1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017 Intel Corporation
10 #include <rte_ethdev.h>
11 #include <rte_cycles.h>
12 #include <rte_lcore.h>
15 #include <rte_flow_classify.h>
16 #include <rte_table_acl.h>
18 #define RX_RING_SIZE 1024
19 #define TX_RING_SIZE 1024
21 #define NUM_MBUFS 8191
22 #define MBUF_CACHE_SIZE 250
25 #define MAX_NUM_CLASSIFY 30
26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91
27 #define FLOW_CLASSIFY_MAX_PRIORITY 8
28 #define FLOW_CLASSIFIER_NAME_SIZE 64
30 #define COMMENT_LEAD_CHAR ('#')
31 #define OPTION_RULE_IPV4 "rule_ipv4"
32 #define RTE_LOGTYPE_FLOW_CLASSIFY RTE_LOGTYPE_USER3
33 #define flow_classify_log(format, ...) \
34 RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)
36 #define uint32_t_to_char(ip, a, b, c, d) do {\
37 *a = (unsigned char)(ip >> 24 & 0xff);\
38 *b = (unsigned char)(ip >> 16 & 0xff);\
39 *c = (unsigned char)(ip >> 8 & 0xff);\
40 *d = (unsigned char)(ip & 0xff);\
58 const char *rule_ipv4_name;
60 const char cb_port_delim[] = ":";
62 static const struct rte_eth_conf port_conf_default = {
64 .max_rx_pkt_len = ETHER_MAX_LEN,
68 struct flow_classifier {
69 struct rte_flow_classifier *cls;
72 struct flow_classifier_acl {
73 struct flow_classifier cls;
74 } __rte_cache_aligned;
76 /* ACL field definitions for IPv4 5 tuple rule */
94 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
95 /* first input field - always one byte long. */
97 .type = RTE_ACL_FIELD_TYPE_BITMASK,
98 .size = sizeof(uint8_t),
99 .field_index = PROTO_FIELD_IPV4,
100 .input_index = PROTO_INPUT_IPV4,
101 .offset = sizeof(struct rte_ether_hdr) +
102 offsetof(struct ipv4_hdr, next_proto_id),
104 /* next input field (IPv4 source address) - 4 consecutive bytes. */
106 /* rte_flow uses a bit mask for IPv4 addresses */
107 .type = RTE_ACL_FIELD_TYPE_BITMASK,
108 .size = sizeof(uint32_t),
109 .field_index = SRC_FIELD_IPV4,
110 .input_index = SRC_INPUT_IPV4,
111 .offset = sizeof(struct rte_ether_hdr) +
112 offsetof(struct ipv4_hdr, src_addr),
114 /* next input field (IPv4 destination address) - 4 consecutive bytes. */
116 /* rte_flow uses a bit mask for IPv4 addresses */
117 .type = RTE_ACL_FIELD_TYPE_BITMASK,
118 .size = sizeof(uint32_t),
119 .field_index = DST_FIELD_IPV4,
120 .input_index = DST_INPUT_IPV4,
121 .offset = sizeof(struct rte_ether_hdr) +
122 offsetof(struct ipv4_hdr, dst_addr),
125 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
126 * They share the same input index.
129 /* rte_flow uses a bit mask for protocol ports */
130 .type = RTE_ACL_FIELD_TYPE_BITMASK,
131 .size = sizeof(uint16_t),
132 .field_index = SRCP_FIELD_IPV4,
133 .input_index = SRCP_DESTP_INPUT_IPV4,
134 .offset = sizeof(struct rte_ether_hdr) +
135 sizeof(struct ipv4_hdr) +
136 offsetof(struct tcp_hdr, src_port),
139 /* rte_flow uses a bit mask for protocol ports */
140 .type = RTE_ACL_FIELD_TYPE_BITMASK,
141 .size = sizeof(uint16_t),
142 .field_index = DSTP_FIELD_IPV4,
143 .input_index = SRCP_DESTP_INPUT_IPV4,
144 .offset = sizeof(struct rte_ether_hdr) +
145 sizeof(struct ipv4_hdr) +
146 offsetof(struct tcp_hdr, dst_port),
150 /* flow classify data */
151 static int num_classify_rules;
152 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
153 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
154 static struct rte_flow_classify_stats classify_stats = {
155 .stats = (void **)&ntuple_stats
158 /* parameters for rte_flow_classify_validate and
159 * rte_flow_classify_table_entry_add functions
162 static struct rte_flow_item eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
164 static struct rte_flow_item end_item = { RTE_FLOW_ITEM_TYPE_END,
168 * "actions count / end"
170 struct rte_flow_query_count count = {
177 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT,
179 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};
180 static struct rte_flow_action actions[2];
182 /* sample attributes */
183 static struct rte_flow_attr attr;
185 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */
188 * Initializes a given port using global settings and with the RX buffers
189 * coming from the mbuf_pool passed as a parameter.
192 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
194 struct rte_eth_conf port_conf = port_conf_default;
195 struct rte_ether_addr addr;
196 const uint16_t rx_rings = 1, tx_rings = 1;
199 struct rte_eth_dev_info dev_info;
200 struct rte_eth_txconf txconf;
202 if (!rte_eth_dev_is_valid_port(port))
205 rte_eth_dev_info_get(port, &dev_info);
206 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
207 port_conf.txmode.offloads |=
208 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
210 /* Configure the Ethernet device. */
211 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
215 /* Allocate and set up 1 RX queue per Ethernet port. */
216 for (q = 0; q < rx_rings; q++) {
217 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
218 rte_eth_dev_socket_id(port), NULL, mbuf_pool);
223 txconf = dev_info.default_txconf;
224 txconf.offloads = port_conf.txmode.offloads;
225 /* Allocate and set up 1 TX queue per Ethernet port. */
226 for (q = 0; q < tx_rings; q++) {
227 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
228 rte_eth_dev_socket_id(port), &txconf);
233 /* Start the Ethernet port. */
234 retval = rte_eth_dev_start(port);
238 /* Display the port MAC address. */
239 rte_eth_macaddr_get(port, &addr);
240 printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
241 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
243 addr.addr_bytes[0], addr.addr_bytes[1],
244 addr.addr_bytes[2], addr.addr_bytes[3],
245 addr.addr_bytes[4], addr.addr_bytes[5]);
247 /* Enable RX in promiscuous mode for the Ethernet device. */
248 rte_eth_promiscuous_enable(port);
254 * The lcore main. This is the main thread that does the work, reading from
255 * an input port classifying the packets and writing to an output port.
257 static __attribute__((noreturn)) void
258 lcore_main(struct flow_classifier *cls_app)
264 ret = rte_flow_classify_table_entry_delete(cls_app->cls,
267 printf("table_entry_delete failed [7] %d\n\n", ret);
269 printf("table_entry_delete succeeded [7]\n\n");
272 * Check that the port is on the same NUMA node as the polling thread
273 * for best performance.
275 RTE_ETH_FOREACH_DEV(port)
276 if (rte_eth_dev_socket_id(port) > 0 &&
277 rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
279 printf("WARNING: port %u is on remote NUMA node\n",
281 printf("to polling thread.\n");
282 printf("Performance will not be optimal.\n");
284 printf("\nCore %u forwarding packets. ", rte_lcore_id());
285 printf("[Ctrl+C to quit]\n");
287 /* Run until the application is quit or killed. */
290 * Receive packets on a port, classify them and forward them
291 * on the paired port.
292 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
294 RTE_ETH_FOREACH_DEV(port) {
295 /* Get burst of RX packets, from first port of pair. */
296 struct rte_mbuf *bufs[BURST_SIZE];
297 const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
300 if (unlikely(nb_rx == 0))
303 for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
305 ret = rte_flow_classifier_query(
307 bufs, nb_rx, rules[i],
311 "rule [%d] query failed ret [%d]\n\n",
315 "rule[%d] count=%"PRIu64"\n",
316 i, ntuple_stats.counter1);
318 printf("proto = %d\n",
319 ntuple_stats.ipv4_5tuple.proto);
324 /* Send burst of TX packets, to second port of pair. */
325 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
328 /* Free any unsent packets. */
329 if (unlikely(nb_tx < nb_rx)) {
332 for (buf = nb_tx; buf < nb_rx; buf++)
333 rte_pktmbuf_free(bufs[buf]);
340 * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
342 * <src_ipv4_addr>'/'<masklen> <space> \
343 * <dst_ipv4_addr>'/'<masklen> <space> \
344 * <src_port> <space> ":" <src_port_mask> <space> \
345 * <dst_port> <space> ":" <dst_port_mask> <space> \
346 * <proto>'/'<proto_mask> <space> \
351 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
358 val = strtoul(*in, &end, base);
359 if (errno != 0 || end[0] != dlm || val > lim)
367 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
369 uint32_t a, b, c, d, m;
371 if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
373 if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
375 if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
377 if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
379 if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
382 addr[0] = IPv4(a, b, c, d);
388 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
391 char *s, *sp, *in[CB_FLD_NUM];
392 static const char *dlm = " \t\n";
393 int dim = CB_FLD_NUM;
397 for (i = 0; i != dim; i++, s = NULL) {
398 in[i] = strtok_r(s, dlm, &sp);
403 ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
404 &ntuple_filter->src_ip,
405 &ntuple_filter->src_ip_mask);
407 flow_classify_log("failed to read source address/mask: %s\n",
408 in[CB_FLD_SRC_ADDR]);
412 ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],
413 &ntuple_filter->dst_ip,
414 &ntuple_filter->dst_ip_mask);
416 flow_classify_log("failed to read source address/mask: %s\n",
417 in[CB_FLD_DST_ADDR]);
421 if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
423 ntuple_filter->src_port = (uint16_t)temp;
425 if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
426 sizeof(cb_port_delim)) != 0)
429 if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
431 ntuple_filter->src_port_mask = (uint16_t)temp;
433 if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
435 ntuple_filter->dst_port = (uint16_t)temp;
437 if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
438 sizeof(cb_port_delim)) != 0)
441 if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
443 ntuple_filter->dst_port_mask = (uint16_t)temp;
445 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
447 ntuple_filter->proto = (uint8_t)temp;
449 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
451 ntuple_filter->proto_mask = (uint8_t)temp;
453 if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
455 ntuple_filter->priority = (uint16_t)temp;
456 if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
462 /* Bypass comment and empty lines */
464 is_bypass_line(char *buff)
469 if (buff[0] == COMMENT_LEAD_CHAR)
472 while (buff[i] != '\0') {
473 if (!isspace(buff[i]))
481 convert_depth_to_bitmask(uint32_t depth_val)
483 uint32_t bitmask = 0;
486 for (i = depth_val, j = 0; i > 0; i--, j++)
487 bitmask |= (1 << (31 - j));
492 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,
493 struct flow_classifier *cls_app)
497 struct rte_flow_error error;
498 struct rte_flow_item_ipv4 ipv4_spec;
499 struct rte_flow_item_ipv4 ipv4_mask;
500 struct rte_flow_item ipv4_udp_item;
501 struct rte_flow_item ipv4_tcp_item;
502 struct rte_flow_item ipv4_sctp_item;
503 struct rte_flow_item_udp udp_spec;
504 struct rte_flow_item_udp udp_mask;
505 struct rte_flow_item udp_item;
506 struct rte_flow_item_tcp tcp_spec;
507 struct rte_flow_item_tcp tcp_mask;
508 struct rte_flow_item tcp_item;
509 struct rte_flow_item_sctp sctp_spec;
510 struct rte_flow_item_sctp sctp_mask;
511 struct rte_flow_item sctp_item;
512 struct rte_flow_item pattern_ipv4_5tuple[4];
513 struct rte_flow_classify_rule *rule;
516 if (num_classify_rules >= MAX_NUM_CLASSIFY) {
518 "\nINFO: classify rule capacity %d reached\n",
523 /* set up parameters for validate and add */
524 memset(&ipv4_spec, 0, sizeof(ipv4_spec));
525 ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;
526 ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;
527 ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;
528 ipv4_proto = ipv4_spec.hdr.next_proto_id;
530 memset(&ipv4_mask, 0, sizeof(ipv4_mask));
531 ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;
532 ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
533 ipv4_mask.hdr.src_addr =
534 convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
535 ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;
536 ipv4_mask.hdr.dst_addr =
537 convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);
539 switch (ipv4_proto) {
541 ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
542 ipv4_udp_item.spec = &ipv4_spec;
543 ipv4_udp_item.mask = &ipv4_mask;
544 ipv4_udp_item.last = NULL;
546 udp_spec.hdr.src_port = ntuple_filter->src_port;
547 udp_spec.hdr.dst_port = ntuple_filter->dst_port;
548 udp_spec.hdr.dgram_len = 0;
549 udp_spec.hdr.dgram_cksum = 0;
551 udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
552 udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
553 udp_mask.hdr.dgram_len = 0;
554 udp_mask.hdr.dgram_cksum = 0;
556 udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
557 udp_item.spec = &udp_spec;
558 udp_item.mask = &udp_mask;
559 udp_item.last = NULL;
561 attr.priority = ntuple_filter->priority;
562 pattern_ipv4_5tuple[1] = ipv4_udp_item;
563 pattern_ipv4_5tuple[2] = udp_item;
566 ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
567 ipv4_tcp_item.spec = &ipv4_spec;
568 ipv4_tcp_item.mask = &ipv4_mask;
569 ipv4_tcp_item.last = NULL;
571 memset(&tcp_spec, 0, sizeof(tcp_spec));
572 tcp_spec.hdr.src_port = ntuple_filter->src_port;
573 tcp_spec.hdr.dst_port = ntuple_filter->dst_port;
575 memset(&tcp_mask, 0, sizeof(tcp_mask));
576 tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
577 tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
579 tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
580 tcp_item.spec = &tcp_spec;
581 tcp_item.mask = &tcp_mask;
582 tcp_item.last = NULL;
584 attr.priority = ntuple_filter->priority;
585 pattern_ipv4_5tuple[1] = ipv4_tcp_item;
586 pattern_ipv4_5tuple[2] = tcp_item;
589 ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
590 ipv4_sctp_item.spec = &ipv4_spec;
591 ipv4_sctp_item.mask = &ipv4_mask;
592 ipv4_sctp_item.last = NULL;
594 sctp_spec.hdr.src_port = ntuple_filter->src_port;
595 sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
596 sctp_spec.hdr.cksum = 0;
597 sctp_spec.hdr.tag = 0;
599 sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
600 sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
601 sctp_mask.hdr.cksum = 0;
602 sctp_mask.hdr.tag = 0;
604 sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
605 sctp_item.spec = &sctp_spec;
606 sctp_item.mask = &sctp_mask;
607 sctp_item.last = NULL;
609 attr.priority = ntuple_filter->priority;
610 pattern_ipv4_5tuple[1] = ipv4_sctp_item;
611 pattern_ipv4_5tuple[2] = sctp_item;
618 pattern_ipv4_5tuple[0] = eth_item;
619 pattern_ipv4_5tuple[3] = end_item;
620 actions[0] = count_action;
621 actions[1] = end_action;
623 /* Validate and add rule */
624 ret = rte_flow_classify_validate(cls_app->cls, &attr,
625 pattern_ipv4_5tuple, actions, &error);
627 printf("table entry validate failed ipv4_proto = %u\n",
632 rule = rte_flow_classify_table_entry_add(
633 cls_app->cls, &attr, pattern_ipv4_5tuple,
634 actions, &key_found, &error);
636 printf("table entry add failed ipv4_proto = %u\n",
642 rules[num_classify_rules] = rule;
643 num_classify_rules++;
648 add_rules(const char *rule_path, struct flow_classifier *cls_app)
653 unsigned int total_num = 0;
654 struct rte_eth_ntuple_filter ntuple_filter;
657 fh = fopen(rule_path, "rb");
659 rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,
662 ret = fseek(fh, 0, SEEK_SET);
664 rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,
668 while (fgets(buff, LINE_MAX, fh) != NULL) {
671 if (is_bypass_line(buff))
674 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
675 printf("\nINFO: classify rule capacity %d reached\n",
680 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
681 rte_exit(EXIT_FAILURE,
682 "%s Line %u: parse rules error\n",
685 if (add_classify_rule(&ntuple_filter, cls_app) != 0)
686 rte_exit(EXIT_FAILURE, "add rule error\n");
697 print_usage(const char *prgname)
699 printf("%s usage:\n", prgname);
700 printf("[EAL options] -- --"OPTION_RULE_IPV4"=FILE: ");
701 printf("specify the ipv4 rules file.\n");
702 printf("Each rule occupies one line in the file.\n");
705 /* Parse the argument given in the command line of the application */
707 parse_args(int argc, char **argv)
712 char *prgname = argv[0];
713 static struct option lgopts[] = {
714 {OPTION_RULE_IPV4, 1, 0, 0},
720 while ((opt = getopt_long(argc, argvopt, "",
721 lgopts, &option_index)) != EOF) {
726 if (!strncmp(lgopts[option_index].name,
728 sizeof(OPTION_RULE_IPV4)))
729 parm_config.rule_ipv4_name = optarg;
732 print_usage(prgname);
738 argv[optind-1] = prgname;
741 optind = 1; /* reset getopt lib */
746 * The main function, which does initialization and calls the lcore_main
750 main(int argc, char *argv[])
752 struct rte_mempool *mbuf_pool;
757 struct rte_table_acl_params table_acl_params;
758 struct rte_flow_classify_table_params cls_table_params;
759 struct flow_classifier *cls_app;
760 struct rte_flow_classifier_params cls_params;
763 /* Initialize the Environment Abstraction Layer (EAL). */
764 ret = rte_eal_init(argc, argv);
766 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
771 /* parse application arguments (after the EAL ones) */
772 ret = parse_args(argc, argv);
774 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");
776 /* Check that there is an even number of ports to send/receive on. */
777 nb_ports = rte_eth_dev_count_avail();
778 if (nb_ports < 2 || (nb_ports & 1))
779 rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");
781 /* Creates a new mempool in memory to hold the mbufs. */
782 mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
783 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
785 if (mbuf_pool == NULL)
786 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
788 /* Initialize all ports. */
789 RTE_ETH_FOREACH_DEV(portid)
790 if (port_init(portid, mbuf_pool) != 0)
791 rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
794 if (rte_lcore_count() > 1)
795 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
797 socket_id = rte_eth_dev_socket_id(0);
799 /* Memory allocation */
800 size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
801 cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
803 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");
805 cls_params.name = "flow_classifier";
806 cls_params.socket_id = socket_id;
808 cls_app->cls = rte_flow_classifier_create(&cls_params);
809 if (cls_app->cls == NULL) {
811 rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
814 /* initialise ACL table params */
815 table_acl_params.name = "table_acl_ipv4_5tuple";
816 table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
817 table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
818 memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));
820 /* initialise table create params */
821 cls_table_params.ops = &rte_table_acl_ops;
822 cls_table_params.arg_create = &table_acl_params;
823 cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;
825 ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
827 rte_flow_classifier_free(cls_app->cls);
829 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
832 /* read file of IPv4 5 tuple rules and initialize parameters
833 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
836 if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
837 rte_flow_classifier_free(cls_app->cls);
839 rte_exit(EXIT_FAILURE, "Failed to add rules\n");
842 /* Call lcore_main on the master core only. */