS_MODE_KLM ?
247                                       KLM_SIZE_MAX_ALIGN(empty_region_sz) : gcd;
248                                 for (k = 0; k < empty_region_sz;
249                                      k += klm_size) {
250                                         klm_array[klm_index].byte_count =
251                                                 k + klm_size > empty_region_sz ?
252                                                  empty_region_sz - k : klm_size;
253                                         klm_array[klm_index].mkey =
254                                                             priv->null_mr->lkey;
255                                         klm_array[klm_index].address = sadd + k;
256                                         klm_index++;
257                                 }
258                         }
259                 }
260                 klm_size = mode == MLX5_MKC_ACCESS_MODE_KLM ?
261                                             KLM_SIZE_MAX_ALIGN(reg->size) : gcd;
262                 for (k = 0; k < reg->size; k += klm_size) {
263                         klm_array[klm_index].byte_count = k + klm_size >
264                                            reg->size ? reg->size - k : klm_size;
265                         klm_array[klm_index].mkey = entry->mkey->id;
266                         klm_array[klm_index].address = reg->guest_phys_addr + k;
267                         klm_index++;
268                 }
269                 SLIST_INSERT_HEAD(&priv->mr_list, entry, next);
270         }
271         mkey_attr.addr = (uintptr_t)(mem->regions[0].guest_phys_addr);
272         mkey_attr.size = mem_size;
273         mkey_attr.pd = priv->pdn;
274         mkey_attr.umem_id = 0;
275         /* Must be zero for KLM mode. */
276         mkey_attr.log_entity_size = mode == MLX5_MKC_ACCESS_MODE_KLM_FBS ?
277                                                           rte_log2_u64(gcd) : 0;
278         mkey_attr.pg_access = 0;
279         mkey_attr.klm_array = klm_array;
280         mkey_attr.klm_num = klm_index;
281         entry = rte_zmalloc(__func__, sizeof(*entry), 0);
282         if (!entry) {
283                 DRV_LOG(ERR, "Failed to allocate memory for indirect entry.");
284                 ret = -ENOMEM;
285                 goto error;
286         }
287         entry->mkey = mlx5_devx_cmd_mkey_create(priv->ctx, &mkey_attr);
288         if (!entry->mkey) {
289                 DRV_LOG(ERR, "Failed to create indirect Mkey.");
290                 ret = -rte_errno;
291                 goto error;
292         }
293         entry->is_indirect = 1;
294         SLIST_INSERT_HEAD(&priv->mr_list, entry, next);
295         priv->gpa_mkey_index = entry->mkey->id;
296         return 0;
297 error:
298         if (entry) {
299                 if (entry->mkey)
300                         mlx5_devx_cmd_destroy(entry->mkey);
301                 if (entry->umem)
302                         mlx5_glue->devx_umem_dereg(entry->umem);
303                 rte_free(entry);
304         }
305         mlx5_vdpa_mem_dereg(priv);
306         rte_errno = -ret;
307         return ret;
308 }