eal: rename lcore master and slave
[dpdk.git] / examples / ipsec-secgw / ipsec-secgw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016 Intel Corporation
3  */
4
5 #include <stdbool.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <stdint.h>
9 #include <inttypes.h>
10 #include <sys/types.h>
11 #include <netinet/in.h>
12 #include <netinet/ip.h>
13 #include <netinet/ip6.h>
14 #include <string.h>
15 #include <sys/queue.h>
16 #include <stdarg.h>
17 #include <errno.h>
18 #include <signal.h>
19 #include <getopt.h>
20
21 #include <rte_common.h>
22 #include <rte_bitmap.h>
23 #include <rte_byteorder.h>
24 #include <rte_log.h>
25 #include <rte_eal.h>
26 #include <rte_launch.h>
27 #include <rte_atomic.h>
28 #include <rte_cycles.h>
29 #include <rte_prefetch.h>
30 #include <rte_lcore.h>
31 #include <rte_per_lcore.h>
32 #include <rte_branch_prediction.h>
33 #include <rte_interrupts.h>
34 #include <rte_random.h>
35 #include <rte_debug.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_mempool.h>
39 #include <rte_mbuf.h>
40 #include <rte_acl.h>
41 #include <rte_lpm.h>
42 #include <rte_lpm6.h>
43 #include <rte_hash.h>
44 #include <rte_jhash.h>
45 #include <rte_cryptodev.h>
46 #include <rte_security.h>
47 #include <rte_eventdev.h>
48 #include <rte_ip.h>
49 #include <rte_ip_frag.h>
50 #include <rte_alarm.h>
51
52 #include "event_helper.h"
53 #include "flow.h"
54 #include "ipsec.h"
55 #include "ipsec_worker.h"
56 #include "parser.h"
57 #include "sad.h"
58
59 volatile bool force_quit;
60
61 #define MAX_JUMBO_PKT_LEN  9600
62
63 #define MEMPOOL_CACHE_SIZE 256
64
65 #define CDEV_QUEUE_DESC 2048
66 #define CDEV_MAP_ENTRIES 16384
67 #define CDEV_MP_CACHE_SZ 64
68 #define MAX_QUEUE_PAIRS 1
69
70 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
71
72 /* Configure how many packets ahead to prefetch, when reading packets */
73 #define PREFETCH_OFFSET 3
74
75 #define MAX_RX_QUEUE_PER_LCORE 16
76
77 #define MAX_LCORE_PARAMS 1024
78
79 /*
80  * Configurable number of RX/TX ring descriptors
81  */
82 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
83 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
84 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
85 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
86
87 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
88                 (addr)->addr_bytes[0], (addr)->addr_bytes[1], \
89                 (addr)->addr_bytes[2], (addr)->addr_bytes[3], \
90                 (addr)->addr_bytes[4], (addr)->addr_bytes[5], \
91                 0, 0)
92
93 #define FRAG_TBL_BUCKET_ENTRIES 4
94 #define MAX_FRAG_TTL_NS         (10LL * NS_PER_S)
95
96 #define MTU_TO_FRAMELEN(x)      ((x) + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN)
97
98 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
99         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
100         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
101         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
102         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
103 };
104
105 struct flow_info flow_info_tbl[RTE_MAX_ETHPORTS];
106
107 #define CMD_LINE_OPT_CONFIG             "config"
108 #define CMD_LINE_OPT_SINGLE_SA          "single-sa"
109 #define CMD_LINE_OPT_CRYPTODEV_MASK     "cryptodev_mask"
110 #define CMD_LINE_OPT_TRANSFER_MODE      "transfer-mode"
111 #define CMD_LINE_OPT_SCHEDULE_TYPE      "event-schedule-type"
112 #define CMD_LINE_OPT_RX_OFFLOAD         "rxoffload"
113 #define CMD_LINE_OPT_TX_OFFLOAD         "txoffload"
114 #define CMD_LINE_OPT_REASSEMBLE         "reassemble"
115 #define CMD_LINE_OPT_MTU                "mtu"
116 #define CMD_LINE_OPT_FRAG_TTL           "frag-ttl"
117
118 #define CMD_LINE_ARG_EVENT      "event"
119 #define CMD_LINE_ARG_POLL       "poll"
120 #define CMD_LINE_ARG_ORDERED    "ordered"
121 #define CMD_LINE_ARG_ATOMIC     "atomic"
122 #define CMD_LINE_ARG_PARALLEL   "parallel"
123
124 enum {
125         /* long options mapped to a short option */
126
127         /* first long only option value must be >= 256, so that we won't
128          * conflict with short options
129          */
130         CMD_LINE_OPT_MIN_NUM = 256,
131         CMD_LINE_OPT_CONFIG_NUM,
132         CMD_LINE_OPT_SINGLE_SA_NUM,
133         CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
134         CMD_LINE_OPT_TRANSFER_MODE_NUM,
135         CMD_LINE_OPT_SCHEDULE_TYPE_NUM,
136         CMD_LINE_OPT_RX_OFFLOAD_NUM,
137         CMD_LINE_OPT_TX_OFFLOAD_NUM,
138         CMD_LINE_OPT_REASSEMBLE_NUM,
139         CMD_LINE_OPT_MTU_NUM,
140         CMD_LINE_OPT_FRAG_TTL_NUM,
141 };
142
143 static const struct option lgopts[] = {
144         {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
145         {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
146         {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
147         {CMD_LINE_OPT_TRANSFER_MODE, 1, 0, CMD_LINE_OPT_TRANSFER_MODE_NUM},
148         {CMD_LINE_OPT_SCHEDULE_TYPE, 1, 0, CMD_LINE_OPT_SCHEDULE_TYPE_NUM},
149         {CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM},
150         {CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM},
151         {CMD_LINE_OPT_REASSEMBLE, 1, 0, CMD_LINE_OPT_REASSEMBLE_NUM},
152         {CMD_LINE_OPT_MTU, 1, 0, CMD_LINE_OPT_MTU_NUM},
153         {CMD_LINE_OPT_FRAG_TTL, 1, 0, CMD_LINE_OPT_FRAG_TTL_NUM},
154         {NULL, 0, 0, 0}
155 };
156
157 uint32_t unprotected_port_mask;
158 uint32_t single_sa_idx;
159 /* mask of enabled ports */
160 static uint32_t enabled_port_mask;
161 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
162 static int32_t promiscuous_on = 1;
163 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
164 static uint32_t nb_lcores;
165 static uint32_t single_sa;
166 static uint32_t nb_bufs_in_pool;
167
168 /*
169  * RX/TX HW offload capabilities to enable/use on ethernet ports.
170  * By default all capabilities are enabled.
171  */
172 static uint64_t dev_rx_offload = UINT64_MAX;
173 static uint64_t dev_tx_offload = UINT64_MAX;
174
175 /*
176  * global values that determine multi-seg policy
177  */
178 static uint32_t frag_tbl_sz;
179 static uint32_t frame_buf_size = RTE_MBUF_DEFAULT_BUF_SIZE;
180 static uint32_t mtu_size = RTE_ETHER_MTU;
181 static uint64_t frag_ttl_ns = MAX_FRAG_TTL_NS;
182
183 /* application wide librte_ipsec/SA parameters */
184 struct app_sa_prm app_sa_prm = {
185                         .enable = 0,
186                         .cache_sz = SA_CACHE_SZ
187                 };
188 static const char *cfgfile;
189
190 struct lcore_rx_queue {
191         uint16_t port_id;
192         uint8_t queue_id;
193 } __rte_cache_aligned;
194
195 struct lcore_params {
196         uint16_t port_id;
197         uint8_t queue_id;
198         uint8_t lcore_id;
199 } __rte_cache_aligned;
200
201 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
202
203 static struct lcore_params *lcore_params;
204 static uint16_t nb_lcore_params;
205
206 static struct rte_hash *cdev_map_in;
207 static struct rte_hash *cdev_map_out;
208
209 struct buffer {
210         uint16_t len;
211         struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
212 };
213
214 struct lcore_conf {
215         uint16_t nb_rx_queue;
216         struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
217         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
218         struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
219         struct ipsec_ctx inbound;
220         struct ipsec_ctx outbound;
221         struct rt_ctx *rt4_ctx;
222         struct rt_ctx *rt6_ctx;
223         struct {
224                 struct rte_ip_frag_tbl *tbl;
225                 struct rte_mempool *pool_dir;
226                 struct rte_mempool *pool_indir;
227                 struct rte_ip_frag_death_row dr;
228         } frag;
229 } __rte_cache_aligned;
230
231 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
232
233 static struct rte_eth_conf port_conf = {
234         .rxmode = {
235                 .mq_mode        = ETH_MQ_RX_RSS,
236                 .max_rx_pkt_len = RTE_ETHER_MAX_LEN,
237                 .split_hdr_size = 0,
238                 .offloads = DEV_RX_OFFLOAD_CHECKSUM,
239         },
240         .rx_adv_conf = {
241                 .rss_conf = {
242                         .rss_key = NULL,
243                         .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
244                                 ETH_RSS_TCP | ETH_RSS_SCTP,
245                 },
246         },
247         .txmode = {
248                 .mq_mode = ETH_MQ_TX_NONE,
249         },
250 };
251
252 struct socket_ctx socket_ctx[NB_SOCKETS];
253
254 /*
255  * Determine is multi-segment support required:
256  *  - either frame buffer size is smaller then mtu
257  *  - or reassmeble support is requested
258  */
259 static int
260 multi_seg_required(void)
261 {
262         return (MTU_TO_FRAMELEN(mtu_size) + RTE_PKTMBUF_HEADROOM >
263                 frame_buf_size || frag_tbl_sz != 0);
264 }
265
266 static inline void
267 adjust_ipv4_pktlen(struct rte_mbuf *m, const struct rte_ipv4_hdr *iph,
268         uint32_t l2_len)
269 {
270         uint32_t plen, trim;
271
272         plen = rte_be_to_cpu_16(iph->total_length) + l2_len;
273         if (plen < m->pkt_len) {
274                 trim = m->pkt_len - plen;
275                 rte_pktmbuf_trim(m, trim);
276         }
277 }
278
279 static inline void
280 adjust_ipv6_pktlen(struct rte_mbuf *m, const struct rte_ipv6_hdr *iph,
281         uint32_t l2_len)
282 {
283         uint32_t plen, trim;
284
285         plen = rte_be_to_cpu_16(iph->payload_len) + sizeof(*iph) + l2_len;
286         if (plen < m->pkt_len) {
287                 trim = m->pkt_len - plen;
288                 rte_pktmbuf_trim(m, trim);
289         }
290 }
291
292 #if (STATS_INTERVAL > 0)
293
294 /* Print out statistics on packet distribution */
295 static void
296 print_stats_cb(__rte_unused void *param)
297 {
298         uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
299         float burst_percent, rx_per_call, tx_per_call;
300         unsigned int coreid;
301
302         total_packets_dropped = 0;
303         total_packets_tx = 0;
304         total_packets_rx = 0;
305
306         const char clr[] = { 27, '[', '2', 'J', '\0' };
307         const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
308
309         /* Clear screen and move to top left */
310         printf("%s%s", clr, topLeft);
311
312         printf("\nCore statistics ====================================");
313
314         for (coreid = 0; coreid < RTE_MAX_LCORE; coreid++) {
315                 /* skip disabled cores */
316                 if (rte_lcore_is_enabled(coreid) == 0)
317                         continue;
318                 burst_percent = (float)(core_statistics[coreid].burst_rx * 100)/
319                                         core_statistics[coreid].rx;
320                 rx_per_call =  (float)(core_statistics[coreid].rx)/
321                                        core_statistics[coreid].rx_call;
322                 tx_per_call =  (float)(core_statistics[coreid].tx)/
323                                        core_statistics[coreid].tx_call;
324                 printf("\nStatistics for core %u ------------------------------"
325                            "\nPackets received: %20"PRIu64
326                            "\nPackets sent: %24"PRIu64
327                            "\nPackets dropped: %21"PRIu64
328                            "\nBurst percent: %23.2f"
329                            "\nPackets per Rx call: %17.2f"
330                            "\nPackets per Tx call: %17.2f",
331                            coreid,
332                            core_statistics[coreid].rx,
333                            core_statistics[coreid].tx,
334                            core_statistics[coreid].dropped,
335                            burst_percent,
336                            rx_per_call,
337                            tx_per_call);
338
339                 total_packets_dropped += core_statistics[coreid].dropped;
340                 total_packets_tx += core_statistics[coreid].tx;
341                 total_packets_rx += core_statistics[coreid].rx;
342         }
343         printf("\nAggregate statistics ==============================="
344                    "\nTotal packets received: %14"PRIu64
345                    "\nTotal packets sent: %18"PRIu64
346                    "\nTotal packets dropped: %15"PRIu64,
347                    total_packets_rx,
348                    total_packets_tx,
349                    total_packets_dropped);
350         printf("\n====================================================\n");
351
352         rte_eal_alarm_set(STATS_INTERVAL * US_PER_S, print_stats_cb, NULL);
353 }
354 #endif /* STATS_INTERVAL */
355
356 static inline void
357 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
358 {
359         const struct rte_ether_hdr *eth;
360         const struct rte_ipv4_hdr *iph4;
361         const struct rte_ipv6_hdr *iph6;
362
363         eth = rte_pktmbuf_mtod(pkt, const struct rte_ether_hdr *);
364         if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
365
366                 iph4 = (const struct rte_ipv4_hdr *)rte_pktmbuf_adj(pkt,
367                         RTE_ETHER_HDR_LEN);
368                 adjust_ipv4_pktlen(pkt, iph4, 0);
369
370                 if (iph4->next_proto_id == IPPROTO_ESP)
371                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
372                 else {
373                         t->ip4.data[t->ip4.num] = &iph4->next_proto_id;
374                         t->ip4.pkts[(t->ip4.num)++] = pkt;
375                 }
376                 pkt->l2_len = 0;
377                 pkt->l3_len = sizeof(*iph4);
378                 pkt->packet_type |= RTE_PTYPE_L3_IPV4;
379         } else if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
380                 int next_proto;
381                 size_t l3len, ext_len;
382                 uint8_t *p;
383
384                 /* get protocol type */
385                 iph6 = (const struct rte_ipv6_hdr *)rte_pktmbuf_adj(pkt,
386                         RTE_ETHER_HDR_LEN);
387                 adjust_ipv6_pktlen(pkt, iph6, 0);
388
389                 next_proto = iph6->proto;
390
391                 /* determine l3 header size up to ESP extension */
392                 l3len = sizeof(struct ip6_hdr);
393                 p = rte_pktmbuf_mtod(pkt, uint8_t *);
394                 while (next_proto != IPPROTO_ESP && l3len < pkt->data_len &&
395                         (next_proto = rte_ipv6_get_next_ext(p + l3len,
396                                                 next_proto, &ext_len)) >= 0)
397                         l3len += ext_len;
398
399                 /* drop packet when IPv6 header exceeds first segment length */
400                 if (unlikely(l3len > pkt->data_len)) {
401                         free_pkts(&pkt, 1);
402                         return;
403                 }
404
405                 if (next_proto == IPPROTO_ESP)
406                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
407                 else {
408                         t->ip6.data[t->ip6.num] = &iph6->proto;
409                         t->ip6.pkts[(t->ip6.num)++] = pkt;
410                 }
411                 pkt->l2_len = 0;
412                 pkt->l3_len = l3len;
413                 pkt->packet_type |= RTE_PTYPE_L3_IPV6;
414         } else {
415                 /* Unknown/Unsupported type, drop the packet */
416                 RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n",
417                         rte_be_to_cpu_16(eth->ether_type));
418                 free_pkts(&pkt, 1);
419                 return;
420         }
421
422         /* Check if the packet has been processed inline. For inline protocol
423          * processed packets, the metadata in the mbuf can be used to identify
424          * the security processing done on the packet. The metadata will be
425          * used to retrieve the application registered userdata associated
426          * with the security session.
427          */
428
429         if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD) {
430                 struct ipsec_sa *sa;
431                 struct ipsec_mbuf_metadata *priv;
432                 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
433                                                 rte_eth_dev_get_sec_ctx(
434                                                 pkt->port);
435
436                 /* Retrieve the userdata registered. Here, the userdata
437                  * registered is the SA pointer.
438                  */
439
440                 sa = (struct ipsec_sa *)
441                                 rte_security_get_userdata(ctx, pkt->udata64);
442
443                 if (sa == NULL) {
444                         /* userdata could not be retrieved */
445                         return;
446                 }
447
448                 /* Save SA as priv member in mbuf. This will be used in the
449                  * IPsec selector(SP-SA) check.
450                  */
451
452                 priv = get_priv(pkt);
453                 priv->sa = sa;
454         }
455 }
456
457 static inline void
458 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
459                 uint16_t nb_pkts)
460 {
461         int32_t i;
462
463         t->ipsec.num = 0;
464         t->ip4.num = 0;
465         t->ip6.num = 0;
466
467         for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
468                 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
469                                         void *));
470                 prepare_one_packet(pkts[i], t);
471         }
472         /* Process left packets */
473         for (; i < nb_pkts; i++)
474                 prepare_one_packet(pkts[i], t);
475 }
476
477 static inline void
478 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port,
479                 const struct lcore_conf *qconf)
480 {
481         struct ip *ip;
482         struct rte_ether_hdr *ethhdr;
483
484         ip = rte_pktmbuf_mtod(pkt, struct ip *);
485
486         ethhdr = (struct rte_ether_hdr *)
487                 rte_pktmbuf_prepend(pkt, RTE_ETHER_HDR_LEN);
488
489         if (ip->ip_v == IPVERSION) {
490                 pkt->ol_flags |= qconf->outbound.ipv4_offloads;
491                 pkt->l3_len = sizeof(struct ip);
492                 pkt->l2_len = RTE_ETHER_HDR_LEN;
493
494                 ip->ip_sum = 0;
495
496                 /* calculate IPv4 cksum in SW */
497                 if ((pkt->ol_flags & PKT_TX_IP_CKSUM) == 0)
498                         ip->ip_sum = rte_ipv4_cksum((struct rte_ipv4_hdr *)ip);
499
500                 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
501         } else {
502                 pkt->ol_flags |= qconf->outbound.ipv6_offloads;
503                 pkt->l3_len = sizeof(struct ip6_hdr);
504                 pkt->l2_len = RTE_ETHER_HDR_LEN;
505
506                 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
507         }
508
509         memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
510                         sizeof(struct rte_ether_addr));
511         memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
512                         sizeof(struct rte_ether_addr));
513 }
514
515 static inline void
516 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port,
517                 const struct lcore_conf *qconf)
518 {
519         int32_t i;
520         const int32_t prefetch_offset = 2;
521
522         for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
523                 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
524                 prepare_tx_pkt(pkts[i], port, qconf);
525         }
526         /* Process left packets */
527         for (; i < nb_pkts; i++)
528                 prepare_tx_pkt(pkts[i], port, qconf);
529 }
530
531 /* Send burst of packets on an output interface */
532 static inline int32_t
533 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
534 {
535         struct rte_mbuf **m_table;
536         int32_t ret;
537         uint16_t queueid;
538
539         queueid = qconf->tx_queue_id[port];
540         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
541
542         prepare_tx_burst(m_table, n, port, qconf);
543
544         ret = rte_eth_tx_burst(port, queueid, m_table, n);
545
546         core_stats_update_tx(ret);
547
548         if (unlikely(ret < n)) {
549                 do {
550                         free_pkts(&m_table[ret], 1);
551                 } while (++ret < n);
552         }
553
554         return 0;
555 }
556
557 /*
558  * Helper function to fragment and queue for TX one packet.
559  */
560 static inline uint32_t
561 send_fragment_packet(struct lcore_conf *qconf, struct rte_mbuf *m,
562         uint16_t port, uint8_t proto)
563 {
564         struct buffer *tbl;
565         uint32_t len, n;
566         int32_t rc;
567
568         tbl =  qconf->tx_mbufs + port;
569         len = tbl->len;
570
571         /* free space for new fragments */
572         if (len + RTE_LIBRTE_IP_FRAG_MAX_FRAG >=  RTE_DIM(tbl->m_table)) {
573                 send_burst(qconf, len, port);
574                 len = 0;
575         }
576
577         n = RTE_DIM(tbl->m_table) - len;
578
579         if (proto == IPPROTO_IP)
580                 rc = rte_ipv4_fragment_packet(m, tbl->m_table + len,
581                         n, mtu_size, qconf->frag.pool_dir,
582                         qconf->frag.pool_indir);
583         else
584                 rc = rte_ipv6_fragment_packet(m, tbl->m_table + len,
585                         n, mtu_size, qconf->frag.pool_dir,
586                         qconf->frag.pool_indir);
587
588         if (rc >= 0)
589                 len += rc;
590         else
591                 RTE_LOG(ERR, IPSEC,
592                         "%s: failed to fragment packet with size %u, "
593                         "error code: %d\n",
594                         __func__, m->pkt_len, rte_errno);
595
596         free_pkts(&m, 1);
597         return len;
598 }
599
600 /* Enqueue a single packet, and send burst if queue is filled */
601 static inline int32_t
602 send_single_packet(struct rte_mbuf *m, uint16_t port, uint8_t proto)
603 {
604         uint32_t lcore_id;
605         uint16_t len;
606         struct lcore_conf *qconf;
607
608         lcore_id = rte_lcore_id();
609
610         qconf = &lcore_conf[lcore_id];
611         len = qconf->tx_mbufs[port].len;
612
613         if (m->pkt_len <= mtu_size) {
614                 qconf->tx_mbufs[port].m_table[len] = m;
615                 len++;
616
617         /* need to fragment the packet */
618         } else if (frag_tbl_sz > 0)
619                 len = send_fragment_packet(qconf, m, port, proto);
620         else
621                 free_pkts(&m, 1);
622
623         /* enough pkts to be sent */
624         if (unlikely(len == MAX_PKT_BURST)) {
625                 send_burst(qconf, MAX_PKT_BURST, port);
626                 len = 0;
627         }
628
629         qconf->tx_mbufs[port].len = len;
630         return 0;
631 }
632
633 static inline void
634 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
635                 uint16_t lim)
636 {
637         struct rte_mbuf *m;
638         uint32_t i, j, res, sa_idx;
639
640         if (ip->num == 0 || sp == NULL)
641                 return;
642
643         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
644                         ip->num, DEFAULT_MAX_CATEGORIES);
645
646         j = 0;
647         for (i = 0; i < ip->num; i++) {
648                 m = ip->pkts[i];
649                 res = ip->res[i];
650                 if (res == BYPASS) {
651                         ip->pkts[j++] = m;
652                         continue;
653                 }
654                 if (res == DISCARD) {
655                         free_pkts(&m, 1);
656                         continue;
657                 }
658
659                 /* Only check SPI match for processed IPSec packets */
660                 if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
661                         free_pkts(&m, 1);
662                         continue;
663                 }
664
665                 sa_idx = res - 1;
666                 if (!inbound_sa_check(sa, m, sa_idx)) {
667                         free_pkts(&m, 1);
668                         continue;
669                 }
670                 ip->pkts[j++] = m;
671         }
672         ip->num = j;
673 }
674
675 static void
676 split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num)
677 {
678         uint32_t i, n4, n6;
679         struct ip *ip;
680         struct rte_mbuf *m;
681
682         n4 = trf->ip4.num;
683         n6 = trf->ip6.num;
684
685         for (i = 0; i < num; i++) {
686
687                 m = mb[i];
688                 ip = rte_pktmbuf_mtod(m, struct ip *);
689
690                 if (ip->ip_v == IPVERSION) {
691                         trf->ip4.pkts[n4] = m;
692                         trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m,
693                                         uint8_t *, offsetof(struct ip, ip_p));
694                         n4++;
695                 } else if (ip->ip_v == IP6_VERSION) {
696                         trf->ip6.pkts[n6] = m;
697                         trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m,
698                                         uint8_t *,
699                                         offsetof(struct ip6_hdr, ip6_nxt));
700                         n6++;
701                 } else
702                         free_pkts(&m, 1);
703         }
704
705         trf->ip4.num = n4;
706         trf->ip6.num = n6;
707 }
708
709
710 static inline void
711 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
712                 struct ipsec_traffic *traffic)
713 {
714         uint16_t nb_pkts_in, n_ip4, n_ip6;
715
716         n_ip4 = traffic->ip4.num;
717         n_ip6 = traffic->ip6.num;
718
719         if (app_sa_prm.enable == 0) {
720                 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
721                                 traffic->ipsec.num, MAX_PKT_BURST);
722                 split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in);
723         } else {
724                 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
725                         traffic->ipsec.saptr, traffic->ipsec.num);
726                 ipsec_process(ipsec_ctx, traffic);
727         }
728
729         inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
730                         n_ip4);
731
732         inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
733                         n_ip6);
734 }
735
736 static inline void
737 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
738                 struct traffic_type *ipsec)
739 {
740         struct rte_mbuf *m;
741         uint32_t i, j, sa_idx;
742
743         if (ip->num == 0 || sp == NULL)
744                 return;
745
746         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
747                         ip->num, DEFAULT_MAX_CATEGORIES);
748
749         j = 0;
750         for (i = 0; i < ip->num; i++) {
751                 m = ip->pkts[i];
752                 sa_idx = ip->res[i] - 1;
753                 if (ip->res[i] == DISCARD)
754                         free_pkts(&m, 1);
755                 else if (ip->res[i] == BYPASS)
756                         ip->pkts[j++] = m;
757                 else {
758                         ipsec->res[ipsec->num] = sa_idx;
759                         ipsec->pkts[ipsec->num++] = m;
760                 }
761         }
762         ip->num = j;
763 }
764
765 static inline void
766 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
767                 struct ipsec_traffic *traffic)
768 {
769         struct rte_mbuf *m;
770         uint16_t idx, nb_pkts_out, i;
771
772         /* Drop any IPsec traffic from protected ports */
773         free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
774
775         traffic->ipsec.num = 0;
776
777         outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
778
779         outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
780
781         if (app_sa_prm.enable == 0) {
782
783                 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
784                                 traffic->ipsec.res, traffic->ipsec.num,
785                                 MAX_PKT_BURST);
786
787                 for (i = 0; i < nb_pkts_out; i++) {
788                         m = traffic->ipsec.pkts[i];
789                         struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
790                         if (ip->ip_v == IPVERSION) {
791                                 idx = traffic->ip4.num++;
792                                 traffic->ip4.pkts[idx] = m;
793                         } else {
794                                 idx = traffic->ip6.num++;
795                                 traffic->ip6.pkts[idx] = m;
796                         }
797                 }
798         } else {
799                 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
800                         traffic->ipsec.saptr, traffic->ipsec.num);
801                 ipsec_process(ipsec_ctx, traffic);
802         }
803 }
804
805 static inline void
806 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
807                 struct ipsec_traffic *traffic)
808 {
809         struct rte_mbuf *m;
810         uint32_t nb_pkts_in, i, idx;
811
812         /* Drop any IPv4 traffic from unprotected ports */
813         free_pkts(traffic->ip4.pkts, traffic->ip4.num);
814
815         traffic->ip4.num = 0;
816
817         /* Drop any IPv6 traffic from unprotected ports */
818         free_pkts(traffic->ip6.pkts, traffic->ip6.num);
819
820         traffic->ip6.num = 0;
821
822         if (app_sa_prm.enable == 0) {
823
824                 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
825                                 traffic->ipsec.num, MAX_PKT_BURST);
826
827                 for (i = 0; i < nb_pkts_in; i++) {
828                         m = traffic->ipsec.pkts[i];
829                         struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
830                         if (ip->ip_v == IPVERSION) {
831                                 idx = traffic->ip4.num++;
832                                 traffic->ip4.pkts[idx] = m;
833                         } else {
834                                 idx = traffic->ip6.num++;
835                                 traffic->ip6.pkts[idx] = m;
836                         }
837                 }
838         } else {
839                 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
840                         traffic->ipsec.saptr, traffic->ipsec.num);
841                 ipsec_process(ipsec_ctx, traffic);
842         }
843 }
844
845 static inline void
846 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
847                 struct ipsec_traffic *traffic)
848 {
849         struct rte_mbuf *m;
850         uint32_t nb_pkts_out, i, n;
851         struct ip *ip;
852
853         /* Drop any IPsec traffic from protected ports */
854         free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
855
856         n = 0;
857
858         for (i = 0; i < traffic->ip4.num; i++) {
859                 traffic->ipsec.pkts[n] = traffic->ip4.pkts[i];
860                 traffic->ipsec.res[n++] = single_sa_idx;
861         }
862
863         for (i = 0; i < traffic->ip6.num; i++) {
864                 traffic->ipsec.pkts[n] = traffic->ip6.pkts[i];
865                 traffic->ipsec.res[n++] = single_sa_idx;
866         }
867
868         traffic->ip4.num = 0;
869         traffic->ip6.num = 0;
870         traffic->ipsec.num = n;
871
872         if (app_sa_prm.enable == 0) {
873
874                 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
875                                 traffic->ipsec.res, traffic->ipsec.num,
876                                 MAX_PKT_BURST);
877
878                 /* They all sue the same SA (ip4 or ip6 tunnel) */
879                 m = traffic->ipsec.pkts[0];
880                 ip = rte_pktmbuf_mtod(m, struct ip *);
881                 if (ip->ip_v == IPVERSION) {
882                         traffic->ip4.num = nb_pkts_out;
883                         for (i = 0; i < nb_pkts_out; i++)
884                                 traffic->ip4.pkts[i] = traffic->ipsec.pkts[i];
885                 } else {
886                         traffic->ip6.num = nb_pkts_out;
887                         for (i = 0; i < nb_pkts_out; i++)
888                                 traffic->ip6.pkts[i] = traffic->ipsec.pkts[i];
889                 }
890         } else {
891                 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
892                         traffic->ipsec.saptr, traffic->ipsec.num);
893                 ipsec_process(ipsec_ctx, traffic);
894         }
895 }
896
897 static inline int32_t
898 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
899 {
900         struct ipsec_mbuf_metadata *priv;
901         struct ipsec_sa *sa;
902
903         priv = get_priv(pkt);
904
905         sa = priv->sa;
906         if (unlikely(sa == NULL)) {
907                 RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
908                 goto fail;
909         }
910
911         if (is_ipv6)
912                 return sa->portid;
913
914         /* else */
915         return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
916
917 fail:
918         if (is_ipv6)
919                 return -1;
920
921         /* else */
922         return 0;
923 }
924
925 static inline void
926 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
927 {
928         uint32_t hop[MAX_PKT_BURST * 2];
929         uint32_t dst_ip[MAX_PKT_BURST * 2];
930         int32_t pkt_hop = 0;
931         uint16_t i, offset;
932         uint16_t lpm_pkts = 0;
933
934         if (nb_pkts == 0)
935                 return;
936
937         /* Need to do an LPM lookup for non-inline packets. Inline packets will
938          * have port ID in the SA
939          */
940
941         for (i = 0; i < nb_pkts; i++) {
942                 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
943                         /* Security offload not enabled. So an LPM lookup is
944                          * required to get the hop
945                          */
946                         offset = offsetof(struct ip, ip_dst);
947                         dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
948                                         uint32_t *, offset);
949                         dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
950                         lpm_pkts++;
951                 }
952         }
953
954         rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
955
956         lpm_pkts = 0;
957
958         for (i = 0; i < nb_pkts; i++) {
959                 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
960                         /* Read hop from the SA */
961                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
962                 } else {
963                         /* Need to use hop returned by lookup */
964                         pkt_hop = hop[lpm_pkts++];
965                 }
966
967                 if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
968                         free_pkts(&pkts[i], 1);
969                         continue;
970                 }
971                 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IP);
972         }
973 }
974
975 static inline void
976 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
977 {
978         int32_t hop[MAX_PKT_BURST * 2];
979         uint8_t dst_ip[MAX_PKT_BURST * 2][16];
980         uint8_t *ip6_dst;
981         int32_t pkt_hop = 0;
982         uint16_t i, offset;
983         uint16_t lpm_pkts = 0;
984
985         if (nb_pkts == 0)
986                 return;
987
988         /* Need to do an LPM lookup for non-inline packets. Inline packets will
989          * have port ID in the SA
990          */
991
992         for (i = 0; i < nb_pkts; i++) {
993                 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
994                         /* Security offload not enabled. So an LPM lookup is
995                          * required to get the hop
996                          */
997                         offset = offsetof(struct ip6_hdr, ip6_dst);
998                         ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
999                                         offset);
1000                         memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
1001                         lpm_pkts++;
1002                 }
1003         }
1004
1005         rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
1006                         lpm_pkts);
1007
1008         lpm_pkts = 0;
1009
1010         for (i = 0; i < nb_pkts; i++) {
1011                 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
1012                         /* Read hop from the SA */
1013                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
1014                 } else {
1015                         /* Need to use hop returned by lookup */
1016                         pkt_hop = hop[lpm_pkts++];
1017                 }
1018
1019                 if (pkt_hop == -1) {
1020                         free_pkts(&pkts[i], 1);
1021                         continue;
1022                 }
1023                 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IPV6);
1024         }
1025 }
1026
1027 static inline void
1028 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
1029                 uint8_t nb_pkts, uint16_t portid)
1030 {
1031         struct ipsec_traffic traffic;
1032
1033         prepare_traffic(pkts, &traffic, nb_pkts);
1034
1035         if (unlikely(single_sa)) {
1036                 if (is_unprotected_port(portid))
1037                         process_pkts_inbound_nosp(&qconf->inbound, &traffic);
1038                 else
1039                         process_pkts_outbound_nosp(&qconf->outbound, &traffic);
1040         } else {
1041                 if (is_unprotected_port(portid))
1042                         process_pkts_inbound(&qconf->inbound, &traffic);
1043                 else
1044                         process_pkts_outbound(&qconf->outbound, &traffic);
1045         }
1046
1047         route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
1048         route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
1049 }
1050
1051 static inline void
1052 drain_tx_buffers(struct lcore_conf *qconf)
1053 {
1054         struct buffer *buf;
1055         uint32_t portid;
1056
1057         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
1058                 buf = &qconf->tx_mbufs[portid];
1059                 if (buf->len == 0)
1060                         continue;
1061                 send_burst(qconf, buf->len, portid);
1062                 buf->len = 0;
1063         }
1064 }
1065
1066 static inline void
1067 drain_crypto_buffers(struct lcore_conf *qconf)
1068 {
1069         uint32_t i;
1070         struct ipsec_ctx *ctx;
1071
1072         /* drain inbound buffers*/
1073         ctx = &qconf->inbound;
1074         for (i = 0; i != ctx->nb_qps; i++) {
1075                 if (ctx->tbl[i].len != 0)
1076                         enqueue_cop_burst(ctx->tbl  + i);
1077         }
1078
1079         /* drain outbound buffers*/
1080         ctx = &qconf->outbound;
1081         for (i = 0; i != ctx->nb_qps; i++) {
1082                 if (ctx->tbl[i].len != 0)
1083                         enqueue_cop_burst(ctx->tbl  + i);
1084         }
1085 }
1086
1087 static void
1088 drain_inbound_crypto_queues(const struct lcore_conf *qconf,
1089                 struct ipsec_ctx *ctx)
1090 {
1091         uint32_t n;
1092         struct ipsec_traffic trf;
1093
1094         if (app_sa_prm.enable == 0) {
1095
1096                 /* dequeue packets from crypto-queue */
1097                 n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1098                         RTE_DIM(trf.ipsec.pkts));
1099
1100                 trf.ip4.num = 0;
1101                 trf.ip6.num = 0;
1102
1103                 /* split traffic by ipv4-ipv6 */
1104                 split46_traffic(&trf, trf.ipsec.pkts, n);
1105         } else
1106                 ipsec_cqp_process(ctx, &trf);
1107
1108         /* process ipv4 packets */
1109         if (trf.ip4.num != 0) {
1110                 inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0);
1111                 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1112         }
1113
1114         /* process ipv6 packets */
1115         if (trf.ip6.num != 0) {
1116                 inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0);
1117                 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1118         }
1119 }
1120
1121 static void
1122 drain_outbound_crypto_queues(const struct lcore_conf *qconf,
1123                 struct ipsec_ctx *ctx)
1124 {
1125         uint32_t n;
1126         struct ipsec_traffic trf;
1127
1128         if (app_sa_prm.enable == 0) {
1129
1130                 /* dequeue packets from crypto-queue */
1131                 n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1132                         RTE_DIM(trf.ipsec.pkts));
1133
1134                 trf.ip4.num = 0;
1135                 trf.ip6.num = 0;
1136
1137                 /* split traffic by ipv4-ipv6 */
1138                 split46_traffic(&trf, trf.ipsec.pkts, n);
1139         } else
1140                 ipsec_cqp_process(ctx, &trf);
1141
1142         /* process ipv4 packets */
1143         if (trf.ip4.num != 0)
1144                 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1145
1146         /* process ipv6 packets */
1147         if (trf.ip6.num != 0)
1148                 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1149 }
1150
1151 /* main processing loop */
1152 void
1153 ipsec_poll_mode_worker(void)
1154 {
1155         struct rte_mbuf *pkts[MAX_PKT_BURST];
1156         uint32_t lcore_id;
1157         uint64_t prev_tsc, diff_tsc, cur_tsc;
1158         int32_t i, nb_rx;
1159         uint16_t portid;
1160         uint8_t queueid;
1161         struct lcore_conf *qconf;
1162         int32_t rc, socket_id;
1163         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
1164                         / US_PER_S * BURST_TX_DRAIN_US;
1165         struct lcore_rx_queue *rxql;
1166
1167         prev_tsc = 0;
1168         lcore_id = rte_lcore_id();
1169         qconf = &lcore_conf[lcore_id];
1170         rxql = qconf->rx_queue_list;
1171         socket_id = rte_lcore_to_socket_id(lcore_id);
1172
1173         qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
1174         qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
1175         qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
1176         qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
1177         qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
1178         qconf->inbound.cdev_map = cdev_map_in;
1179         qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
1180         qconf->inbound.session_priv_pool =
1181                         socket_ctx[socket_id].session_priv_pool;
1182         qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
1183         qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
1184         qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
1185         qconf->outbound.cdev_map = cdev_map_out;
1186         qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
1187         qconf->outbound.session_priv_pool =
1188                         socket_ctx[socket_id].session_priv_pool;
1189         qconf->frag.pool_dir = socket_ctx[socket_id].mbuf_pool;
1190         qconf->frag.pool_indir = socket_ctx[socket_id].mbuf_pool_indir;
1191
1192         rc = ipsec_sad_lcore_cache_init(app_sa_prm.cache_sz);
1193         if (rc != 0) {
1194                 RTE_LOG(ERR, IPSEC,
1195                         "SAD cache init on lcore %u, failed with code: %d\n",
1196                         lcore_id, rc);
1197                 return;
1198         }
1199
1200         if (qconf->nb_rx_queue == 0) {
1201                 RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n",
1202                         lcore_id);
1203                 return;
1204         }
1205
1206         RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
1207
1208         for (i = 0; i < qconf->nb_rx_queue; i++) {
1209                 portid = rxql[i].port_id;
1210                 queueid = rxql[i].queue_id;
1211                 RTE_LOG(INFO, IPSEC,
1212                         " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
1213                         lcore_id, portid, queueid);
1214         }
1215
1216         while (!force_quit) {
1217                 cur_tsc = rte_rdtsc();
1218
1219                 /* TX queue buffer drain */
1220                 diff_tsc = cur_tsc - prev_tsc;
1221
1222                 if (unlikely(diff_tsc > drain_tsc)) {
1223                         drain_tx_buffers(qconf);
1224                         drain_crypto_buffers(qconf);
1225                         prev_tsc = cur_tsc;
1226                 }
1227
1228                 for (i = 0; i < qconf->nb_rx_queue; ++i) {
1229
1230                         /* Read packets from RX queues */
1231                         portid = rxql[i].port_id;
1232                         queueid = rxql[i].queue_id;
1233                         nb_rx = rte_eth_rx_burst(portid, queueid,
1234                                         pkts, MAX_PKT_BURST);
1235
1236                         if (nb_rx > 0) {
1237                                 core_stats_update_rx(nb_rx);
1238                                 process_pkts(qconf, pkts, nb_rx, portid);
1239                         }
1240
1241                         /* dequeue and process completed crypto-ops */
1242                         if (is_unprotected_port(portid))
1243                                 drain_inbound_crypto_queues(qconf,
1244                                         &qconf->inbound);
1245                         else
1246                                 drain_outbound_crypto_queues(qconf,
1247                                         &qconf->outbound);
1248                 }
1249         }
1250 }
1251
1252 int
1253 check_flow_params(uint16_t fdir_portid, uint8_t fdir_qid)
1254 {
1255         uint16_t i;
1256         uint16_t portid;
1257         uint8_t queueid;
1258
1259         for (i = 0; i < nb_lcore_params; ++i) {
1260                 portid = lcore_params_array[i].port_id;
1261                 if (portid == fdir_portid) {
1262                         queueid = lcore_params_array[i].queue_id;
1263                         if (queueid == fdir_qid)
1264                                 break;
1265                 }
1266
1267                 if (i == nb_lcore_params - 1)
1268                         return -1;
1269         }
1270
1271         return 1;
1272 }
1273
1274 static int32_t
1275 check_poll_mode_params(struct eh_conf *eh_conf)
1276 {
1277         uint8_t lcore;
1278         uint16_t portid;
1279         uint16_t i;
1280         int32_t socket_id;
1281
1282         if (!eh_conf)
1283                 return -EINVAL;
1284
1285         if (eh_conf->mode != EH_PKT_TRANSFER_MODE_POLL)
1286                 return 0;
1287
1288         if (lcore_params == NULL) {
1289                 printf("Error: No port/queue/core mappings\n");
1290                 return -1;
1291         }
1292
1293         for (i = 0; i < nb_lcore_params; ++i) {
1294                 lcore = lcore_params[i].lcore_id;
1295                 if (!rte_lcore_is_enabled(lcore)) {
1296                         printf("error: lcore %hhu is not enabled in "
1297                                 "lcore mask\n", lcore);
1298                         return -1;
1299                 }
1300                 socket_id = rte_lcore_to_socket_id(lcore);
1301                 if (socket_id != 0 && numa_on == 0) {
1302                         printf("warning: lcore %hhu is on socket %d "
1303                                 "with numa off\n",
1304                                 lcore, socket_id);
1305                 }
1306                 portid = lcore_params[i].port_id;
1307                 if ((enabled_port_mask & (1 << portid)) == 0) {
1308                         printf("port %u is not enabled in port mask\n", portid);
1309                         return -1;
1310                 }
1311                 if (!rte_eth_dev_is_valid_port(portid)) {
1312                         printf("port %u is not present on the board\n", portid);
1313                         return -1;
1314                 }
1315         }
1316         return 0;
1317 }
1318
1319 static uint8_t
1320 get_port_nb_rx_queues(const uint16_t port)
1321 {
1322         int32_t queue = -1;
1323         uint16_t i;
1324
1325         for (i = 0; i < nb_lcore_params; ++i) {
1326                 if (lcore_params[i].port_id == port &&
1327                                 lcore_params[i].queue_id > queue)
1328                         queue = lcore_params[i].queue_id;
1329         }
1330         return (uint8_t)(++queue);
1331 }
1332
1333 static int32_t
1334 init_lcore_rx_queues(void)
1335 {
1336         uint16_t i, nb_rx_queue;
1337         uint8_t lcore;
1338
1339         for (i = 0; i < nb_lcore_params; ++i) {
1340                 lcore = lcore_params[i].lcore_id;
1341                 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
1342                 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1343                         printf("error: too many queues (%u) for lcore: %u\n",
1344                                         nb_rx_queue + 1, lcore);
1345                         return -1;
1346                 }
1347                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1348                         lcore_params[i].port_id;
1349                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1350                         lcore_params[i].queue_id;
1351                 lcore_conf[lcore].nb_rx_queue++;
1352         }
1353         return 0;
1354 }
1355
1356 /* display usage */
1357 static void
1358 print_usage(const char *prgname)
1359 {
1360         fprintf(stderr, "%s [EAL options] --"
1361                 " -p PORTMASK"
1362                 " [-P]"
1363                 " [-u PORTMASK]"
1364                 " [-j FRAMESIZE]"
1365                 " [-l]"
1366                 " [-w REPLAY_WINDOW_SIZE]"
1367                 " [-e]"
1368                 " [-a]"
1369                 " [-c]"
1370                 " [-s NUMBER_OF_MBUFS_IN_PKT_POOL]"
1371                 " -f CONFIG_FILE"
1372                 " --config (port,queue,lcore)[,(port,queue,lcore)]"
1373                 " [--single-sa SAIDX]"
1374                 " [--cryptodev_mask MASK]"
1375                 " [--transfer-mode MODE]"
1376                 " [--event-schedule-type TYPE]"
1377                 " [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]"
1378                 " [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]"
1379                 " [--" CMD_LINE_OPT_REASSEMBLE " REASSEMBLE_TABLE_SIZE]"
1380                 " [--" CMD_LINE_OPT_MTU " MTU]"
1381                 "\n\n"
1382                 "  -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
1383                 "  -P : Enable promiscuous mode\n"
1384                 "  -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
1385                 "  -j FRAMESIZE: Data buffer size, minimum (and default)\n"
1386                 "     value: RTE_MBUF_DEFAULT_BUF_SIZE\n"
1387                 "  -l enables code-path that uses librte_ipsec\n"
1388                 "  -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n"
1389                 "     size for each SA\n"
1390                 "  -e enables ESN\n"
1391                 "  -a enables SA SQN atomic behaviour\n"
1392                 "  -c specifies inbound SAD cache size,\n"
1393                 "     zero value disables the cache (default value: 128)\n"
1394                 "  -s number of mbufs in packet pool, if not specified number\n"
1395                 "     of mbufs will be calculated based on number of cores,\n"
1396                 "     ports and crypto queues\n"
1397                 "  -f CONFIG_FILE: Configuration file\n"
1398                 "  --config (port,queue,lcore): Rx queue configuration. In poll\n"
1399                 "                               mode determines which queues from\n"
1400                 "                               which ports are mapped to which cores.\n"
1401                 "                               In event mode this option is not used\n"
1402                 "                               as packets are dynamically scheduled\n"
1403                 "                               to cores by HW.\n"
1404                 "  --single-sa SAIDX: In poll mode use single SA index for\n"
1405                 "                     outbound traffic, bypassing the SP\n"
1406                 "                     In event mode selects driver submode,\n"
1407                 "                     SA index value is ignored\n"
1408                 "  --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
1409                 "                         devices to configure\n"
1410                 "  --transfer-mode MODE\n"
1411                 "               \"poll\"  : Packet transfer via polling (default)\n"
1412                 "               \"event\" : Packet transfer via event device\n"
1413                 "  --event-schedule-type TYPE queue schedule type, used only when\n"
1414                 "                             transfer mode is set to event\n"
1415                 "               \"ordered\"  : Ordered (default)\n"
1416                 "               \"atomic\"   : Atomic\n"
1417                 "               \"parallel\" : Parallel\n"
1418                 "  --" CMD_LINE_OPT_RX_OFFLOAD
1419                 ": bitmask of the RX HW offload capabilities to enable/use\n"
1420                 "                         (DEV_RX_OFFLOAD_*)\n"
1421                 "  --" CMD_LINE_OPT_TX_OFFLOAD
1422                 ": bitmask of the TX HW offload capabilities to enable/use\n"
1423                 "                         (DEV_TX_OFFLOAD_*)\n"
1424                 "  --" CMD_LINE_OPT_REASSEMBLE " NUM"
1425                 ": max number of entries in reassemble(fragment) table\n"
1426                 "    (zero (default value) disables reassembly)\n"
1427                 "  --" CMD_LINE_OPT_MTU " MTU"
1428                 ": MTU value on all ports (default value: 1500)\n"
1429                 "    outgoing packets with bigger size will be fragmented\n"
1430                 "    incoming packets with bigger size will be discarded\n"
1431                 "  --" CMD_LINE_OPT_FRAG_TTL " FRAG_TTL_NS"
1432                 ": fragments lifetime in nanoseconds, default\n"
1433                 "    and maximum value is 10.000.000.000 ns (10 s)\n"
1434                 "\n",
1435                 prgname);
1436 }
1437
1438 static int
1439 parse_mask(const char *str, uint64_t *val)
1440 {
1441         char *end;
1442         unsigned long t;
1443
1444         errno = 0;
1445         t = strtoul(str, &end, 0);
1446         if (errno != 0 || end[0] != 0)
1447                 return -EINVAL;
1448
1449         *val = t;
1450         return 0;
1451 }
1452
1453 static int32_t
1454 parse_portmask(const char *portmask)
1455 {
1456         char *end = NULL;
1457         unsigned long pm;
1458
1459         /* parse hexadecimal string */
1460         pm = strtoul(portmask, &end, 16);
1461         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1462                 return -1;
1463
1464         if ((pm == 0) && errno)
1465                 return -1;
1466
1467         return pm;
1468 }
1469
1470 static int64_t
1471 parse_decimal(const char *str)
1472 {
1473         char *end = NULL;
1474         uint64_t num;
1475
1476         num = strtoull(str, &end, 10);
1477         if ((str[0] == '\0') || (end == NULL) || (*end != '\0')
1478                 || num > INT64_MAX)
1479                 return -1;
1480
1481         return num;
1482 }
1483
1484 static int32_t
1485 parse_config(const char *q_arg)
1486 {
1487         char s[256];
1488         const char *p, *p0 = q_arg;
1489         char *end;
1490         enum fieldnames {
1491                 FLD_PORT = 0,
1492                 FLD_QUEUE,
1493                 FLD_LCORE,
1494                 _NUM_FLD
1495         };
1496         unsigned long int_fld[_NUM_FLD];
1497         char *str_fld[_NUM_FLD];
1498         int32_t i;
1499         uint32_t size;
1500
1501         nb_lcore_params = 0;
1502
1503         while ((p = strchr(p0, '(')) != NULL) {
1504                 ++p;
1505                 p0 = strchr(p, ')');
1506                 if (p0 == NULL)
1507                         return -1;
1508
1509                 size = p0 - p;
1510                 if (size >= sizeof(s))
1511                         return -1;
1512
1513                 snprintf(s, sizeof(s), "%.*s", size, p);
1514                 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1515                                 _NUM_FLD)
1516                         return -1;
1517                 for (i = 0; i < _NUM_FLD; i++) {
1518                         errno = 0;
1519                         int_fld[i] = strtoul(str_fld[i], &end, 0);
1520                         if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1521                                 return -1;
1522                 }
1523                 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1524                         printf("exceeded max number of lcore params: %hu\n",
1525                                 nb_lcore_params);
1526                         return -1;
1527                 }
1528                 lcore_params_array[nb_lcore_params].port_id =
1529                         (uint8_t)int_fld[FLD_PORT];
1530                 lcore_params_array[nb_lcore_params].queue_id =
1531                         (uint8_t)int_fld[FLD_QUEUE];
1532                 lcore_params_array[nb_lcore_params].lcore_id =
1533                         (uint8_t)int_fld[FLD_LCORE];
1534                 ++nb_lcore_params;
1535         }
1536         lcore_params = lcore_params_array;
1537         return 0;
1538 }
1539
1540 static void
1541 print_app_sa_prm(const struct app_sa_prm *prm)
1542 {
1543         printf("librte_ipsec usage: %s\n",
1544                 (prm->enable == 0) ? "disabled" : "enabled");
1545
1546         printf("replay window size: %u\n", prm->window_size);
1547         printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled");
1548         printf("SA flags: %#" PRIx64 "\n", prm->flags);
1549         printf("Frag TTL: %" PRIu64 " ns\n", frag_ttl_ns);
1550 }
1551
1552 static int
1553 parse_transfer_mode(struct eh_conf *conf, const char *optarg)
1554 {
1555         if (!strcmp(CMD_LINE_ARG_POLL, optarg))
1556                 conf->mode = EH_PKT_TRANSFER_MODE_POLL;
1557         else if (!strcmp(CMD_LINE_ARG_EVENT, optarg))
1558                 conf->mode = EH_PKT_TRANSFER_MODE_EVENT;
1559         else {
1560                 printf("Unsupported packet transfer mode\n");
1561                 return -EINVAL;
1562         }
1563
1564         return 0;
1565 }
1566
1567 static int
1568 parse_schedule_type(struct eh_conf *conf, const char *optarg)
1569 {
1570         struct eventmode_conf *em_conf = NULL;
1571
1572         /* Get eventmode conf */
1573         em_conf = conf->mode_params;
1574
1575         if (!strcmp(CMD_LINE_ARG_ORDERED, optarg))
1576                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
1577         else if (!strcmp(CMD_LINE_ARG_ATOMIC, optarg))
1578                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ATOMIC;
1579         else if (!strcmp(CMD_LINE_ARG_PARALLEL, optarg))
1580                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_PARALLEL;
1581         else {
1582                 printf("Unsupported queue schedule type\n");
1583                 return -EINVAL;
1584         }
1585
1586         return 0;
1587 }
1588
1589 static int32_t
1590 parse_args(int32_t argc, char **argv, struct eh_conf *eh_conf)
1591 {
1592         int opt;
1593         int64_t ret;
1594         char **argvopt;
1595         int32_t option_index;
1596         char *prgname = argv[0];
1597         int32_t f_present = 0;
1598
1599         argvopt = argv;
1600
1601         while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:c:s:",
1602                                 lgopts, &option_index)) != EOF) {
1603
1604                 switch (opt) {
1605                 case 'p':
1606                         enabled_port_mask = parse_portmask(optarg);
1607                         if (enabled_port_mask == 0) {
1608                                 printf("invalid portmask\n");
1609                                 print_usage(prgname);
1610                                 return -1;
1611                         }
1612                         break;
1613                 case 'P':
1614                         printf("Promiscuous mode selected\n");
1615                         promiscuous_on = 1;
1616                         break;
1617                 case 'u':
1618                         unprotected_port_mask = parse_portmask(optarg);
1619                         if (unprotected_port_mask == 0) {
1620                                 printf("invalid unprotected portmask\n");
1621                                 print_usage(prgname);
1622                                 return -1;
1623                         }
1624                         break;
1625                 case 'f':
1626                         if (f_present == 1) {
1627                                 printf("\"-f\" option present more than "
1628                                         "once!\n");
1629                                 print_usage(prgname);
1630                                 return -1;
1631                         }
1632                         cfgfile = optarg;
1633                         f_present = 1;
1634                         break;
1635
1636                 case 's':
1637                         ret = parse_decimal(optarg);
1638                         if (ret < 0) {
1639                                 printf("Invalid number of buffers in a pool: "
1640                                         "%s\n", optarg);
1641                                 print_usage(prgname);
1642                                 return -1;
1643                         }
1644
1645                         nb_bufs_in_pool = ret;
1646                         break;
1647
1648                 case 'j':
1649                         ret = parse_decimal(optarg);
1650                         if (ret < RTE_MBUF_DEFAULT_BUF_SIZE ||
1651                                         ret > UINT16_MAX) {
1652                                 printf("Invalid frame buffer size value: %s\n",
1653                                         optarg);
1654                                 print_usage(prgname);
1655                                 return -1;
1656                         }
1657                         frame_buf_size = ret;
1658                         printf("Custom frame buffer size %u\n", frame_buf_size);
1659                         break;
1660                 case 'l':
1661                         app_sa_prm.enable = 1;
1662                         break;
1663                 case 'w':
1664                         app_sa_prm.window_size = parse_decimal(optarg);
1665                         break;
1666                 case 'e':
1667                         app_sa_prm.enable_esn = 1;
1668                         break;
1669                 case 'a':
1670                         app_sa_prm.enable = 1;
1671                         app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM;
1672                         break;
1673                 case 'c':
1674                         ret = parse_decimal(optarg);
1675                         if (ret < 0) {
1676                                 printf("Invalid SA cache size: %s\n", optarg);
1677                                 print_usage(prgname);
1678                                 return -1;
1679                         }
1680                         app_sa_prm.cache_sz = ret;
1681                         break;
1682                 case CMD_LINE_OPT_CONFIG_NUM:
1683                         ret = parse_config(optarg);
1684                         if (ret) {
1685                                 printf("Invalid config\n");
1686                                 print_usage(prgname);
1687                                 return -1;
1688                         }
1689                         break;
1690                 case CMD_LINE_OPT_SINGLE_SA_NUM:
1691                         ret = parse_decimal(optarg);
1692                         if (ret == -1 || ret > UINT32_MAX) {
1693                                 printf("Invalid argument[sa_idx]\n");
1694                                 print_usage(prgname);
1695                                 return -1;
1696                         }
1697
1698                         /* else */
1699                         single_sa = 1;
1700                         single_sa_idx = ret;
1701                         eh_conf->ipsec_mode = EH_IPSEC_MODE_TYPE_DRIVER;
1702                         printf("Configured with single SA index %u\n",
1703                                         single_sa_idx);
1704                         break;
1705                 case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1706                         ret = parse_portmask(optarg);
1707                         if (ret == -1) {
1708                                 printf("Invalid argument[portmask]\n");
1709                                 print_usage(prgname);
1710                                 return -1;
1711                         }
1712
1713                         /* else */
1714                         enabled_cryptodev_mask = ret;
1715                         break;
1716
1717                 case CMD_LINE_OPT_TRANSFER_MODE_NUM:
1718                         ret = parse_transfer_mode(eh_conf, optarg);
1719                         if (ret < 0) {
1720                                 printf("Invalid packet transfer mode\n");
1721                                 print_usage(prgname);
1722                                 return -1;
1723                         }
1724                         break;
1725
1726                 case CMD_LINE_OPT_SCHEDULE_TYPE_NUM:
1727                         ret = parse_schedule_type(eh_conf, optarg);
1728                         if (ret < 0) {
1729                                 printf("Invalid queue schedule type\n");
1730                                 print_usage(prgname);
1731                                 return -1;
1732                         }
1733                         break;
1734
1735                 case CMD_LINE_OPT_RX_OFFLOAD_NUM:
1736                         ret = parse_mask(optarg, &dev_rx_offload);
1737                         if (ret != 0) {
1738                                 printf("Invalid argument for \'%s\': %s\n",
1739                                         CMD_LINE_OPT_RX_OFFLOAD, optarg);
1740                                 print_usage(prgname);
1741                                 return -1;
1742                         }
1743                         break;
1744                 case CMD_LINE_OPT_TX_OFFLOAD_NUM:
1745                         ret = parse_mask(optarg, &dev_tx_offload);
1746                         if (ret != 0) {
1747                                 printf("Invalid argument for \'%s\': %s\n",
1748                                         CMD_LINE_OPT_TX_OFFLOAD, optarg);
1749                                 print_usage(prgname);
1750                                 return -1;
1751                         }
1752                         break;
1753                 case CMD_LINE_OPT_REASSEMBLE_NUM:
1754                         ret = parse_decimal(optarg);
1755                         if (ret < 0 || ret > UINT32_MAX) {
1756                                 printf("Invalid argument for \'%s\': %s\n",
1757                                         CMD_LINE_OPT_REASSEMBLE, optarg);
1758                                 print_usage(prgname);
1759                                 return -1;
1760                         }
1761                         frag_tbl_sz = ret;
1762                         break;
1763                 case CMD_LINE_OPT_MTU_NUM:
1764                         ret = parse_decimal(optarg);
1765                         if (ret < 0 || ret > RTE_IPV4_MAX_PKT_LEN) {
1766                                 printf("Invalid argument for \'%s\': %s\n",
1767                                         CMD_LINE_OPT_MTU, optarg);
1768                                 print_usage(prgname);
1769                                 return -1;
1770                         }
1771                         mtu_size = ret;
1772                         break;
1773                 case CMD_LINE_OPT_FRAG_TTL_NUM:
1774                         ret = parse_decimal(optarg);
1775                         if (ret < 0 || ret > MAX_FRAG_TTL_NS) {
1776                                 printf("Invalid argument for \'%s\': %s\n",
1777                                         CMD_LINE_OPT_MTU, optarg);
1778                                 print_usage(prgname);
1779                                 return -1;
1780                         }
1781                         frag_ttl_ns = ret;
1782                         break;
1783                 default:
1784                         print_usage(prgname);
1785                         return -1;
1786                 }
1787         }
1788
1789         if (f_present == 0) {
1790                 printf("Mandatory option \"-f\" not present\n");
1791                 return -1;
1792         }
1793
1794         /* check do we need to enable multi-seg support */
1795         if (multi_seg_required()) {
1796                 /* legacy mode doesn't support multi-seg */
1797                 app_sa_prm.enable = 1;
1798                 printf("frame buf size: %u, mtu: %u, "
1799                         "number of reassemble entries: %u\n"
1800                         "multi-segment support is required\n",
1801                         frame_buf_size, mtu_size, frag_tbl_sz);
1802         }
1803
1804         print_app_sa_prm(&app_sa_prm);
1805
1806         if (optind >= 0)
1807                 argv[optind-1] = prgname;
1808
1809         ret = optind-1;
1810         optind = 1; /* reset getopt lib */
1811         return ret;
1812 }
1813
1814 static void
1815 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1816 {
1817         char buf[RTE_ETHER_ADDR_FMT_SIZE];
1818         rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1819         printf("%s%s", name, buf);
1820 }
1821
1822 /*
1823  * Update destination ethaddr for the port.
1824  */
1825 int
1826 add_dst_ethaddr(uint16_t port, const struct rte_ether_addr *addr)
1827 {
1828         if (port >= RTE_DIM(ethaddr_tbl))
1829                 return -EINVAL;
1830
1831         ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr);
1832         return 0;
1833 }
1834
1835 /* Check the link status of all ports in up to 9s, and print them finally */
1836 static void
1837 check_all_ports_link_status(uint32_t port_mask)
1838 {
1839 #define CHECK_INTERVAL 100 /* 100ms */
1840 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1841         uint16_t portid;
1842         uint8_t count, all_ports_up, print_flag = 0;
1843         struct rte_eth_link link;
1844         int ret;
1845         char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
1846
1847         printf("\nChecking link status");
1848         fflush(stdout);
1849         for (count = 0; count <= MAX_CHECK_TIME; count++) {
1850                 all_ports_up = 1;
1851                 RTE_ETH_FOREACH_DEV(portid) {
1852                         if ((port_mask & (1 << portid)) == 0)
1853                                 continue;
1854                         memset(&link, 0, sizeof(link));
1855                         ret = rte_eth_link_get_nowait(portid, &link);
1856                         if (ret < 0) {
1857                                 all_ports_up = 0;
1858                                 if (print_flag == 1)
1859                                         printf("Port %u link get failed: %s\n",
1860                                                 portid, rte_strerror(-ret));
1861                                 continue;
1862                         }
1863                         /* print link status if flag set */
1864                         if (print_flag == 1) {
1865                                 rte_eth_link_to_str(link_status_text,
1866                                         sizeof(link_status_text), &link);
1867                                 printf("Port %d %s\n", portid,
1868                                        link_status_text);
1869                                 continue;
1870                         }
1871                         /* clear all_ports_up flag if any link down */
1872                         if (link.link_status == ETH_LINK_DOWN) {
1873                                 all_ports_up = 0;
1874                                 break;
1875                         }
1876                 }
1877                 /* after finally printing all link status, get out */
1878                 if (print_flag == 1)
1879                         break;
1880
1881                 if (all_ports_up == 0) {
1882                         printf(".");
1883                         fflush(stdout);
1884                         rte_delay_ms(CHECK_INTERVAL);
1885                 }
1886
1887                 /* set the print_flag if all ports up or timeout */
1888                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1889                         print_flag = 1;
1890                         printf("done\n");
1891                 }
1892         }
1893 }
1894
1895 static int32_t
1896 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1897                 uint16_t qp, struct lcore_params *params,
1898                 struct ipsec_ctx *ipsec_ctx,
1899                 const struct rte_cryptodev_capabilities *cipher,
1900                 const struct rte_cryptodev_capabilities *auth,
1901                 const struct rte_cryptodev_capabilities *aead)
1902 {
1903         int32_t ret = 0;
1904         unsigned long i;
1905         struct cdev_key key = { 0 };
1906
1907         key.lcore_id = params->lcore_id;
1908         if (cipher)
1909                 key.cipher_algo = cipher->sym.cipher.algo;
1910         if (auth)
1911                 key.auth_algo = auth->sym.auth.algo;
1912         if (aead)
1913                 key.aead_algo = aead->sym.aead.algo;
1914
1915         ret = rte_hash_lookup(map, &key);
1916         if (ret != -ENOENT)
1917                 return 0;
1918
1919         for (i = 0; i < ipsec_ctx->nb_qps; i++)
1920                 if (ipsec_ctx->tbl[i].id == cdev_id)
1921                         break;
1922
1923         if (i == ipsec_ctx->nb_qps) {
1924                 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1925                         printf("Maximum number of crypto devices assigned to "
1926                                 "a core, increase MAX_QP_PER_LCORE value\n");
1927                         return 0;
1928                 }
1929                 ipsec_ctx->tbl[i].id = cdev_id;
1930                 ipsec_ctx->tbl[i].qp = qp;
1931                 ipsec_ctx->nb_qps++;
1932                 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1933                                 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1934                                 cdev_id, qp, i);
1935         }
1936
1937         ret = rte_hash_add_key_data(map, &key, (void *)i);
1938         if (ret < 0) {
1939                 printf("Faled to insert cdev mapping for (lcore %u, "
1940                                 "cdev %u, qp %u), errno %d\n",
1941                                 key.lcore_id, ipsec_ctx->tbl[i].id,
1942                                 ipsec_ctx->tbl[i].qp, ret);
1943                 return 0;
1944         }
1945
1946         return 1;
1947 }
1948
1949 static int32_t
1950 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1951                 uint16_t qp, struct lcore_params *params)
1952 {
1953         int32_t ret = 0;
1954         const struct rte_cryptodev_capabilities *i, *j;
1955         struct rte_hash *map;
1956         struct lcore_conf *qconf;
1957         struct ipsec_ctx *ipsec_ctx;
1958         const char *str;
1959
1960         qconf = &lcore_conf[params->lcore_id];
1961
1962         if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1963                 map = cdev_map_out;
1964                 ipsec_ctx = &qconf->outbound;
1965                 str = "Outbound";
1966         } else {
1967                 map = cdev_map_in;
1968                 ipsec_ctx = &qconf->inbound;
1969                 str = "Inbound";
1970         }
1971
1972         /* Required cryptodevs with operation chainning */
1973         if (!(dev_info->feature_flags &
1974                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1975                 return ret;
1976
1977         for (i = dev_info->capabilities;
1978                         i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1979                 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1980                         continue;
1981
1982                 if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1983                         ret |= add_mapping(map, str, cdev_id, qp, params,
1984                                         ipsec_ctx, NULL, NULL, i);
1985                         continue;
1986                 }
1987
1988                 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1989                         continue;
1990
1991                 for (j = dev_info->capabilities;
1992                                 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1993                         if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1994                                 continue;
1995
1996                         if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1997                                 continue;
1998
1999                         ret |= add_mapping(map, str, cdev_id, qp, params,
2000                                                 ipsec_ctx, i, j, NULL);
2001                 }
2002         }
2003
2004         return ret;
2005 }
2006
2007 /* Check if the device is enabled by cryptodev_mask */
2008 static int
2009 check_cryptodev_mask(uint8_t cdev_id)
2010 {
2011         if (enabled_cryptodev_mask & (1 << cdev_id))
2012                 return 0;
2013
2014         return -1;
2015 }
2016
2017 static uint16_t
2018 cryptodevs_init(uint16_t req_queue_num)
2019 {
2020         struct rte_cryptodev_config dev_conf;
2021         struct rte_cryptodev_qp_conf qp_conf;
2022         uint16_t idx, max_nb_qps, qp, total_nb_qps, i;
2023         int16_t cdev_id;
2024         struct rte_hash_parameters params = { 0 };
2025
2026         const uint64_t mseg_flag = multi_seg_required() ?
2027                                 RTE_CRYPTODEV_FF_IN_PLACE_SGL : 0;
2028
2029         params.entries = CDEV_MAP_ENTRIES;
2030         params.key_len = sizeof(struct cdev_key);
2031         params.hash_func = rte_jhash;
2032         params.hash_func_init_val = 0;
2033         params.socket_id = rte_socket_id();
2034
2035         params.name = "cdev_map_in";
2036         cdev_map_in = rte_hash_create(&params);
2037         if (cdev_map_in == NULL)
2038                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
2039                                 rte_errno);
2040
2041         params.name = "cdev_map_out";
2042         cdev_map_out = rte_hash_create(&params);
2043         if (cdev_map_out == NULL)
2044                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
2045                                 rte_errno);
2046
2047         printf("lcore/cryptodev/qp mappings:\n");
2048
2049         idx = 0;
2050         total_nb_qps = 0;
2051         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
2052                 struct rte_cryptodev_info cdev_info;
2053
2054                 if (check_cryptodev_mask((uint8_t)cdev_id))
2055                         continue;
2056
2057                 rte_cryptodev_info_get(cdev_id, &cdev_info);
2058
2059                 if ((mseg_flag & cdev_info.feature_flags) != mseg_flag)
2060                         rte_exit(EXIT_FAILURE,
2061                                 "Device %hd does not support \'%s\' feature\n",
2062                                 cdev_id,
2063                                 rte_cryptodev_get_feature_name(mseg_flag));
2064
2065                 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
2066                         max_nb_qps = cdev_info.max_nb_queue_pairs;
2067                 else
2068                         max_nb_qps = nb_lcore_params;
2069
2070                 qp = 0;
2071                 i = 0;
2072                 while (qp < max_nb_qps && i < nb_lcore_params) {
2073                         if (add_cdev_mapping(&cdev_info, cdev_id, qp,
2074                                                 &lcore_params[idx]))
2075                                 qp++;
2076                         idx++;
2077                         idx = idx % nb_lcore_params;
2078                         i++;
2079                 }
2080
2081                 qp = RTE_MIN(max_nb_qps, RTE_MAX(req_queue_num, qp));
2082                 if (qp == 0)
2083                         continue;
2084
2085                 total_nb_qps += qp;
2086                 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
2087                 dev_conf.nb_queue_pairs = qp;
2088                 dev_conf.ff_disable = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO;
2089
2090                 uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
2091                 if (dev_max_sess != 0 &&
2092                                 dev_max_sess < get_nb_crypto_sessions())
2093                         rte_exit(EXIT_FAILURE,
2094                                 "Device does not support at least %u "
2095                                 "sessions", get_nb_crypto_sessions());
2096
2097                 if (rte_cryptodev_configure(cdev_id, &dev_conf))
2098                         rte_panic("Failed to initialize cryptodev %u\n",
2099                                         cdev_id);
2100
2101                 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
2102                 qp_conf.mp_session =
2103                         socket_ctx[dev_conf.socket_id].session_pool;
2104                 qp_conf.mp_session_private =
2105                         socket_ctx[dev_conf.socket_id].session_priv_pool;
2106                 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
2107                         if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
2108                                         &qp_conf, dev_conf.socket_id))
2109                                 rte_panic("Failed to setup queue %u for "
2110                                                 "cdev_id %u\n", 0, cdev_id);
2111
2112                 if (rte_cryptodev_start(cdev_id))
2113                         rte_panic("Failed to start cryptodev %u\n",
2114                                         cdev_id);
2115         }
2116
2117         printf("\n");
2118
2119         return total_nb_qps;
2120 }
2121
2122 static void
2123 port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads)
2124 {
2125         uint32_t frame_size;
2126         struct rte_eth_dev_info dev_info;
2127         struct rte_eth_txconf *txconf;
2128         uint16_t nb_tx_queue, nb_rx_queue;
2129         uint16_t tx_queueid, rx_queueid, queue, lcore_id;
2130         int32_t ret, socket_id;
2131         struct lcore_conf *qconf;
2132         struct rte_ether_addr ethaddr;
2133         struct rte_eth_conf local_port_conf = port_conf;
2134
2135         ret = rte_eth_dev_info_get(portid, &dev_info);
2136         if (ret != 0)
2137                 rte_exit(EXIT_FAILURE,
2138                         "Error during getting device (port %u) info: %s\n",
2139                         portid, strerror(-ret));
2140
2141         /* limit allowed HW offloafs, as user requested */
2142         dev_info.rx_offload_capa &= dev_rx_offload;
2143         dev_info.tx_offload_capa &= dev_tx_offload;
2144
2145         printf("Configuring device port %u:\n", portid);
2146
2147         ret = rte_eth_macaddr_get(portid, &ethaddr);
2148         if (ret != 0)
2149                 rte_exit(EXIT_FAILURE,
2150                         "Error getting MAC address (port %u): %s\n",
2151                         portid, rte_strerror(-ret));
2152
2153         ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(&ethaddr);
2154         print_ethaddr("Address: ", &ethaddr);
2155         printf("\n");
2156
2157         nb_rx_queue = get_port_nb_rx_queues(portid);
2158         nb_tx_queue = nb_lcores;
2159
2160         if (nb_rx_queue > dev_info.max_rx_queues)
2161                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2162                                 "(max rx queue is %u)\n",
2163                                 nb_rx_queue, dev_info.max_rx_queues);
2164
2165         if (nb_tx_queue > dev_info.max_tx_queues)
2166                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2167                                 "(max tx queue is %u)\n",
2168                                 nb_tx_queue, dev_info.max_tx_queues);
2169
2170         printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
2171                         nb_rx_queue, nb_tx_queue);
2172
2173         frame_size = MTU_TO_FRAMELEN(mtu_size);
2174         if (frame_size > local_port_conf.rxmode.max_rx_pkt_len)
2175                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2176         local_port_conf.rxmode.max_rx_pkt_len = frame_size;
2177
2178         if (multi_seg_required()) {
2179                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SCATTER;
2180                 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
2181         }
2182
2183         local_port_conf.rxmode.offloads |= req_rx_offloads;
2184         local_port_conf.txmode.offloads |= req_tx_offloads;
2185
2186         /* Check that all required capabilities are supported */
2187         if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) !=
2188                         local_port_conf.rxmode.offloads)
2189                 rte_exit(EXIT_FAILURE,
2190                         "Error: port %u required RX offloads: 0x%" PRIx64
2191                         ", avaialbe RX offloads: 0x%" PRIx64 "\n",
2192                         portid, local_port_conf.rxmode.offloads,
2193                         dev_info.rx_offload_capa);
2194
2195         if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) !=
2196                         local_port_conf.txmode.offloads)
2197                 rte_exit(EXIT_FAILURE,
2198                         "Error: port %u required TX offloads: 0x%" PRIx64
2199                         ", avaialbe TX offloads: 0x%" PRIx64 "\n",
2200                         portid, local_port_conf.txmode.offloads,
2201                         dev_info.tx_offload_capa);
2202
2203         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
2204                 local_port_conf.txmode.offloads |=
2205                         DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2206
2207         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM)
2208                 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM;
2209
2210         printf("port %u configurng rx_offloads=0x%" PRIx64
2211                 ", tx_offloads=0x%" PRIx64 "\n",
2212                 portid, local_port_conf.rxmode.offloads,
2213                 local_port_conf.txmode.offloads);
2214
2215         local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2216                 dev_info.flow_type_rss_offloads;
2217         if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2218                         port_conf.rx_adv_conf.rss_conf.rss_hf) {
2219                 printf("Port %u modified RSS hash function based on hardware support,"
2220                         "requested:%#"PRIx64" configured:%#"PRIx64"\n",
2221                         portid,
2222                         port_conf.rx_adv_conf.rss_conf.rss_hf,
2223                         local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2224         }
2225
2226         ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
2227                         &local_port_conf);
2228         if (ret < 0)
2229                 rte_exit(EXIT_FAILURE, "Cannot configure device: "
2230                                 "err=%d, port=%d\n", ret, portid);
2231
2232         ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
2233         if (ret < 0)
2234                 rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
2235                                 "err=%d, port=%d\n", ret, portid);
2236
2237         /* init one TX queue per lcore */
2238         tx_queueid = 0;
2239         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2240                 if (rte_lcore_is_enabled(lcore_id) == 0)
2241                         continue;
2242
2243                 if (numa_on)
2244                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2245                 else
2246                         socket_id = 0;
2247
2248                 /* init TX queue */
2249                 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
2250
2251                 txconf = &dev_info.default_txconf;
2252                 txconf->offloads = local_port_conf.txmode.offloads;
2253
2254                 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
2255                                 socket_id, txconf);
2256                 if (ret < 0)
2257                         rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
2258                                         "err=%d, port=%d\n", ret, portid);
2259
2260                 qconf = &lcore_conf[lcore_id];
2261                 qconf->tx_queue_id[portid] = tx_queueid;
2262
2263                 /* Pre-populate pkt offloads based on capabilities */
2264                 qconf->outbound.ipv4_offloads = PKT_TX_IPV4;
2265                 qconf->outbound.ipv6_offloads = PKT_TX_IPV6;
2266                 if (local_port_conf.txmode.offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
2267                         qconf->outbound.ipv4_offloads |= PKT_TX_IP_CKSUM;
2268
2269                 tx_queueid++;
2270
2271                 /* init RX queues */
2272                 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
2273                         struct rte_eth_rxconf rxq_conf;
2274
2275                         if (portid != qconf->rx_queue_list[queue].port_id)
2276                                 continue;
2277
2278                         rx_queueid = qconf->rx_queue_list[queue].queue_id;
2279
2280                         printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
2281                                         socket_id);
2282
2283                         rxq_conf = dev_info.default_rxconf;
2284                         rxq_conf.offloads = local_port_conf.rxmode.offloads;
2285                         ret = rte_eth_rx_queue_setup(portid, rx_queueid,
2286                                         nb_rxd, socket_id, &rxq_conf,
2287                                         socket_ctx[socket_id].mbuf_pool);
2288                         if (ret < 0)
2289                                 rte_exit(EXIT_FAILURE,
2290                                         "rte_eth_rx_queue_setup: err=%d, "
2291                                         "port=%d\n", ret, portid);
2292                 }
2293         }
2294         printf("\n");
2295 }
2296
2297 static size_t
2298 max_session_size(void)
2299 {
2300         size_t max_sz, sz;
2301         void *sec_ctx;
2302         int16_t cdev_id, port_id, n;
2303
2304         max_sz = 0;
2305         n =  rte_cryptodev_count();
2306         for (cdev_id = 0; cdev_id != n; cdev_id++) {
2307                 sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
2308                 if (sz > max_sz)
2309                         max_sz = sz;
2310                 /*
2311                  * If crypto device is security capable, need to check the
2312                  * size of security session as well.
2313                  */
2314
2315                 /* Get security context of the crypto device */
2316                 sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
2317                 if (sec_ctx == NULL)
2318                         continue;
2319
2320                 /* Get size of security session */
2321                 sz = rte_security_session_get_size(sec_ctx);
2322                 if (sz > max_sz)
2323                         max_sz = sz;
2324         }
2325
2326         RTE_ETH_FOREACH_DEV(port_id) {
2327                 if ((enabled_port_mask & (1 << port_id)) == 0)
2328                         continue;
2329
2330                 sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
2331                 if (sec_ctx == NULL)
2332                         continue;
2333
2334                 sz = rte_security_session_get_size(sec_ctx);
2335                 if (sz > max_sz)
2336                         max_sz = sz;
2337         }
2338
2339         return max_sz;
2340 }
2341
2342 static void
2343 session_pool_init(struct socket_ctx *ctx, int32_t socket_id, size_t sess_sz)
2344 {
2345         char mp_name[RTE_MEMPOOL_NAMESIZE];
2346         struct rte_mempool *sess_mp;
2347         uint32_t nb_sess;
2348
2349         snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2350                         "sess_mp_%u", socket_id);
2351         nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2352                 rte_lcore_count());
2353         sess_mp = rte_cryptodev_sym_session_pool_create(
2354                         mp_name, nb_sess, sess_sz, CDEV_MP_CACHE_SZ, 0,
2355                         socket_id);
2356         ctx->session_pool = sess_mp;
2357
2358         if (ctx->session_pool == NULL)
2359                 rte_exit(EXIT_FAILURE,
2360                         "Cannot init session pool on socket %d\n", socket_id);
2361         else
2362                 printf("Allocated session pool on socket %d\n", socket_id);
2363 }
2364
2365 static void
2366 session_priv_pool_init(struct socket_ctx *ctx, int32_t socket_id,
2367         size_t sess_sz)
2368 {
2369         char mp_name[RTE_MEMPOOL_NAMESIZE];
2370         struct rte_mempool *sess_mp;
2371         uint32_t nb_sess;
2372
2373         snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2374                         "sess_mp_priv_%u", socket_id);
2375         nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2376                 rte_lcore_count());
2377         sess_mp = rte_mempool_create(mp_name,
2378                         nb_sess,
2379                         sess_sz,
2380                         CDEV_MP_CACHE_SZ,
2381                         0, NULL, NULL, NULL,
2382                         NULL, socket_id,
2383                         0);
2384         ctx->session_priv_pool = sess_mp;
2385
2386         if (ctx->session_priv_pool == NULL)
2387                 rte_exit(EXIT_FAILURE,
2388                         "Cannot init session priv pool on socket %d\n",
2389                         socket_id);
2390         else
2391                 printf("Allocated session priv pool on socket %d\n",
2392                         socket_id);
2393 }
2394
2395 static void
2396 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
2397 {
2398         char s[64];
2399         int32_t ms;
2400
2401         snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
2402         ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
2403                         MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
2404                         frame_buf_size, socket_id);
2405
2406         /*
2407          * if multi-segment support is enabled, then create a pool
2408          * for indirect mbufs.
2409          */
2410         ms = multi_seg_required();
2411         if (ms != 0) {
2412                 snprintf(s, sizeof(s), "mbuf_pool_indir_%d", socket_id);
2413                 ctx->mbuf_pool_indir = rte_pktmbuf_pool_create(s, nb_mbuf,
2414                         MEMPOOL_CACHE_SIZE, 0, 0, socket_id);
2415         }
2416
2417         if (ctx->mbuf_pool == NULL || (ms != 0 && ctx->mbuf_pool_indir == NULL))
2418                 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
2419                                 socket_id);
2420         else
2421                 printf("Allocated mbuf pool on socket %d\n", socket_id);
2422 }
2423
2424 static inline int
2425 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
2426 {
2427         struct ipsec_sa *sa;
2428
2429         /* For inline protocol processing, the metadata in the event will
2430          * uniquely identify the security session which raised the event.
2431          * Application would then need the userdata it had registered with the
2432          * security session to process the event.
2433          */
2434
2435         sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
2436
2437         if (sa == NULL) {
2438                 /* userdata could not be retrieved */
2439                 return -1;
2440         }
2441
2442         /* Sequence number over flow. SA need to be re-established */
2443         RTE_SET_USED(sa);
2444         return 0;
2445 }
2446
2447 static int
2448 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
2449                  void *param, void *ret_param)
2450 {
2451         uint64_t md;
2452         struct rte_eth_event_ipsec_desc *event_desc = NULL;
2453         struct rte_security_ctx *ctx = (struct rte_security_ctx *)
2454                                         rte_eth_dev_get_sec_ctx(port_id);
2455
2456         RTE_SET_USED(param);
2457
2458         if (type != RTE_ETH_EVENT_IPSEC)
2459                 return -1;
2460
2461         event_desc = ret_param;
2462         if (event_desc == NULL) {
2463                 printf("Event descriptor not set\n");
2464                 return -1;
2465         }
2466
2467         md = event_desc->metadata;
2468
2469         if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW)
2470                 return inline_ipsec_event_esn_overflow(ctx, md);
2471         else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
2472                 printf("Invalid IPsec event reported\n");
2473                 return -1;
2474         }
2475
2476         return -1;
2477 }
2478
2479 static uint16_t
2480 rx_callback(__rte_unused uint16_t port, __rte_unused uint16_t queue,
2481         struct rte_mbuf *pkt[], uint16_t nb_pkts,
2482         __rte_unused uint16_t max_pkts, void *user_param)
2483 {
2484         uint64_t tm;
2485         uint32_t i, k;
2486         struct lcore_conf *lc;
2487         struct rte_mbuf *mb;
2488         struct rte_ether_hdr *eth;
2489
2490         lc = user_param;
2491         k = 0;
2492         tm = 0;
2493
2494         for (i = 0; i != nb_pkts; i++) {
2495
2496                 mb = pkt[i];
2497                 eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *);
2498                 if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
2499
2500                         struct rte_ipv4_hdr *iph;
2501
2502                         iph = (struct rte_ipv4_hdr *)(eth + 1);
2503                         if (rte_ipv4_frag_pkt_is_fragmented(iph)) {
2504
2505                                 mb->l2_len = sizeof(*eth);
2506                                 mb->l3_len = sizeof(*iph);
2507                                 tm = (tm != 0) ? tm : rte_rdtsc();
2508                                 mb = rte_ipv4_frag_reassemble_packet(
2509                                         lc->frag.tbl, &lc->frag.dr,
2510                                         mb, tm, iph);
2511
2512                                 if (mb != NULL) {
2513                                         /* fix ip cksum after reassemble. */
2514                                         iph = rte_pktmbuf_mtod_offset(mb,
2515                                                 struct rte_ipv4_hdr *,
2516                                                 mb->l2_len);
2517                                         iph->hdr_checksum = 0;
2518                                         iph->hdr_checksum = rte_ipv4_cksum(iph);
2519                                 }
2520                         }
2521                 } else if (eth->ether_type ==
2522                                 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
2523
2524                         struct rte_ipv6_hdr *iph;
2525                         struct ipv6_extension_fragment *fh;
2526
2527                         iph = (struct rte_ipv6_hdr *)(eth + 1);
2528                         fh = rte_ipv6_frag_get_ipv6_fragment_header(iph);
2529                         if (fh != NULL) {
2530                                 mb->l2_len = sizeof(*eth);
2531                                 mb->l3_len = (uintptr_t)fh - (uintptr_t)iph +
2532                                         sizeof(*fh);
2533                                 tm = (tm != 0) ? tm : rte_rdtsc();
2534                                 mb = rte_ipv6_frag_reassemble_packet(
2535                                         lc->frag.tbl, &lc->frag.dr,
2536                                         mb, tm, iph, fh);
2537                                 if (mb != NULL)
2538                                         /* fix l3_len after reassemble. */
2539                                         mb->l3_len = mb->l3_len - sizeof(*fh);
2540                         }
2541                 }
2542
2543                 pkt[k] = mb;
2544                 k += (mb != NULL);
2545         }
2546
2547         /* some fragments were encountered, drain death row */
2548         if (tm != 0)
2549                 rte_ip_frag_free_death_row(&lc->frag.dr, 0);
2550
2551         return k;
2552 }
2553
2554
2555 static int
2556 reassemble_lcore_init(struct lcore_conf *lc, uint32_t cid)
2557 {
2558         int32_t sid;
2559         uint32_t i;
2560         uint64_t frag_cycles;
2561         const struct lcore_rx_queue *rxq;
2562         const struct rte_eth_rxtx_callback *cb;
2563
2564         /* create fragment table */
2565         sid = rte_lcore_to_socket_id(cid);
2566         frag_cycles = (rte_get_tsc_hz() + NS_PER_S - 1) /
2567                 NS_PER_S * frag_ttl_ns;
2568
2569         lc->frag.tbl = rte_ip_frag_table_create(frag_tbl_sz,
2570                 FRAG_TBL_BUCKET_ENTRIES, frag_tbl_sz, frag_cycles, sid);
2571         if (lc->frag.tbl == NULL) {
2572                 printf("%s(%u): failed to create fragment table of size: %u, "
2573                         "error code: %d\n",
2574                         __func__, cid, frag_tbl_sz, rte_errno);
2575                 return -ENOMEM;
2576         }
2577
2578         /* setup reassemble RX callbacks for all queues */
2579         for (i = 0; i != lc->nb_rx_queue; i++) {
2580
2581                 rxq = lc->rx_queue_list + i;
2582                 cb = rte_eth_add_rx_callback(rxq->port_id, rxq->queue_id,
2583                         rx_callback, lc);
2584                 if (cb == NULL) {
2585                         printf("%s(%u): failed to install RX callback for "
2586                                 "portid=%u, queueid=%u, error code: %d\n",
2587                                 __func__, cid,
2588                                 rxq->port_id, rxq->queue_id, rte_errno);
2589                         return -ENOMEM;
2590                 }
2591         }
2592
2593         return 0;
2594 }
2595
2596 static int
2597 reassemble_init(void)
2598 {
2599         int32_t rc;
2600         uint32_t i, lc;
2601
2602         rc = 0;
2603         for (i = 0; i != nb_lcore_params; i++) {
2604                 lc = lcore_params[i].lcore_id;
2605                 rc = reassemble_lcore_init(lcore_conf + lc, lc);
2606                 if (rc != 0)
2607                         break;
2608         }
2609
2610         return rc;
2611 }
2612
2613 static void
2614 create_default_ipsec_flow(uint16_t port_id, uint64_t rx_offloads)
2615 {
2616         struct rte_flow_action action[2];
2617         struct rte_flow_item pattern[2];
2618         struct rte_flow_attr attr = {0};
2619         struct rte_flow_error err;
2620         struct rte_flow *flow;
2621         int ret;
2622
2623         if (!(rx_offloads & DEV_RX_OFFLOAD_SECURITY))
2624                 return;
2625
2626         /* Add the default rte_flow to enable SECURITY for all ESP packets */
2627
2628         pattern[0].type = RTE_FLOW_ITEM_TYPE_ESP;
2629         pattern[0].spec = NULL;
2630         pattern[0].mask = NULL;
2631         pattern[0].last = NULL;
2632         pattern[1].type = RTE_FLOW_ITEM_TYPE_END;
2633
2634         action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY;
2635         action[0].conf = NULL;
2636         action[1].type = RTE_FLOW_ACTION_TYPE_END;
2637         action[1].conf = NULL;
2638
2639         attr.ingress = 1;
2640
2641         ret = rte_flow_validate(port_id, &attr, pattern, action, &err);
2642         if (ret)
2643                 return;
2644
2645         flow = rte_flow_create(port_id, &attr, pattern, action, &err);
2646         if (flow == NULL)
2647                 return;
2648
2649         flow_info_tbl[port_id].rx_def_flow = flow;
2650         RTE_LOG(INFO, IPSEC,
2651                 "Created default flow enabling SECURITY for all ESP traffic on port %d\n",
2652                 port_id);
2653 }
2654
2655 static void
2656 signal_handler(int signum)
2657 {
2658         if (signum == SIGINT || signum == SIGTERM) {
2659                 printf("\n\nSignal %d received, preparing to exit...\n",
2660                                 signum);
2661                 force_quit = true;
2662         }
2663 }
2664
2665 static void
2666 ev_mode_sess_verify(struct ipsec_sa *sa, int nb_sa)
2667 {
2668         struct rte_ipsec_session *ips;
2669         int32_t i;
2670
2671         if (!sa || !nb_sa)
2672                 return;
2673
2674         for (i = 0; i < nb_sa; i++) {
2675                 ips = ipsec_get_primary_session(&sa[i]);
2676                 if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)
2677                         rte_exit(EXIT_FAILURE, "Event mode supports only "
2678                                  "inline protocol sessions\n");
2679         }
2680
2681 }
2682
2683 static int32_t
2684 check_event_mode_params(struct eh_conf *eh_conf)
2685 {
2686         struct eventmode_conf *em_conf = NULL;
2687         struct lcore_params *params;
2688         uint16_t portid;
2689
2690         if (!eh_conf || !eh_conf->mode_params)
2691                 return -EINVAL;
2692
2693         /* Get eventmode conf */
2694         em_conf = eh_conf->mode_params;
2695
2696         if (eh_conf->mode == EH_PKT_TRANSFER_MODE_POLL &&
2697             em_conf->ext_params.sched_type != SCHED_TYPE_NOT_SET) {
2698                 printf("error: option --event-schedule-type applies only to "
2699                        "event mode\n");
2700                 return -EINVAL;
2701         }
2702
2703         if (eh_conf->mode != EH_PKT_TRANSFER_MODE_EVENT)
2704                 return 0;
2705
2706         /* Set schedule type to ORDERED if it wasn't explicitly set by user */
2707         if (em_conf->ext_params.sched_type == SCHED_TYPE_NOT_SET)
2708                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
2709
2710         /*
2711          * Event mode currently supports only inline protocol sessions.
2712          * If there are other types of sessions configured then exit with
2713          * error.
2714          */
2715         ev_mode_sess_verify(sa_in, nb_sa_in);
2716         ev_mode_sess_verify(sa_out, nb_sa_out);
2717
2718
2719         /* Option --config does not apply to event mode */
2720         if (nb_lcore_params > 0) {
2721                 printf("error: option --config applies only to poll mode\n");
2722                 return -EINVAL;
2723         }
2724
2725         /*
2726          * In order to use the same port_init routine for both poll and event
2727          * modes initialize lcore_params with one queue for each eth port
2728          */
2729         lcore_params = lcore_params_array;
2730         RTE_ETH_FOREACH_DEV(portid) {
2731                 if ((enabled_port_mask & (1 << portid)) == 0)
2732                         continue;
2733
2734                 params = &lcore_params[nb_lcore_params++];
2735                 params->port_id = portid;
2736                 params->queue_id = 0;
2737                 params->lcore_id = rte_get_next_lcore(0, 0, 1);
2738         }
2739
2740         return 0;
2741 }
2742
2743 static void
2744 inline_sessions_free(struct sa_ctx *sa_ctx)
2745 {
2746         struct rte_ipsec_session *ips;
2747         struct ipsec_sa *sa;
2748         int32_t ret;
2749         uint32_t i;
2750
2751         if (!sa_ctx)
2752                 return;
2753
2754         for (i = 0; i < sa_ctx->nb_sa; i++) {
2755
2756                 sa = &sa_ctx->sa[i];
2757                 if (!sa->spi)
2758                         continue;
2759
2760                 ips = ipsec_get_primary_session(sa);
2761                 if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL &&
2762                     ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO)
2763                         continue;
2764
2765                 if (!rte_eth_dev_is_valid_port(sa->portid))
2766                         continue;
2767
2768                 ret = rte_security_session_destroy(
2769                                 rte_eth_dev_get_sec_ctx(sa->portid),
2770                                 ips->security.ses);
2771                 if (ret)
2772                         RTE_LOG(ERR, IPSEC, "Failed to destroy security "
2773                                             "session type %d, spi %d\n",
2774                                             ips->type, sa->spi);
2775         }
2776 }
2777
2778 static uint32_t
2779 calculate_nb_mbufs(uint16_t nb_ports, uint16_t nb_crypto_qp, uint32_t nb_rxq,
2780                 uint32_t nb_txq)
2781 {
2782         return RTE_MAX((nb_rxq * nb_rxd +
2783                         nb_ports * nb_lcores * MAX_PKT_BURST +
2784                         nb_ports * nb_txq * nb_txd +
2785                         nb_lcores * MEMPOOL_CACHE_SIZE +
2786                         nb_crypto_qp * CDEV_QUEUE_DESC +
2787                         nb_lcores * frag_tbl_sz *
2788                         FRAG_TBL_BUCKET_ENTRIES),
2789                        8192U);
2790 }
2791
2792 int32_t
2793 main(int32_t argc, char **argv)
2794 {
2795         int32_t ret;
2796         uint32_t lcore_id, nb_txq, nb_rxq = 0;
2797         uint32_t cdev_id;
2798         uint32_t i;
2799         uint8_t socket_id;
2800         uint16_t portid, nb_crypto_qp, nb_ports = 0;
2801         uint64_t req_rx_offloads[RTE_MAX_ETHPORTS];
2802         uint64_t req_tx_offloads[RTE_MAX_ETHPORTS];
2803         struct eh_conf *eh_conf = NULL;
2804         size_t sess_sz;
2805
2806         nb_bufs_in_pool = 0;
2807
2808         /* init EAL */
2809         ret = rte_eal_init(argc, argv);
2810         if (ret < 0)
2811                 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2812         argc -= ret;
2813         argv += ret;
2814
2815         force_quit = false;
2816         signal(SIGINT, signal_handler);
2817         signal(SIGTERM, signal_handler);
2818
2819         /* initialize event helper configuration */
2820         eh_conf = eh_conf_init();
2821         if (eh_conf == NULL)
2822                 rte_exit(EXIT_FAILURE, "Failed to init event helper config");
2823
2824         /* parse application arguments (after the EAL ones) */
2825         ret = parse_args(argc, argv, eh_conf);
2826         if (ret < 0)
2827                 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
2828
2829         /* parse configuration file */
2830         if (parse_cfg_file(cfgfile) < 0) {
2831                 printf("parsing file \"%s\" failed\n",
2832                         optarg);
2833                 print_usage(argv[0]);
2834                 return -1;
2835         }
2836
2837         if ((unprotected_port_mask & enabled_port_mask) !=
2838                         unprotected_port_mask)
2839                 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
2840                                 unprotected_port_mask);
2841
2842         if (check_poll_mode_params(eh_conf) < 0)
2843                 rte_exit(EXIT_FAILURE, "check_poll_mode_params failed\n");
2844
2845         if (check_event_mode_params(eh_conf) < 0)
2846                 rte_exit(EXIT_FAILURE, "check_event_mode_params failed\n");
2847
2848         ret = init_lcore_rx_queues();
2849         if (ret < 0)
2850                 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2851
2852         nb_lcores = rte_lcore_count();
2853
2854         sess_sz = max_session_size();
2855
2856         /*
2857          * In event mode request minimum number of crypto queues
2858          * to be reserved equal to number of ports.
2859          */
2860         if (eh_conf->mode == EH_PKT_TRANSFER_MODE_EVENT)
2861                 nb_crypto_qp = rte_eth_dev_count_avail();
2862         else
2863                 nb_crypto_qp = 0;
2864
2865         nb_crypto_qp = cryptodevs_init(nb_crypto_qp);
2866
2867         if (nb_bufs_in_pool == 0) {
2868                 RTE_ETH_FOREACH_DEV(portid) {
2869                         if ((enabled_port_mask & (1 << portid)) == 0)
2870                                 continue;
2871                         nb_ports++;
2872                         nb_rxq += get_port_nb_rx_queues(portid);
2873                 }
2874
2875                 nb_txq = nb_lcores;
2876
2877                 nb_bufs_in_pool = calculate_nb_mbufs(nb_ports, nb_crypto_qp,
2878                                                 nb_rxq, nb_txq);
2879         }
2880
2881         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2882                 if (rte_lcore_is_enabled(lcore_id) == 0)
2883                         continue;
2884
2885                 if (numa_on)
2886                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2887                 else
2888                         socket_id = 0;
2889
2890                 /* mbuf_pool is initialised by the pool_init() function*/
2891                 if (socket_ctx[socket_id].mbuf_pool)
2892                         continue;
2893
2894                 pool_init(&socket_ctx[socket_id], socket_id, nb_bufs_in_pool);
2895                 session_pool_init(&socket_ctx[socket_id], socket_id, sess_sz);
2896                 session_priv_pool_init(&socket_ctx[socket_id], socket_id,
2897                         sess_sz);
2898         }
2899         printf("Number of mbufs in packet pool %d\n", nb_bufs_in_pool);
2900
2901         RTE_ETH_FOREACH_DEV(portid) {
2902                 if ((enabled_port_mask & (1 << portid)) == 0)
2903                         continue;
2904
2905                 sa_check_offloads(portid, &req_rx_offloads[portid],
2906                                 &req_tx_offloads[portid]);
2907                 port_init(portid, req_rx_offloads[portid],
2908                                 req_tx_offloads[portid]);
2909         }
2910
2911         /*
2912          * Set the enabled port mask in helper config for use by helper
2913          * sub-system. This will be used while initializing devices using
2914          * helper sub-system.
2915          */
2916         eh_conf->eth_portmask = enabled_port_mask;
2917
2918         /* Initialize eventmode components */
2919         ret = eh_devs_init(eh_conf);
2920         if (ret < 0)
2921                 rte_exit(EXIT_FAILURE, "eh_devs_init failed, err=%d\n", ret);
2922
2923         /* start ports */
2924         RTE_ETH_FOREACH_DEV(portid) {
2925                 if ((enabled_port_mask & (1 << portid)) == 0)
2926                         continue;
2927
2928                 /* Create flow before starting the device */
2929                 create_default_ipsec_flow(portid, req_rx_offloads[portid]);
2930
2931                 ret = rte_eth_dev_start(portid);
2932                 if (ret < 0)
2933                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
2934                                         "err=%d, port=%d\n", ret, portid);
2935                 /*
2936                  * If enabled, put device in promiscuous mode.
2937                  * This allows IO forwarding mode to forward packets
2938                  * to itself through 2 cross-connected  ports of the
2939                  * target machine.
2940                  */
2941                 if (promiscuous_on) {
2942                         ret = rte_eth_promiscuous_enable(portid);
2943                         if (ret != 0)
2944                                 rte_exit(EXIT_FAILURE,
2945                                         "rte_eth_promiscuous_enable: err=%s, port=%d\n",
2946                                         rte_strerror(-ret), portid);
2947                 }
2948
2949                 rte_eth_dev_callback_register(portid,
2950                         RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
2951         }
2952
2953         /* fragment reassemble is enabled */
2954         if (frag_tbl_sz != 0) {
2955                 ret = reassemble_init();
2956                 if (ret != 0)
2957                         rte_exit(EXIT_FAILURE, "failed at reassemble init");
2958         }
2959
2960         /* Replicate each context per socket */
2961         for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
2962                 socket_id = rte_socket_id_by_idx(i);
2963                 if ((socket_ctx[socket_id].mbuf_pool != NULL) &&
2964                         (socket_ctx[socket_id].sa_in == NULL) &&
2965                         (socket_ctx[socket_id].sa_out == NULL)) {
2966                         sa_init(&socket_ctx[socket_id], socket_id);
2967                         sp4_init(&socket_ctx[socket_id], socket_id);
2968                         sp6_init(&socket_ctx[socket_id], socket_id);
2969                         rt_init(&socket_ctx[socket_id], socket_id);
2970                 }
2971         }
2972
2973         flow_init();
2974
2975         check_all_ports_link_status(enabled_port_mask);
2976
2977 #if (STATS_INTERVAL > 0)
2978         rte_eal_alarm_set(STATS_INTERVAL * US_PER_S, print_stats_cb, NULL);
2979 #else
2980         RTE_LOG(INFO, IPSEC, "Stats display disabled\n");
2981 #endif /* STATS_INTERVAL */
2982
2983         /* launch per-lcore init on every lcore */
2984         rte_eal_mp_remote_launch(ipsec_launch_one_lcore, eh_conf, CALL_MAIN);
2985         RTE_LCORE_FOREACH_WORKER(lcore_id) {
2986                 if (rte_eal_wait_lcore(lcore_id) < 0)
2987                         return -1;
2988         }
2989
2990         /* Uninitialize eventmode components */
2991         ret = eh_devs_uninit(eh_conf);
2992         if (ret < 0)
2993                 rte_exit(EXIT_FAILURE, "eh_devs_uninit failed, err=%d\n", ret);
2994
2995         /* Free eventmode configuration memory */
2996         eh_conf_uninit(eh_conf);
2997
2998         /* Destroy inline inbound and outbound sessions */
2999         for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
3000                 socket_id = rte_socket_id_by_idx(i);
3001                 inline_sessions_free(socket_ctx[socket_id].sa_in);
3002                 inline_sessions_free(socket_ctx[socket_id].sa_out);
3003         }
3004
3005         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
3006                 printf("Closing cryptodev %d...", cdev_id);
3007                 rte_cryptodev_stop(cdev_id);
3008                 rte_cryptodev_close(cdev_id);
3009                 printf(" Done\n");
3010         }
3011
3012         RTE_ETH_FOREACH_DEV(portid) {
3013                 if ((enabled_port_mask & (1 << portid)) == 0)
3014                         continue;
3015
3016                 printf("Closing port %d...", portid);
3017                 if (flow_info_tbl[portid].rx_def_flow) {
3018                         struct rte_flow_error err;
3019
3020                         ret = rte_flow_destroy(portid,
3021                                 flow_info_tbl[portid].rx_def_flow, &err);
3022                         if (ret)
3023                                 RTE_LOG(ERR, IPSEC, "Failed to destroy flow "
3024                                         " for port %u, err msg: %s\n", portid,
3025                                         err.message);
3026                 }
3027                 ret = rte_eth_dev_stop(portid);
3028                 if (ret != 0)
3029                         RTE_LOG(ERR, IPSEC,
3030                                 "rte_eth_dev_stop: err=%s, port=%u\n",
3031                                 rte_strerror(-ret), portid);
3032
3033                 rte_eth_dev_close(portid);
3034                 printf(" Done\n");
3035         }
3036         printf("Bye...\n");
3037
3038         return 0;
3039 }