744bb612d66b0590a86f5735021378035c75833c
[dpdk.git] / examples / ipsec-secgw / ipsec-secgw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016 Intel Corporation
3  */
4
5 #include <stdbool.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <stdint.h>
9 #include <inttypes.h>
10 #include <sys/types.h>
11 #include <netinet/in.h>
12 #include <netinet/ip.h>
13 #include <netinet/ip6.h>
14 #include <string.h>
15 #include <sys/queue.h>
16 #include <stdarg.h>
17 #include <errno.h>
18 #include <signal.h>
19 #include <getopt.h>
20
21 #include <rte_common.h>
22 #include <rte_bitmap.h>
23 #include <rte_byteorder.h>
24 #include <rte_log.h>
25 #include <rte_eal.h>
26 #include <rte_launch.h>
27 #include <rte_cycles.h>
28 #include <rte_prefetch.h>
29 #include <rte_lcore.h>
30 #include <rte_per_lcore.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_interrupts.h>
33 #include <rte_random.h>
34 #include <rte_debug.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev.h>
37 #include <rte_mempool.h>
38 #include <rte_mbuf.h>
39 #include <rte_acl.h>
40 #include <rte_lpm.h>
41 #include <rte_lpm6.h>
42 #include <rte_hash.h>
43 #include <rte_jhash.h>
44 #include <rte_cryptodev.h>
45 #include <rte_security.h>
46 #include <rte_eventdev.h>
47 #include <rte_ip.h>
48 #include <rte_ip_frag.h>
49 #include <rte_alarm.h>
50
51 #include "event_helper.h"
52 #include "flow.h"
53 #include "ipsec.h"
54 #include "ipsec_worker.h"
55 #include "parser.h"
56 #include "sad.h"
57
58 volatile bool force_quit;
59
60 #define MAX_JUMBO_PKT_LEN  9600
61
62 #define MEMPOOL_CACHE_SIZE 256
63
64 #define CDEV_QUEUE_DESC 2048
65 #define CDEV_MAP_ENTRIES 16384
66 #define CDEV_MP_CACHE_SZ 64
67 #define CDEV_MP_CACHE_MULTIPLIER 1.5 /* from rte_mempool.c */
68 #define MAX_QUEUE_PAIRS 1
69
70 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
71
72 /* Configure how many packets ahead to prefetch, when reading packets */
73 #define PREFETCH_OFFSET 3
74
75 #define MAX_RX_QUEUE_PER_LCORE 16
76
77 #define MAX_LCORE_PARAMS 1024
78
79 /*
80  * Configurable number of RX/TX ring descriptors
81  */
82 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
83 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
84 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
85 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
86
87 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
88                 (addr)->addr_bytes[0], (addr)->addr_bytes[1], \
89                 (addr)->addr_bytes[2], (addr)->addr_bytes[3], \
90                 (addr)->addr_bytes[4], (addr)->addr_bytes[5], \
91                 0, 0)
92
93 #define FRAG_TBL_BUCKET_ENTRIES 4
94 #define MAX_FRAG_TTL_NS         (10LL * NS_PER_S)
95
96 #define MTU_TO_FRAMELEN(x)      ((x) + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN)
97
98 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
99         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
100         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
101         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
102         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
103 };
104
105 struct flow_info flow_info_tbl[RTE_MAX_ETHPORTS];
106
107 #define CMD_LINE_OPT_CONFIG             "config"
108 #define CMD_LINE_OPT_SINGLE_SA          "single-sa"
109 #define CMD_LINE_OPT_CRYPTODEV_MASK     "cryptodev_mask"
110 #define CMD_LINE_OPT_TRANSFER_MODE      "transfer-mode"
111 #define CMD_LINE_OPT_SCHEDULE_TYPE      "event-schedule-type"
112 #define CMD_LINE_OPT_RX_OFFLOAD         "rxoffload"
113 #define CMD_LINE_OPT_TX_OFFLOAD         "txoffload"
114 #define CMD_LINE_OPT_REASSEMBLE         "reassemble"
115 #define CMD_LINE_OPT_MTU                "mtu"
116 #define CMD_LINE_OPT_FRAG_TTL           "frag-ttl"
117
118 #define CMD_LINE_ARG_EVENT      "event"
119 #define CMD_LINE_ARG_POLL       "poll"
120 #define CMD_LINE_ARG_ORDERED    "ordered"
121 #define CMD_LINE_ARG_ATOMIC     "atomic"
122 #define CMD_LINE_ARG_PARALLEL   "parallel"
123
124 enum {
125         /* long options mapped to a short option */
126
127         /* first long only option value must be >= 256, so that we won't
128          * conflict with short options
129          */
130         CMD_LINE_OPT_MIN_NUM = 256,
131         CMD_LINE_OPT_CONFIG_NUM,
132         CMD_LINE_OPT_SINGLE_SA_NUM,
133         CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
134         CMD_LINE_OPT_TRANSFER_MODE_NUM,
135         CMD_LINE_OPT_SCHEDULE_TYPE_NUM,
136         CMD_LINE_OPT_RX_OFFLOAD_NUM,
137         CMD_LINE_OPT_TX_OFFLOAD_NUM,
138         CMD_LINE_OPT_REASSEMBLE_NUM,
139         CMD_LINE_OPT_MTU_NUM,
140         CMD_LINE_OPT_FRAG_TTL_NUM,
141 };
142
143 static const struct option lgopts[] = {
144         {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
145         {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
146         {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
147         {CMD_LINE_OPT_TRANSFER_MODE, 1, 0, CMD_LINE_OPT_TRANSFER_MODE_NUM},
148         {CMD_LINE_OPT_SCHEDULE_TYPE, 1, 0, CMD_LINE_OPT_SCHEDULE_TYPE_NUM},
149         {CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM},
150         {CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM},
151         {CMD_LINE_OPT_REASSEMBLE, 1, 0, CMD_LINE_OPT_REASSEMBLE_NUM},
152         {CMD_LINE_OPT_MTU, 1, 0, CMD_LINE_OPT_MTU_NUM},
153         {CMD_LINE_OPT_FRAG_TTL, 1, 0, CMD_LINE_OPT_FRAG_TTL_NUM},
154         {NULL, 0, 0, 0}
155 };
156
157 uint32_t unprotected_port_mask;
158 uint32_t single_sa_idx;
159 /* mask of enabled ports */
160 static uint32_t enabled_port_mask;
161 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
162 static int32_t promiscuous_on = 1;
163 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
164 static uint32_t nb_lcores;
165 static uint32_t single_sa;
166 static uint32_t nb_bufs_in_pool;
167
168 /*
169  * RX/TX HW offload capabilities to enable/use on ethernet ports.
170  * By default all capabilities are enabled.
171  */
172 static uint64_t dev_rx_offload = UINT64_MAX;
173 static uint64_t dev_tx_offload = UINT64_MAX;
174
175 /*
176  * global values that determine multi-seg policy
177  */
178 static uint32_t frag_tbl_sz;
179 static uint32_t frame_buf_size = RTE_MBUF_DEFAULT_BUF_SIZE;
180 static uint32_t mtu_size = RTE_ETHER_MTU;
181 static uint64_t frag_ttl_ns = MAX_FRAG_TTL_NS;
182
183 /* application wide librte_ipsec/SA parameters */
184 struct app_sa_prm app_sa_prm = {
185                         .enable = 0,
186                         .cache_sz = SA_CACHE_SZ,
187                         .udp_encap = 0
188                 };
189 static const char *cfgfile;
190
191 struct lcore_rx_queue {
192         uint16_t port_id;
193         uint8_t queue_id;
194 } __rte_cache_aligned;
195
196 struct lcore_params {
197         uint16_t port_id;
198         uint8_t queue_id;
199         uint8_t lcore_id;
200 } __rte_cache_aligned;
201
202 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
203
204 static struct lcore_params *lcore_params;
205 static uint16_t nb_lcore_params;
206
207 static struct rte_hash *cdev_map_in;
208 static struct rte_hash *cdev_map_out;
209
210 struct buffer {
211         uint16_t len;
212         struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
213 };
214
215 struct lcore_conf {
216         uint16_t nb_rx_queue;
217         struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
218         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
219         struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
220         struct ipsec_ctx inbound;
221         struct ipsec_ctx outbound;
222         struct rt_ctx *rt4_ctx;
223         struct rt_ctx *rt6_ctx;
224         struct {
225                 struct rte_ip_frag_tbl *tbl;
226                 struct rte_mempool *pool_dir;
227                 struct rte_mempool *pool_indir;
228                 struct rte_ip_frag_death_row dr;
229         } frag;
230 } __rte_cache_aligned;
231
232 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
233
234 static struct rte_eth_conf port_conf = {
235         .rxmode = {
236                 .mq_mode        = ETH_MQ_RX_RSS,
237                 .max_rx_pkt_len = RTE_ETHER_MAX_LEN,
238                 .split_hdr_size = 0,
239                 .offloads = DEV_RX_OFFLOAD_CHECKSUM,
240         },
241         .rx_adv_conf = {
242                 .rss_conf = {
243                         .rss_key = NULL,
244                         .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
245                                 ETH_RSS_TCP | ETH_RSS_SCTP,
246                 },
247         },
248         .txmode = {
249                 .mq_mode = ETH_MQ_TX_NONE,
250         },
251 };
252
253 struct socket_ctx socket_ctx[NB_SOCKETS];
254
255 /*
256  * Determine is multi-segment support required:
257  *  - either frame buffer size is smaller then mtu
258  *  - or reassmeble support is requested
259  */
260 static int
261 multi_seg_required(void)
262 {
263         return (MTU_TO_FRAMELEN(mtu_size) + RTE_PKTMBUF_HEADROOM >
264                 frame_buf_size || frag_tbl_sz != 0);
265 }
266
267 static inline void
268 adjust_ipv4_pktlen(struct rte_mbuf *m, const struct rte_ipv4_hdr *iph,
269         uint32_t l2_len)
270 {
271         uint32_t plen, trim;
272
273         plen = rte_be_to_cpu_16(iph->total_length) + l2_len;
274         if (plen < m->pkt_len) {
275                 trim = m->pkt_len - plen;
276                 rte_pktmbuf_trim(m, trim);
277         }
278 }
279
280 static inline void
281 adjust_ipv6_pktlen(struct rte_mbuf *m, const struct rte_ipv6_hdr *iph,
282         uint32_t l2_len)
283 {
284         uint32_t plen, trim;
285
286         plen = rte_be_to_cpu_16(iph->payload_len) + sizeof(*iph) + l2_len;
287         if (plen < m->pkt_len) {
288                 trim = m->pkt_len - plen;
289                 rte_pktmbuf_trim(m, trim);
290         }
291 }
292
293 #if (STATS_INTERVAL > 0)
294
295 /* Print out statistics on packet distribution */
296 static void
297 print_stats_cb(__rte_unused void *param)
298 {
299         uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
300         float burst_percent, rx_per_call, tx_per_call;
301         unsigned int coreid;
302
303         total_packets_dropped = 0;
304         total_packets_tx = 0;
305         total_packets_rx = 0;
306
307         const char clr[] = { 27, '[', '2', 'J', '\0' };
308         const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
309
310         /* Clear screen and move to top left */
311         printf("%s%s", clr, topLeft);
312
313         printf("\nCore statistics ====================================");
314
315         for (coreid = 0; coreid < RTE_MAX_LCORE; coreid++) {
316                 /* skip disabled cores */
317                 if (rte_lcore_is_enabled(coreid) == 0)
318                         continue;
319                 burst_percent = (float)(core_statistics[coreid].burst_rx * 100)/
320                                         core_statistics[coreid].rx;
321                 rx_per_call =  (float)(core_statistics[coreid].rx)/
322                                        core_statistics[coreid].rx_call;
323                 tx_per_call =  (float)(core_statistics[coreid].tx)/
324                                        core_statistics[coreid].tx_call;
325                 printf("\nStatistics for core %u ------------------------------"
326                            "\nPackets received: %20"PRIu64
327                            "\nPackets sent: %24"PRIu64
328                            "\nPackets dropped: %21"PRIu64
329                            "\nBurst percent: %23.2f"
330                            "\nPackets per Rx call: %17.2f"
331                            "\nPackets per Tx call: %17.2f",
332                            coreid,
333                            core_statistics[coreid].rx,
334                            core_statistics[coreid].tx,
335                            core_statistics[coreid].dropped,
336                            burst_percent,
337                            rx_per_call,
338                            tx_per_call);
339
340                 total_packets_dropped += core_statistics[coreid].dropped;
341                 total_packets_tx += core_statistics[coreid].tx;
342                 total_packets_rx += core_statistics[coreid].rx;
343         }
344         printf("\nAggregate statistics ==============================="
345                    "\nTotal packets received: %14"PRIu64
346                    "\nTotal packets sent: %18"PRIu64
347                    "\nTotal packets dropped: %15"PRIu64,
348                    total_packets_rx,
349                    total_packets_tx,
350                    total_packets_dropped);
351         printf("\n====================================================\n");
352
353         rte_eal_alarm_set(STATS_INTERVAL * US_PER_S, print_stats_cb, NULL);
354 }
355 #endif /* STATS_INTERVAL */
356
357 static inline void
358 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
359 {
360         const struct rte_ether_hdr *eth;
361         const struct rte_ipv4_hdr *iph4;
362         const struct rte_ipv6_hdr *iph6;
363         const struct rte_udp_hdr *udp;
364         uint16_t ip4_hdr_len;
365         uint16_t nat_port;
366
367         eth = rte_pktmbuf_mtod(pkt, const struct rte_ether_hdr *);
368         if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
369
370                 iph4 = (const struct rte_ipv4_hdr *)rte_pktmbuf_adj(pkt,
371                         RTE_ETHER_HDR_LEN);
372                 adjust_ipv4_pktlen(pkt, iph4, 0);
373
374                 switch (iph4->next_proto_id) {
375                 case IPPROTO_ESP:
376                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
377                         break;
378                 case IPPROTO_UDP:
379                         if (app_sa_prm.udp_encap == 1) {
380                                 ip4_hdr_len = ((iph4->version_ihl &
381                                         RTE_IPV4_HDR_IHL_MASK) *
382                                         RTE_IPV4_IHL_MULTIPLIER);
383                                 udp = rte_pktmbuf_mtod_offset(pkt,
384                                         struct rte_udp_hdr *, ip4_hdr_len);
385                                 nat_port = rte_cpu_to_be_16(IPSEC_NAT_T_PORT);
386                                 if (udp->src_port == nat_port ||
387                                         udp->dst_port == nat_port){
388                                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
389                                         pkt->packet_type |=
390                                                 MBUF_PTYPE_TUNNEL_ESP_IN_UDP;
391                                         break;
392                                 }
393                         }
394                 /* Fall through */
395                 default:
396                         t->ip4.data[t->ip4.num] = &iph4->next_proto_id;
397                         t->ip4.pkts[(t->ip4.num)++] = pkt;
398                 }
399                 pkt->l2_len = 0;
400                 pkt->l3_len = sizeof(*iph4);
401                 pkt->packet_type |= RTE_PTYPE_L3_IPV4;
402         } else if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
403                 int next_proto;
404                 size_t l3len, ext_len;
405                 uint8_t *p;
406
407                 /* get protocol type */
408                 iph6 = (const struct rte_ipv6_hdr *)rte_pktmbuf_adj(pkt,
409                         RTE_ETHER_HDR_LEN);
410                 adjust_ipv6_pktlen(pkt, iph6, 0);
411
412                 next_proto = iph6->proto;
413
414                 /* determine l3 header size up to ESP extension */
415                 l3len = sizeof(struct ip6_hdr);
416                 p = rte_pktmbuf_mtod(pkt, uint8_t *);
417                 while (next_proto != IPPROTO_ESP && l3len < pkt->data_len &&
418                         (next_proto = rte_ipv6_get_next_ext(p + l3len,
419                                                 next_proto, &ext_len)) >= 0)
420                         l3len += ext_len;
421
422                 /* drop packet when IPv6 header exceeds first segment length */
423                 if (unlikely(l3len > pkt->data_len)) {
424                         free_pkts(&pkt, 1);
425                         return;
426                 }
427
428                 switch (next_proto) {
429                 case IPPROTO_ESP:
430                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
431                         break;
432                 case IPPROTO_UDP:
433                         if (app_sa_prm.udp_encap == 1) {
434                                 udp = rte_pktmbuf_mtod_offset(pkt,
435                                         struct rte_udp_hdr *, l3len);
436                                 nat_port = rte_cpu_to_be_16(IPSEC_NAT_T_PORT);
437                                 if (udp->src_port == nat_port ||
438                                         udp->dst_port == nat_port){
439                                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
440                                         pkt->packet_type |=
441                                                 MBUF_PTYPE_TUNNEL_ESP_IN_UDP;
442                                         break;
443                                 }
444                         }
445                 /* Fall through */
446                 default:
447                         t->ip6.data[t->ip6.num] = &iph6->proto;
448                         t->ip6.pkts[(t->ip6.num)++] = pkt;
449                 }
450                 pkt->l2_len = 0;
451                 pkt->l3_len = l3len;
452                 pkt->packet_type |= RTE_PTYPE_L3_IPV6;
453         } else {
454                 /* Unknown/Unsupported type, drop the packet */
455                 RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n",
456                         rte_be_to_cpu_16(eth->ether_type));
457                 free_pkts(&pkt, 1);
458                 return;
459         }
460
461         /* Check if the packet has been processed inline. For inline protocol
462          * processed packets, the metadata in the mbuf can be used to identify
463          * the security processing done on the packet. The metadata will be
464          * used to retrieve the application registered userdata associated
465          * with the security session.
466          */
467
468         if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD &&
469                         rte_security_dynfield_is_registered()) {
470                 struct ipsec_sa *sa;
471                 struct ipsec_mbuf_metadata *priv;
472                 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
473                                                 rte_eth_dev_get_sec_ctx(
474                                                 pkt->port);
475
476                 /* Retrieve the userdata registered. Here, the userdata
477                  * registered is the SA pointer.
478                  */
479                 sa = (struct ipsec_sa *)rte_security_get_userdata(ctx,
480                                 *rte_security_dynfield(pkt));
481                 if (sa == NULL) {
482                         /* userdata could not be retrieved */
483                         return;
484                 }
485
486                 /* Save SA as priv member in mbuf. This will be used in the
487                  * IPsec selector(SP-SA) check.
488                  */
489
490                 priv = get_priv(pkt);
491                 priv->sa = sa;
492         }
493 }
494
495 static inline void
496 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
497                 uint16_t nb_pkts)
498 {
499         int32_t i;
500
501         t->ipsec.num = 0;
502         t->ip4.num = 0;
503         t->ip6.num = 0;
504
505         for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
506                 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
507                                         void *));
508                 prepare_one_packet(pkts[i], t);
509         }
510         /* Process left packets */
511         for (; i < nb_pkts; i++)
512                 prepare_one_packet(pkts[i], t);
513 }
514
515 static inline void
516 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port,
517                 const struct lcore_conf *qconf)
518 {
519         struct ip *ip;
520         struct rte_ether_hdr *ethhdr;
521
522         ip = rte_pktmbuf_mtod(pkt, struct ip *);
523
524         ethhdr = (struct rte_ether_hdr *)
525                 rte_pktmbuf_prepend(pkt, RTE_ETHER_HDR_LEN);
526
527         if (ip->ip_v == IPVERSION) {
528                 pkt->ol_flags |= qconf->outbound.ipv4_offloads;
529                 pkt->l3_len = sizeof(struct ip);
530                 pkt->l2_len = RTE_ETHER_HDR_LEN;
531
532                 ip->ip_sum = 0;
533
534                 /* calculate IPv4 cksum in SW */
535                 if ((pkt->ol_flags & PKT_TX_IP_CKSUM) == 0)
536                         ip->ip_sum = rte_ipv4_cksum((struct rte_ipv4_hdr *)ip);
537
538                 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
539         } else {
540                 pkt->ol_flags |= qconf->outbound.ipv6_offloads;
541                 pkt->l3_len = sizeof(struct ip6_hdr);
542                 pkt->l2_len = RTE_ETHER_HDR_LEN;
543
544                 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
545         }
546
547         memcpy(&ethhdr->src_addr, &ethaddr_tbl[port].src,
548                         sizeof(struct rte_ether_addr));
549         memcpy(&ethhdr->dst_addr, &ethaddr_tbl[port].dst,
550                         sizeof(struct rte_ether_addr));
551 }
552
553 static inline void
554 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port,
555                 const struct lcore_conf *qconf)
556 {
557         int32_t i;
558         const int32_t prefetch_offset = 2;
559
560         for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
561                 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
562                 prepare_tx_pkt(pkts[i], port, qconf);
563         }
564         /* Process left packets */
565         for (; i < nb_pkts; i++)
566                 prepare_tx_pkt(pkts[i], port, qconf);
567 }
568
569 /* Send burst of packets on an output interface */
570 static inline int32_t
571 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
572 {
573         struct rte_mbuf **m_table;
574         int32_t ret;
575         uint16_t queueid;
576
577         queueid = qconf->tx_queue_id[port];
578         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
579
580         prepare_tx_burst(m_table, n, port, qconf);
581
582         ret = rte_eth_tx_burst(port, queueid, m_table, n);
583
584         core_stats_update_tx(ret);
585
586         if (unlikely(ret < n)) {
587                 do {
588                         free_pkts(&m_table[ret], 1);
589                 } while (++ret < n);
590         }
591
592         return 0;
593 }
594
595 /*
596  * Helper function to fragment and queue for TX one packet.
597  */
598 static inline uint32_t
599 send_fragment_packet(struct lcore_conf *qconf, struct rte_mbuf *m,
600         uint16_t port, uint8_t proto)
601 {
602         struct buffer *tbl;
603         uint32_t len, n;
604         int32_t rc;
605
606         tbl =  qconf->tx_mbufs + port;
607         len = tbl->len;
608
609         /* free space for new fragments */
610         if (len + RTE_LIBRTE_IP_FRAG_MAX_FRAG >=  RTE_DIM(tbl->m_table)) {
611                 send_burst(qconf, len, port);
612                 len = 0;
613         }
614
615         n = RTE_DIM(tbl->m_table) - len;
616
617         if (proto == IPPROTO_IP)
618                 rc = rte_ipv4_fragment_packet(m, tbl->m_table + len,
619                         n, mtu_size, qconf->frag.pool_dir,
620                         qconf->frag.pool_indir);
621         else
622                 rc = rte_ipv6_fragment_packet(m, tbl->m_table + len,
623                         n, mtu_size, qconf->frag.pool_dir,
624                         qconf->frag.pool_indir);
625
626         if (rc >= 0)
627                 len += rc;
628         else
629                 RTE_LOG(ERR, IPSEC,
630                         "%s: failed to fragment packet with size %u, "
631                         "error code: %d\n",
632                         __func__, m->pkt_len, rte_errno);
633
634         free_pkts(&m, 1);
635         return len;
636 }
637
638 /* Enqueue a single packet, and send burst if queue is filled */
639 static inline int32_t
640 send_single_packet(struct rte_mbuf *m, uint16_t port, uint8_t proto)
641 {
642         uint32_t lcore_id;
643         uint16_t len;
644         struct lcore_conf *qconf;
645
646         lcore_id = rte_lcore_id();
647
648         qconf = &lcore_conf[lcore_id];
649         len = qconf->tx_mbufs[port].len;
650
651         if (m->pkt_len <= mtu_size) {
652                 qconf->tx_mbufs[port].m_table[len] = m;
653                 len++;
654
655         /* need to fragment the packet */
656         } else if (frag_tbl_sz > 0)
657                 len = send_fragment_packet(qconf, m, port, proto);
658         else
659                 free_pkts(&m, 1);
660
661         /* enough pkts to be sent */
662         if (unlikely(len == MAX_PKT_BURST)) {
663                 send_burst(qconf, MAX_PKT_BURST, port);
664                 len = 0;
665         }
666
667         qconf->tx_mbufs[port].len = len;
668         return 0;
669 }
670
671 static inline void
672 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
673                 uint16_t lim)
674 {
675         struct rte_mbuf *m;
676         uint32_t i, j, res, sa_idx;
677
678         if (ip->num == 0 || sp == NULL)
679                 return;
680
681         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
682                         ip->num, DEFAULT_MAX_CATEGORIES);
683
684         j = 0;
685         for (i = 0; i < ip->num; i++) {
686                 m = ip->pkts[i];
687                 res = ip->res[i];
688                 if (res == BYPASS) {
689                         ip->pkts[j++] = m;
690                         continue;
691                 }
692                 if (res == DISCARD) {
693                         free_pkts(&m, 1);
694                         continue;
695                 }
696
697                 /* Only check SPI match for processed IPSec packets */
698                 if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
699                         free_pkts(&m, 1);
700                         continue;
701                 }
702
703                 sa_idx = res - 1;
704                 if (!inbound_sa_check(sa, m, sa_idx)) {
705                         free_pkts(&m, 1);
706                         continue;
707                 }
708                 ip->pkts[j++] = m;
709         }
710         ip->num = j;
711 }
712
713 static void
714 split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num)
715 {
716         uint32_t i, n4, n6;
717         struct ip *ip;
718         struct rte_mbuf *m;
719
720         n4 = trf->ip4.num;
721         n6 = trf->ip6.num;
722
723         for (i = 0; i < num; i++) {
724
725                 m = mb[i];
726                 ip = rte_pktmbuf_mtod(m, struct ip *);
727
728                 if (ip->ip_v == IPVERSION) {
729                         trf->ip4.pkts[n4] = m;
730                         trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m,
731                                         uint8_t *, offsetof(struct ip, ip_p));
732                         n4++;
733                 } else if (ip->ip_v == IP6_VERSION) {
734                         trf->ip6.pkts[n6] = m;
735                         trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m,
736                                         uint8_t *,
737                                         offsetof(struct ip6_hdr, ip6_nxt));
738                         n6++;
739                 } else
740                         free_pkts(&m, 1);
741         }
742
743         trf->ip4.num = n4;
744         trf->ip6.num = n6;
745 }
746
747
748 static inline void
749 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
750                 struct ipsec_traffic *traffic)
751 {
752         uint16_t nb_pkts_in, n_ip4, n_ip6;
753
754         n_ip4 = traffic->ip4.num;
755         n_ip6 = traffic->ip6.num;
756
757         if (app_sa_prm.enable == 0) {
758                 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
759                                 traffic->ipsec.num, MAX_PKT_BURST);
760                 split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in);
761         } else {
762                 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
763                         traffic->ipsec.saptr, traffic->ipsec.num);
764                 ipsec_process(ipsec_ctx, traffic);
765         }
766
767         inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
768                         n_ip4);
769
770         inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
771                         n_ip6);
772 }
773
774 static inline void
775 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
776                 struct traffic_type *ipsec)
777 {
778         struct rte_mbuf *m;
779         uint32_t i, j, sa_idx;
780
781         if (ip->num == 0 || sp == NULL)
782                 return;
783
784         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
785                         ip->num, DEFAULT_MAX_CATEGORIES);
786
787         j = 0;
788         for (i = 0; i < ip->num; i++) {
789                 m = ip->pkts[i];
790                 sa_idx = ip->res[i] - 1;
791                 if (ip->res[i] == DISCARD)
792                         free_pkts(&m, 1);
793                 else if (ip->res[i] == BYPASS)
794                         ip->pkts[j++] = m;
795                 else {
796                         ipsec->res[ipsec->num] = sa_idx;
797                         ipsec->pkts[ipsec->num++] = m;
798                 }
799         }
800         ip->num = j;
801 }
802
803 static inline void
804 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
805                 struct ipsec_traffic *traffic)
806 {
807         struct rte_mbuf *m;
808         uint16_t idx, nb_pkts_out, i;
809
810         /* Drop any IPsec traffic from protected ports */
811         free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
812
813         traffic->ipsec.num = 0;
814
815         outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
816
817         outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
818
819         if (app_sa_prm.enable == 0) {
820
821                 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
822                                 traffic->ipsec.res, traffic->ipsec.num,
823                                 MAX_PKT_BURST);
824
825                 for (i = 0; i < nb_pkts_out; i++) {
826                         m = traffic->ipsec.pkts[i];
827                         struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
828                         if (ip->ip_v == IPVERSION) {
829                                 idx = traffic->ip4.num++;
830                                 traffic->ip4.pkts[idx] = m;
831                         } else {
832                                 idx = traffic->ip6.num++;
833                                 traffic->ip6.pkts[idx] = m;
834                         }
835                 }
836         } else {
837                 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
838                         traffic->ipsec.saptr, traffic->ipsec.num);
839                 ipsec_process(ipsec_ctx, traffic);
840         }
841 }
842
843 static inline void
844 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
845                 struct ipsec_traffic *traffic)
846 {
847         struct rte_mbuf *m;
848         uint32_t nb_pkts_in, i, idx;
849
850         if (app_sa_prm.enable == 0) {
851
852                 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
853                                 traffic->ipsec.num, MAX_PKT_BURST);
854
855                 for (i = 0; i < nb_pkts_in; i++) {
856                         m = traffic->ipsec.pkts[i];
857                         struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
858                         if (ip->ip_v == IPVERSION) {
859                                 idx = traffic->ip4.num++;
860                                 traffic->ip4.pkts[idx] = m;
861                         } else {
862                                 idx = traffic->ip6.num++;
863                                 traffic->ip6.pkts[idx] = m;
864                         }
865                 }
866         } else {
867                 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
868                         traffic->ipsec.saptr, traffic->ipsec.num);
869                 ipsec_process(ipsec_ctx, traffic);
870         }
871 }
872
873 static inline void
874 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
875                 struct ipsec_traffic *traffic)
876 {
877         struct rte_mbuf *m;
878         uint32_t nb_pkts_out, i, n;
879         struct ip *ip;
880
881         /* Drop any IPsec traffic from protected ports */
882         free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
883
884         n = 0;
885
886         for (i = 0; i < traffic->ip4.num; i++) {
887                 traffic->ipsec.pkts[n] = traffic->ip4.pkts[i];
888                 traffic->ipsec.res[n++] = single_sa_idx;
889         }
890
891         for (i = 0; i < traffic->ip6.num; i++) {
892                 traffic->ipsec.pkts[n] = traffic->ip6.pkts[i];
893                 traffic->ipsec.res[n++] = single_sa_idx;
894         }
895
896         traffic->ip4.num = 0;
897         traffic->ip6.num = 0;
898         traffic->ipsec.num = n;
899
900         if (app_sa_prm.enable == 0) {
901
902                 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
903                                 traffic->ipsec.res, traffic->ipsec.num,
904                                 MAX_PKT_BURST);
905
906                 /* They all sue the same SA (ip4 or ip6 tunnel) */
907                 m = traffic->ipsec.pkts[0];
908                 ip = rte_pktmbuf_mtod(m, struct ip *);
909                 if (ip->ip_v == IPVERSION) {
910                         traffic->ip4.num = nb_pkts_out;
911                         for (i = 0; i < nb_pkts_out; i++)
912                                 traffic->ip4.pkts[i] = traffic->ipsec.pkts[i];
913                 } else {
914                         traffic->ip6.num = nb_pkts_out;
915                         for (i = 0; i < nb_pkts_out; i++)
916                                 traffic->ip6.pkts[i] = traffic->ipsec.pkts[i];
917                 }
918         } else {
919                 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
920                         traffic->ipsec.saptr, traffic->ipsec.num);
921                 ipsec_process(ipsec_ctx, traffic);
922         }
923 }
924
925 static inline int32_t
926 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
927 {
928         struct ipsec_mbuf_metadata *priv;
929         struct ipsec_sa *sa;
930
931         priv = get_priv(pkt);
932
933         sa = priv->sa;
934         if (unlikely(sa == NULL)) {
935                 RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
936                 goto fail;
937         }
938
939         if (is_ipv6)
940                 return sa->portid;
941
942         /* else */
943         return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
944
945 fail:
946         if (is_ipv6)
947                 return -1;
948
949         /* else */
950         return 0;
951 }
952
953 static inline void
954 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
955 {
956         uint32_t hop[MAX_PKT_BURST * 2];
957         uint32_t dst_ip[MAX_PKT_BURST * 2];
958         int32_t pkt_hop = 0;
959         uint16_t i, offset;
960         uint16_t lpm_pkts = 0;
961
962         if (nb_pkts == 0)
963                 return;
964
965         /* Need to do an LPM lookup for non-inline packets. Inline packets will
966          * have port ID in the SA
967          */
968
969         for (i = 0; i < nb_pkts; i++) {
970                 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
971                         /* Security offload not enabled. So an LPM lookup is
972                          * required to get the hop
973                          */
974                         offset = offsetof(struct ip, ip_dst);
975                         dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
976                                         uint32_t *, offset);
977                         dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
978                         lpm_pkts++;
979                 }
980         }
981
982         rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
983
984         lpm_pkts = 0;
985
986         for (i = 0; i < nb_pkts; i++) {
987                 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
988                         /* Read hop from the SA */
989                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
990                 } else {
991                         /* Need to use hop returned by lookup */
992                         pkt_hop = hop[lpm_pkts++];
993                 }
994
995                 if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
996                         free_pkts(&pkts[i], 1);
997                         continue;
998                 }
999                 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IP);
1000         }
1001 }
1002
1003 static inline void
1004 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
1005 {
1006         int32_t hop[MAX_PKT_BURST * 2];
1007         uint8_t dst_ip[MAX_PKT_BURST * 2][16];
1008         uint8_t *ip6_dst;
1009         int32_t pkt_hop = 0;
1010         uint16_t i, offset;
1011         uint16_t lpm_pkts = 0;
1012
1013         if (nb_pkts == 0)
1014                 return;
1015
1016         /* Need to do an LPM lookup for non-inline packets. Inline packets will
1017          * have port ID in the SA
1018          */
1019
1020         for (i = 0; i < nb_pkts; i++) {
1021                 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
1022                         /* Security offload not enabled. So an LPM lookup is
1023                          * required to get the hop
1024                          */
1025                         offset = offsetof(struct ip6_hdr, ip6_dst);
1026                         ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
1027                                         offset);
1028                         memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
1029                         lpm_pkts++;
1030                 }
1031         }
1032
1033         rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
1034                         lpm_pkts);
1035
1036         lpm_pkts = 0;
1037
1038         for (i = 0; i < nb_pkts; i++) {
1039                 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
1040                         /* Read hop from the SA */
1041                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
1042                 } else {
1043                         /* Need to use hop returned by lookup */
1044                         pkt_hop = hop[lpm_pkts++];
1045                 }
1046
1047                 if (pkt_hop == -1) {
1048                         free_pkts(&pkts[i], 1);
1049                         continue;
1050                 }
1051                 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IPV6);
1052         }
1053 }
1054
1055 static inline void
1056 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
1057                 uint8_t nb_pkts, uint16_t portid)
1058 {
1059         struct ipsec_traffic traffic;
1060
1061         prepare_traffic(pkts, &traffic, nb_pkts);
1062
1063         if (unlikely(single_sa)) {
1064                 if (is_unprotected_port(portid))
1065                         process_pkts_inbound_nosp(&qconf->inbound, &traffic);
1066                 else
1067                         process_pkts_outbound_nosp(&qconf->outbound, &traffic);
1068         } else {
1069                 if (is_unprotected_port(portid))
1070                         process_pkts_inbound(&qconf->inbound, &traffic);
1071                 else
1072                         process_pkts_outbound(&qconf->outbound, &traffic);
1073         }
1074
1075         route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
1076         route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
1077 }
1078
1079 static inline void
1080 drain_tx_buffers(struct lcore_conf *qconf)
1081 {
1082         struct buffer *buf;
1083         uint32_t portid;
1084
1085         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
1086                 buf = &qconf->tx_mbufs[portid];
1087                 if (buf->len == 0)
1088                         continue;
1089                 send_burst(qconf, buf->len, portid);
1090                 buf->len = 0;
1091         }
1092 }
1093
1094 static inline void
1095 drain_crypto_buffers(struct lcore_conf *qconf)
1096 {
1097         uint32_t i;
1098         struct ipsec_ctx *ctx;
1099
1100         /* drain inbound buffers*/
1101         ctx = &qconf->inbound;
1102         for (i = 0; i != ctx->nb_qps; i++) {
1103                 if (ctx->tbl[i].len != 0)
1104                         enqueue_cop_burst(ctx->tbl  + i);
1105         }
1106
1107         /* drain outbound buffers*/
1108         ctx = &qconf->outbound;
1109         for (i = 0; i != ctx->nb_qps; i++) {
1110                 if (ctx->tbl[i].len != 0)
1111                         enqueue_cop_burst(ctx->tbl  + i);
1112         }
1113 }
1114
1115 static void
1116 drain_inbound_crypto_queues(const struct lcore_conf *qconf,
1117                 struct ipsec_ctx *ctx)
1118 {
1119         uint32_t n;
1120         struct ipsec_traffic trf;
1121
1122         if (app_sa_prm.enable == 0) {
1123
1124                 /* dequeue packets from crypto-queue */
1125                 n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1126                         RTE_DIM(trf.ipsec.pkts));
1127
1128                 trf.ip4.num = 0;
1129                 trf.ip6.num = 0;
1130
1131                 /* split traffic by ipv4-ipv6 */
1132                 split46_traffic(&trf, trf.ipsec.pkts, n);
1133         } else
1134                 ipsec_cqp_process(ctx, &trf);
1135
1136         /* process ipv4 packets */
1137         if (trf.ip4.num != 0) {
1138                 inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0);
1139                 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1140         }
1141
1142         /* process ipv6 packets */
1143         if (trf.ip6.num != 0) {
1144                 inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0);
1145                 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1146         }
1147 }
1148
1149 static void
1150 drain_outbound_crypto_queues(const struct lcore_conf *qconf,
1151                 struct ipsec_ctx *ctx)
1152 {
1153         uint32_t n;
1154         struct ipsec_traffic trf;
1155
1156         if (app_sa_prm.enable == 0) {
1157
1158                 /* dequeue packets from crypto-queue */
1159                 n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1160                         RTE_DIM(trf.ipsec.pkts));
1161
1162                 trf.ip4.num = 0;
1163                 trf.ip6.num = 0;
1164
1165                 /* split traffic by ipv4-ipv6 */
1166                 split46_traffic(&trf, trf.ipsec.pkts, n);
1167         } else
1168                 ipsec_cqp_process(ctx, &trf);
1169
1170         /* process ipv4 packets */
1171         if (trf.ip4.num != 0)
1172                 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1173
1174         /* process ipv6 packets */
1175         if (trf.ip6.num != 0)
1176                 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1177 }
1178
1179 /* main processing loop */
1180 void
1181 ipsec_poll_mode_worker(void)
1182 {
1183         struct rte_mbuf *pkts[MAX_PKT_BURST];
1184         uint32_t lcore_id;
1185         uint64_t prev_tsc, diff_tsc, cur_tsc;
1186         int32_t i, nb_rx;
1187         uint16_t portid;
1188         uint8_t queueid;
1189         struct lcore_conf *qconf;
1190         int32_t rc, socket_id;
1191         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
1192                         / US_PER_S * BURST_TX_DRAIN_US;
1193         struct lcore_rx_queue *rxql;
1194
1195         prev_tsc = 0;
1196         lcore_id = rte_lcore_id();
1197         qconf = &lcore_conf[lcore_id];
1198         rxql = qconf->rx_queue_list;
1199         socket_id = rte_lcore_to_socket_id(lcore_id);
1200
1201         qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
1202         qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
1203         qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
1204         qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
1205         qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
1206         qconf->inbound.cdev_map = cdev_map_in;
1207         qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
1208         qconf->inbound.session_priv_pool =
1209                         socket_ctx[socket_id].session_priv_pool;
1210         qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
1211         qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
1212         qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
1213         qconf->outbound.cdev_map = cdev_map_out;
1214         qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
1215         qconf->outbound.session_priv_pool =
1216                         socket_ctx[socket_id].session_priv_pool;
1217         qconf->frag.pool_dir = socket_ctx[socket_id].mbuf_pool;
1218         qconf->frag.pool_indir = socket_ctx[socket_id].mbuf_pool_indir;
1219
1220         rc = ipsec_sad_lcore_cache_init(app_sa_prm.cache_sz);
1221         if (rc != 0) {
1222                 RTE_LOG(ERR, IPSEC,
1223                         "SAD cache init on lcore %u, failed with code: %d\n",
1224                         lcore_id, rc);
1225                 return;
1226         }
1227
1228         if (qconf->nb_rx_queue == 0) {
1229                 RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n",
1230                         lcore_id);
1231                 return;
1232         }
1233
1234         RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
1235
1236         for (i = 0; i < qconf->nb_rx_queue; i++) {
1237                 portid = rxql[i].port_id;
1238                 queueid = rxql[i].queue_id;
1239                 RTE_LOG(INFO, IPSEC,
1240                         " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
1241                         lcore_id, portid, queueid);
1242         }
1243
1244         while (!force_quit) {
1245                 cur_tsc = rte_rdtsc();
1246
1247                 /* TX queue buffer drain */
1248                 diff_tsc = cur_tsc - prev_tsc;
1249
1250                 if (unlikely(diff_tsc > drain_tsc)) {
1251                         drain_tx_buffers(qconf);
1252                         drain_crypto_buffers(qconf);
1253                         prev_tsc = cur_tsc;
1254                 }
1255
1256                 for (i = 0; i < qconf->nb_rx_queue; ++i) {
1257
1258                         /* Read packets from RX queues */
1259                         portid = rxql[i].port_id;
1260                         queueid = rxql[i].queue_id;
1261                         nb_rx = rte_eth_rx_burst(portid, queueid,
1262                                         pkts, MAX_PKT_BURST);
1263
1264                         if (nb_rx > 0) {
1265                                 core_stats_update_rx(nb_rx);
1266                                 process_pkts(qconf, pkts, nb_rx, portid);
1267                         }
1268
1269                         /* dequeue and process completed crypto-ops */
1270                         if (is_unprotected_port(portid))
1271                                 drain_inbound_crypto_queues(qconf,
1272                                         &qconf->inbound);
1273                         else
1274                                 drain_outbound_crypto_queues(qconf,
1275                                         &qconf->outbound);
1276                 }
1277         }
1278 }
1279
1280 int
1281 check_flow_params(uint16_t fdir_portid, uint8_t fdir_qid)
1282 {
1283         uint16_t i;
1284         uint16_t portid;
1285         uint8_t queueid;
1286
1287         for (i = 0; i < nb_lcore_params; ++i) {
1288                 portid = lcore_params_array[i].port_id;
1289                 if (portid == fdir_portid) {
1290                         queueid = lcore_params_array[i].queue_id;
1291                         if (queueid == fdir_qid)
1292                                 break;
1293                 }
1294
1295                 if (i == nb_lcore_params - 1)
1296                         return -1;
1297         }
1298
1299         return 1;
1300 }
1301
1302 static int32_t
1303 check_poll_mode_params(struct eh_conf *eh_conf)
1304 {
1305         uint8_t lcore;
1306         uint16_t portid;
1307         uint16_t i;
1308         int32_t socket_id;
1309
1310         if (!eh_conf)
1311                 return -EINVAL;
1312
1313         if (eh_conf->mode != EH_PKT_TRANSFER_MODE_POLL)
1314                 return 0;
1315
1316         if (lcore_params == NULL) {
1317                 printf("Error: No port/queue/core mappings\n");
1318                 return -1;
1319         }
1320
1321         for (i = 0; i < nb_lcore_params; ++i) {
1322                 lcore = lcore_params[i].lcore_id;
1323                 if (!rte_lcore_is_enabled(lcore)) {
1324                         printf("error: lcore %hhu is not enabled in "
1325                                 "lcore mask\n", lcore);
1326                         return -1;
1327                 }
1328                 socket_id = rte_lcore_to_socket_id(lcore);
1329                 if (socket_id != 0 && numa_on == 0) {
1330                         printf("warning: lcore %hhu is on socket %d "
1331                                 "with numa off\n",
1332                                 lcore, socket_id);
1333                 }
1334                 portid = lcore_params[i].port_id;
1335                 if ((enabled_port_mask & (1 << portid)) == 0) {
1336                         printf("port %u is not enabled in port mask\n", portid);
1337                         return -1;
1338                 }
1339                 if (!rte_eth_dev_is_valid_port(portid)) {
1340                         printf("port %u is not present on the board\n", portid);
1341                         return -1;
1342                 }
1343         }
1344         return 0;
1345 }
1346
1347 static uint8_t
1348 get_port_nb_rx_queues(const uint16_t port)
1349 {
1350         int32_t queue = -1;
1351         uint16_t i;
1352
1353         for (i = 0; i < nb_lcore_params; ++i) {
1354                 if (lcore_params[i].port_id == port &&
1355                                 lcore_params[i].queue_id > queue)
1356                         queue = lcore_params[i].queue_id;
1357         }
1358         return (uint8_t)(++queue);
1359 }
1360
1361 static int32_t
1362 init_lcore_rx_queues(void)
1363 {
1364         uint16_t i, nb_rx_queue;
1365         uint8_t lcore;
1366
1367         for (i = 0; i < nb_lcore_params; ++i) {
1368                 lcore = lcore_params[i].lcore_id;
1369                 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
1370                 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1371                         printf("error: too many queues (%u) for lcore: %u\n",
1372                                         nb_rx_queue + 1, lcore);
1373                         return -1;
1374                 }
1375                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1376                         lcore_params[i].port_id;
1377                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1378                         lcore_params[i].queue_id;
1379                 lcore_conf[lcore].nb_rx_queue++;
1380         }
1381         return 0;
1382 }
1383
1384 /* display usage */
1385 static void
1386 print_usage(const char *prgname)
1387 {
1388         fprintf(stderr, "%s [EAL options] --"
1389                 " -p PORTMASK"
1390                 " [-P]"
1391                 " [-u PORTMASK]"
1392                 " [-j FRAMESIZE]"
1393                 " [-l]"
1394                 " [-w REPLAY_WINDOW_SIZE]"
1395                 " [-e]"
1396                 " [-a]"
1397                 " [-c]"
1398                 " [-s NUMBER_OF_MBUFS_IN_PKT_POOL]"
1399                 " -f CONFIG_FILE"
1400                 " --config (port,queue,lcore)[,(port,queue,lcore)]"
1401                 " [--single-sa SAIDX]"
1402                 " [--cryptodev_mask MASK]"
1403                 " [--transfer-mode MODE]"
1404                 " [--event-schedule-type TYPE]"
1405                 " [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]"
1406                 " [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]"
1407                 " [--" CMD_LINE_OPT_REASSEMBLE " REASSEMBLE_TABLE_SIZE]"
1408                 " [--" CMD_LINE_OPT_MTU " MTU]"
1409                 "\n\n"
1410                 "  -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
1411                 "  -P : Enable promiscuous mode\n"
1412                 "  -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
1413                 "  -j FRAMESIZE: Data buffer size, minimum (and default)\n"
1414                 "     value: RTE_MBUF_DEFAULT_BUF_SIZE\n"
1415                 "  -l enables code-path that uses librte_ipsec\n"
1416                 "  -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n"
1417                 "     size for each SA\n"
1418                 "  -e enables ESN\n"
1419                 "  -a enables SA SQN atomic behaviour\n"
1420                 "  -c specifies inbound SAD cache size,\n"
1421                 "     zero value disables the cache (default value: 128)\n"
1422                 "  -s number of mbufs in packet pool, if not specified number\n"
1423                 "     of mbufs will be calculated based on number of cores,\n"
1424                 "     ports and crypto queues\n"
1425                 "  -f CONFIG_FILE: Configuration file\n"
1426                 "  --config (port,queue,lcore): Rx queue configuration. In poll\n"
1427                 "                               mode determines which queues from\n"
1428                 "                               which ports are mapped to which cores.\n"
1429                 "                               In event mode this option is not used\n"
1430                 "                               as packets are dynamically scheduled\n"
1431                 "                               to cores by HW.\n"
1432                 "  --single-sa SAIDX: In poll mode use single SA index for\n"
1433                 "                     outbound traffic, bypassing the SP\n"
1434                 "                     In event mode selects driver submode,\n"
1435                 "                     SA index value is ignored\n"
1436                 "  --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
1437                 "                         devices to configure\n"
1438                 "  --transfer-mode MODE\n"
1439                 "               \"poll\"  : Packet transfer via polling (default)\n"
1440                 "               \"event\" : Packet transfer via event device\n"
1441                 "  --event-schedule-type TYPE queue schedule type, used only when\n"
1442                 "                             transfer mode is set to event\n"
1443                 "               \"ordered\"  : Ordered (default)\n"
1444                 "               \"atomic\"   : Atomic\n"
1445                 "               \"parallel\" : Parallel\n"
1446                 "  --" CMD_LINE_OPT_RX_OFFLOAD
1447                 ": bitmask of the RX HW offload capabilities to enable/use\n"
1448                 "                         (DEV_RX_OFFLOAD_*)\n"
1449                 "  --" CMD_LINE_OPT_TX_OFFLOAD
1450                 ": bitmask of the TX HW offload capabilities to enable/use\n"
1451                 "                         (DEV_TX_OFFLOAD_*)\n"
1452                 "  --" CMD_LINE_OPT_REASSEMBLE " NUM"
1453                 ": max number of entries in reassemble(fragment) table\n"
1454                 "    (zero (default value) disables reassembly)\n"
1455                 "  --" CMD_LINE_OPT_MTU " MTU"
1456                 ": MTU value on all ports (default value: 1500)\n"
1457                 "    outgoing packets with bigger size will be fragmented\n"
1458                 "    incoming packets with bigger size will be discarded\n"
1459                 "  --" CMD_LINE_OPT_FRAG_TTL " FRAG_TTL_NS"
1460                 ": fragments lifetime in nanoseconds, default\n"
1461                 "    and maximum value is 10.000.000.000 ns (10 s)\n"
1462                 "\n",
1463                 prgname);
1464 }
1465
1466 static int
1467 parse_mask(const char *str, uint64_t *val)
1468 {
1469         char *end;
1470         unsigned long t;
1471
1472         errno = 0;
1473         t = strtoul(str, &end, 0);
1474         if (errno != 0 || end[0] != 0)
1475                 return -EINVAL;
1476
1477         *val = t;
1478         return 0;
1479 }
1480
1481 static int32_t
1482 parse_portmask(const char *portmask)
1483 {
1484         char *end = NULL;
1485         unsigned long pm;
1486
1487         errno = 0;
1488
1489         /* parse hexadecimal string */
1490         pm = strtoul(portmask, &end, 16);
1491         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1492                 return -1;
1493
1494         if ((pm == 0) && errno)
1495                 return -1;
1496
1497         return pm;
1498 }
1499
1500 static int64_t
1501 parse_decimal(const char *str)
1502 {
1503         char *end = NULL;
1504         uint64_t num;
1505
1506         num = strtoull(str, &end, 10);
1507         if ((str[0] == '\0') || (end == NULL) || (*end != '\0')
1508                 || num > INT64_MAX)
1509                 return -1;
1510
1511         return num;
1512 }
1513
1514 static int32_t
1515 parse_config(const char *q_arg)
1516 {
1517         char s[256];
1518         const char *p, *p0 = q_arg;
1519         char *end;
1520         enum fieldnames {
1521                 FLD_PORT = 0,
1522                 FLD_QUEUE,
1523                 FLD_LCORE,
1524                 _NUM_FLD
1525         };
1526         unsigned long int_fld[_NUM_FLD];
1527         char *str_fld[_NUM_FLD];
1528         int32_t i;
1529         uint32_t size;
1530
1531         nb_lcore_params = 0;
1532
1533         while ((p = strchr(p0, '(')) != NULL) {
1534                 ++p;
1535                 p0 = strchr(p, ')');
1536                 if (p0 == NULL)
1537                         return -1;
1538
1539                 size = p0 - p;
1540                 if (size >= sizeof(s))
1541                         return -1;
1542
1543                 snprintf(s, sizeof(s), "%.*s", size, p);
1544                 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1545                                 _NUM_FLD)
1546                         return -1;
1547                 for (i = 0; i < _NUM_FLD; i++) {
1548                         errno = 0;
1549                         int_fld[i] = strtoul(str_fld[i], &end, 0);
1550                         if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1551                                 return -1;
1552                 }
1553                 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1554                         printf("exceeded max number of lcore params: %hu\n",
1555                                 nb_lcore_params);
1556                         return -1;
1557                 }
1558                 lcore_params_array[nb_lcore_params].port_id =
1559                         (uint8_t)int_fld[FLD_PORT];
1560                 lcore_params_array[nb_lcore_params].queue_id =
1561                         (uint8_t)int_fld[FLD_QUEUE];
1562                 lcore_params_array[nb_lcore_params].lcore_id =
1563                         (uint8_t)int_fld[FLD_LCORE];
1564                 ++nb_lcore_params;
1565         }
1566         lcore_params = lcore_params_array;
1567         return 0;
1568 }
1569
1570 static void
1571 print_app_sa_prm(const struct app_sa_prm *prm)
1572 {
1573         printf("librte_ipsec usage: %s\n",
1574                 (prm->enable == 0) ? "disabled" : "enabled");
1575
1576         printf("replay window size: %u\n", prm->window_size);
1577         printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled");
1578         printf("SA flags: %#" PRIx64 "\n", prm->flags);
1579         printf("Frag TTL: %" PRIu64 " ns\n", frag_ttl_ns);
1580 }
1581
1582 static int
1583 parse_transfer_mode(struct eh_conf *conf, const char *optarg)
1584 {
1585         if (!strcmp(CMD_LINE_ARG_POLL, optarg))
1586                 conf->mode = EH_PKT_TRANSFER_MODE_POLL;
1587         else if (!strcmp(CMD_LINE_ARG_EVENT, optarg))
1588                 conf->mode = EH_PKT_TRANSFER_MODE_EVENT;
1589         else {
1590                 printf("Unsupported packet transfer mode\n");
1591                 return -EINVAL;
1592         }
1593
1594         return 0;
1595 }
1596
1597 static int
1598 parse_schedule_type(struct eh_conf *conf, const char *optarg)
1599 {
1600         struct eventmode_conf *em_conf = NULL;
1601
1602         /* Get eventmode conf */
1603         em_conf = conf->mode_params;
1604
1605         if (!strcmp(CMD_LINE_ARG_ORDERED, optarg))
1606                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
1607         else if (!strcmp(CMD_LINE_ARG_ATOMIC, optarg))
1608                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ATOMIC;
1609         else if (!strcmp(CMD_LINE_ARG_PARALLEL, optarg))
1610                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_PARALLEL;
1611         else {
1612                 printf("Unsupported queue schedule type\n");
1613                 return -EINVAL;
1614         }
1615
1616         return 0;
1617 }
1618
1619 static int32_t
1620 parse_args(int32_t argc, char **argv, struct eh_conf *eh_conf)
1621 {
1622         int opt;
1623         int64_t ret;
1624         char **argvopt;
1625         int32_t option_index;
1626         char *prgname = argv[0];
1627         int32_t f_present = 0;
1628
1629         argvopt = argv;
1630
1631         while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:c:s:",
1632                                 lgopts, &option_index)) != EOF) {
1633
1634                 switch (opt) {
1635                 case 'p':
1636                         enabled_port_mask = parse_portmask(optarg);
1637                         if (enabled_port_mask == 0) {
1638                                 printf("invalid portmask\n");
1639                                 print_usage(prgname);
1640                                 return -1;
1641                         }
1642                         break;
1643                 case 'P':
1644                         printf("Promiscuous mode selected\n");
1645                         promiscuous_on = 1;
1646                         break;
1647                 case 'u':
1648                         unprotected_port_mask = parse_portmask(optarg);
1649                         if (unprotected_port_mask == 0) {
1650                                 printf("invalid unprotected portmask\n");
1651                                 print_usage(prgname);
1652                                 return -1;
1653                         }
1654                         break;
1655                 case 'f':
1656                         if (f_present == 1) {
1657                                 printf("\"-f\" option present more than "
1658                                         "once!\n");
1659                                 print_usage(prgname);
1660                                 return -1;
1661                         }
1662                         cfgfile = optarg;
1663                         f_present = 1;
1664                         break;
1665
1666                 case 's':
1667                         ret = parse_decimal(optarg);
1668                         if (ret < 0) {
1669                                 printf("Invalid number of buffers in a pool: "
1670                                         "%s\n", optarg);
1671                                 print_usage(prgname);
1672                                 return -1;
1673                         }
1674
1675                         nb_bufs_in_pool = ret;
1676                         break;
1677
1678                 case 'j':
1679                         ret = parse_decimal(optarg);
1680                         if (ret < RTE_MBUF_DEFAULT_BUF_SIZE ||
1681                                         ret > UINT16_MAX) {
1682                                 printf("Invalid frame buffer size value: %s\n",
1683                                         optarg);
1684                                 print_usage(prgname);
1685                                 return -1;
1686                         }
1687                         frame_buf_size = ret;
1688                         printf("Custom frame buffer size %u\n", frame_buf_size);
1689                         break;
1690                 case 'l':
1691                         app_sa_prm.enable = 1;
1692                         break;
1693                 case 'w':
1694                         app_sa_prm.window_size = parse_decimal(optarg);
1695                         break;
1696                 case 'e':
1697                         app_sa_prm.enable_esn = 1;
1698                         break;
1699                 case 'a':
1700                         app_sa_prm.enable = 1;
1701                         app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM;
1702                         break;
1703                 case 'c':
1704                         ret = parse_decimal(optarg);
1705                         if (ret < 0) {
1706                                 printf("Invalid SA cache size: %s\n", optarg);
1707                                 print_usage(prgname);
1708                                 return -1;
1709                         }
1710                         app_sa_prm.cache_sz = ret;
1711                         break;
1712                 case CMD_LINE_OPT_CONFIG_NUM:
1713                         ret = parse_config(optarg);
1714                         if (ret) {
1715                                 printf("Invalid config\n");
1716                                 print_usage(prgname);
1717                                 return -1;
1718                         }
1719                         break;
1720                 case CMD_LINE_OPT_SINGLE_SA_NUM:
1721                         ret = parse_decimal(optarg);
1722                         if (ret == -1 || ret > UINT32_MAX) {
1723                                 printf("Invalid argument[sa_idx]\n");
1724                                 print_usage(prgname);
1725                                 return -1;
1726                         }
1727
1728                         /* else */
1729                         single_sa = 1;
1730                         single_sa_idx = ret;
1731                         eh_conf->ipsec_mode = EH_IPSEC_MODE_TYPE_DRIVER;
1732                         printf("Configured with single SA index %u\n",
1733                                         single_sa_idx);
1734                         break;
1735                 case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1736                         ret = parse_portmask(optarg);
1737                         if (ret == -1) {
1738                                 printf("Invalid argument[portmask]\n");
1739                                 print_usage(prgname);
1740                                 return -1;
1741                         }
1742
1743                         /* else */
1744                         enabled_cryptodev_mask = ret;
1745                         break;
1746
1747                 case CMD_LINE_OPT_TRANSFER_MODE_NUM:
1748                         ret = parse_transfer_mode(eh_conf, optarg);
1749                         if (ret < 0) {
1750                                 printf("Invalid packet transfer mode\n");
1751                                 print_usage(prgname);
1752                                 return -1;
1753                         }
1754                         break;
1755
1756                 case CMD_LINE_OPT_SCHEDULE_TYPE_NUM:
1757                         ret = parse_schedule_type(eh_conf, optarg);
1758                         if (ret < 0) {
1759                                 printf("Invalid queue schedule type\n");
1760                                 print_usage(prgname);
1761                                 return -1;
1762                         }
1763                         break;
1764
1765                 case CMD_LINE_OPT_RX_OFFLOAD_NUM:
1766                         ret = parse_mask(optarg, &dev_rx_offload);
1767                         if (ret != 0) {
1768                                 printf("Invalid argument for \'%s\': %s\n",
1769                                         CMD_LINE_OPT_RX_OFFLOAD, optarg);
1770                                 print_usage(prgname);
1771                                 return -1;
1772                         }
1773                         break;
1774                 case CMD_LINE_OPT_TX_OFFLOAD_NUM:
1775                         ret = parse_mask(optarg, &dev_tx_offload);
1776                         if (ret != 0) {
1777                                 printf("Invalid argument for \'%s\': %s\n",
1778                                         CMD_LINE_OPT_TX_OFFLOAD, optarg);
1779                                 print_usage(prgname);
1780                                 return -1;
1781                         }
1782                         break;
1783                 case CMD_LINE_OPT_REASSEMBLE_NUM:
1784                         ret = parse_decimal(optarg);
1785                         if (ret < 0 || ret > UINT32_MAX) {
1786                                 printf("Invalid argument for \'%s\': %s\n",
1787                                         CMD_LINE_OPT_REASSEMBLE, optarg);
1788                                 print_usage(prgname);
1789                                 return -1;
1790                         }
1791                         frag_tbl_sz = ret;
1792                         break;
1793                 case CMD_LINE_OPT_MTU_NUM:
1794                         ret = parse_decimal(optarg);
1795                         if (ret < 0 || ret > RTE_IPV4_MAX_PKT_LEN) {
1796                                 printf("Invalid argument for \'%s\': %s\n",
1797                                         CMD_LINE_OPT_MTU, optarg);
1798                                 print_usage(prgname);
1799                                 return -1;
1800                         }
1801                         mtu_size = ret;
1802                         break;
1803                 case CMD_LINE_OPT_FRAG_TTL_NUM:
1804                         ret = parse_decimal(optarg);
1805                         if (ret < 0 || ret > MAX_FRAG_TTL_NS) {
1806                                 printf("Invalid argument for \'%s\': %s\n",
1807                                         CMD_LINE_OPT_MTU, optarg);
1808                                 print_usage(prgname);
1809                                 return -1;
1810                         }
1811                         frag_ttl_ns = ret;
1812                         break;
1813                 default:
1814                         print_usage(prgname);
1815                         return -1;
1816                 }
1817         }
1818
1819         if (f_present == 0) {
1820                 printf("Mandatory option \"-f\" not present\n");
1821                 return -1;
1822         }
1823
1824         /* check do we need to enable multi-seg support */
1825         if (multi_seg_required()) {
1826                 /* legacy mode doesn't support multi-seg */
1827                 app_sa_prm.enable = 1;
1828                 printf("frame buf size: %u, mtu: %u, "
1829                         "number of reassemble entries: %u\n"
1830                         "multi-segment support is required\n",
1831                         frame_buf_size, mtu_size, frag_tbl_sz);
1832         }
1833
1834         print_app_sa_prm(&app_sa_prm);
1835
1836         if (optind >= 0)
1837                 argv[optind-1] = prgname;
1838
1839         ret = optind-1;
1840         optind = 1; /* reset getopt lib */
1841         return ret;
1842 }
1843
1844 static void
1845 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1846 {
1847         char buf[RTE_ETHER_ADDR_FMT_SIZE];
1848         rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1849         printf("%s%s", name, buf);
1850 }
1851
1852 /*
1853  * Update destination ethaddr for the port.
1854  */
1855 int
1856 add_dst_ethaddr(uint16_t port, const struct rte_ether_addr *addr)
1857 {
1858         if (port >= RTE_DIM(ethaddr_tbl))
1859                 return -EINVAL;
1860
1861         ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr);
1862         return 0;
1863 }
1864
1865 /* Check the link status of all ports in up to 9s, and print them finally */
1866 static void
1867 check_all_ports_link_status(uint32_t port_mask)
1868 {
1869 #define CHECK_INTERVAL 100 /* 100ms */
1870 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1871         uint16_t portid;
1872         uint8_t count, all_ports_up, print_flag = 0;
1873         struct rte_eth_link link;
1874         int ret;
1875         char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
1876
1877         printf("\nChecking link status");
1878         fflush(stdout);
1879         for (count = 0; count <= MAX_CHECK_TIME; count++) {
1880                 all_ports_up = 1;
1881                 RTE_ETH_FOREACH_DEV(portid) {
1882                         if ((port_mask & (1 << portid)) == 0)
1883                                 continue;
1884                         memset(&link, 0, sizeof(link));
1885                         ret = rte_eth_link_get_nowait(portid, &link);
1886                         if (ret < 0) {
1887                                 all_ports_up = 0;
1888                                 if (print_flag == 1)
1889                                         printf("Port %u link get failed: %s\n",
1890                                                 portid, rte_strerror(-ret));
1891                                 continue;
1892                         }
1893                         /* print link status if flag set */
1894                         if (print_flag == 1) {
1895                                 rte_eth_link_to_str(link_status_text,
1896                                         sizeof(link_status_text), &link);
1897                                 printf("Port %d %s\n", portid,
1898                                        link_status_text);
1899                                 continue;
1900                         }
1901                         /* clear all_ports_up flag if any link down */
1902                         if (link.link_status == ETH_LINK_DOWN) {
1903                                 all_ports_up = 0;
1904                                 break;
1905                         }
1906                 }
1907                 /* after finally printing all link status, get out */
1908                 if (print_flag == 1)
1909                         break;
1910
1911                 if (all_ports_up == 0) {
1912                         printf(".");
1913                         fflush(stdout);
1914                         rte_delay_ms(CHECK_INTERVAL);
1915                 }
1916
1917                 /* set the print_flag if all ports up or timeout */
1918                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1919                         print_flag = 1;
1920                         printf("done\n");
1921                 }
1922         }
1923 }
1924
1925 static int32_t
1926 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1927                 uint16_t qp, struct lcore_params *params,
1928                 struct ipsec_ctx *ipsec_ctx,
1929                 const struct rte_cryptodev_capabilities *cipher,
1930                 const struct rte_cryptodev_capabilities *auth,
1931                 const struct rte_cryptodev_capabilities *aead)
1932 {
1933         int32_t ret = 0;
1934         unsigned long i;
1935         struct cdev_key key = { 0 };
1936
1937         key.lcore_id = params->lcore_id;
1938         if (cipher)
1939                 key.cipher_algo = cipher->sym.cipher.algo;
1940         if (auth)
1941                 key.auth_algo = auth->sym.auth.algo;
1942         if (aead)
1943                 key.aead_algo = aead->sym.aead.algo;
1944
1945         ret = rte_hash_lookup(map, &key);
1946         if (ret != -ENOENT)
1947                 return 0;
1948
1949         for (i = 0; i < ipsec_ctx->nb_qps; i++)
1950                 if (ipsec_ctx->tbl[i].id == cdev_id)
1951                         break;
1952
1953         if (i == ipsec_ctx->nb_qps) {
1954                 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1955                         printf("Maximum number of crypto devices assigned to "
1956                                 "a core, increase MAX_QP_PER_LCORE value\n");
1957                         return 0;
1958                 }
1959                 ipsec_ctx->tbl[i].id = cdev_id;
1960                 ipsec_ctx->tbl[i].qp = qp;
1961                 ipsec_ctx->nb_qps++;
1962                 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1963                                 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1964                                 cdev_id, qp, i);
1965         }
1966
1967         ret = rte_hash_add_key_data(map, &key, (void *)i);
1968         if (ret < 0) {
1969                 printf("Faled to insert cdev mapping for (lcore %u, "
1970                                 "cdev %u, qp %u), errno %d\n",
1971                                 key.lcore_id, ipsec_ctx->tbl[i].id,
1972                                 ipsec_ctx->tbl[i].qp, ret);
1973                 return 0;
1974         }
1975
1976         return 1;
1977 }
1978
1979 static int32_t
1980 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1981                 uint16_t qp, struct lcore_params *params)
1982 {
1983         int32_t ret = 0;
1984         const struct rte_cryptodev_capabilities *i, *j;
1985         struct rte_hash *map;
1986         struct lcore_conf *qconf;
1987         struct ipsec_ctx *ipsec_ctx;
1988         const char *str;
1989
1990         qconf = &lcore_conf[params->lcore_id];
1991
1992         if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1993                 map = cdev_map_out;
1994                 ipsec_ctx = &qconf->outbound;
1995                 str = "Outbound";
1996         } else {
1997                 map = cdev_map_in;
1998                 ipsec_ctx = &qconf->inbound;
1999                 str = "Inbound";
2000         }
2001
2002         /* Required cryptodevs with operation chainning */
2003         if (!(dev_info->feature_flags &
2004                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
2005                 return ret;
2006
2007         for (i = dev_info->capabilities;
2008                         i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
2009                 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
2010                         continue;
2011
2012                 if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
2013                         ret |= add_mapping(map, str, cdev_id, qp, params,
2014                                         ipsec_ctx, NULL, NULL, i);
2015                         continue;
2016                 }
2017
2018                 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
2019                         continue;
2020
2021                 for (j = dev_info->capabilities;
2022                                 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
2023                         if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
2024                                 continue;
2025
2026                         if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
2027                                 continue;
2028
2029                         ret |= add_mapping(map, str, cdev_id, qp, params,
2030                                                 ipsec_ctx, i, j, NULL);
2031                 }
2032         }
2033
2034         return ret;
2035 }
2036
2037 /* Check if the device is enabled by cryptodev_mask */
2038 static int
2039 check_cryptodev_mask(uint8_t cdev_id)
2040 {
2041         if (enabled_cryptodev_mask & (1 << cdev_id))
2042                 return 0;
2043
2044         return -1;
2045 }
2046
2047 static uint16_t
2048 cryptodevs_init(uint16_t req_queue_num)
2049 {
2050         struct rte_cryptodev_config dev_conf;
2051         struct rte_cryptodev_qp_conf qp_conf;
2052         uint16_t idx, max_nb_qps, qp, total_nb_qps, i;
2053         int16_t cdev_id;
2054         struct rte_hash_parameters params = { 0 };
2055
2056         const uint64_t mseg_flag = multi_seg_required() ?
2057                                 RTE_CRYPTODEV_FF_IN_PLACE_SGL : 0;
2058
2059         params.entries = CDEV_MAP_ENTRIES;
2060         params.key_len = sizeof(struct cdev_key);
2061         params.hash_func = rte_jhash;
2062         params.hash_func_init_val = 0;
2063         params.socket_id = rte_socket_id();
2064
2065         params.name = "cdev_map_in";
2066         cdev_map_in = rte_hash_create(&params);
2067         if (cdev_map_in == NULL)
2068                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
2069                                 rte_errno);
2070
2071         params.name = "cdev_map_out";
2072         cdev_map_out = rte_hash_create(&params);
2073         if (cdev_map_out == NULL)
2074                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
2075                                 rte_errno);
2076
2077         printf("lcore/cryptodev/qp mappings:\n");
2078
2079         idx = 0;
2080         total_nb_qps = 0;
2081         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
2082                 struct rte_cryptodev_info cdev_info;
2083
2084                 if (check_cryptodev_mask((uint8_t)cdev_id))
2085                         continue;
2086
2087                 rte_cryptodev_info_get(cdev_id, &cdev_info);
2088
2089                 if ((mseg_flag & cdev_info.feature_flags) != mseg_flag)
2090                         rte_exit(EXIT_FAILURE,
2091                                 "Device %hd does not support \'%s\' feature\n",
2092                                 cdev_id,
2093                                 rte_cryptodev_get_feature_name(mseg_flag));
2094
2095                 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
2096                         max_nb_qps = cdev_info.max_nb_queue_pairs;
2097                 else
2098                         max_nb_qps = nb_lcore_params;
2099
2100                 qp = 0;
2101                 i = 0;
2102                 while (qp < max_nb_qps && i < nb_lcore_params) {
2103                         if (add_cdev_mapping(&cdev_info, cdev_id, qp,
2104                                                 &lcore_params[idx]))
2105                                 qp++;
2106                         idx++;
2107                         idx = idx % nb_lcore_params;
2108                         i++;
2109                 }
2110
2111                 qp = RTE_MIN(max_nb_qps, RTE_MAX(req_queue_num, qp));
2112                 if (qp == 0)
2113                         continue;
2114
2115                 total_nb_qps += qp;
2116                 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
2117                 dev_conf.nb_queue_pairs = qp;
2118                 dev_conf.ff_disable = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO;
2119
2120                 uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
2121                 if (dev_max_sess != 0 &&
2122                                 dev_max_sess < get_nb_crypto_sessions())
2123                         rte_exit(EXIT_FAILURE,
2124                                 "Device does not support at least %u "
2125                                 "sessions", get_nb_crypto_sessions());
2126
2127                 if (rte_cryptodev_configure(cdev_id, &dev_conf))
2128                         rte_panic("Failed to initialize cryptodev %u\n",
2129                                         cdev_id);
2130
2131                 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
2132                 qp_conf.mp_session =
2133                         socket_ctx[dev_conf.socket_id].session_pool;
2134                 qp_conf.mp_session_private =
2135                         socket_ctx[dev_conf.socket_id].session_priv_pool;
2136                 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
2137                         if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
2138                                         &qp_conf, dev_conf.socket_id))
2139                                 rte_panic("Failed to setup queue %u for "
2140                                                 "cdev_id %u\n", 0, cdev_id);
2141
2142                 if (rte_cryptodev_start(cdev_id))
2143                         rte_panic("Failed to start cryptodev %u\n",
2144                                         cdev_id);
2145         }
2146
2147         printf("\n");
2148
2149         return total_nb_qps;
2150 }
2151
2152 static void
2153 port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads)
2154 {
2155         uint32_t frame_size;
2156         struct rte_eth_dev_info dev_info;
2157         struct rte_eth_txconf *txconf;
2158         uint16_t nb_tx_queue, nb_rx_queue;
2159         uint16_t tx_queueid, rx_queueid, queue, lcore_id;
2160         int32_t ret, socket_id;
2161         struct lcore_conf *qconf;
2162         struct rte_ether_addr ethaddr;
2163         struct rte_eth_conf local_port_conf = port_conf;
2164
2165         ret = rte_eth_dev_info_get(portid, &dev_info);
2166         if (ret != 0)
2167                 rte_exit(EXIT_FAILURE,
2168                         "Error during getting device (port %u) info: %s\n",
2169                         portid, strerror(-ret));
2170
2171         /* limit allowed HW offloafs, as user requested */
2172         dev_info.rx_offload_capa &= dev_rx_offload;
2173         dev_info.tx_offload_capa &= dev_tx_offload;
2174
2175         printf("Configuring device port %u:\n", portid);
2176
2177         ret = rte_eth_macaddr_get(portid, &ethaddr);
2178         if (ret != 0)
2179                 rte_exit(EXIT_FAILURE,
2180                         "Error getting MAC address (port %u): %s\n",
2181                         portid, rte_strerror(-ret));
2182
2183         ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(&ethaddr);
2184         print_ethaddr("Address: ", &ethaddr);
2185         printf("\n");
2186
2187         nb_rx_queue = get_port_nb_rx_queues(portid);
2188         nb_tx_queue = nb_lcores;
2189
2190         if (nb_rx_queue > dev_info.max_rx_queues)
2191                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2192                                 "(max rx queue is %u)\n",
2193                                 nb_rx_queue, dev_info.max_rx_queues);
2194
2195         if (nb_tx_queue > dev_info.max_tx_queues)
2196                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2197                                 "(max tx queue is %u)\n",
2198                                 nb_tx_queue, dev_info.max_tx_queues);
2199
2200         printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
2201                         nb_rx_queue, nb_tx_queue);
2202
2203         frame_size = MTU_TO_FRAMELEN(mtu_size);
2204         if (frame_size > local_port_conf.rxmode.max_rx_pkt_len)
2205                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2206         local_port_conf.rxmode.max_rx_pkt_len = frame_size;
2207
2208         if (multi_seg_required()) {
2209                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SCATTER;
2210                 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
2211         }
2212
2213         local_port_conf.rxmode.offloads |= req_rx_offloads;
2214         local_port_conf.txmode.offloads |= req_tx_offloads;
2215
2216         /* Check that all required capabilities are supported */
2217         if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) !=
2218                         local_port_conf.rxmode.offloads)
2219                 rte_exit(EXIT_FAILURE,
2220                         "Error: port %u required RX offloads: 0x%" PRIx64
2221                         ", avaialbe RX offloads: 0x%" PRIx64 "\n",
2222                         portid, local_port_conf.rxmode.offloads,
2223                         dev_info.rx_offload_capa);
2224
2225         if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) !=
2226                         local_port_conf.txmode.offloads)
2227                 rte_exit(EXIT_FAILURE,
2228                         "Error: port %u required TX offloads: 0x%" PRIx64
2229                         ", avaialbe TX offloads: 0x%" PRIx64 "\n",
2230                         portid, local_port_conf.txmode.offloads,
2231                         dev_info.tx_offload_capa);
2232
2233         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
2234                 local_port_conf.txmode.offloads |=
2235                         DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2236
2237         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM)
2238                 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM;
2239
2240         printf("port %u configurng rx_offloads=0x%" PRIx64
2241                 ", tx_offloads=0x%" PRIx64 "\n",
2242                 portid, local_port_conf.rxmode.offloads,
2243                 local_port_conf.txmode.offloads);
2244
2245         local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2246                 dev_info.flow_type_rss_offloads;
2247         if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2248                         port_conf.rx_adv_conf.rss_conf.rss_hf) {
2249                 printf("Port %u modified RSS hash function based on hardware support,"
2250                         "requested:%#"PRIx64" configured:%#"PRIx64"\n",
2251                         portid,
2252                         port_conf.rx_adv_conf.rss_conf.rss_hf,
2253                         local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2254         }
2255
2256         ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
2257                         &local_port_conf);
2258         if (ret < 0)
2259                 rte_exit(EXIT_FAILURE, "Cannot configure device: "
2260                                 "err=%d, port=%d\n", ret, portid);
2261
2262         ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
2263         if (ret < 0)
2264                 rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
2265                                 "err=%d, port=%d\n", ret, portid);
2266
2267         /* init one TX queue per lcore */
2268         tx_queueid = 0;
2269         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2270                 if (rte_lcore_is_enabled(lcore_id) == 0)
2271                         continue;
2272
2273                 if (numa_on)
2274                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2275                 else
2276                         socket_id = 0;
2277
2278                 /* init TX queue */
2279                 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
2280
2281                 txconf = &dev_info.default_txconf;
2282                 txconf->offloads = local_port_conf.txmode.offloads;
2283
2284                 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
2285                                 socket_id, txconf);
2286                 if (ret < 0)
2287                         rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
2288                                         "err=%d, port=%d\n", ret, portid);
2289
2290                 qconf = &lcore_conf[lcore_id];
2291                 qconf->tx_queue_id[portid] = tx_queueid;
2292
2293                 /* Pre-populate pkt offloads based on capabilities */
2294                 qconf->outbound.ipv4_offloads = PKT_TX_IPV4;
2295                 qconf->outbound.ipv6_offloads = PKT_TX_IPV6;
2296                 if (local_port_conf.txmode.offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
2297                         qconf->outbound.ipv4_offloads |= PKT_TX_IP_CKSUM;
2298
2299                 tx_queueid++;
2300
2301                 /* init RX queues */
2302                 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
2303                         struct rte_eth_rxconf rxq_conf;
2304
2305                         if (portid != qconf->rx_queue_list[queue].port_id)
2306                                 continue;
2307
2308                         rx_queueid = qconf->rx_queue_list[queue].queue_id;
2309
2310                         printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
2311                                         socket_id);
2312
2313                         rxq_conf = dev_info.default_rxconf;
2314                         rxq_conf.offloads = local_port_conf.rxmode.offloads;
2315                         ret = rte_eth_rx_queue_setup(portid, rx_queueid,
2316                                         nb_rxd, socket_id, &rxq_conf,
2317                                         socket_ctx[socket_id].mbuf_pool);
2318                         if (ret < 0)
2319                                 rte_exit(EXIT_FAILURE,
2320                                         "rte_eth_rx_queue_setup: err=%d, "
2321                                         "port=%d\n", ret, portid);
2322                 }
2323         }
2324         printf("\n");
2325 }
2326
2327 static size_t
2328 max_session_size(void)
2329 {
2330         size_t max_sz, sz;
2331         void *sec_ctx;
2332         int16_t cdev_id, port_id, n;
2333
2334         max_sz = 0;
2335         n =  rte_cryptodev_count();
2336         for (cdev_id = 0; cdev_id != n; cdev_id++) {
2337                 sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
2338                 if (sz > max_sz)
2339                         max_sz = sz;
2340                 /*
2341                  * If crypto device is security capable, need to check the
2342                  * size of security session as well.
2343                  */
2344
2345                 /* Get security context of the crypto device */
2346                 sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
2347                 if (sec_ctx == NULL)
2348                         continue;
2349
2350                 /* Get size of security session */
2351                 sz = rte_security_session_get_size(sec_ctx);
2352                 if (sz > max_sz)
2353                         max_sz = sz;
2354         }
2355
2356         RTE_ETH_FOREACH_DEV(port_id) {
2357                 if ((enabled_port_mask & (1 << port_id)) == 0)
2358                         continue;
2359
2360                 sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
2361                 if (sec_ctx == NULL)
2362                         continue;
2363
2364                 sz = rte_security_session_get_size(sec_ctx);
2365                 if (sz > max_sz)
2366                         max_sz = sz;
2367         }
2368
2369         return max_sz;
2370 }
2371
2372 static void
2373 session_pool_init(struct socket_ctx *ctx, int32_t socket_id, size_t sess_sz)
2374 {
2375         char mp_name[RTE_MEMPOOL_NAMESIZE];
2376         struct rte_mempool *sess_mp;
2377         uint32_t nb_sess;
2378
2379         snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2380                         "sess_mp_%u", socket_id);
2381         nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2382                 rte_lcore_count());
2383         nb_sess = RTE_MAX(nb_sess, CDEV_MP_CACHE_SZ *
2384                         CDEV_MP_CACHE_MULTIPLIER);
2385         sess_mp = rte_cryptodev_sym_session_pool_create(
2386                         mp_name, nb_sess, sess_sz, CDEV_MP_CACHE_SZ, 0,
2387                         socket_id);
2388         ctx->session_pool = sess_mp;
2389
2390         if (ctx->session_pool == NULL)
2391                 rte_exit(EXIT_FAILURE,
2392                         "Cannot init session pool on socket %d\n", socket_id);
2393         else
2394                 printf("Allocated session pool on socket %d\n", socket_id);
2395 }
2396
2397 static void
2398 session_priv_pool_init(struct socket_ctx *ctx, int32_t socket_id,
2399         size_t sess_sz)
2400 {
2401         char mp_name[RTE_MEMPOOL_NAMESIZE];
2402         struct rte_mempool *sess_mp;
2403         uint32_t nb_sess;
2404
2405         snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2406                         "sess_mp_priv_%u", socket_id);
2407         nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2408                 rte_lcore_count());
2409         nb_sess = RTE_MAX(nb_sess, CDEV_MP_CACHE_SZ *
2410                         CDEV_MP_CACHE_MULTIPLIER);
2411         sess_mp = rte_mempool_create(mp_name,
2412                         nb_sess,
2413                         sess_sz,
2414                         CDEV_MP_CACHE_SZ,
2415                         0, NULL, NULL, NULL,
2416                         NULL, socket_id,
2417                         0);
2418         ctx->session_priv_pool = sess_mp;
2419
2420         if (ctx->session_priv_pool == NULL)
2421                 rte_exit(EXIT_FAILURE,
2422                         "Cannot init session priv pool on socket %d\n",
2423                         socket_id);
2424         else
2425                 printf("Allocated session priv pool on socket %d\n",
2426                         socket_id);
2427 }
2428
2429 static void
2430 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
2431 {
2432         char s[64];
2433         int32_t ms;
2434
2435         snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
2436         ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
2437                         MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
2438                         frame_buf_size, socket_id);
2439
2440         /*
2441          * if multi-segment support is enabled, then create a pool
2442          * for indirect mbufs.
2443          */
2444         ms = multi_seg_required();
2445         if (ms != 0) {
2446                 snprintf(s, sizeof(s), "mbuf_pool_indir_%d", socket_id);
2447                 ctx->mbuf_pool_indir = rte_pktmbuf_pool_create(s, nb_mbuf,
2448                         MEMPOOL_CACHE_SIZE, 0, 0, socket_id);
2449         }
2450
2451         if (ctx->mbuf_pool == NULL || (ms != 0 && ctx->mbuf_pool_indir == NULL))
2452                 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
2453                                 socket_id);
2454         else
2455                 printf("Allocated mbuf pool on socket %d\n", socket_id);
2456 }
2457
2458 static inline int
2459 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
2460 {
2461         struct ipsec_sa *sa;
2462
2463         /* For inline protocol processing, the metadata in the event will
2464          * uniquely identify the security session which raised the event.
2465          * Application would then need the userdata it had registered with the
2466          * security session to process the event.
2467          */
2468
2469         sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
2470
2471         if (sa == NULL) {
2472                 /* userdata could not be retrieved */
2473                 return -1;
2474         }
2475
2476         /* Sequence number over flow. SA need to be re-established */
2477         RTE_SET_USED(sa);
2478         return 0;
2479 }
2480
2481 static int
2482 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
2483                  void *param, void *ret_param)
2484 {
2485         uint64_t md;
2486         struct rte_eth_event_ipsec_desc *event_desc = NULL;
2487         struct rte_security_ctx *ctx = (struct rte_security_ctx *)
2488                                         rte_eth_dev_get_sec_ctx(port_id);
2489
2490         RTE_SET_USED(param);
2491
2492         if (type != RTE_ETH_EVENT_IPSEC)
2493                 return -1;
2494
2495         event_desc = ret_param;
2496         if (event_desc == NULL) {
2497                 printf("Event descriptor not set\n");
2498                 return -1;
2499         }
2500
2501         md = event_desc->metadata;
2502
2503         if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW)
2504                 return inline_ipsec_event_esn_overflow(ctx, md);
2505         else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
2506                 printf("Invalid IPsec event reported\n");
2507                 return -1;
2508         }
2509
2510         return -1;
2511 }
2512
2513 static uint16_t
2514 rx_callback(__rte_unused uint16_t port, __rte_unused uint16_t queue,
2515         struct rte_mbuf *pkt[], uint16_t nb_pkts,
2516         __rte_unused uint16_t max_pkts, void *user_param)
2517 {
2518         uint64_t tm;
2519         uint32_t i, k;
2520         struct lcore_conf *lc;
2521         struct rte_mbuf *mb;
2522         struct rte_ether_hdr *eth;
2523
2524         lc = user_param;
2525         k = 0;
2526         tm = 0;
2527
2528         for (i = 0; i != nb_pkts; i++) {
2529
2530                 mb = pkt[i];
2531                 eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *);
2532                 if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
2533
2534                         struct rte_ipv4_hdr *iph;
2535
2536                         iph = (struct rte_ipv4_hdr *)(eth + 1);
2537                         if (rte_ipv4_frag_pkt_is_fragmented(iph)) {
2538
2539                                 mb->l2_len = sizeof(*eth);
2540                                 mb->l3_len = sizeof(*iph);
2541                                 tm = (tm != 0) ? tm : rte_rdtsc();
2542                                 mb = rte_ipv4_frag_reassemble_packet(
2543                                         lc->frag.tbl, &lc->frag.dr,
2544                                         mb, tm, iph);
2545
2546                                 if (mb != NULL) {
2547                                         /* fix ip cksum after reassemble. */
2548                                         iph = rte_pktmbuf_mtod_offset(mb,
2549                                                 struct rte_ipv4_hdr *,
2550                                                 mb->l2_len);
2551                                         iph->hdr_checksum = 0;
2552                                         iph->hdr_checksum = rte_ipv4_cksum(iph);
2553                                 }
2554                         }
2555                 } else if (eth->ether_type ==
2556                                 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
2557
2558                         struct rte_ipv6_hdr *iph;
2559                         struct ipv6_extension_fragment *fh;
2560
2561                         iph = (struct rte_ipv6_hdr *)(eth + 1);
2562                         fh = rte_ipv6_frag_get_ipv6_fragment_header(iph);
2563                         if (fh != NULL) {
2564                                 mb->l2_len = sizeof(*eth);
2565                                 mb->l3_len = (uintptr_t)fh - (uintptr_t)iph +
2566                                         sizeof(*fh);
2567                                 tm = (tm != 0) ? tm : rte_rdtsc();
2568                                 mb = rte_ipv6_frag_reassemble_packet(
2569                                         lc->frag.tbl, &lc->frag.dr,
2570                                         mb, tm, iph, fh);
2571                                 if (mb != NULL)
2572                                         /* fix l3_len after reassemble. */
2573                                         mb->l3_len = mb->l3_len - sizeof(*fh);
2574                         }
2575                 }
2576
2577                 pkt[k] = mb;
2578                 k += (mb != NULL);
2579         }
2580
2581         /* some fragments were encountered, drain death row */
2582         if (tm != 0)
2583                 rte_ip_frag_free_death_row(&lc->frag.dr, 0);
2584
2585         return k;
2586 }
2587
2588
2589 static int
2590 reassemble_lcore_init(struct lcore_conf *lc, uint32_t cid)
2591 {
2592         int32_t sid;
2593         uint32_t i;
2594         uint64_t frag_cycles;
2595         const struct lcore_rx_queue *rxq;
2596         const struct rte_eth_rxtx_callback *cb;
2597
2598         /* create fragment table */
2599         sid = rte_lcore_to_socket_id(cid);
2600         frag_cycles = (rte_get_tsc_hz() + NS_PER_S - 1) /
2601                 NS_PER_S * frag_ttl_ns;
2602
2603         lc->frag.tbl = rte_ip_frag_table_create(frag_tbl_sz,
2604                 FRAG_TBL_BUCKET_ENTRIES, frag_tbl_sz, frag_cycles, sid);
2605         if (lc->frag.tbl == NULL) {
2606                 printf("%s(%u): failed to create fragment table of size: %u, "
2607                         "error code: %d\n",
2608                         __func__, cid, frag_tbl_sz, rte_errno);
2609                 return -ENOMEM;
2610         }
2611
2612         /* setup reassemble RX callbacks for all queues */
2613         for (i = 0; i != lc->nb_rx_queue; i++) {
2614
2615                 rxq = lc->rx_queue_list + i;
2616                 cb = rte_eth_add_rx_callback(rxq->port_id, rxq->queue_id,
2617                         rx_callback, lc);
2618                 if (cb == NULL) {
2619                         printf("%s(%u): failed to install RX callback for "
2620                                 "portid=%u, queueid=%u, error code: %d\n",
2621                                 __func__, cid,
2622                                 rxq->port_id, rxq->queue_id, rte_errno);
2623                         return -ENOMEM;
2624                 }
2625         }
2626
2627         return 0;
2628 }
2629
2630 static int
2631 reassemble_init(void)
2632 {
2633         int32_t rc;
2634         uint32_t i, lc;
2635
2636         rc = 0;
2637         for (i = 0; i != nb_lcore_params; i++) {
2638                 lc = lcore_params[i].lcore_id;
2639                 rc = reassemble_lcore_init(lcore_conf + lc, lc);
2640                 if (rc != 0)
2641                         break;
2642         }
2643
2644         return rc;
2645 }
2646
2647 static void
2648 create_default_ipsec_flow(uint16_t port_id, uint64_t rx_offloads)
2649 {
2650         struct rte_flow_action action[2];
2651         struct rte_flow_item pattern[2];
2652         struct rte_flow_attr attr = {0};
2653         struct rte_flow_error err;
2654         struct rte_flow *flow;
2655         int ret;
2656
2657         if (!(rx_offloads & DEV_RX_OFFLOAD_SECURITY))
2658                 return;
2659
2660         /* Add the default rte_flow to enable SECURITY for all ESP packets */
2661
2662         pattern[0].type = RTE_FLOW_ITEM_TYPE_ESP;
2663         pattern[0].spec = NULL;
2664         pattern[0].mask = NULL;
2665         pattern[0].last = NULL;
2666         pattern[1].type = RTE_FLOW_ITEM_TYPE_END;
2667
2668         action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY;
2669         action[0].conf = NULL;
2670         action[1].type = RTE_FLOW_ACTION_TYPE_END;
2671         action[1].conf = NULL;
2672
2673         attr.ingress = 1;
2674
2675         ret = rte_flow_validate(port_id, &attr, pattern, action, &err);
2676         if (ret)
2677                 return;
2678
2679         flow = rte_flow_create(port_id, &attr, pattern, action, &err);
2680         if (flow == NULL)
2681                 return;
2682
2683         flow_info_tbl[port_id].rx_def_flow = flow;
2684         RTE_LOG(INFO, IPSEC,
2685                 "Created default flow enabling SECURITY for all ESP traffic on port %d\n",
2686                 port_id);
2687 }
2688
2689 static void
2690 signal_handler(int signum)
2691 {
2692         if (signum == SIGINT || signum == SIGTERM) {
2693                 printf("\n\nSignal %d received, preparing to exit...\n",
2694                                 signum);
2695                 force_quit = true;
2696         }
2697 }
2698
2699 static void
2700 ev_mode_sess_verify(struct ipsec_sa *sa, int nb_sa)
2701 {
2702         struct rte_ipsec_session *ips;
2703         int32_t i;
2704
2705         if (!sa || !nb_sa)
2706                 return;
2707
2708         for (i = 0; i < nb_sa; i++) {
2709                 ips = ipsec_get_primary_session(&sa[i]);
2710                 if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)
2711                         rte_exit(EXIT_FAILURE, "Event mode supports only "
2712                                  "inline protocol sessions\n");
2713         }
2714
2715 }
2716
2717 static int32_t
2718 check_event_mode_params(struct eh_conf *eh_conf)
2719 {
2720         struct eventmode_conf *em_conf = NULL;
2721         struct lcore_params *params;
2722         uint16_t portid;
2723
2724         if (!eh_conf || !eh_conf->mode_params)
2725                 return -EINVAL;
2726
2727         /* Get eventmode conf */
2728         em_conf = eh_conf->mode_params;
2729
2730         if (eh_conf->mode == EH_PKT_TRANSFER_MODE_POLL &&
2731             em_conf->ext_params.sched_type != SCHED_TYPE_NOT_SET) {
2732                 printf("error: option --event-schedule-type applies only to "
2733                        "event mode\n");
2734                 return -EINVAL;
2735         }
2736
2737         if (eh_conf->mode != EH_PKT_TRANSFER_MODE_EVENT)
2738                 return 0;
2739
2740         /* Set schedule type to ORDERED if it wasn't explicitly set by user */
2741         if (em_conf->ext_params.sched_type == SCHED_TYPE_NOT_SET)
2742                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
2743
2744         /*
2745          * Event mode currently supports only inline protocol sessions.
2746          * If there are other types of sessions configured then exit with
2747          * error.
2748          */
2749         ev_mode_sess_verify(sa_in, nb_sa_in);
2750         ev_mode_sess_verify(sa_out, nb_sa_out);
2751
2752
2753         /* Option --config does not apply to event mode */
2754         if (nb_lcore_params > 0) {
2755                 printf("error: option --config applies only to poll mode\n");
2756                 return -EINVAL;
2757         }
2758
2759         /*
2760          * In order to use the same port_init routine for both poll and event
2761          * modes initialize lcore_params with one queue for each eth port
2762          */
2763         lcore_params = lcore_params_array;
2764         RTE_ETH_FOREACH_DEV(portid) {
2765                 if ((enabled_port_mask & (1 << portid)) == 0)
2766                         continue;
2767
2768                 params = &lcore_params[nb_lcore_params++];
2769                 params->port_id = portid;
2770                 params->queue_id = 0;
2771                 params->lcore_id = rte_get_next_lcore(0, 0, 1);
2772         }
2773
2774         return 0;
2775 }
2776
2777 static void
2778 inline_sessions_free(struct sa_ctx *sa_ctx)
2779 {
2780         struct rte_ipsec_session *ips;
2781         struct ipsec_sa *sa;
2782         int32_t ret;
2783         uint32_t i;
2784
2785         if (!sa_ctx)
2786                 return;
2787
2788         for (i = 0; i < sa_ctx->nb_sa; i++) {
2789
2790                 sa = &sa_ctx->sa[i];
2791                 if (!sa->spi)
2792                         continue;
2793
2794                 ips = ipsec_get_primary_session(sa);
2795                 if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL &&
2796                     ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO)
2797                         continue;
2798
2799                 if (!rte_eth_dev_is_valid_port(sa->portid))
2800                         continue;
2801
2802                 ret = rte_security_session_destroy(
2803                                 rte_eth_dev_get_sec_ctx(sa->portid),
2804                                 ips->security.ses);
2805                 if (ret)
2806                         RTE_LOG(ERR, IPSEC, "Failed to destroy security "
2807                                             "session type %d, spi %d\n",
2808                                             ips->type, sa->spi);
2809         }
2810 }
2811
2812 static uint32_t
2813 calculate_nb_mbufs(uint16_t nb_ports, uint16_t nb_crypto_qp, uint32_t nb_rxq,
2814                 uint32_t nb_txq)
2815 {
2816         return RTE_MAX((nb_rxq * nb_rxd +
2817                         nb_ports * nb_lcores * MAX_PKT_BURST +
2818                         nb_ports * nb_txq * nb_txd +
2819                         nb_lcores * MEMPOOL_CACHE_SIZE +
2820                         nb_crypto_qp * CDEV_QUEUE_DESC +
2821                         nb_lcores * frag_tbl_sz *
2822                         FRAG_TBL_BUCKET_ENTRIES),
2823                        8192U);
2824 }
2825
2826 int32_t
2827 main(int32_t argc, char **argv)
2828 {
2829         int32_t ret;
2830         uint32_t lcore_id, nb_txq, nb_rxq = 0;
2831         uint32_t cdev_id;
2832         uint32_t i;
2833         uint8_t socket_id;
2834         uint16_t portid, nb_crypto_qp, nb_ports = 0;
2835         uint64_t req_rx_offloads[RTE_MAX_ETHPORTS];
2836         uint64_t req_tx_offloads[RTE_MAX_ETHPORTS];
2837         struct eh_conf *eh_conf = NULL;
2838         size_t sess_sz;
2839
2840         nb_bufs_in_pool = 0;
2841
2842         /* init EAL */
2843         ret = rte_eal_init(argc, argv);
2844         if (ret < 0)
2845                 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2846         argc -= ret;
2847         argv += ret;
2848
2849         force_quit = false;
2850         signal(SIGINT, signal_handler);
2851         signal(SIGTERM, signal_handler);
2852
2853         /* initialize event helper configuration */
2854         eh_conf = eh_conf_init();
2855         if (eh_conf == NULL)
2856                 rte_exit(EXIT_FAILURE, "Failed to init event helper config");
2857
2858         /* parse application arguments (after the EAL ones) */
2859         ret = parse_args(argc, argv, eh_conf);
2860         if (ret < 0)
2861                 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
2862
2863         /* parse configuration file */
2864         if (parse_cfg_file(cfgfile) < 0) {
2865                 printf("parsing file \"%s\" failed\n",
2866                         optarg);
2867                 print_usage(argv[0]);
2868                 return -1;
2869         }
2870
2871         if ((unprotected_port_mask & enabled_port_mask) !=
2872                         unprotected_port_mask)
2873                 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
2874                                 unprotected_port_mask);
2875
2876         if (check_poll_mode_params(eh_conf) < 0)
2877                 rte_exit(EXIT_FAILURE, "check_poll_mode_params failed\n");
2878
2879         if (check_event_mode_params(eh_conf) < 0)
2880                 rte_exit(EXIT_FAILURE, "check_event_mode_params failed\n");
2881
2882         ret = init_lcore_rx_queues();
2883         if (ret < 0)
2884                 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2885
2886         nb_lcores = rte_lcore_count();
2887
2888         sess_sz = max_session_size();
2889
2890         /*
2891          * In event mode request minimum number of crypto queues
2892          * to be reserved equal to number of ports.
2893          */
2894         if (eh_conf->mode == EH_PKT_TRANSFER_MODE_EVENT)
2895                 nb_crypto_qp = rte_eth_dev_count_avail();
2896         else
2897                 nb_crypto_qp = 0;
2898
2899         nb_crypto_qp = cryptodevs_init(nb_crypto_qp);
2900
2901         if (nb_bufs_in_pool == 0) {
2902                 RTE_ETH_FOREACH_DEV(portid) {
2903                         if ((enabled_port_mask & (1 << portid)) == 0)
2904                                 continue;
2905                         nb_ports++;
2906                         nb_rxq += get_port_nb_rx_queues(portid);
2907                 }
2908
2909                 nb_txq = nb_lcores;
2910
2911                 nb_bufs_in_pool = calculate_nb_mbufs(nb_ports, nb_crypto_qp,
2912                                                 nb_rxq, nb_txq);
2913         }
2914
2915         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2916                 if (rte_lcore_is_enabled(lcore_id) == 0)
2917                         continue;
2918
2919                 if (numa_on)
2920                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2921                 else
2922                         socket_id = 0;
2923
2924                 /* mbuf_pool is initialised by the pool_init() function*/
2925                 if (socket_ctx[socket_id].mbuf_pool)
2926                         continue;
2927
2928                 pool_init(&socket_ctx[socket_id], socket_id, nb_bufs_in_pool);
2929                 session_pool_init(&socket_ctx[socket_id], socket_id, sess_sz);
2930                 session_priv_pool_init(&socket_ctx[socket_id], socket_id,
2931                         sess_sz);
2932         }
2933         printf("Number of mbufs in packet pool %d\n", nb_bufs_in_pool);
2934
2935         RTE_ETH_FOREACH_DEV(portid) {
2936                 if ((enabled_port_mask & (1 << portid)) == 0)
2937                         continue;
2938
2939                 sa_check_offloads(portid, &req_rx_offloads[portid],
2940                                 &req_tx_offloads[portid]);
2941                 port_init(portid, req_rx_offloads[portid],
2942                                 req_tx_offloads[portid]);
2943         }
2944
2945         /*
2946          * Set the enabled port mask in helper config for use by helper
2947          * sub-system. This will be used while initializing devices using
2948          * helper sub-system.
2949          */
2950         eh_conf->eth_portmask = enabled_port_mask;
2951
2952         /* Initialize eventmode components */
2953         ret = eh_devs_init(eh_conf);
2954         if (ret < 0)
2955                 rte_exit(EXIT_FAILURE, "eh_devs_init failed, err=%d\n", ret);
2956
2957         /* start ports */
2958         RTE_ETH_FOREACH_DEV(portid) {
2959                 if ((enabled_port_mask & (1 << portid)) == 0)
2960                         continue;
2961
2962                 /* Create flow before starting the device */
2963                 create_default_ipsec_flow(portid, req_rx_offloads[portid]);
2964
2965                 ret = rte_eth_dev_start(portid);
2966                 if (ret < 0)
2967                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
2968                                         "err=%d, port=%d\n", ret, portid);
2969                 /*
2970                  * If enabled, put device in promiscuous mode.
2971                  * This allows IO forwarding mode to forward packets
2972                  * to itself through 2 cross-connected  ports of the
2973                  * target machine.
2974                  */
2975                 if (promiscuous_on) {
2976                         ret = rte_eth_promiscuous_enable(portid);
2977                         if (ret != 0)
2978                                 rte_exit(EXIT_FAILURE,
2979                                         "rte_eth_promiscuous_enable: err=%s, port=%d\n",
2980                                         rte_strerror(-ret), portid);
2981                 }
2982
2983                 rte_eth_dev_callback_register(portid,
2984                         RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
2985         }
2986
2987         /* fragment reassemble is enabled */
2988         if (frag_tbl_sz != 0) {
2989                 ret = reassemble_init();
2990                 if (ret != 0)
2991                         rte_exit(EXIT_FAILURE, "failed at reassemble init");
2992         }
2993
2994         /* Replicate each context per socket */
2995         for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
2996                 socket_id = rte_socket_id_by_idx(i);
2997                 if ((socket_ctx[socket_id].mbuf_pool != NULL) &&
2998                         (socket_ctx[socket_id].sa_in == NULL) &&
2999                         (socket_ctx[socket_id].sa_out == NULL)) {
3000                         sa_init(&socket_ctx[socket_id], socket_id);
3001                         sp4_init(&socket_ctx[socket_id], socket_id);
3002                         sp6_init(&socket_ctx[socket_id], socket_id);
3003                         rt_init(&socket_ctx[socket_id], socket_id);
3004                 }
3005         }
3006
3007         flow_init();
3008
3009         check_all_ports_link_status(enabled_port_mask);
3010
3011 #if (STATS_INTERVAL > 0)
3012         rte_eal_alarm_set(STATS_INTERVAL * US_PER_S, print_stats_cb, NULL);
3013 #else
3014         RTE_LOG(INFO, IPSEC, "Stats display disabled\n");
3015 #endif /* STATS_INTERVAL */
3016
3017         /* launch per-lcore init on every lcore */
3018         rte_eal_mp_remote_launch(ipsec_launch_one_lcore, eh_conf, CALL_MAIN);
3019         RTE_LCORE_FOREACH_WORKER(lcore_id) {
3020                 if (rte_eal_wait_lcore(lcore_id) < 0)
3021                         return -1;
3022         }
3023
3024         /* Uninitialize eventmode components */
3025         ret = eh_devs_uninit(eh_conf);
3026         if (ret < 0)
3027                 rte_exit(EXIT_FAILURE, "eh_devs_uninit failed, err=%d\n", ret);
3028
3029         /* Free eventmode configuration memory */
3030         eh_conf_uninit(eh_conf);
3031
3032         /* Destroy inline inbound and outbound sessions */
3033         for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
3034                 socket_id = rte_socket_id_by_idx(i);
3035                 inline_sessions_free(socket_ctx[socket_id].sa_in);
3036                 inline_sessions_free(socket_ctx[socket_id].sa_out);
3037         }
3038
3039         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
3040                 printf("Closing cryptodev %d...", cdev_id);
3041                 rte_cryptodev_stop(cdev_id);
3042                 rte_cryptodev_close(cdev_id);
3043                 printf(" Done\n");
3044         }
3045
3046         RTE_ETH_FOREACH_DEV(portid) {
3047                 if ((enabled_port_mask & (1 << portid)) == 0)
3048                         continue;
3049
3050                 printf("Closing port %d...", portid);
3051                 if (flow_info_tbl[portid].rx_def_flow) {
3052                         struct rte_flow_error err;
3053
3054                         ret = rte_flow_destroy(portid,
3055                                 flow_info_tbl[portid].rx_def_flow, &err);
3056                         if (ret)
3057                                 RTE_LOG(ERR, IPSEC, "Failed to destroy flow "
3058                                         " for port %u, err msg: %s\n", portid,
3059                                         err.message);
3060                 }
3061                 ret = rte_eth_dev_stop(portid);
3062                 if (ret != 0)
3063                         RTE_LOG(ERR, IPSEC,
3064                                 "rte_eth_dev_stop: err=%s, port=%u\n",
3065                                 rte_strerror(-ret), portid);
3066
3067                 rte_eth_dev_close(portid);
3068                 printf(" Done\n");
3069         }
3070
3071         /* clean up the EAL */
3072         rte_eal_cleanup();
3073         printf("Bye...\n");
3074
3075         return 0;
3076 }