examples/ip_frag: fix Tx un-fragmented packets
[dpdk.git] / examples / ip_fragmentation / main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <sys/param.h>
11 #include <string.h>
12 #include <sys/queue.h>
13 #include <stdarg.h>
14 #include <errno.h>
15 #include <getopt.h>
16
17 #include <rte_common.h>
18 #include <rte_byteorder.h>
19 #include <rte_log.h>
20 #include <rte_memory.h>
21 #include <rte_memcpy.h>
22 #include <rte_eal.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
36 #include <rte_mbuf.h>
37 #include <rte_lpm.h>
38 #include <rte_lpm6.h>
39 #include <rte_ip.h>
40 #include <rte_string_fns.h>
41
42 #include <rte_ip_frag.h>
43
44 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
45
46 /* allow max jumbo frame 9.5 KB */
47 #define JUMBO_FRAME_MAX_SIZE    0x2600
48
49 #define ROUNDUP_DIV(a, b)       (((a) + (b) - 1) / (b))
50
51 /*
52  * Default byte size for the IPv6 Maximum Transfer Unit (MTU).
53  * This value includes the size of IPv6 header.
54  */
55 #define IPV4_MTU_DEFAULT        RTE_ETHER_MTU
56 #define IPV6_MTU_DEFAULT        RTE_ETHER_MTU
57
58 /*
59  * The overhead from max frame size to MTU.
60  * We have to consider the max possible overhead.
61  */
62 #define MTU_OVERHEAD    \
63         (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + \
64                 2 * sizeof(struct rte_vlan_hdr))
65
66 /*
67  * Default payload in bytes for the IPv6 packet.
68  */
69 #define IPV4_DEFAULT_PAYLOAD    (IPV4_MTU_DEFAULT - sizeof(struct rte_ipv4_hdr))
70 #define IPV6_DEFAULT_PAYLOAD    (IPV6_MTU_DEFAULT - sizeof(struct rte_ipv6_hdr))
71
72 /*
73  * Max number of fragments per packet expected - defined by config file.
74  */
75 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
76
77 #define NB_MBUF   8192
78
79 #define MAX_PKT_BURST   32
80 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
81
82 /* Configure how many packets ahead to prefetch, when reading packets */
83 #define PREFETCH_OFFSET 3
84
85 /*
86  * Configurable number of RX/TX ring descriptors
87  */
88 #define RTE_TEST_RX_DESC_DEFAULT 1024
89 #define RTE_TEST_TX_DESC_DEFAULT 1024
90 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
91 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
92
93 /* ethernet addresses of ports */
94 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
95
96 #ifndef IPv4_BYTES
97 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
98 #define IPv4_BYTES(addr) \
99                 (uint8_t) (((addr) >> 24) & 0xFF),\
100                 (uint8_t) (((addr) >> 16) & 0xFF),\
101                 (uint8_t) (((addr) >> 8) & 0xFF),\
102                 (uint8_t) ((addr) & 0xFF)
103 #endif
104
105 #ifndef IPv6_BYTES
106 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
107                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
108 #define IPv6_BYTES(addr) \
109         addr[0],  addr[1], addr[2],  addr[3], \
110         addr[4],  addr[5], addr[6],  addr[7], \
111         addr[8],  addr[9], addr[10], addr[11],\
112         addr[12], addr[13],addr[14], addr[15]
113 #endif
114
115 #define IPV6_ADDR_LEN 16
116
117 /* mask of enabled ports */
118 static int enabled_port_mask = 0;
119
120 static int rx_queue_per_lcore = 1;
121
122 #define MBUF_TABLE_SIZE  (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
123
124 struct mbuf_table {
125         uint16_t len;
126         struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
127 };
128
129 struct rx_queue {
130         struct rte_mempool *direct_pool;
131         struct rte_mempool *indirect_pool;
132         struct rte_lpm *lpm;
133         struct rte_lpm6 *lpm6;
134         uint16_t portid;
135 };
136
137 #define MAX_RX_QUEUE_PER_LCORE 16
138 #define MAX_TX_QUEUE_PER_PORT 16
139 struct lcore_queue_conf {
140         uint16_t n_rx_queue;
141         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
142         struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
143         struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
144 } __rte_cache_aligned;
145 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
146
147 static struct rte_eth_conf port_conf = {
148         .rxmode = {
149                 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
150                 .split_hdr_size = 0,
151                 .offloads = (DEV_RX_OFFLOAD_CHECKSUM |
152                              DEV_RX_OFFLOAD_SCATTER |
153                              DEV_RX_OFFLOAD_JUMBO_FRAME),
154         },
155         .txmode = {
156                 .mq_mode = ETH_MQ_TX_NONE,
157                 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
158                              DEV_TX_OFFLOAD_MULTI_SEGS),
159         },
160 };
161
162 /*
163  * IPv4 forwarding table
164  */
165 struct l3fwd_ipv4_route {
166         uint32_t ip;
167         uint8_t  depth;
168         uint8_t  if_out;
169 };
170
171 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
172                 {RTE_IPV4(100,10,0,0), 16, 0},
173                 {RTE_IPV4(100,20,0,0), 16, 1},
174                 {RTE_IPV4(100,30,0,0), 16, 2},
175                 {RTE_IPV4(100,40,0,0), 16, 3},
176                 {RTE_IPV4(100,50,0,0), 16, 4},
177                 {RTE_IPV4(100,60,0,0), 16, 5},
178                 {RTE_IPV4(100,70,0,0), 16, 6},
179                 {RTE_IPV4(100,80,0,0), 16, 7},
180 };
181
182 /*
183  * IPv6 forwarding table
184  */
185
186 struct l3fwd_ipv6_route {
187         uint8_t ip[IPV6_ADDR_LEN];
188         uint8_t depth;
189         uint8_t if_out;
190 };
191
192 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
193         {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
194         {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
195         {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
196         {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
197         {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
198         {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
199         {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
200         {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
201 };
202
203 #define LPM_MAX_RULES         1024
204 #define LPM6_MAX_RULES         1024
205 #define LPM6_NUMBER_TBL8S (1 << 16)
206
207 struct rte_lpm6_config lpm6_config = {
208                 .max_rules = LPM6_MAX_RULES,
209                 .number_tbl8s = LPM6_NUMBER_TBL8S,
210                 .flags = 0
211 };
212
213 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
214 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
215 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
216 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
217
218 /* Send burst of packets on an output interface */
219 static inline int
220 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port)
221 {
222         struct rte_mbuf **m_table;
223         int ret;
224         uint16_t queueid;
225
226         queueid = qconf->tx_queue_id[port];
227         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
228
229         ret = rte_eth_tx_burst(port, queueid, m_table, n);
230         if (unlikely(ret < n)) {
231                 do {
232                         rte_pktmbuf_free(m_table[ret]);
233                 } while (++ret < n);
234         }
235
236         return 0;
237 }
238
239 static inline void
240 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf,
241                 uint8_t queueid, uint16_t port_in)
242 {
243         struct rx_queue *rxq;
244         uint32_t i, len, next_hop;
245         uint8_t ipv6;
246         uint16_t port_out;
247         int32_t len2;
248         uint64_t ol_flags;
249
250         ipv6 = 0;
251         ol_flags = 0;
252         rxq = &qconf->rx_queue_list[queueid];
253
254         /* by default, send everything back to the source port */
255         port_out = port_in;
256
257         /* Remove the Ethernet header and trailer from the input packet */
258         rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr));
259
260         /* Build transmission burst */
261         len = qconf->tx_mbufs[port_out].len;
262
263         /* if this is an IPv4 packet */
264         if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
265                 struct rte_ipv4_hdr *ip_hdr;
266                 uint32_t ip_dst;
267                 /* Read the lookup key (i.e. ip_dst) from the input packet */
268                 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv4_hdr *);
269                 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
270
271                 /* Find destination port */
272                 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
273                                 (enabled_port_mask & 1 << next_hop) != 0) {
274                         port_out = next_hop;
275
276                         /* Build transmission burst for new port */
277                         len = qconf->tx_mbufs[port_out].len;
278                 }
279
280                 /* if we don't need to do any fragmentation */
281                 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) {
282                         qconf->tx_mbufs[port_out].m_table[len] = m;
283                         len2 = 1;
284                 } else {
285                         len2 = rte_ipv4_fragment_packet(m,
286                                 &qconf->tx_mbufs[port_out].m_table[len],
287                                 (uint16_t)(MBUF_TABLE_SIZE - len),
288                                 IPV4_MTU_DEFAULT,
289                                 rxq->direct_pool, rxq->indirect_pool);
290
291                         /* Free input packet */
292                         rte_pktmbuf_free(m);
293
294                         /* request HW to regenerate IPv4 cksum */
295                         ol_flags |= (PKT_TX_IPV4 | PKT_TX_IP_CKSUM);
296
297                         /* If we fail to fragment the packet */
298                         if (unlikely (len2 < 0))
299                                 return;
300                 }
301         } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
302                 /* if this is an IPv6 packet */
303                 struct rte_ipv6_hdr *ip_hdr;
304
305                 ipv6 = 1;
306
307                 /* Read the lookup key (i.e. ip_dst) from the input packet */
308                 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv6_hdr *);
309
310                 /* Find destination port */
311                 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr,
312                                                 &next_hop) == 0 &&
313                                 (enabled_port_mask & 1 << next_hop) != 0) {
314                         port_out = next_hop;
315
316                         /* Build transmission burst for new port */
317                         len = qconf->tx_mbufs[port_out].len;
318                 }
319
320                 /* if we don't need to do any fragmentation */
321                 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) {
322                         qconf->tx_mbufs[port_out].m_table[len] = m;
323                         len2 = 1;
324                 } else {
325                         len2 = rte_ipv6_fragment_packet(m,
326                                 &qconf->tx_mbufs[port_out].m_table[len],
327                                 (uint16_t)(MBUF_TABLE_SIZE - len),
328                                 IPV6_MTU_DEFAULT,
329                                 rxq->direct_pool, rxq->indirect_pool);
330
331                         /* Free input packet */
332                         rte_pktmbuf_free(m);
333
334                         /* If we fail to fragment the packet */
335                         if (unlikely (len2 < 0))
336                                 return;
337                 }
338         }
339         /* else, just forward the packet */
340         else {
341                 qconf->tx_mbufs[port_out].m_table[len] = m;
342                 len2 = 1;
343         }
344
345         for (i = len; i < len + len2; i ++) {
346                 void *d_addr_bytes;
347
348                 m = qconf->tx_mbufs[port_out].m_table[i];
349                 struct rte_ether_hdr *eth_hdr = (struct rte_ether_hdr *)
350                         rte_pktmbuf_prepend(m,
351                                 (uint16_t)sizeof(struct rte_ether_hdr));
352                 if (eth_hdr == NULL) {
353                         rte_panic("No headroom in mbuf.\n");
354                 }
355
356                 m->ol_flags |= ol_flags;
357                 m->l2_len = sizeof(struct rte_ether_hdr);
358
359                 /* 02:00:00:00:00:xx */
360                 d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
361                 *((uint64_t *)d_addr_bytes) = 0x000000000002 +
362                         ((uint64_t)port_out << 40);
363
364                 /* src addr */
365                 rte_ether_addr_copy(&ports_eth_addr[port_out],
366                                 &eth_hdr->s_addr);
367                 if (ipv6) {
368                         eth_hdr->ether_type =
369                                 rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV6);
370                 } else {
371                         eth_hdr->ether_type =
372                                 rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4);
373                 }
374         }
375
376         len += len2;
377
378         if (likely(len < MAX_PKT_BURST)) {
379                 qconf->tx_mbufs[port_out].len = (uint16_t)len;
380                 return;
381         }
382
383         /* Transmit packets */
384         send_burst(qconf, (uint16_t)len, port_out);
385         qconf->tx_mbufs[port_out].len = 0;
386 }
387
388 /* main processing loop */
389 static int
390 main_loop(__attribute__((unused)) void *dummy)
391 {
392         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
393         unsigned lcore_id;
394         uint64_t prev_tsc, diff_tsc, cur_tsc;
395         int i, j, nb_rx;
396         uint16_t portid;
397         struct lcore_queue_conf *qconf;
398         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
399
400         prev_tsc = 0;
401
402         lcore_id = rte_lcore_id();
403         qconf = &lcore_queue_conf[lcore_id];
404
405         if (qconf->n_rx_queue == 0) {
406                 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id);
407                 return 0;
408         }
409
410         RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id);
411
412         for (i = 0; i < qconf->n_rx_queue; i++) {
413
414                 portid = qconf->rx_queue_list[i].portid;
415                 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id,
416                                 portid);
417         }
418
419         while (1) {
420
421                 cur_tsc = rte_rdtsc();
422
423                 /*
424                  * TX burst queue drain
425                  */
426                 diff_tsc = cur_tsc - prev_tsc;
427                 if (unlikely(diff_tsc > drain_tsc)) {
428
429                         /*
430                          * This could be optimized (use queueid instead of
431                          * portid), but it is not called so often
432                          */
433                         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
434                                 if (qconf->tx_mbufs[portid].len == 0)
435                                         continue;
436                                 send_burst(&lcore_queue_conf[lcore_id],
437                                            qconf->tx_mbufs[portid].len,
438                                            portid);
439                                 qconf->tx_mbufs[portid].len = 0;
440                         }
441
442                         prev_tsc = cur_tsc;
443                 }
444
445                 /*
446                  * Read packet from RX queues
447                  */
448                 for (i = 0; i < qconf->n_rx_queue; i++) {
449
450                         portid = qconf->rx_queue_list[i].portid;
451                         nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
452                                                  MAX_PKT_BURST);
453
454                         /* Prefetch first packets */
455                         for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
456                                 rte_prefetch0(rte_pktmbuf_mtod(
457                                                 pkts_burst[j], void *));
458                         }
459
460                         /* Prefetch and forward already prefetched packets */
461                         for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
462                                 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
463                                                 j + PREFETCH_OFFSET], void *));
464                                 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
465                         }
466
467                         /* Forward remaining prefetched packets */
468                         for (; j < nb_rx; j++) {
469                                 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
470                         }
471                 }
472         }
473 }
474
475 /* display usage */
476 static void
477 print_usage(const char *prgname)
478 {
479         printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
480                "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
481                "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
482                prgname);
483 }
484
485 static int
486 parse_portmask(const char *portmask)
487 {
488         char *end = NULL;
489         unsigned long pm;
490
491         /* parse hexadecimal string */
492         pm = strtoul(portmask, &end, 16);
493         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
494                 return -1;
495
496         if (pm == 0)
497                 return -1;
498
499         return pm;
500 }
501
502 static int
503 parse_nqueue(const char *q_arg)
504 {
505         char *end = NULL;
506         unsigned long n;
507
508         /* parse hexadecimal string */
509         n = strtoul(q_arg, &end, 10);
510         if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
511                 return -1;
512         if (n == 0)
513                 return -1;
514         if (n >= MAX_RX_QUEUE_PER_LCORE)
515                 return -1;
516
517         return n;
518 }
519
520 /* Parse the argument given in the command line of the application */
521 static int
522 parse_args(int argc, char **argv)
523 {
524         int opt, ret;
525         char **argvopt;
526         int option_index;
527         char *prgname = argv[0];
528         static struct option lgopts[] = {
529                 {NULL, 0, 0, 0}
530         };
531
532         argvopt = argv;
533
534         while ((opt = getopt_long(argc, argvopt, "p:q:",
535                                   lgopts, &option_index)) != EOF) {
536
537                 switch (opt) {
538                 /* portmask */
539                 case 'p':
540                         enabled_port_mask = parse_portmask(optarg);
541                         if (enabled_port_mask < 0) {
542                                 printf("invalid portmask\n");
543                                 print_usage(prgname);
544                                 return -1;
545                         }
546                         break;
547
548                 /* nqueue */
549                 case 'q':
550                         rx_queue_per_lcore = parse_nqueue(optarg);
551                         if (rx_queue_per_lcore < 0) {
552                                 printf("invalid queue number\n");
553                                 print_usage(prgname);
554                                 return -1;
555                         }
556                         break;
557
558                 /* long options */
559                 case 0:
560                         print_usage(prgname);
561                         return -1;
562
563                 default:
564                         print_usage(prgname);
565                         return -1;
566                 }
567         }
568
569         if (enabled_port_mask == 0) {
570                 printf("portmask not specified\n");
571                 print_usage(prgname);
572                 return -1;
573         }
574
575         if (optind >= 0)
576                 argv[optind-1] = prgname;
577
578         ret = optind-1;
579         optind = 1; /* reset getopt lib */
580         return ret;
581 }
582
583 static void
584 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
585 {
586         char buf[RTE_ETHER_ADDR_FMT_SIZE];
587         rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
588         printf("%s%s", name, buf);
589 }
590
591 /* Check the link status of all ports in up to 9s, and print them finally */
592 static void
593 check_all_ports_link_status(uint32_t port_mask)
594 {
595 #define CHECK_INTERVAL 100 /* 100ms */
596 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
597         uint16_t portid;
598         uint8_t count, all_ports_up, print_flag = 0;
599         struct rte_eth_link link;
600
601         printf("\nChecking link status");
602         fflush(stdout);
603         for (count = 0; count <= MAX_CHECK_TIME; count++) {
604                 all_ports_up = 1;
605                 RTE_ETH_FOREACH_DEV(portid) {
606                         if ((port_mask & (1 << portid)) == 0)
607                                 continue;
608                         memset(&link, 0, sizeof(link));
609                         rte_eth_link_get_nowait(portid, &link);
610                         /* print link status if flag set */
611                         if (print_flag == 1) {
612                                 if (link.link_status)
613                                         printf(
614                                         "Port%d Link Up .Speed %u Mbps - %s\n",
615                                                 portid, link.link_speed,
616                                 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
617                                         ("full-duplex") : ("half-duplex\n"));
618                                 else
619                                         printf("Port %d Link Down\n", portid);
620                                 continue;
621                         }
622                         /* clear all_ports_up flag if any link down */
623                         if (link.link_status == ETH_LINK_DOWN) {
624                                 all_ports_up = 0;
625                                 break;
626                         }
627                 }
628                 /* after finally printing all link status, get out */
629                 if (print_flag == 1)
630                         break;
631
632                 if (all_ports_up == 0) {
633                         printf(".");
634                         fflush(stdout);
635                         rte_delay_ms(CHECK_INTERVAL);
636                 }
637
638                 /* set the print_flag if all ports up or timeout */
639                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
640                         print_flag = 1;
641                         printf("\ndone\n");
642                 }
643         }
644 }
645
646 /* Check L3 packet type detection capablity of the NIC port */
647 static int
648 check_ptype(int portid)
649 {
650         int i, ret;
651         int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0;
652         uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
653
654         ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
655         if (ret <= 0)
656                 return 0;
657
658         uint32_t ptypes[ret];
659
660         ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
661         for (i = 0; i < ret; ++i) {
662                 if (ptypes[i] & RTE_PTYPE_L3_IPV4)
663                         ptype_l3_ipv4 = 1;
664                 if (ptypes[i] & RTE_PTYPE_L3_IPV6)
665                         ptype_l3_ipv6 = 1;
666         }
667
668         if (ptype_l3_ipv4 == 0)
669                 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
670
671         if (ptype_l3_ipv6 == 0)
672                 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
673
674         if (ptype_l3_ipv4 && ptype_l3_ipv6)
675                 return 1;
676
677         return 0;
678
679 }
680
681 /* Parse packet type of a packet by SW */
682 static inline void
683 parse_ptype(struct rte_mbuf *m)
684 {
685         struct rte_ether_hdr *eth_hdr;
686         uint32_t packet_type = RTE_PTYPE_UNKNOWN;
687         uint16_t ether_type;
688
689         eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
690         ether_type = eth_hdr->ether_type;
691         if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
692                 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
693         else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
694                 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
695
696         m->packet_type = packet_type;
697 }
698
699 /* callback function to detect packet type for a queue of a port */
700 static uint16_t
701 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
702                    struct rte_mbuf *pkts[], uint16_t nb_pkts,
703                    uint16_t max_pkts __rte_unused,
704                    void *user_param __rte_unused)
705 {
706         uint16_t i;
707
708         for (i = 0; i < nb_pkts; ++i)
709                 parse_ptype(pkts[i]);
710
711         return nb_pkts;
712 }
713
714 static int
715 init_routing_table(void)
716 {
717         struct rte_lpm *lpm;
718         struct rte_lpm6 *lpm6;
719         int socket, ret;
720         unsigned i;
721
722         for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
723                 if (socket_lpm[socket]) {
724                         lpm = socket_lpm[socket];
725                         /* populate the LPM table */
726                         for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
727                                 ret = rte_lpm_add(lpm,
728                                         l3fwd_ipv4_route_array[i].ip,
729                                         l3fwd_ipv4_route_array[i].depth,
730                                         l3fwd_ipv4_route_array[i].if_out);
731
732                                 if (ret < 0) {
733                                         RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
734                                                 "LPM table\n", i);
735                                         return -1;
736                                 }
737
738                                 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT
739                                                 "/%d (port %d)\n",
740                                         socket,
741                                         IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
742                                         l3fwd_ipv4_route_array[i].depth,
743                                         l3fwd_ipv4_route_array[i].if_out);
744                         }
745                 }
746
747                 if (socket_lpm6[socket]) {
748                         lpm6 = socket_lpm6[socket];
749                         /* populate the LPM6 table */
750                         for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
751                                 ret = rte_lpm6_add(lpm6,
752                                         l3fwd_ipv6_route_array[i].ip,
753                                         l3fwd_ipv6_route_array[i].depth,
754                                         l3fwd_ipv6_route_array[i].if_out);
755
756                                 if (ret < 0) {
757                                         RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
758                                                 "LPM6 table\n", i);
759                                         return -1;
760                                 }
761
762                                 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT
763                                                 "/%d (port %d)\n",
764                                         socket,
765                                         IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
766                                         l3fwd_ipv6_route_array[i].depth,
767                                         l3fwd_ipv6_route_array[i].if_out);
768                         }
769                 }
770         }
771         return 0;
772 }
773
774 static int
775 init_mem(void)
776 {
777         char buf[PATH_MAX];
778         struct rte_mempool *mp;
779         struct rte_lpm *lpm;
780         struct rte_lpm6 *lpm6;
781         struct rte_lpm_config lpm_config;
782         int socket;
783         unsigned lcore_id;
784
785         /* traverse through lcores and initialize structures on each socket */
786
787         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
788
789                 if (rte_lcore_is_enabled(lcore_id) == 0)
790                         continue;
791
792                 socket = rte_lcore_to_socket_id(lcore_id);
793
794                 if (socket == SOCKET_ID_ANY)
795                         socket = 0;
796
797                 if (socket_direct_pool[socket] == NULL) {
798                         RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n",
799                                         socket);
800                         snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
801
802                         mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32,
803                                 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket);
804                         if (mp == NULL) {
805                                 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n");
806                                 return -1;
807                         }
808                         socket_direct_pool[socket] = mp;
809                 }
810
811                 if (socket_indirect_pool[socket] == NULL) {
812                         RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n",
813                                         socket);
814                         snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
815
816                         mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0,
817                                 socket);
818                         if (mp == NULL) {
819                                 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n");
820                                 return -1;
821                         }
822                         socket_indirect_pool[socket] = mp;
823                 }
824
825                 if (socket_lpm[socket] == NULL) {
826                         RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket);
827                         snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
828
829                         lpm_config.max_rules = LPM_MAX_RULES;
830                         lpm_config.number_tbl8s = 256;
831                         lpm_config.flags = 0;
832
833                         lpm = rte_lpm_create(buf, socket, &lpm_config);
834                         if (lpm == NULL) {
835                                 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
836                                 return -1;
837                         }
838                         socket_lpm[socket] = lpm;
839                 }
840
841                 if (socket_lpm6[socket] == NULL) {
842                         RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket);
843                         snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
844
845                         lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
846                         if (lpm6 == NULL) {
847                                 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
848                                 return -1;
849                         }
850                         socket_lpm6[socket] = lpm6;
851                 }
852         }
853
854         return 0;
855 }
856
857 int
858 main(int argc, char **argv)
859 {
860         struct lcore_queue_conf *qconf;
861         struct rte_eth_dev_info dev_info;
862         struct rte_eth_txconf *txconf;
863         struct rx_queue *rxq;
864         int socket, ret;
865         uint16_t nb_ports;
866         uint16_t queueid = 0;
867         unsigned lcore_id = 0, rx_lcore_id = 0;
868         uint32_t n_tx_queue, nb_lcores;
869         uint16_t portid;
870
871         /* init EAL */
872         ret = rte_eal_init(argc, argv);
873         if (ret < 0)
874                 rte_exit(EXIT_FAILURE, "rte_eal_init failed");
875         argc -= ret;
876         argv += ret;
877
878         /* parse application arguments (after the EAL ones) */
879         ret = parse_args(argc, argv);
880         if (ret < 0)
881                 rte_exit(EXIT_FAILURE, "Invalid arguments");
882
883         nb_ports = rte_eth_dev_count_avail();
884         if (nb_ports == 0)
885                 rte_exit(EXIT_FAILURE, "No ports found!\n");
886
887         nb_lcores = rte_lcore_count();
888
889         /* initialize structures (mempools, lpm etc.) */
890         if (init_mem() < 0)
891                 rte_panic("Cannot initialize memory structures!\n");
892
893         /* check if portmask has non-existent ports */
894         if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
895                 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
896
897         /* initialize all ports */
898         RTE_ETH_FOREACH_DEV(portid) {
899                 struct rte_eth_conf local_port_conf = port_conf;
900                 struct rte_eth_rxconf rxq_conf;
901
902                 /* skip ports that are not enabled */
903                 if ((enabled_port_mask & (1 << portid)) == 0) {
904                         printf("Skipping disabled port %d\n", portid);
905                         continue;
906                 }
907
908                 qconf = &lcore_queue_conf[rx_lcore_id];
909
910                 /* limit the frame size to the maximum supported by NIC */
911                 rte_eth_dev_info_get(portid, &dev_info);
912                 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
913                     dev_info.max_rx_pktlen,
914                     local_port_conf.rxmode.max_rx_pkt_len);
915
916                 /* get the lcore_id for this port */
917                 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
918                        qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
919
920                         rx_lcore_id ++;
921                         if (rx_lcore_id >= RTE_MAX_LCORE)
922                                 rte_exit(EXIT_FAILURE, "Not enough cores\n");
923
924                         qconf = &lcore_queue_conf[rx_lcore_id];
925                 }
926
927                 socket = (int) rte_lcore_to_socket_id(rx_lcore_id);
928                 if (socket == SOCKET_ID_ANY)
929                         socket = 0;
930
931                 rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
932                 rxq->portid = portid;
933                 rxq->direct_pool = socket_direct_pool[socket];
934                 rxq->indirect_pool = socket_indirect_pool[socket];
935                 rxq->lpm = socket_lpm[socket];
936                 rxq->lpm6 = socket_lpm6[socket];
937                 qconf->n_rx_queue++;
938
939                 /* init port */
940                 printf("Initializing port %d on lcore %u...", portid,
941                        rx_lcore_id);
942                 fflush(stdout);
943
944                 n_tx_queue = nb_lcores;
945                 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
946                         n_tx_queue = MAX_TX_QUEUE_PER_PORT;
947                 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
948                         local_port_conf.txmode.offloads |=
949                                 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
950                 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
951                                             &local_port_conf);
952                 if (ret < 0) {
953                         printf("\n");
954                         rte_exit(EXIT_FAILURE, "Cannot configure device: "
955                                 "err=%d, port=%d\n",
956                                 ret, portid);
957                 }
958
959                 /* set the mtu to the maximum received packet size */
960                 ret = rte_eth_dev_set_mtu(portid,
961                         local_port_conf.rxmode.max_rx_pkt_len - MTU_OVERHEAD);
962                 if (ret < 0) {
963                         printf("\n");
964                         rte_exit(EXIT_FAILURE, "Set MTU failed: "
965                                 "err=%d, port=%d\n",
966                         ret, portid);
967                 }
968
969                 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
970                                             &nb_txd);
971                 if (ret < 0) {
972                         printf("\n");
973                         rte_exit(EXIT_FAILURE, "Cannot adjust number of "
974                                 "descriptors: err=%d, port=%d\n", ret, portid);
975                 }
976
977                 /* init one RX queue */
978                 rxq_conf = dev_info.default_rxconf;
979                 rxq_conf.offloads = local_port_conf.rxmode.offloads;
980                 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
981                                              socket, &rxq_conf,
982                                              socket_direct_pool[socket]);
983                 if (ret < 0) {
984                         printf("\n");
985                         rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
986                                 "err=%d, port=%d\n",
987                                 ret, portid);
988                 }
989
990                 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
991                 print_ethaddr(" Address:", &ports_eth_addr[portid]);
992                 printf("\n");
993
994                 /* init one TX queue per couple (lcore,port) */
995                 queueid = 0;
996                 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
997                         if (rte_lcore_is_enabled(lcore_id) == 0)
998                                 continue;
999
1000                         if (queueid >= dev_info.nb_tx_queues)
1001                                 break;
1002
1003                         socket = (int) rte_lcore_to_socket_id(lcore_id);
1004                         printf("txq=%u,%d ", lcore_id, queueid);
1005                         fflush(stdout);
1006
1007                         txconf = &dev_info.default_txconf;
1008                         txconf->offloads = local_port_conf.txmode.offloads;
1009                         ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1010                                                      socket, txconf);
1011                         if (ret < 0) {
1012                                 printf("\n");
1013                                 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1014                                         "err=%d, port=%d\n", ret, portid);
1015                         }
1016
1017                         qconf = &lcore_queue_conf[lcore_id];
1018                         qconf->tx_queue_id[portid] = queueid;
1019                         queueid++;
1020                 }
1021
1022                 printf("\n");
1023         }
1024
1025         printf("\n");
1026
1027         /* start ports */
1028         RTE_ETH_FOREACH_DEV(portid) {
1029                 if ((enabled_port_mask & (1 << portid)) == 0) {
1030                         continue;
1031                 }
1032                 /* Start device */
1033                 ret = rte_eth_dev_start(portid);
1034                 if (ret < 0)
1035                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1036                                 ret, portid);
1037
1038                 rte_eth_promiscuous_enable(portid);
1039
1040                 if (check_ptype(portid) == 0) {
1041                         rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL);
1042                         printf("Add Rx callback function to detect L3 packet type by SW :"
1043                                 " port = %d\n", portid);
1044                 }
1045         }
1046
1047         if (init_routing_table() < 0)
1048                 rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
1049
1050         check_all_ports_link_status(enabled_port_mask);
1051
1052         /* launch per-lcore init on every lcore */
1053         rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1054         RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1055                 if (rte_eal_wait_lcore(lcore_id) < 0)
1056                         return -1;
1057         }
1058
1059         return 0;
1060 }