examples/flow_classify: check status of getting ethdev info
[dpdk.git] / examples / flow_classify / flow_classify.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <inttypes.h>
7 #include <getopt.h>
8
9 #include <rte_eal.h>
10 #include <rte_ethdev.h>
11 #include <rte_cycles.h>
12 #include <rte_lcore.h>
13 #include <rte_mbuf.h>
14 #include <rte_flow.h>
15 #include <rte_flow_classify.h>
16 #include <rte_table_acl.h>
17
18 #define RX_RING_SIZE 1024
19 #define TX_RING_SIZE 1024
20
21 #define NUM_MBUFS 8191
22 #define MBUF_CACHE_SIZE 250
23 #define BURST_SIZE 32
24
25 #define MAX_NUM_CLASSIFY 30
26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91
27 #define FLOW_CLASSIFY_MAX_PRIORITY 8
28 #define FLOW_CLASSIFIER_NAME_SIZE 64
29
30 #define COMMENT_LEAD_CHAR       ('#')
31 #define OPTION_RULE_IPV4        "rule_ipv4"
32 #define RTE_LOGTYPE_FLOW_CLASSIFY       RTE_LOGTYPE_USER3
33 #define flow_classify_log(format, ...) \
34                 RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)
35
36 #define uint32_t_to_char(ip, a, b, c, d) do {\
37                 *a = (unsigned char)(ip >> 24 & 0xff);\
38                 *b = (unsigned char)(ip >> 16 & 0xff);\
39                 *c = (unsigned char)(ip >> 8 & 0xff);\
40                 *d = (unsigned char)(ip & 0xff);\
41         } while (0)
42
43 enum {
44         CB_FLD_SRC_ADDR,
45         CB_FLD_DST_ADDR,
46         CB_FLD_SRC_PORT,
47         CB_FLD_SRC_PORT_DLM,
48         CB_FLD_SRC_PORT_MASK,
49         CB_FLD_DST_PORT,
50         CB_FLD_DST_PORT_DLM,
51         CB_FLD_DST_PORT_MASK,
52         CB_FLD_PROTO,
53         CB_FLD_PRIORITY,
54         CB_FLD_NUM,
55 };
56
57 static struct{
58         const char *rule_ipv4_name;
59 } parm_config;
60 const char cb_port_delim[] = ":";
61
62 static const struct rte_eth_conf port_conf_default = {
63         .rxmode = {
64                 .max_rx_pkt_len = RTE_ETHER_MAX_LEN,
65         },
66 };
67
68 struct flow_classifier {
69         struct rte_flow_classifier *cls;
70 };
71
72 struct flow_classifier_acl {
73         struct flow_classifier cls;
74 } __rte_cache_aligned;
75
76 /* ACL field definitions for IPv4 5 tuple rule */
77
78 enum {
79         PROTO_FIELD_IPV4,
80         SRC_FIELD_IPV4,
81         DST_FIELD_IPV4,
82         SRCP_FIELD_IPV4,
83         DSTP_FIELD_IPV4,
84         NUM_FIELDS_IPV4
85 };
86
87 enum {
88         PROTO_INPUT_IPV4,
89         SRC_INPUT_IPV4,
90         DST_INPUT_IPV4,
91         SRCP_DESTP_INPUT_IPV4
92 };
93
94 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
95         /* first input field - always one byte long. */
96         {
97                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
98                 .size = sizeof(uint8_t),
99                 .field_index = PROTO_FIELD_IPV4,
100                 .input_index = PROTO_INPUT_IPV4,
101                 .offset = sizeof(struct rte_ether_hdr) +
102                         offsetof(struct rte_ipv4_hdr, next_proto_id),
103         },
104         /* next input field (IPv4 source address) - 4 consecutive bytes. */
105         {
106                 /* rte_flow uses a bit mask for IPv4 addresses */
107                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
108                 .size = sizeof(uint32_t),
109                 .field_index = SRC_FIELD_IPV4,
110                 .input_index = SRC_INPUT_IPV4,
111                 .offset = sizeof(struct rte_ether_hdr) +
112                         offsetof(struct rte_ipv4_hdr, src_addr),
113         },
114         /* next input field (IPv4 destination address) - 4 consecutive bytes. */
115         {
116                 /* rte_flow uses a bit mask for IPv4 addresses */
117                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
118                 .size = sizeof(uint32_t),
119                 .field_index = DST_FIELD_IPV4,
120                 .input_index = DST_INPUT_IPV4,
121                 .offset = sizeof(struct rte_ether_hdr) +
122                         offsetof(struct rte_ipv4_hdr, dst_addr),
123         },
124         /*
125          * Next 2 fields (src & dst ports) form 4 consecutive bytes.
126          * They share the same input index.
127          */
128         {
129                 /* rte_flow uses a bit mask for protocol ports */
130                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
131                 .size = sizeof(uint16_t),
132                 .field_index = SRCP_FIELD_IPV4,
133                 .input_index = SRCP_DESTP_INPUT_IPV4,
134                 .offset = sizeof(struct rte_ether_hdr) +
135                         sizeof(struct rte_ipv4_hdr) +
136                         offsetof(struct rte_tcp_hdr, src_port),
137         },
138         {
139                 /* rte_flow uses a bit mask for protocol ports */
140                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
141                 .size = sizeof(uint16_t),
142                 .field_index = DSTP_FIELD_IPV4,
143                 .input_index = SRCP_DESTP_INPUT_IPV4,
144                 .offset = sizeof(struct rte_ether_hdr) +
145                         sizeof(struct rte_ipv4_hdr) +
146                         offsetof(struct rte_tcp_hdr, dst_port),
147         },
148 };
149
150 /* flow classify data */
151 static int num_classify_rules;
152 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
153 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
154 static struct rte_flow_classify_stats classify_stats = {
155                 .stats = (void **)&ntuple_stats
156 };
157
158 /* parameters for rte_flow_classify_validate and
159  * rte_flow_classify_table_entry_add functions
160  */
161
162 static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
163         0, 0, 0 };
164 static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
165         0, 0, 0 };
166
167 /* sample actions:
168  * "actions count / end"
169  */
170 struct rte_flow_query_count count = {
171         .reset = 1,
172         .hits_set = 1,
173         .bytes_set = 1,
174         .hits = 0,
175         .bytes = 0,
176 };
177 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT,
178         &count};
179 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};
180 static struct rte_flow_action actions[2];
181
182 /* sample attributes */
183 static struct rte_flow_attr attr;
184
185 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */
186
187 /*
188  * Initializes a given port using global settings and with the RX buffers
189  * coming from the mbuf_pool passed as a parameter.
190  */
191 static inline int
192 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
193 {
194         struct rte_eth_conf port_conf = port_conf_default;
195         struct rte_ether_addr addr;
196         const uint16_t rx_rings = 1, tx_rings = 1;
197         int retval;
198         uint16_t q;
199         struct rte_eth_dev_info dev_info;
200         struct rte_eth_txconf txconf;
201
202         if (!rte_eth_dev_is_valid_port(port))
203                 return -1;
204
205         retval = rte_eth_dev_info_get(port, &dev_info);
206         if (retval != 0) {
207                 printf("Error during getting device (port %u) info: %s\n",
208                                 port, strerror(-retval));
209                 return retval;
210         }
211
212         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
213                 port_conf.txmode.offloads |=
214                         DEV_TX_OFFLOAD_MBUF_FAST_FREE;
215
216         /* Configure the Ethernet device. */
217         retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
218         if (retval != 0)
219                 return retval;
220
221         /* Allocate and set up 1 RX queue per Ethernet port. */
222         for (q = 0; q < rx_rings; q++) {
223                 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
224                                 rte_eth_dev_socket_id(port), NULL, mbuf_pool);
225                 if (retval < 0)
226                         return retval;
227         }
228
229         txconf = dev_info.default_txconf;
230         txconf.offloads = port_conf.txmode.offloads;
231         /* Allocate and set up 1 TX queue per Ethernet port. */
232         for (q = 0; q < tx_rings; q++) {
233                 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
234                                 rte_eth_dev_socket_id(port), &txconf);
235                 if (retval < 0)
236                         return retval;
237         }
238
239         /* Start the Ethernet port. */
240         retval = rte_eth_dev_start(port);
241         if (retval < 0)
242                 return retval;
243
244         /* Display the port MAC address. */
245         rte_eth_macaddr_get(port, &addr);
246         printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
247                            " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
248                         port,
249                         addr.addr_bytes[0], addr.addr_bytes[1],
250                         addr.addr_bytes[2], addr.addr_bytes[3],
251                         addr.addr_bytes[4], addr.addr_bytes[5]);
252
253         /* Enable RX in promiscuous mode for the Ethernet device. */
254         rte_eth_promiscuous_enable(port);
255
256         return 0;
257 }
258
259 /*
260  * The lcore main. This is the main thread that does the work, reading from
261  * an input port classifying the packets and writing to an output port.
262  */
263 static __attribute__((noreturn)) void
264 lcore_main(struct flow_classifier *cls_app)
265 {
266         uint16_t port;
267         int ret;
268         int i = 0;
269
270         ret = rte_flow_classify_table_entry_delete(cls_app->cls,
271                         rules[7]);
272         if (ret)
273                 printf("table_entry_delete failed [7] %d\n\n", ret);
274         else
275                 printf("table_entry_delete succeeded [7]\n\n");
276
277         /*
278          * Check that the port is on the same NUMA node as the polling thread
279          * for best performance.
280          */
281         RTE_ETH_FOREACH_DEV(port)
282                 if (rte_eth_dev_socket_id(port) > 0 &&
283                         rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
284                         printf("\n\n");
285                         printf("WARNING: port %u is on remote NUMA node\n",
286                                port);
287                         printf("to polling thread.\n");
288                         printf("Performance will not be optimal.\n");
289                 }
290         printf("\nCore %u forwarding packets. ", rte_lcore_id());
291         printf("[Ctrl+C to quit]\n");
292
293         /* Run until the application is quit or killed. */
294         for (;;) {
295                 /*
296                  * Receive packets on a port, classify them and forward them
297                  * on the paired port.
298                  * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
299                  */
300                 RTE_ETH_FOREACH_DEV(port) {
301                         /* Get burst of RX packets, from first port of pair. */
302                         struct rte_mbuf *bufs[BURST_SIZE];
303                         const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
304                                         bufs, BURST_SIZE);
305
306                         if (unlikely(nb_rx == 0))
307                                 continue;
308
309                         for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
310                                 if (rules[i]) {
311                                         ret = rte_flow_classifier_query(
312                                                 cls_app->cls,
313                                                 bufs, nb_rx, rules[i],
314                                                 &classify_stats);
315                                         if (ret)
316                                                 printf(
317                                                         "rule [%d] query failed ret [%d]\n\n",
318                                                         i, ret);
319                                         else {
320                                                 printf(
321                                                 "rule[%d] count=%"PRIu64"\n",
322                                                 i, ntuple_stats.counter1);
323
324                                                 printf("proto = %d\n",
325                                                 ntuple_stats.ipv4_5tuple.proto);
326                                         }
327                                 }
328                         }
329
330                         /* Send burst of TX packets, to second port of pair. */
331                         const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
332                                         bufs, nb_rx);
333
334                         /* Free any unsent packets. */
335                         if (unlikely(nb_tx < nb_rx)) {
336                                 uint16_t buf;
337
338                                 for (buf = nb_tx; buf < nb_rx; buf++)
339                                         rte_pktmbuf_free(bufs[buf]);
340                         }
341                 }
342         }
343 }
344
345 /*
346  * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
347  * Expected format:
348  * <src_ipv4_addr>'/'<masklen> <space> \
349  * <dst_ipv4_addr>'/'<masklen> <space> \
350  * <src_port> <space> ":" <src_port_mask> <space> \
351  * <dst_port> <space> ":" <dst_port_mask> <space> \
352  * <proto>'/'<proto_mask> <space> \
353  * <priority>
354  */
355
356 static int
357 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
358                 char dlm)
359 {
360         unsigned long val;
361         char *end;
362
363         errno = 0;
364         val = strtoul(*in, &end, base);
365         if (errno != 0 || end[0] != dlm || val > lim)
366                 return -EINVAL;
367         *fd = (uint32_t)val;
368         *in = end + 1;
369         return 0;
370 }
371
372 static int
373 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
374 {
375         uint32_t a, b, c, d, m;
376
377         if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
378                 return -EINVAL;
379         if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
380                 return -EINVAL;
381         if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
382                 return -EINVAL;
383         if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
384                 return -EINVAL;
385         if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
386                 return -EINVAL;
387
388         addr[0] = RTE_IPV4(a, b, c, d);
389         mask_len[0] = m;
390         return 0;
391 }
392
393 static int
394 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
395 {
396         int i, ret;
397         char *s, *sp, *in[CB_FLD_NUM];
398         static const char *dlm = " \t\n";
399         int dim = CB_FLD_NUM;
400         uint32_t temp;
401
402         s = str;
403         for (i = 0; i != dim; i++, s = NULL) {
404                 in[i] = strtok_r(s, dlm, &sp);
405                 if (in[i] == NULL)
406                         return -EINVAL;
407         }
408
409         ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
410                         &ntuple_filter->src_ip,
411                         &ntuple_filter->src_ip_mask);
412         if (ret != 0) {
413                 flow_classify_log("failed to read source address/mask: %s\n",
414                         in[CB_FLD_SRC_ADDR]);
415                 return ret;
416         }
417
418         ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],
419                         &ntuple_filter->dst_ip,
420                         &ntuple_filter->dst_ip_mask);
421         if (ret != 0) {
422                 flow_classify_log("failed to read source address/mask: %s\n",
423                         in[CB_FLD_DST_ADDR]);
424                 return ret;
425         }
426
427         if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
428                 return -EINVAL;
429         ntuple_filter->src_port = (uint16_t)temp;
430
431         if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
432                         sizeof(cb_port_delim)) != 0)
433                 return -EINVAL;
434
435         if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
436                 return -EINVAL;
437         ntuple_filter->src_port_mask = (uint16_t)temp;
438
439         if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
440                 return -EINVAL;
441         ntuple_filter->dst_port = (uint16_t)temp;
442
443         if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
444                         sizeof(cb_port_delim)) != 0)
445                 return -EINVAL;
446
447         if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
448                 return -EINVAL;
449         ntuple_filter->dst_port_mask = (uint16_t)temp;
450
451         if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
452                 return -EINVAL;
453         ntuple_filter->proto = (uint8_t)temp;
454
455         if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
456                 return -EINVAL;
457         ntuple_filter->proto_mask = (uint8_t)temp;
458
459         if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
460                 return -EINVAL;
461         ntuple_filter->priority = (uint16_t)temp;
462         if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
463                 ret = -EINVAL;
464
465         return ret;
466 }
467
468 /* Bypass comment and empty lines */
469 static inline int
470 is_bypass_line(char *buff)
471 {
472         int i = 0;
473
474         /* comment line */
475         if (buff[0] == COMMENT_LEAD_CHAR)
476                 return 1;
477         /* empty line */
478         while (buff[i] != '\0') {
479                 if (!isspace(buff[i]))
480                         return 0;
481                 i++;
482         }
483         return 1;
484 }
485
486 static uint32_t
487 convert_depth_to_bitmask(uint32_t depth_val)
488 {
489         uint32_t bitmask = 0;
490         int i, j;
491
492         for (i = depth_val, j = 0; i > 0; i--, j++)
493                 bitmask |= (1 << (31 - j));
494         return bitmask;
495 }
496
497 static int
498 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,
499                 struct flow_classifier *cls_app)
500 {
501         int ret = -1;
502         int key_found;
503         struct rte_flow_error error;
504         struct rte_flow_item_ipv4 ipv4_spec;
505         struct rte_flow_item_ipv4 ipv4_mask;
506         struct rte_flow_item ipv4_udp_item;
507         struct rte_flow_item ipv4_tcp_item;
508         struct rte_flow_item ipv4_sctp_item;
509         struct rte_flow_item_udp udp_spec;
510         struct rte_flow_item_udp udp_mask;
511         struct rte_flow_item udp_item;
512         struct rte_flow_item_tcp tcp_spec;
513         struct rte_flow_item_tcp tcp_mask;
514         struct rte_flow_item tcp_item;
515         struct rte_flow_item_sctp sctp_spec;
516         struct rte_flow_item_sctp sctp_mask;
517         struct rte_flow_item sctp_item;
518         struct rte_flow_item pattern_ipv4_5tuple[4];
519         struct rte_flow_classify_rule *rule;
520         uint8_t ipv4_proto;
521
522         if (num_classify_rules >= MAX_NUM_CLASSIFY) {
523                 printf(
524                         "\nINFO:  classify rule capacity %d reached\n",
525                         num_classify_rules);
526                 return ret;
527         }
528
529         /* set up parameters for validate and add */
530         memset(&ipv4_spec, 0, sizeof(ipv4_spec));
531         ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;
532         ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;
533         ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;
534         ipv4_proto = ipv4_spec.hdr.next_proto_id;
535
536         memset(&ipv4_mask, 0, sizeof(ipv4_mask));
537         ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;
538         ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
539         ipv4_mask.hdr.src_addr =
540                 convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
541         ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;
542         ipv4_mask.hdr.dst_addr =
543                 convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);
544
545         switch (ipv4_proto) {
546         case IPPROTO_UDP:
547                 ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
548                 ipv4_udp_item.spec = &ipv4_spec;
549                 ipv4_udp_item.mask = &ipv4_mask;
550                 ipv4_udp_item.last = NULL;
551
552                 udp_spec.hdr.src_port = ntuple_filter->src_port;
553                 udp_spec.hdr.dst_port = ntuple_filter->dst_port;
554                 udp_spec.hdr.dgram_len = 0;
555                 udp_spec.hdr.dgram_cksum = 0;
556
557                 udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
558                 udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
559                 udp_mask.hdr.dgram_len = 0;
560                 udp_mask.hdr.dgram_cksum = 0;
561
562                 udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
563                 udp_item.spec = &udp_spec;
564                 udp_item.mask = &udp_mask;
565                 udp_item.last = NULL;
566
567                 attr.priority = ntuple_filter->priority;
568                 pattern_ipv4_5tuple[1] = ipv4_udp_item;
569                 pattern_ipv4_5tuple[2] = udp_item;
570                 break;
571         case IPPROTO_TCP:
572                 ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
573                 ipv4_tcp_item.spec = &ipv4_spec;
574                 ipv4_tcp_item.mask = &ipv4_mask;
575                 ipv4_tcp_item.last = NULL;
576
577                 memset(&tcp_spec, 0, sizeof(tcp_spec));
578                 tcp_spec.hdr.src_port = ntuple_filter->src_port;
579                 tcp_spec.hdr.dst_port = ntuple_filter->dst_port;
580
581                 memset(&tcp_mask, 0, sizeof(tcp_mask));
582                 tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
583                 tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
584
585                 tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
586                 tcp_item.spec = &tcp_spec;
587                 tcp_item.mask = &tcp_mask;
588                 tcp_item.last = NULL;
589
590                 attr.priority = ntuple_filter->priority;
591                 pattern_ipv4_5tuple[1] = ipv4_tcp_item;
592                 pattern_ipv4_5tuple[2] = tcp_item;
593                 break;
594         case IPPROTO_SCTP:
595                 ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
596                 ipv4_sctp_item.spec = &ipv4_spec;
597                 ipv4_sctp_item.mask = &ipv4_mask;
598                 ipv4_sctp_item.last = NULL;
599
600                 sctp_spec.hdr.src_port = ntuple_filter->src_port;
601                 sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
602                 sctp_spec.hdr.cksum = 0;
603                 sctp_spec.hdr.tag = 0;
604
605                 sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
606                 sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
607                 sctp_mask.hdr.cksum = 0;
608                 sctp_mask.hdr.tag = 0;
609
610                 sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
611                 sctp_item.spec = &sctp_spec;
612                 sctp_item.mask = &sctp_mask;
613                 sctp_item.last = NULL;
614
615                 attr.priority = ntuple_filter->priority;
616                 pattern_ipv4_5tuple[1] = ipv4_sctp_item;
617                 pattern_ipv4_5tuple[2] = sctp_item;
618                 break;
619         default:
620                 return ret;
621         }
622
623         attr.ingress = 1;
624         pattern_ipv4_5tuple[0] = eth_item;
625         pattern_ipv4_5tuple[3] = end_item;
626         actions[0] = count_action;
627         actions[1] = end_action;
628
629         /* Validate and add rule */
630         ret = rte_flow_classify_validate(cls_app->cls, &attr,
631                         pattern_ipv4_5tuple, actions, &error);
632         if (ret) {
633                 printf("table entry validate failed ipv4_proto = %u\n",
634                         ipv4_proto);
635                 return ret;
636         }
637
638         rule = rte_flow_classify_table_entry_add(
639                         cls_app->cls, &attr, pattern_ipv4_5tuple,
640                         actions, &key_found, &error);
641         if (rule == NULL) {
642                 printf("table entry add failed ipv4_proto = %u\n",
643                         ipv4_proto);
644                 ret = -1;
645                 return ret;
646         }
647
648         rules[num_classify_rules] = rule;
649         num_classify_rules++;
650         return 0;
651 }
652
653 static int
654 add_rules(const char *rule_path, struct flow_classifier *cls_app)
655 {
656         FILE *fh;
657         char buff[LINE_MAX];
658         unsigned int i = 0;
659         unsigned int total_num = 0;
660         struct rte_eth_ntuple_filter ntuple_filter;
661         int ret;
662
663         fh = fopen(rule_path, "rb");
664         if (fh == NULL)
665                 rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,
666                         rule_path);
667
668         ret = fseek(fh, 0, SEEK_SET);
669         if (ret)
670                 rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,
671                         ret);
672
673         i = 0;
674         while (fgets(buff, LINE_MAX, fh) != NULL) {
675                 i++;
676
677                 if (is_bypass_line(buff))
678                         continue;
679
680                 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
681                         printf("\nINFO: classify rule capacity %d reached\n",
682                                 total_num);
683                         break;
684                 }
685
686                 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
687                         rte_exit(EXIT_FAILURE,
688                                 "%s Line %u: parse rules error\n",
689                                 rule_path, i);
690
691                 if (add_classify_rule(&ntuple_filter, cls_app) != 0)
692                         rte_exit(EXIT_FAILURE, "add rule error\n");
693
694                 total_num++;
695         }
696
697         fclose(fh);
698         return 0;
699 }
700
701 /* display usage */
702 static void
703 print_usage(const char *prgname)
704 {
705         printf("%s usage:\n", prgname);
706         printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");
707         printf("specify the ipv4 rules file.\n");
708         printf("Each rule occupies one line in the file.\n");
709 }
710
711 /* Parse the argument given in the command line of the application */
712 static int
713 parse_args(int argc, char **argv)
714 {
715         int opt, ret;
716         char **argvopt;
717         int option_index;
718         char *prgname = argv[0];
719         static struct option lgopts[] = {
720                 {OPTION_RULE_IPV4, 1, 0, 0},
721                 {NULL, 0, 0, 0}
722         };
723
724         argvopt = argv;
725
726         while ((opt = getopt_long(argc, argvopt, "",
727                                 lgopts, &option_index)) != EOF) {
728
729                 switch (opt) {
730                 /* long options */
731                 case 0:
732                         if (!strncmp(lgopts[option_index].name,
733                                         OPTION_RULE_IPV4,
734                                         sizeof(OPTION_RULE_IPV4)))
735                                 parm_config.rule_ipv4_name = optarg;
736                         break;
737                 default:
738                         print_usage(prgname);
739                         return -1;
740                 }
741         }
742
743         if (optind >= 0)
744                 argv[optind-1] = prgname;
745
746         ret = optind-1;
747         optind = 1; /* reset getopt lib */
748         return ret;
749 }
750
751 /*
752  * The main function, which does initialization and calls the lcore_main
753  * function.
754  */
755 int
756 main(int argc, char *argv[])
757 {
758         struct rte_mempool *mbuf_pool;
759         uint16_t nb_ports;
760         uint16_t portid;
761         int ret;
762         int socket_id;
763         struct rte_table_acl_params table_acl_params;
764         struct rte_flow_classify_table_params cls_table_params;
765         struct flow_classifier *cls_app;
766         struct rte_flow_classifier_params cls_params;
767         uint32_t size;
768
769         /* Initialize the Environment Abstraction Layer (EAL). */
770         ret = rte_eal_init(argc, argv);
771         if (ret < 0)
772                 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
773
774         argc -= ret;
775         argv += ret;
776
777         /* parse application arguments (after the EAL ones) */
778         ret = parse_args(argc, argv);
779         if (ret < 0)
780                 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");
781
782         /* Check that there is an even number of ports to send/receive on. */
783         nb_ports = rte_eth_dev_count_avail();
784         if (nb_ports < 2 || (nb_ports & 1))
785                 rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");
786
787         /* Creates a new mempool in memory to hold the mbufs. */
788         mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
789                 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
790
791         if (mbuf_pool == NULL)
792                 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
793
794         /* Initialize all ports. */
795         RTE_ETH_FOREACH_DEV(portid)
796                 if (port_init(portid, mbuf_pool) != 0)
797                         rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
798                                         portid);
799
800         if (rte_lcore_count() > 1)
801                 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
802
803         socket_id = rte_eth_dev_socket_id(0);
804
805         /* Memory allocation */
806         size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
807         cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
808         if (cls_app == NULL)
809                 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");
810
811         cls_params.name = "flow_classifier";
812         cls_params.socket_id = socket_id;
813
814         cls_app->cls = rte_flow_classifier_create(&cls_params);
815         if (cls_app->cls == NULL) {
816                 rte_free(cls_app);
817                 rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
818         }
819
820         /* initialise ACL table params */
821         table_acl_params.name = "table_acl_ipv4_5tuple";
822         table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
823         table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
824         memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));
825
826         /* initialise table create params */
827         cls_table_params.ops = &rte_table_acl_ops;
828         cls_table_params.arg_create = &table_acl_params;
829         cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;
830
831         ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
832         if (ret) {
833                 rte_flow_classifier_free(cls_app->cls);
834                 rte_free(cls_app);
835                 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
836         }
837
838         /* read file of IPv4 5 tuple rules and initialize parameters
839          * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
840          * API's.
841          */
842         if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
843                 rte_flow_classifier_free(cls_app->cls);
844                 rte_free(cls_app);
845                 rte_exit(EXIT_FAILURE, "Failed to add rules\n");
846         }
847
848         /* Call lcore_main on the master core only. */
849         lcore_main(cls_app);
850
851         return 0;
852 }