419d8d4107b214f06fcb202d0a1c87b7864732cd
[dpdk.git] / examples / eventdev_pipeline_sw_pmd / pipeline_worker_tx.c
1 /*
2  * SPDX-License-Identifier: BSD-3-Clause
3  * Copyright(c) 2010-2014 Intel Corporation
4  * Copyright 2017 Cavium, Inc.
5  */
6
7 #include "pipeline_common.h"
8
9 static __rte_always_inline void
10 worker_fwd_event(struct rte_event *ev, uint8_t sched)
11 {
12         ev->event_type = RTE_EVENT_TYPE_CPU;
13         ev->op = RTE_EVENT_OP_FORWARD;
14         ev->sched_type = sched;
15 }
16
17 static __rte_always_inline void
18 worker_event_enqueue(const uint8_t dev, const uint8_t port,
19                 struct rte_event *ev)
20 {
21         while (rte_event_enqueue_burst(dev, port, ev, 1) != 1)
22                 rte_pause();
23 }
24
25 static __rte_always_inline void
26 worker_event_enqueue_burst(const uint8_t dev, const uint8_t port,
27                 struct rte_event *ev, const uint16_t nb_rx)
28 {
29         uint16_t enq;
30
31         enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
32         while (enq < nb_rx) {
33                 enq += rte_event_enqueue_burst(dev, port,
34                                                 ev + enq, nb_rx - enq);
35         }
36 }
37
38 static __rte_always_inline void
39 worker_tx_pkt(struct rte_mbuf *mbuf)
40 {
41         exchange_mac(mbuf);
42         while (rte_eth_tx_burst(mbuf->port, 0, &mbuf, 1) != 1)
43                 rte_pause();
44 }
45
46 /* Multi stage Pipeline Workers */
47
48 static int
49 worker_do_tx(void *arg)
50 {
51         struct rte_event ev;
52
53         struct worker_data *data = (struct worker_data *)arg;
54         const uint8_t dev = data->dev_id;
55         const uint8_t port = data->port_id;
56         const uint8_t lst_qid = cdata.num_stages - 1;
57         size_t fwd = 0, received = 0, tx = 0;
58
59
60         while (!fdata->done) {
61
62                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
63                         rte_pause();
64                         continue;
65                 }
66
67                 received++;
68                 const uint8_t cq_id = ev.queue_id % cdata.num_stages;
69
70                 if (cq_id >= lst_qid) {
71                         if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
72                                 worker_tx_pkt(ev.mbuf);
73                                 tx++;
74                                 continue;
75                         }
76
77                         worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
78                         ev.queue_id = (cq_id == lst_qid) ?
79                                 cdata.next_qid[ev.queue_id] : ev.queue_id;
80                 } else {
81                         ev.queue_id = cdata.next_qid[ev.queue_id];
82                         worker_fwd_event(&ev, cdata.queue_type);
83                 }
84                 work();
85
86                 worker_event_enqueue(dev, port, &ev);
87                 fwd++;
88         }
89
90         if (!cdata.quiet)
91                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
92                                 rte_lcore_id(), received, fwd, tx);
93
94         return 0;
95 }
96
97 static int
98 worker_do_tx_burst(void *arg)
99 {
100         struct rte_event ev[BATCH_SIZE];
101
102         struct worker_data *data = (struct worker_data *)arg;
103         uint8_t dev = data->dev_id;
104         uint8_t port = data->port_id;
105         uint8_t lst_qid = cdata.num_stages - 1;
106         size_t fwd = 0, received = 0, tx = 0;
107
108         while (!fdata->done) {
109                 uint16_t i;
110                 const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
111                                 ev, BATCH_SIZE, 0);
112
113                 if (nb_rx == 0) {
114                         rte_pause();
115                         continue;
116                 }
117                 received += nb_rx;
118
119                 for (i = 0; i < nb_rx; i++) {
120                         const uint8_t cq_id = ev[i].queue_id % cdata.num_stages;
121
122                         if (cq_id >= lst_qid) {
123                                 if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
124                                         worker_tx_pkt(ev[i].mbuf);
125                                         tx++;
126                                         ev[i].op = RTE_EVENT_OP_RELEASE;
127                                         continue;
128                                 }
129                                 ev[i].queue_id = (cq_id == lst_qid) ?
130                                         cdata.next_qid[ev[i].queue_id] :
131                                         ev[i].queue_id;
132
133                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
134                         } else {
135                                 ev[i].queue_id = cdata.next_qid[ev[i].queue_id];
136                                 worker_fwd_event(&ev[i], cdata.queue_type);
137                         }
138                         work();
139                 }
140                 worker_event_enqueue_burst(dev, port, ev, nb_rx);
141
142                 fwd += nb_rx;
143         }
144
145         if (!cdata.quiet)
146                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
147                                 rte_lcore_id(), received, fwd, tx);
148
149         return 0;
150 }
151
152 static int
153 setup_eventdev_worker_tx(struct cons_data *cons_data,
154                 struct worker_data *worker_data)
155 {
156         RTE_SET_USED(cons_data);
157         uint8_t i;
158         const uint8_t dev_id = 0;
159         const uint8_t nb_ports = cdata.num_workers;
160         uint8_t nb_slots = 0;
161         uint8_t nb_queues = rte_eth_dev_count() * cdata.num_stages;
162         nb_queues += rte_eth_dev_count();
163
164         struct rte_event_dev_config config = {
165                         .nb_event_queues = nb_queues,
166                         .nb_event_ports = nb_ports,
167                         .nb_events_limit  = 4096,
168                         .nb_event_queue_flows = 1024,
169                         .nb_event_port_dequeue_depth = 128,
170                         .nb_event_port_enqueue_depth = 128,
171         };
172         struct rte_event_port_conf wkr_p_conf = {
173                         .dequeue_depth = cdata.worker_cq_depth,
174                         .enqueue_depth = 64,
175                         .new_event_threshold = 4096,
176         };
177         struct rte_event_queue_conf wkr_q_conf = {
178                         .schedule_type = cdata.queue_type,
179                         .priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
180                         .nb_atomic_flows = 1024,
181                         .nb_atomic_order_sequences = 1024,
182         };
183
184         int ret, ndev = rte_event_dev_count();
185
186         if (ndev < 1) {
187                 printf("%d: No Eventdev Devices Found\n", __LINE__);
188                 return -1;
189         }
190
191
192         struct rte_event_dev_info dev_info;
193         ret = rte_event_dev_info_get(dev_id, &dev_info);
194         printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
195
196         if (dev_info.max_event_port_dequeue_depth <
197                         config.nb_event_port_dequeue_depth)
198                 config.nb_event_port_dequeue_depth =
199                                 dev_info.max_event_port_dequeue_depth;
200         if (dev_info.max_event_port_enqueue_depth <
201                         config.nb_event_port_enqueue_depth)
202                 config.nb_event_port_enqueue_depth =
203                                 dev_info.max_event_port_enqueue_depth;
204
205         ret = rte_event_dev_configure(dev_id, &config);
206         if (ret < 0) {
207                 printf("%d: Error configuring device\n", __LINE__);
208                 return -1;
209         }
210
211         printf("  Stages:\n");
212         for (i = 0; i < nb_queues; i++) {
213
214                 uint8_t slot;
215
216                 nb_slots = cdata.num_stages + 1;
217                 slot = i % nb_slots;
218                 wkr_q_conf.schedule_type = slot == cdata.num_stages ?
219                         RTE_SCHED_TYPE_ATOMIC : cdata.queue_type;
220
221                 if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
222                         printf("%d: error creating qid %d\n", __LINE__, i);
223                         return -1;
224                 }
225                 cdata.qid[i] = i;
226                 cdata.next_qid[i] = i+1;
227                 if (cdata.enable_queue_priorities) {
228                         const uint32_t prio_delta =
229                                 (RTE_EVENT_DEV_PRIORITY_LOWEST) /
230                                 nb_slots;
231
232                         /* higher priority for queues closer to tx */
233                         wkr_q_conf.priority =
234                                 RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta *
235                                 (i % nb_slots);
236                 }
237
238                 const char *type_str = "Atomic";
239                 switch (wkr_q_conf.schedule_type) {
240                 case RTE_SCHED_TYPE_ORDERED:
241                         type_str = "Ordered";
242                         break;
243                 case RTE_SCHED_TYPE_PARALLEL:
244                         type_str = "Parallel";
245                         break;
246                 }
247                 printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
248                                 wkr_q_conf.priority);
249         }
250
251         printf("\n");
252         if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
253                 wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
254         if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
255                 wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
256
257         /* set up one port per worker, linking to all stage queues */
258         for (i = 0; i < cdata.num_workers; i++) {
259                 struct worker_data *w = &worker_data[i];
260                 w->dev_id = dev_id;
261                 if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
262                         printf("Error setting up port %d\n", i);
263                         return -1;
264                 }
265
266                 if (rte_event_port_link(dev_id, i, NULL, NULL, 0)
267                                 != nb_queues) {
268                         printf("%d: error creating link for port %d\n",
269                                         __LINE__, i);
270                         return -1;
271                 }
272                 w->port_id = i;
273         }
274         /*
275          * Reduce the load on ingress event queue by splitting the traffic
276          * across multiple event queues.
277          * for example, nb_stages =  2 and nb_ethdev = 2 then
278          *
279          *      nb_queues = (2 * 2) + 2 = 6 (non atq)
280          *      rx_stride = 3
281          *
282          * So, traffic is split across queue 0 and queue 3 since queue id for
283          * rx adapter is chosen <ethport_id> * <rx_stride> i.e in the above
284          * case eth port 0, 1 will inject packets into event queue 0, 3
285          * respectively.
286          *
287          * This forms two set of queue pipelines 0->1->2->tx and 3->4->5->tx.
288          */
289         cdata.rx_stride = nb_slots;
290         ret = rte_event_dev_service_id_get(dev_id,
291                                 &fdata->evdev_service_id);
292         if (ret != -ESRCH && ret != 0) {
293                 printf("Error getting the service ID\n");
294                 return -1;
295         }
296         rte_service_runstate_set(fdata->evdev_service_id, 1);
297         rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0);
298         if (rte_event_dev_start(dev_id) < 0) {
299                 printf("Error starting eventdev\n");
300                 return -1;
301         }
302
303         return dev_id;
304 }
305
306
307 struct rx_adptr_services {
308         uint16_t nb_rx_adptrs;
309         uint32_t *rx_adpt_arr;
310 };
311
312 static int32_t
313 service_rx_adapter(void *arg)
314 {
315         int i;
316         struct rx_adptr_services *adptr_services = arg;
317
318         for (i = 0; i < adptr_services->nb_rx_adptrs; i++)
319                 rte_service_run_iter_on_app_lcore(
320                                 adptr_services->rx_adpt_arr[i], 1);
321         return 0;
322 }
323
324 static void
325 init_rx_adapter(uint16_t nb_ports)
326 {
327         int i;
328         int ret;
329         uint8_t evdev_id = 0;
330         struct rx_adptr_services *adptr_services = NULL;
331         struct rte_event_dev_info dev_info;
332
333         ret = rte_event_dev_info_get(evdev_id, &dev_info);
334         adptr_services = rte_zmalloc(NULL, sizeof(struct rx_adptr_services), 0);
335
336         struct rte_event_port_conf rx_p_conf = {
337                 .dequeue_depth = 8,
338                 .enqueue_depth = 8,
339                 .new_event_threshold = 1200,
340         };
341
342         if (rx_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth)
343                 rx_p_conf.dequeue_depth = dev_info.max_event_port_dequeue_depth;
344         if (rx_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth)
345                 rx_p_conf.enqueue_depth = dev_info.max_event_port_enqueue_depth;
346
347
348         struct rte_event_eth_rx_adapter_queue_conf queue_conf = {
349                 .ev.sched_type = cdata.queue_type,
350         };
351
352         for (i = 0; i < nb_ports; i++) {
353                 uint32_t cap;
354                 uint32_t service_id;
355
356                 ret = rte_event_eth_rx_adapter_create(i, evdev_id, &rx_p_conf);
357                 if (ret)
358                         rte_exit(EXIT_FAILURE,
359                                         "failed to create rx adapter[%d]",
360                                         cdata.rx_adapter_id);
361
362                 ret = rte_event_eth_rx_adapter_caps_get(evdev_id, i, &cap);
363                 if (ret)
364                         rte_exit(EXIT_FAILURE,
365                                         "failed to get event rx adapter "
366                                         "capabilities");
367
368                 queue_conf.ev.queue_id = cdata.rx_stride ?
369                         (i * cdata.rx_stride)
370                         : (uint8_t)cdata.qid[0];
371
372                 ret = rte_event_eth_rx_adapter_queue_add(i, i, -1, &queue_conf);
373                 if (ret)
374                         rte_exit(EXIT_FAILURE,
375                                         "Failed to add queues to Rx adapter");
376
377
378                 /* Producer needs to be scheduled. */
379                 if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
380                         ret = rte_event_eth_rx_adapter_service_id_get(i,
381                                         &service_id);
382                         if (ret != -ESRCH && ret != 0) {
383                                 rte_exit(EXIT_FAILURE,
384                                 "Error getting the service ID for rx adptr\n");
385                         }
386
387                         rte_service_runstate_set(service_id, 1);
388                         rte_service_set_runstate_mapped_check(service_id, 0);
389
390                         adptr_services->nb_rx_adptrs++;
391                         adptr_services->rx_adpt_arr = rte_realloc(
392                                         adptr_services->rx_adpt_arr,
393                                         adptr_services->nb_rx_adptrs *
394                                         sizeof(uint32_t), 0);
395                         adptr_services->rx_adpt_arr[
396                                 adptr_services->nb_rx_adptrs - 1] =
397                                 service_id;
398                 }
399
400                 ret = rte_event_eth_rx_adapter_start(i);
401                 if (ret)
402                         rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed",
403                                         cdata.rx_adapter_id);
404         }
405
406         if (adptr_services->nb_rx_adptrs) {
407                 struct rte_service_spec service;
408
409                 memset(&service, 0, sizeof(struct rte_service_spec));
410                 snprintf(service.name, sizeof(service.name), "rx_service");
411                 service.callback = service_rx_adapter;
412                 service.callback_userdata = (void *)adptr_services;
413
414                 int32_t ret = rte_service_component_register(&service,
415                                 &fdata->rxadptr_service_id);
416                 if (ret)
417                         rte_exit(EXIT_FAILURE,
418                                 "Rx adapter[%d] service register failed",
419                                 cdata.rx_adapter_id);
420
421                 rte_service_runstate_set(fdata->rxadptr_service_id, 1);
422                 rte_service_component_runstate_set(fdata->rxadptr_service_id,
423                                 1);
424                 rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id,
425                                 0);
426         } else {
427                 memset(fdata->rx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
428                 rte_free(adptr_services);
429         }
430
431         if (!adptr_services->nb_rx_adptrs && fdata->cap.consumer == NULL &&
432                         (dev_info.event_dev_cap &
433                          RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))
434                 fdata->cap.scheduler = NULL;
435
436         if (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED)
437                 memset(fdata->sched_core, 0,
438                                 sizeof(unsigned int) * MAX_NUM_CORE);
439 }
440
441 static void
442 worker_tx_opt_check(void)
443 {
444         int i;
445         int ret;
446         uint32_t cap = 0;
447         uint8_t rx_needed = 0;
448         struct rte_event_dev_info eventdev_info;
449
450         memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
451         rte_event_dev_info_get(0, &eventdev_info);
452
453         for (i = 0; i < rte_eth_dev_count(); i++) {
454                 ret = rte_event_eth_rx_adapter_caps_get(0, i, &cap);
455                 if (ret)
456                         rte_exit(EXIT_FAILURE,
457                                         "failed to get event rx adapter "
458                                         "capabilities");
459                 rx_needed |=
460                         !(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT);
461         }
462
463         if (cdata.worker_lcore_mask == 0 ||
464                         (rx_needed && cdata.rx_lcore_mask == 0) ||
465                         (cdata.sched_lcore_mask == 0 &&
466                          !(eventdev_info.event_dev_cap &
467                                  RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))) {
468                 printf("Core part of pipeline was not assigned any cores. "
469                         "This will stall the pipeline, please check core masks "
470                         "(use -h for details on setting core masks):\n"
471                         "\trx: %"PRIu64"\n\ttx: %"PRIu64"\n\tsched: %"PRIu64
472                         "\n\tworkers: %"PRIu64"\n",
473                         cdata.rx_lcore_mask, cdata.tx_lcore_mask,
474                         cdata.sched_lcore_mask,
475                         cdata.worker_lcore_mask);
476                 rte_exit(-1, "Fix core masks\n");
477         }
478 }
479
480 void
481 set_worker_tx_setup_data(struct setup_data *caps, bool burst)
482 {
483         if (burst)
484                 caps->worker = worker_do_tx_burst;
485         else
486                 caps->worker = worker_do_tx;
487
488         memset(fdata->tx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
489
490         caps->check_opt = worker_tx_opt_check;
491         caps->consumer = NULL;
492         caps->scheduler = schedule_devices;
493         caps->evdev_setup = setup_eventdev_worker_tx;
494         caps->adptr_setup = init_rx_adapter;
495 }