ethdev: fix max Rx packet length
[dpdk.git] / examples / ipsec-secgw / ipsec-secgw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016 Intel Corporation
3  */
4
5 #include <stdbool.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <stdint.h>
9 #include <inttypes.h>
10 #include <sys/types.h>
11 #include <netinet/in.h>
12 #include <netinet/ip.h>
13 #include <netinet/ip6.h>
14 #include <string.h>
15 #include <sys/queue.h>
16 #include <stdarg.h>
17 #include <errno.h>
18 #include <signal.h>
19 #include <getopt.h>
20
21 #include <rte_common.h>
22 #include <rte_bitmap.h>
23 #include <rte_byteorder.h>
24 #include <rte_log.h>
25 #include <rte_eal.h>
26 #include <rte_launch.h>
27 #include <rte_cycles.h>
28 #include <rte_prefetch.h>
29 #include <rte_lcore.h>
30 #include <rte_per_lcore.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_interrupts.h>
33 #include <rte_random.h>
34 #include <rte_debug.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev.h>
37 #include <rte_mempool.h>
38 #include <rte_mbuf.h>
39 #include <rte_acl.h>
40 #include <rte_lpm.h>
41 #include <rte_lpm6.h>
42 #include <rte_hash.h>
43 #include <rte_jhash.h>
44 #include <rte_cryptodev.h>
45 #include <rte_security.h>
46 #include <rte_eventdev.h>
47 #include <rte_ip.h>
48 #include <rte_ip_frag.h>
49 #include <rte_alarm.h>
50
51 #include "event_helper.h"
52 #include "flow.h"
53 #include "ipsec.h"
54 #include "ipsec_worker.h"
55 #include "parser.h"
56 #include "sad.h"
57
58 volatile bool force_quit;
59
60 #define MAX_JUMBO_PKT_LEN  9600
61
62 #define MEMPOOL_CACHE_SIZE 256
63
64 #define CDEV_QUEUE_DESC 2048
65 #define CDEV_MAP_ENTRIES 16384
66 #define CDEV_MP_CACHE_SZ 64
67 #define CDEV_MP_CACHE_MULTIPLIER 1.5 /* from rte_mempool.c */
68 #define MAX_QUEUE_PAIRS 1
69
70 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
71
72 /* Configure how many packets ahead to prefetch, when reading packets */
73 #define PREFETCH_OFFSET 3
74
75 #define MAX_RX_QUEUE_PER_LCORE 16
76
77 #define MAX_LCORE_PARAMS 1024
78
79 /*
80  * Configurable number of RX/TX ring descriptors
81  */
82 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
83 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
84 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
85 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
86
87 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
88                 (addr)->addr_bytes[0], (addr)->addr_bytes[1], \
89                 (addr)->addr_bytes[2], (addr)->addr_bytes[3], \
90                 (addr)->addr_bytes[4], (addr)->addr_bytes[5], \
91                 0, 0)
92
93 #define FRAG_TBL_BUCKET_ENTRIES 4
94 #define MAX_FRAG_TTL_NS         (10LL * NS_PER_S)
95
96 #define MTU_TO_FRAMELEN(x)      ((x) + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN)
97
98 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
99         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
100         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
101         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
102         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
103 };
104
105 struct flow_info flow_info_tbl[RTE_MAX_ETHPORTS];
106
107 #define CMD_LINE_OPT_CONFIG             "config"
108 #define CMD_LINE_OPT_SINGLE_SA          "single-sa"
109 #define CMD_LINE_OPT_CRYPTODEV_MASK     "cryptodev_mask"
110 #define CMD_LINE_OPT_TRANSFER_MODE      "transfer-mode"
111 #define CMD_LINE_OPT_SCHEDULE_TYPE      "event-schedule-type"
112 #define CMD_LINE_OPT_RX_OFFLOAD         "rxoffload"
113 #define CMD_LINE_OPT_TX_OFFLOAD         "txoffload"
114 #define CMD_LINE_OPT_REASSEMBLE         "reassemble"
115 #define CMD_LINE_OPT_MTU                "mtu"
116 #define CMD_LINE_OPT_FRAG_TTL           "frag-ttl"
117
118 #define CMD_LINE_ARG_EVENT      "event"
119 #define CMD_LINE_ARG_POLL       "poll"
120 #define CMD_LINE_ARG_ORDERED    "ordered"
121 #define CMD_LINE_ARG_ATOMIC     "atomic"
122 #define CMD_LINE_ARG_PARALLEL   "parallel"
123
124 enum {
125         /* long options mapped to a short option */
126
127         /* first long only option value must be >= 256, so that we won't
128          * conflict with short options
129          */
130         CMD_LINE_OPT_MIN_NUM = 256,
131         CMD_LINE_OPT_CONFIG_NUM,
132         CMD_LINE_OPT_SINGLE_SA_NUM,
133         CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
134         CMD_LINE_OPT_TRANSFER_MODE_NUM,
135         CMD_LINE_OPT_SCHEDULE_TYPE_NUM,
136         CMD_LINE_OPT_RX_OFFLOAD_NUM,
137         CMD_LINE_OPT_TX_OFFLOAD_NUM,
138         CMD_LINE_OPT_REASSEMBLE_NUM,
139         CMD_LINE_OPT_MTU_NUM,
140         CMD_LINE_OPT_FRAG_TTL_NUM,
141 };
142
143 static const struct option lgopts[] = {
144         {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
145         {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
146         {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
147         {CMD_LINE_OPT_TRANSFER_MODE, 1, 0, CMD_LINE_OPT_TRANSFER_MODE_NUM},
148         {CMD_LINE_OPT_SCHEDULE_TYPE, 1, 0, CMD_LINE_OPT_SCHEDULE_TYPE_NUM},
149         {CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM},
150         {CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM},
151         {CMD_LINE_OPT_REASSEMBLE, 1, 0, CMD_LINE_OPT_REASSEMBLE_NUM},
152         {CMD_LINE_OPT_MTU, 1, 0, CMD_LINE_OPT_MTU_NUM},
153         {CMD_LINE_OPT_FRAG_TTL, 1, 0, CMD_LINE_OPT_FRAG_TTL_NUM},
154         {NULL, 0, 0, 0}
155 };
156
157 uint32_t unprotected_port_mask;
158 uint32_t single_sa_idx;
159 /* mask of enabled ports */
160 static uint32_t enabled_port_mask;
161 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
162 static int32_t promiscuous_on = 1;
163 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
164 static uint32_t nb_lcores;
165 static uint32_t single_sa;
166 static uint32_t nb_bufs_in_pool;
167
168 /*
169  * RX/TX HW offload capabilities to enable/use on ethernet ports.
170  * By default all capabilities are enabled.
171  */
172 static uint64_t dev_rx_offload = UINT64_MAX;
173 static uint64_t dev_tx_offload = UINT64_MAX;
174
175 /*
176  * global values that determine multi-seg policy
177  */
178 static uint32_t frag_tbl_sz;
179 static uint32_t frame_buf_size = RTE_MBUF_DEFAULT_BUF_SIZE;
180 static uint32_t mtu_size = RTE_ETHER_MTU;
181 static uint64_t frag_ttl_ns = MAX_FRAG_TTL_NS;
182
183 /* application wide librte_ipsec/SA parameters */
184 struct app_sa_prm app_sa_prm = {
185                         .enable = 0,
186                         .cache_sz = SA_CACHE_SZ,
187                         .udp_encap = 0
188                 };
189 static const char *cfgfile;
190
191 struct lcore_rx_queue {
192         uint16_t port_id;
193         uint8_t queue_id;
194 } __rte_cache_aligned;
195
196 struct lcore_params {
197         uint16_t port_id;
198         uint8_t queue_id;
199         uint8_t lcore_id;
200 } __rte_cache_aligned;
201
202 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
203
204 static struct lcore_params *lcore_params;
205 static uint16_t nb_lcore_params;
206
207 static struct rte_hash *cdev_map_in;
208 static struct rte_hash *cdev_map_out;
209
210 struct buffer {
211         uint16_t len;
212         struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
213 };
214
215 struct lcore_conf {
216         uint16_t nb_rx_queue;
217         struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
218         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
219         struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
220         struct ipsec_ctx inbound;
221         struct ipsec_ctx outbound;
222         struct rt_ctx *rt4_ctx;
223         struct rt_ctx *rt6_ctx;
224         struct {
225                 struct rte_ip_frag_tbl *tbl;
226                 struct rte_mempool *pool_dir;
227                 struct rte_mempool *pool_indir;
228                 struct rte_ip_frag_death_row dr;
229         } frag;
230 } __rte_cache_aligned;
231
232 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
233
234 static struct rte_eth_conf port_conf = {
235         .rxmode = {
236                 .mq_mode        = ETH_MQ_RX_RSS,
237                 .split_hdr_size = 0,
238                 .offloads = DEV_RX_OFFLOAD_CHECKSUM,
239         },
240         .rx_adv_conf = {
241                 .rss_conf = {
242                         .rss_key = NULL,
243                         .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
244                                 ETH_RSS_TCP | ETH_RSS_SCTP,
245                 },
246         },
247         .txmode = {
248                 .mq_mode = ETH_MQ_TX_NONE,
249         },
250 };
251
252 struct socket_ctx socket_ctx[NB_SOCKETS];
253
254 /*
255  * Determine is multi-segment support required:
256  *  - either frame buffer size is smaller then mtu
257  *  - or reassmeble support is requested
258  */
259 static int
260 multi_seg_required(void)
261 {
262         return (MTU_TO_FRAMELEN(mtu_size) + RTE_PKTMBUF_HEADROOM >
263                 frame_buf_size || frag_tbl_sz != 0);
264 }
265
266 static inline void
267 adjust_ipv4_pktlen(struct rte_mbuf *m, const struct rte_ipv4_hdr *iph,
268         uint32_t l2_len)
269 {
270         uint32_t plen, trim;
271
272         plen = rte_be_to_cpu_16(iph->total_length) + l2_len;
273         if (plen < m->pkt_len) {
274                 trim = m->pkt_len - plen;
275                 rte_pktmbuf_trim(m, trim);
276         }
277 }
278
279 static inline void
280 adjust_ipv6_pktlen(struct rte_mbuf *m, const struct rte_ipv6_hdr *iph,
281         uint32_t l2_len)
282 {
283         uint32_t plen, trim;
284
285         plen = rte_be_to_cpu_16(iph->payload_len) + sizeof(*iph) + l2_len;
286         if (plen < m->pkt_len) {
287                 trim = m->pkt_len - plen;
288                 rte_pktmbuf_trim(m, trim);
289         }
290 }
291
292 #if (STATS_INTERVAL > 0)
293
294 /* Print out statistics on packet distribution */
295 static void
296 print_stats_cb(__rte_unused void *param)
297 {
298         uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
299         float burst_percent, rx_per_call, tx_per_call;
300         unsigned int coreid;
301
302         total_packets_dropped = 0;
303         total_packets_tx = 0;
304         total_packets_rx = 0;
305
306         const char clr[] = { 27, '[', '2', 'J', '\0' };
307         const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
308
309         /* Clear screen and move to top left */
310         printf("%s%s", clr, topLeft);
311
312         printf("\nCore statistics ====================================");
313
314         for (coreid = 0; coreid < RTE_MAX_LCORE; coreid++) {
315                 /* skip disabled cores */
316                 if (rte_lcore_is_enabled(coreid) == 0)
317                         continue;
318                 burst_percent = (float)(core_statistics[coreid].burst_rx * 100)/
319                                         core_statistics[coreid].rx;
320                 rx_per_call =  (float)(core_statistics[coreid].rx)/
321                                        core_statistics[coreid].rx_call;
322                 tx_per_call =  (float)(core_statistics[coreid].tx)/
323                                        core_statistics[coreid].tx_call;
324                 printf("\nStatistics for core %u ------------------------------"
325                            "\nPackets received: %20"PRIu64
326                            "\nPackets sent: %24"PRIu64
327                            "\nPackets dropped: %21"PRIu64
328                            "\nBurst percent: %23.2f"
329                            "\nPackets per Rx call: %17.2f"
330                            "\nPackets per Tx call: %17.2f",
331                            coreid,
332                            core_statistics[coreid].rx,
333                            core_statistics[coreid].tx,
334                            core_statistics[coreid].dropped,
335                            burst_percent,
336                            rx_per_call,
337                            tx_per_call);
338
339                 total_packets_dropped += core_statistics[coreid].dropped;
340                 total_packets_tx += core_statistics[coreid].tx;
341                 total_packets_rx += core_statistics[coreid].rx;
342         }
343         printf("\nAggregate statistics ==============================="
344                    "\nTotal packets received: %14"PRIu64
345                    "\nTotal packets sent: %18"PRIu64
346                    "\nTotal packets dropped: %15"PRIu64,
347                    total_packets_rx,
348                    total_packets_tx,
349                    total_packets_dropped);
350         printf("\n====================================================\n");
351
352         rte_eal_alarm_set(STATS_INTERVAL * US_PER_S, print_stats_cb, NULL);
353 }
354 #endif /* STATS_INTERVAL */
355
356 static inline void
357 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
358 {
359         const struct rte_ether_hdr *eth;
360         const struct rte_ipv4_hdr *iph4;
361         const struct rte_ipv6_hdr *iph6;
362         const struct rte_udp_hdr *udp;
363         uint16_t ip4_hdr_len;
364         uint16_t nat_port;
365
366         eth = rte_pktmbuf_mtod(pkt, const struct rte_ether_hdr *);
367         if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
368
369                 iph4 = (const struct rte_ipv4_hdr *)rte_pktmbuf_adj(pkt,
370                         RTE_ETHER_HDR_LEN);
371                 adjust_ipv4_pktlen(pkt, iph4, 0);
372
373                 switch (iph4->next_proto_id) {
374                 case IPPROTO_ESP:
375                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
376                         break;
377                 case IPPROTO_UDP:
378                         if (app_sa_prm.udp_encap == 1) {
379                                 ip4_hdr_len = ((iph4->version_ihl &
380                                         RTE_IPV4_HDR_IHL_MASK) *
381                                         RTE_IPV4_IHL_MULTIPLIER);
382                                 udp = rte_pktmbuf_mtod_offset(pkt,
383                                         struct rte_udp_hdr *, ip4_hdr_len);
384                                 nat_port = rte_cpu_to_be_16(IPSEC_NAT_T_PORT);
385                                 if (udp->src_port == nat_port ||
386                                         udp->dst_port == nat_port){
387                                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
388                                         pkt->packet_type |=
389                                                 MBUF_PTYPE_TUNNEL_ESP_IN_UDP;
390                                         break;
391                                 }
392                         }
393                 /* Fall through */
394                 default:
395                         t->ip4.data[t->ip4.num] = &iph4->next_proto_id;
396                         t->ip4.pkts[(t->ip4.num)++] = pkt;
397                 }
398                 pkt->l2_len = 0;
399                 pkt->l3_len = sizeof(*iph4);
400                 pkt->packet_type |= RTE_PTYPE_L3_IPV4;
401         } else if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
402                 int next_proto;
403                 size_t l3len, ext_len;
404                 uint8_t *p;
405
406                 /* get protocol type */
407                 iph6 = (const struct rte_ipv6_hdr *)rte_pktmbuf_adj(pkt,
408                         RTE_ETHER_HDR_LEN);
409                 adjust_ipv6_pktlen(pkt, iph6, 0);
410
411                 next_proto = iph6->proto;
412
413                 /* determine l3 header size up to ESP extension */
414                 l3len = sizeof(struct ip6_hdr);
415                 p = rte_pktmbuf_mtod(pkt, uint8_t *);
416                 while (next_proto != IPPROTO_ESP && l3len < pkt->data_len &&
417                         (next_proto = rte_ipv6_get_next_ext(p + l3len,
418                                                 next_proto, &ext_len)) >= 0)
419                         l3len += ext_len;
420
421                 /* drop packet when IPv6 header exceeds first segment length */
422                 if (unlikely(l3len > pkt->data_len)) {
423                         free_pkts(&pkt, 1);
424                         return;
425                 }
426
427                 switch (next_proto) {
428                 case IPPROTO_ESP:
429                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
430                         break;
431                 case IPPROTO_UDP:
432                         if (app_sa_prm.udp_encap == 1) {
433                                 udp = rte_pktmbuf_mtod_offset(pkt,
434                                         struct rte_udp_hdr *, l3len);
435                                 nat_port = rte_cpu_to_be_16(IPSEC_NAT_T_PORT);
436                                 if (udp->src_port == nat_port ||
437                                         udp->dst_port == nat_port){
438                                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
439                                         pkt->packet_type |=
440                                                 MBUF_PTYPE_TUNNEL_ESP_IN_UDP;
441                                         break;
442                                 }
443                         }
444                 /* Fall through */
445                 default:
446                         t->ip6.data[t->ip6.num] = &iph6->proto;
447                         t->ip6.pkts[(t->ip6.num)++] = pkt;
448                 }
449                 pkt->l2_len = 0;
450                 pkt->l3_len = l3len;
451                 pkt->packet_type |= RTE_PTYPE_L3_IPV6;
452         } else {
453                 /* Unknown/Unsupported type, drop the packet */
454                 RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n",
455                         rte_be_to_cpu_16(eth->ether_type));
456                 free_pkts(&pkt, 1);
457                 return;
458         }
459
460         /* Check if the packet has been processed inline. For inline protocol
461          * processed packets, the metadata in the mbuf can be used to identify
462          * the security processing done on the packet. The metadata will be
463          * used to retrieve the application registered userdata associated
464          * with the security session.
465          */
466
467         if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD &&
468                         rte_security_dynfield_is_registered()) {
469                 struct ipsec_sa *sa;
470                 struct ipsec_mbuf_metadata *priv;
471                 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
472                                                 rte_eth_dev_get_sec_ctx(
473                                                 pkt->port);
474
475                 /* Retrieve the userdata registered. Here, the userdata
476                  * registered is the SA pointer.
477                  */
478                 sa = (struct ipsec_sa *)rte_security_get_userdata(ctx,
479                                 *rte_security_dynfield(pkt));
480                 if (sa == NULL) {
481                         /* userdata could not be retrieved */
482                         return;
483                 }
484
485                 /* Save SA as priv member in mbuf. This will be used in the
486                  * IPsec selector(SP-SA) check.
487                  */
488
489                 priv = get_priv(pkt);
490                 priv->sa = sa;
491         }
492 }
493
494 static inline void
495 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
496                 uint16_t nb_pkts)
497 {
498         int32_t i;
499
500         t->ipsec.num = 0;
501         t->ip4.num = 0;
502         t->ip6.num = 0;
503
504         for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
505                 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
506                                         void *));
507                 prepare_one_packet(pkts[i], t);
508         }
509         /* Process left packets */
510         for (; i < nb_pkts; i++)
511                 prepare_one_packet(pkts[i], t);
512 }
513
514 static inline void
515 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port,
516                 const struct lcore_conf *qconf)
517 {
518         struct ip *ip;
519         struct rte_ether_hdr *ethhdr;
520
521         ip = rte_pktmbuf_mtod(pkt, struct ip *);
522
523         ethhdr = (struct rte_ether_hdr *)
524                 rte_pktmbuf_prepend(pkt, RTE_ETHER_HDR_LEN);
525
526         if (ip->ip_v == IPVERSION) {
527                 pkt->ol_flags |= qconf->outbound.ipv4_offloads;
528                 pkt->l3_len = sizeof(struct ip);
529                 pkt->l2_len = RTE_ETHER_HDR_LEN;
530
531                 ip->ip_sum = 0;
532
533                 /* calculate IPv4 cksum in SW */
534                 if ((pkt->ol_flags & PKT_TX_IP_CKSUM) == 0)
535                         ip->ip_sum = rte_ipv4_cksum((struct rte_ipv4_hdr *)ip);
536
537                 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
538         } else {
539                 pkt->ol_flags |= qconf->outbound.ipv6_offloads;
540                 pkt->l3_len = sizeof(struct ip6_hdr);
541                 pkt->l2_len = RTE_ETHER_HDR_LEN;
542
543                 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
544         }
545
546         memcpy(&ethhdr->src_addr, &ethaddr_tbl[port].src,
547                         sizeof(struct rte_ether_addr));
548         memcpy(&ethhdr->dst_addr, &ethaddr_tbl[port].dst,
549                         sizeof(struct rte_ether_addr));
550 }
551
552 static inline void
553 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port,
554                 const struct lcore_conf *qconf)
555 {
556         int32_t i;
557         const int32_t prefetch_offset = 2;
558
559         for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
560                 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
561                 prepare_tx_pkt(pkts[i], port, qconf);
562         }
563         /* Process left packets */
564         for (; i < nb_pkts; i++)
565                 prepare_tx_pkt(pkts[i], port, qconf);
566 }
567
568 /* Send burst of packets on an output interface */
569 static inline int32_t
570 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
571 {
572         struct rte_mbuf **m_table;
573         int32_t ret;
574         uint16_t queueid;
575
576         queueid = qconf->tx_queue_id[port];
577         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
578
579         prepare_tx_burst(m_table, n, port, qconf);
580
581         ret = rte_eth_tx_burst(port, queueid, m_table, n);
582
583         core_stats_update_tx(ret);
584
585         if (unlikely(ret < n)) {
586                 do {
587                         free_pkts(&m_table[ret], 1);
588                 } while (++ret < n);
589         }
590
591         return 0;
592 }
593
594 /*
595  * Helper function to fragment and queue for TX one packet.
596  */
597 static inline uint32_t
598 send_fragment_packet(struct lcore_conf *qconf, struct rte_mbuf *m,
599         uint16_t port, uint8_t proto)
600 {
601         struct buffer *tbl;
602         uint32_t len, n;
603         int32_t rc;
604
605         tbl =  qconf->tx_mbufs + port;
606         len = tbl->len;
607
608         /* free space for new fragments */
609         if (len + RTE_LIBRTE_IP_FRAG_MAX_FRAG >=  RTE_DIM(tbl->m_table)) {
610                 send_burst(qconf, len, port);
611                 len = 0;
612         }
613
614         n = RTE_DIM(tbl->m_table) - len;
615
616         if (proto == IPPROTO_IP)
617                 rc = rte_ipv4_fragment_packet(m, tbl->m_table + len,
618                         n, mtu_size, qconf->frag.pool_dir,
619                         qconf->frag.pool_indir);
620         else
621                 rc = rte_ipv6_fragment_packet(m, tbl->m_table + len,
622                         n, mtu_size, qconf->frag.pool_dir,
623                         qconf->frag.pool_indir);
624
625         if (rc >= 0)
626                 len += rc;
627         else
628                 RTE_LOG(ERR, IPSEC,
629                         "%s: failed to fragment packet with size %u, "
630                         "error code: %d\n",
631                         __func__, m->pkt_len, rte_errno);
632
633         free_pkts(&m, 1);
634         return len;
635 }
636
637 /* Enqueue a single packet, and send burst if queue is filled */
638 static inline int32_t
639 send_single_packet(struct rte_mbuf *m, uint16_t port, uint8_t proto)
640 {
641         uint32_t lcore_id;
642         uint16_t len;
643         struct lcore_conf *qconf;
644
645         lcore_id = rte_lcore_id();
646
647         qconf = &lcore_conf[lcore_id];
648         len = qconf->tx_mbufs[port].len;
649
650         if (m->pkt_len <= mtu_size) {
651                 qconf->tx_mbufs[port].m_table[len] = m;
652                 len++;
653
654         /* need to fragment the packet */
655         } else if (frag_tbl_sz > 0)
656                 len = send_fragment_packet(qconf, m, port, proto);
657         else
658                 free_pkts(&m, 1);
659
660         /* enough pkts to be sent */
661         if (unlikely(len == MAX_PKT_BURST)) {
662                 send_burst(qconf, MAX_PKT_BURST, port);
663                 len = 0;
664         }
665
666         qconf->tx_mbufs[port].len = len;
667         return 0;
668 }
669
670 static inline void
671 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
672                 uint16_t lim)
673 {
674         struct rte_mbuf *m;
675         uint32_t i, j, res, sa_idx;
676
677         if (ip->num == 0 || sp == NULL)
678                 return;
679
680         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
681                         ip->num, DEFAULT_MAX_CATEGORIES);
682
683         j = 0;
684         for (i = 0; i < ip->num; i++) {
685                 m = ip->pkts[i];
686                 res = ip->res[i];
687                 if (res == BYPASS) {
688                         ip->pkts[j++] = m;
689                         continue;
690                 }
691                 if (res == DISCARD) {
692                         free_pkts(&m, 1);
693                         continue;
694                 }
695
696                 /* Only check SPI match for processed IPSec packets */
697                 if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
698                         free_pkts(&m, 1);
699                         continue;
700                 }
701
702                 sa_idx = res - 1;
703                 if (!inbound_sa_check(sa, m, sa_idx)) {
704                         free_pkts(&m, 1);
705                         continue;
706                 }
707                 ip->pkts[j++] = m;
708         }
709         ip->num = j;
710 }
711
712 static void
713 split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num)
714 {
715         uint32_t i, n4, n6;
716         struct ip *ip;
717         struct rte_mbuf *m;
718
719         n4 = trf->ip4.num;
720         n6 = trf->ip6.num;
721
722         for (i = 0; i < num; i++) {
723
724                 m = mb[i];
725                 ip = rte_pktmbuf_mtod(m, struct ip *);
726
727                 if (ip->ip_v == IPVERSION) {
728                         trf->ip4.pkts[n4] = m;
729                         trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m,
730                                         uint8_t *, offsetof(struct ip, ip_p));
731                         n4++;
732                 } else if (ip->ip_v == IP6_VERSION) {
733                         trf->ip6.pkts[n6] = m;
734                         trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m,
735                                         uint8_t *,
736                                         offsetof(struct ip6_hdr, ip6_nxt));
737                         n6++;
738                 } else
739                         free_pkts(&m, 1);
740         }
741
742         trf->ip4.num = n4;
743         trf->ip6.num = n6;
744 }
745
746
747 static inline void
748 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
749                 struct ipsec_traffic *traffic)
750 {
751         uint16_t nb_pkts_in, n_ip4, n_ip6;
752
753         n_ip4 = traffic->ip4.num;
754         n_ip6 = traffic->ip6.num;
755
756         if (app_sa_prm.enable == 0) {
757                 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
758                                 traffic->ipsec.num, MAX_PKT_BURST);
759                 split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in);
760         } else {
761                 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
762                         traffic->ipsec.saptr, traffic->ipsec.num);
763                 ipsec_process(ipsec_ctx, traffic);
764         }
765
766         inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
767                         n_ip4);
768
769         inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
770                         n_ip6);
771 }
772
773 static inline void
774 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
775                 struct traffic_type *ipsec)
776 {
777         struct rte_mbuf *m;
778         uint32_t i, j, sa_idx;
779
780         if (ip->num == 0 || sp == NULL)
781                 return;
782
783         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
784                         ip->num, DEFAULT_MAX_CATEGORIES);
785
786         j = 0;
787         for (i = 0; i < ip->num; i++) {
788                 m = ip->pkts[i];
789                 sa_idx = ip->res[i] - 1;
790                 if (ip->res[i] == DISCARD)
791                         free_pkts(&m, 1);
792                 else if (ip->res[i] == BYPASS)
793                         ip->pkts[j++] = m;
794                 else {
795                         ipsec->res[ipsec->num] = sa_idx;
796                         ipsec->pkts[ipsec->num++] = m;
797                 }
798         }
799         ip->num = j;
800 }
801
802 static inline void
803 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
804                 struct ipsec_traffic *traffic)
805 {
806         struct rte_mbuf *m;
807         uint16_t idx, nb_pkts_out, i;
808
809         /* Drop any IPsec traffic from protected ports */
810         free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
811
812         traffic->ipsec.num = 0;
813
814         outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
815
816         outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
817
818         if (app_sa_prm.enable == 0) {
819
820                 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
821                                 traffic->ipsec.res, traffic->ipsec.num,
822                                 MAX_PKT_BURST);
823
824                 for (i = 0; i < nb_pkts_out; i++) {
825                         m = traffic->ipsec.pkts[i];
826                         struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
827                         if (ip->ip_v == IPVERSION) {
828                                 idx = traffic->ip4.num++;
829                                 traffic->ip4.pkts[idx] = m;
830                         } else {
831                                 idx = traffic->ip6.num++;
832                                 traffic->ip6.pkts[idx] = m;
833                         }
834                 }
835         } else {
836                 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
837                         traffic->ipsec.saptr, traffic->ipsec.num);
838                 ipsec_process(ipsec_ctx, traffic);
839         }
840 }
841
842 static inline void
843 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
844                 struct ipsec_traffic *traffic)
845 {
846         struct rte_mbuf *m;
847         uint32_t nb_pkts_in, i, idx;
848
849         if (app_sa_prm.enable == 0) {
850
851                 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
852                                 traffic->ipsec.num, MAX_PKT_BURST);
853
854                 for (i = 0; i < nb_pkts_in; i++) {
855                         m = traffic->ipsec.pkts[i];
856                         struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
857                         if (ip->ip_v == IPVERSION) {
858                                 idx = traffic->ip4.num++;
859                                 traffic->ip4.pkts[idx] = m;
860                         } else {
861                                 idx = traffic->ip6.num++;
862                                 traffic->ip6.pkts[idx] = m;
863                         }
864                 }
865         } else {
866                 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
867                         traffic->ipsec.saptr, traffic->ipsec.num);
868                 ipsec_process(ipsec_ctx, traffic);
869         }
870 }
871
872 static inline void
873 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
874                 struct ipsec_traffic *traffic)
875 {
876         struct rte_mbuf *m;
877         uint32_t nb_pkts_out, i, n;
878         struct ip *ip;
879
880         /* Drop any IPsec traffic from protected ports */
881         free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
882
883         n = 0;
884
885         for (i = 0; i < traffic->ip4.num; i++) {
886                 traffic->ipsec.pkts[n] = traffic->ip4.pkts[i];
887                 traffic->ipsec.res[n++] = single_sa_idx;
888         }
889
890         for (i = 0; i < traffic->ip6.num; i++) {
891                 traffic->ipsec.pkts[n] = traffic->ip6.pkts[i];
892                 traffic->ipsec.res[n++] = single_sa_idx;
893         }
894
895         traffic->ip4.num = 0;
896         traffic->ip6.num = 0;
897         traffic->ipsec.num = n;
898
899         if (app_sa_prm.enable == 0) {
900
901                 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
902                                 traffic->ipsec.res, traffic->ipsec.num,
903                                 MAX_PKT_BURST);
904
905                 /* They all sue the same SA (ip4 or ip6 tunnel) */
906                 m = traffic->ipsec.pkts[0];
907                 ip = rte_pktmbuf_mtod(m, struct ip *);
908                 if (ip->ip_v == IPVERSION) {
909                         traffic->ip4.num = nb_pkts_out;
910                         for (i = 0; i < nb_pkts_out; i++)
911                                 traffic->ip4.pkts[i] = traffic->ipsec.pkts[i];
912                 } else {
913                         traffic->ip6.num = nb_pkts_out;
914                         for (i = 0; i < nb_pkts_out; i++)
915                                 traffic->ip6.pkts[i] = traffic->ipsec.pkts[i];
916                 }
917         } else {
918                 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
919                         traffic->ipsec.saptr, traffic->ipsec.num);
920                 ipsec_process(ipsec_ctx, traffic);
921         }
922 }
923
924 static inline int32_t
925 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
926 {
927         struct ipsec_mbuf_metadata *priv;
928         struct ipsec_sa *sa;
929
930         priv = get_priv(pkt);
931
932         sa = priv->sa;
933         if (unlikely(sa == NULL)) {
934                 RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
935                 goto fail;
936         }
937
938         if (is_ipv6)
939                 return sa->portid;
940
941         /* else */
942         return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
943
944 fail:
945         if (is_ipv6)
946                 return -1;
947
948         /* else */
949         return 0;
950 }
951
952 static inline void
953 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
954 {
955         uint32_t hop[MAX_PKT_BURST * 2];
956         uint32_t dst_ip[MAX_PKT_BURST * 2];
957         int32_t pkt_hop = 0;
958         uint16_t i, offset;
959         uint16_t lpm_pkts = 0;
960
961         if (nb_pkts == 0)
962                 return;
963
964         /* Need to do an LPM lookup for non-inline packets. Inline packets will
965          * have port ID in the SA
966          */
967
968         for (i = 0; i < nb_pkts; i++) {
969                 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
970                         /* Security offload not enabled. So an LPM lookup is
971                          * required to get the hop
972                          */
973                         offset = offsetof(struct ip, ip_dst);
974                         dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
975                                         uint32_t *, offset);
976                         dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
977                         lpm_pkts++;
978                 }
979         }
980
981         rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
982
983         lpm_pkts = 0;
984
985         for (i = 0; i < nb_pkts; i++) {
986                 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
987                         /* Read hop from the SA */
988                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
989                 } else {
990                         /* Need to use hop returned by lookup */
991                         pkt_hop = hop[lpm_pkts++];
992                 }
993
994                 if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
995                         free_pkts(&pkts[i], 1);
996                         continue;
997                 }
998                 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IP);
999         }
1000 }
1001
1002 static inline void
1003 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
1004 {
1005         int32_t hop[MAX_PKT_BURST * 2];
1006         uint8_t dst_ip[MAX_PKT_BURST * 2][16];
1007         uint8_t *ip6_dst;
1008         int32_t pkt_hop = 0;
1009         uint16_t i, offset;
1010         uint16_t lpm_pkts = 0;
1011
1012         if (nb_pkts == 0)
1013                 return;
1014
1015         /* Need to do an LPM lookup for non-inline packets. Inline packets will
1016          * have port ID in the SA
1017          */
1018
1019         for (i = 0; i < nb_pkts; i++) {
1020                 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
1021                         /* Security offload not enabled. So an LPM lookup is
1022                          * required to get the hop
1023                          */
1024                         offset = offsetof(struct ip6_hdr, ip6_dst);
1025                         ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
1026                                         offset);
1027                         memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
1028                         lpm_pkts++;
1029                 }
1030         }
1031
1032         rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
1033                         lpm_pkts);
1034
1035         lpm_pkts = 0;
1036
1037         for (i = 0; i < nb_pkts; i++) {
1038                 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
1039                         /* Read hop from the SA */
1040                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
1041                 } else {
1042                         /* Need to use hop returned by lookup */
1043                         pkt_hop = hop[lpm_pkts++];
1044                 }
1045
1046                 if (pkt_hop == -1) {
1047                         free_pkts(&pkts[i], 1);
1048                         continue;
1049                 }
1050                 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IPV6);
1051         }
1052 }
1053
1054 static inline void
1055 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
1056                 uint8_t nb_pkts, uint16_t portid)
1057 {
1058         struct ipsec_traffic traffic;
1059
1060         prepare_traffic(pkts, &traffic, nb_pkts);
1061
1062         if (unlikely(single_sa)) {
1063                 if (is_unprotected_port(portid))
1064                         process_pkts_inbound_nosp(&qconf->inbound, &traffic);
1065                 else
1066                         process_pkts_outbound_nosp(&qconf->outbound, &traffic);
1067         } else {
1068                 if (is_unprotected_port(portid))
1069                         process_pkts_inbound(&qconf->inbound, &traffic);
1070                 else
1071                         process_pkts_outbound(&qconf->outbound, &traffic);
1072         }
1073
1074         route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
1075         route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
1076 }
1077
1078 static inline void
1079 drain_tx_buffers(struct lcore_conf *qconf)
1080 {
1081         struct buffer *buf;
1082         uint32_t portid;
1083
1084         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
1085                 buf = &qconf->tx_mbufs[portid];
1086                 if (buf->len == 0)
1087                         continue;
1088                 send_burst(qconf, buf->len, portid);
1089                 buf->len = 0;
1090         }
1091 }
1092
1093 static inline void
1094 drain_crypto_buffers(struct lcore_conf *qconf)
1095 {
1096         uint32_t i;
1097         struct ipsec_ctx *ctx;
1098
1099         /* drain inbound buffers*/
1100         ctx = &qconf->inbound;
1101         for (i = 0; i != ctx->nb_qps; i++) {
1102                 if (ctx->tbl[i].len != 0)
1103                         enqueue_cop_burst(ctx->tbl  + i);
1104         }
1105
1106         /* drain outbound buffers*/
1107         ctx = &qconf->outbound;
1108         for (i = 0; i != ctx->nb_qps; i++) {
1109                 if (ctx->tbl[i].len != 0)
1110                         enqueue_cop_burst(ctx->tbl  + i);
1111         }
1112 }
1113
1114 static void
1115 drain_inbound_crypto_queues(const struct lcore_conf *qconf,
1116                 struct ipsec_ctx *ctx)
1117 {
1118         uint32_t n;
1119         struct ipsec_traffic trf;
1120
1121         if (app_sa_prm.enable == 0) {
1122
1123                 /* dequeue packets from crypto-queue */
1124                 n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1125                         RTE_DIM(trf.ipsec.pkts));
1126
1127                 trf.ip4.num = 0;
1128                 trf.ip6.num = 0;
1129
1130                 /* split traffic by ipv4-ipv6 */
1131                 split46_traffic(&trf, trf.ipsec.pkts, n);
1132         } else
1133                 ipsec_cqp_process(ctx, &trf);
1134
1135         /* process ipv4 packets */
1136         if (trf.ip4.num != 0) {
1137                 inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0);
1138                 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1139         }
1140
1141         /* process ipv6 packets */
1142         if (trf.ip6.num != 0) {
1143                 inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0);
1144                 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1145         }
1146 }
1147
1148 static void
1149 drain_outbound_crypto_queues(const struct lcore_conf *qconf,
1150                 struct ipsec_ctx *ctx)
1151 {
1152         uint32_t n;
1153         struct ipsec_traffic trf;
1154
1155         if (app_sa_prm.enable == 0) {
1156
1157                 /* dequeue packets from crypto-queue */
1158                 n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1159                         RTE_DIM(trf.ipsec.pkts));
1160
1161                 trf.ip4.num = 0;
1162                 trf.ip6.num = 0;
1163
1164                 /* split traffic by ipv4-ipv6 */
1165                 split46_traffic(&trf, trf.ipsec.pkts, n);
1166         } else
1167                 ipsec_cqp_process(ctx, &trf);
1168
1169         /* process ipv4 packets */
1170         if (trf.ip4.num != 0)
1171                 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1172
1173         /* process ipv6 packets */
1174         if (trf.ip6.num != 0)
1175                 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1176 }
1177
1178 /* main processing loop */
1179 void
1180 ipsec_poll_mode_worker(void)
1181 {
1182         struct rte_mbuf *pkts[MAX_PKT_BURST];
1183         uint32_t lcore_id;
1184         uint64_t prev_tsc, diff_tsc, cur_tsc;
1185         int32_t i, nb_rx;
1186         uint16_t portid;
1187         uint8_t queueid;
1188         struct lcore_conf *qconf;
1189         int32_t rc, socket_id;
1190         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
1191                         / US_PER_S * BURST_TX_DRAIN_US;
1192         struct lcore_rx_queue *rxql;
1193
1194         prev_tsc = 0;
1195         lcore_id = rte_lcore_id();
1196         qconf = &lcore_conf[lcore_id];
1197         rxql = qconf->rx_queue_list;
1198         socket_id = rte_lcore_to_socket_id(lcore_id);
1199
1200         qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
1201         qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
1202         qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
1203         qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
1204         qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
1205         qconf->inbound.cdev_map = cdev_map_in;
1206         qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
1207         qconf->inbound.session_priv_pool =
1208                         socket_ctx[socket_id].session_priv_pool;
1209         qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
1210         qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
1211         qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
1212         qconf->outbound.cdev_map = cdev_map_out;
1213         qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
1214         qconf->outbound.session_priv_pool =
1215                         socket_ctx[socket_id].session_priv_pool;
1216         qconf->frag.pool_dir = socket_ctx[socket_id].mbuf_pool;
1217         qconf->frag.pool_indir = socket_ctx[socket_id].mbuf_pool_indir;
1218
1219         rc = ipsec_sad_lcore_cache_init(app_sa_prm.cache_sz);
1220         if (rc != 0) {
1221                 RTE_LOG(ERR, IPSEC,
1222                         "SAD cache init on lcore %u, failed with code: %d\n",
1223                         lcore_id, rc);
1224                 return;
1225         }
1226
1227         if (qconf->nb_rx_queue == 0) {
1228                 RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n",
1229                         lcore_id);
1230                 return;
1231         }
1232
1233         RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
1234
1235         for (i = 0; i < qconf->nb_rx_queue; i++) {
1236                 portid = rxql[i].port_id;
1237                 queueid = rxql[i].queue_id;
1238                 RTE_LOG(INFO, IPSEC,
1239                         " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
1240                         lcore_id, portid, queueid);
1241         }
1242
1243         while (!force_quit) {
1244                 cur_tsc = rte_rdtsc();
1245
1246                 /* TX queue buffer drain */
1247                 diff_tsc = cur_tsc - prev_tsc;
1248
1249                 if (unlikely(diff_tsc > drain_tsc)) {
1250                         drain_tx_buffers(qconf);
1251                         drain_crypto_buffers(qconf);
1252                         prev_tsc = cur_tsc;
1253                 }
1254
1255                 for (i = 0; i < qconf->nb_rx_queue; ++i) {
1256
1257                         /* Read packets from RX queues */
1258                         portid = rxql[i].port_id;
1259                         queueid = rxql[i].queue_id;
1260                         nb_rx = rte_eth_rx_burst(portid, queueid,
1261                                         pkts, MAX_PKT_BURST);
1262
1263                         if (nb_rx > 0) {
1264                                 core_stats_update_rx(nb_rx);
1265                                 process_pkts(qconf, pkts, nb_rx, portid);
1266                         }
1267
1268                         /* dequeue and process completed crypto-ops */
1269                         if (is_unprotected_port(portid))
1270                                 drain_inbound_crypto_queues(qconf,
1271                                         &qconf->inbound);
1272                         else
1273                                 drain_outbound_crypto_queues(qconf,
1274                                         &qconf->outbound);
1275                 }
1276         }
1277 }
1278
1279 int
1280 check_flow_params(uint16_t fdir_portid, uint8_t fdir_qid)
1281 {
1282         uint16_t i;
1283         uint16_t portid;
1284         uint8_t queueid;
1285
1286         for (i = 0; i < nb_lcore_params; ++i) {
1287                 portid = lcore_params_array[i].port_id;
1288                 if (portid == fdir_portid) {
1289                         queueid = lcore_params_array[i].queue_id;
1290                         if (queueid == fdir_qid)
1291                                 break;
1292                 }
1293
1294                 if (i == nb_lcore_params - 1)
1295                         return -1;
1296         }
1297
1298         return 1;
1299 }
1300
1301 static int32_t
1302 check_poll_mode_params(struct eh_conf *eh_conf)
1303 {
1304         uint8_t lcore;
1305         uint16_t portid;
1306         uint16_t i;
1307         int32_t socket_id;
1308
1309         if (!eh_conf)
1310                 return -EINVAL;
1311
1312         if (eh_conf->mode != EH_PKT_TRANSFER_MODE_POLL)
1313                 return 0;
1314
1315         if (lcore_params == NULL) {
1316                 printf("Error: No port/queue/core mappings\n");
1317                 return -1;
1318         }
1319
1320         for (i = 0; i < nb_lcore_params; ++i) {
1321                 lcore = lcore_params[i].lcore_id;
1322                 if (!rte_lcore_is_enabled(lcore)) {
1323                         printf("error: lcore %hhu is not enabled in "
1324                                 "lcore mask\n", lcore);
1325                         return -1;
1326                 }
1327                 socket_id = rte_lcore_to_socket_id(lcore);
1328                 if (socket_id != 0 && numa_on == 0) {
1329                         printf("warning: lcore %hhu is on socket %d "
1330                                 "with numa off\n",
1331                                 lcore, socket_id);
1332                 }
1333                 portid = lcore_params[i].port_id;
1334                 if ((enabled_port_mask & (1 << portid)) == 0) {
1335                         printf("port %u is not enabled in port mask\n", portid);
1336                         return -1;
1337                 }
1338                 if (!rte_eth_dev_is_valid_port(portid)) {
1339                         printf("port %u is not present on the board\n", portid);
1340                         return -1;
1341                 }
1342         }
1343         return 0;
1344 }
1345
1346 static uint8_t
1347 get_port_nb_rx_queues(const uint16_t port)
1348 {
1349         int32_t queue = -1;
1350         uint16_t i;
1351
1352         for (i = 0; i < nb_lcore_params; ++i) {
1353                 if (lcore_params[i].port_id == port &&
1354                                 lcore_params[i].queue_id > queue)
1355                         queue = lcore_params[i].queue_id;
1356         }
1357         return (uint8_t)(++queue);
1358 }
1359
1360 static int32_t
1361 init_lcore_rx_queues(void)
1362 {
1363         uint16_t i, nb_rx_queue;
1364         uint8_t lcore;
1365
1366         for (i = 0; i < nb_lcore_params; ++i) {
1367                 lcore = lcore_params[i].lcore_id;
1368                 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
1369                 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1370                         printf("error: too many queues (%u) for lcore: %u\n",
1371                                         nb_rx_queue + 1, lcore);
1372                         return -1;
1373                 }
1374                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1375                         lcore_params[i].port_id;
1376                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1377                         lcore_params[i].queue_id;
1378                 lcore_conf[lcore].nb_rx_queue++;
1379         }
1380         return 0;
1381 }
1382
1383 /* display usage */
1384 static void
1385 print_usage(const char *prgname)
1386 {
1387         fprintf(stderr, "%s [EAL options] --"
1388                 " -p PORTMASK"
1389                 " [-P]"
1390                 " [-u PORTMASK]"
1391                 " [-j FRAMESIZE]"
1392                 " [-l]"
1393                 " [-w REPLAY_WINDOW_SIZE]"
1394                 " [-e]"
1395                 " [-a]"
1396                 " [-c]"
1397                 " [-s NUMBER_OF_MBUFS_IN_PKT_POOL]"
1398                 " -f CONFIG_FILE"
1399                 " --config (port,queue,lcore)[,(port,queue,lcore)]"
1400                 " [--single-sa SAIDX]"
1401                 " [--cryptodev_mask MASK]"
1402                 " [--transfer-mode MODE]"
1403                 " [--event-schedule-type TYPE]"
1404                 " [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]"
1405                 " [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]"
1406                 " [--" CMD_LINE_OPT_REASSEMBLE " REASSEMBLE_TABLE_SIZE]"
1407                 " [--" CMD_LINE_OPT_MTU " MTU]"
1408                 "\n\n"
1409                 "  -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
1410                 "  -P : Enable promiscuous mode\n"
1411                 "  -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
1412                 "  -j FRAMESIZE: Data buffer size, minimum (and default)\n"
1413                 "     value: RTE_MBUF_DEFAULT_BUF_SIZE\n"
1414                 "  -l enables code-path that uses librte_ipsec\n"
1415                 "  -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n"
1416                 "     size for each SA\n"
1417                 "  -e enables ESN\n"
1418                 "  -a enables SA SQN atomic behaviour\n"
1419                 "  -c specifies inbound SAD cache size,\n"
1420                 "     zero value disables the cache (default value: 128)\n"
1421                 "  -s number of mbufs in packet pool, if not specified number\n"
1422                 "     of mbufs will be calculated based on number of cores,\n"
1423                 "     ports and crypto queues\n"
1424                 "  -f CONFIG_FILE: Configuration file\n"
1425                 "  --config (port,queue,lcore): Rx queue configuration. In poll\n"
1426                 "                               mode determines which queues from\n"
1427                 "                               which ports are mapped to which cores.\n"
1428                 "                               In event mode this option is not used\n"
1429                 "                               as packets are dynamically scheduled\n"
1430                 "                               to cores by HW.\n"
1431                 "  --single-sa SAIDX: In poll mode use single SA index for\n"
1432                 "                     outbound traffic, bypassing the SP\n"
1433                 "                     In event mode selects driver submode,\n"
1434                 "                     SA index value is ignored\n"
1435                 "  --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
1436                 "                         devices to configure\n"
1437                 "  --transfer-mode MODE\n"
1438                 "               \"poll\"  : Packet transfer via polling (default)\n"
1439                 "               \"event\" : Packet transfer via event device\n"
1440                 "  --event-schedule-type TYPE queue schedule type, used only when\n"
1441                 "                             transfer mode is set to event\n"
1442                 "               \"ordered\"  : Ordered (default)\n"
1443                 "               \"atomic\"   : Atomic\n"
1444                 "               \"parallel\" : Parallel\n"
1445                 "  --" CMD_LINE_OPT_RX_OFFLOAD
1446                 ": bitmask of the RX HW offload capabilities to enable/use\n"
1447                 "                         (DEV_RX_OFFLOAD_*)\n"
1448                 "  --" CMD_LINE_OPT_TX_OFFLOAD
1449                 ": bitmask of the TX HW offload capabilities to enable/use\n"
1450                 "                         (DEV_TX_OFFLOAD_*)\n"
1451                 "  --" CMD_LINE_OPT_REASSEMBLE " NUM"
1452                 ": max number of entries in reassemble(fragment) table\n"
1453                 "    (zero (default value) disables reassembly)\n"
1454                 "  --" CMD_LINE_OPT_MTU " MTU"
1455                 ": MTU value on all ports (default value: 1500)\n"
1456                 "    outgoing packets with bigger size will be fragmented\n"
1457                 "    incoming packets with bigger size will be discarded\n"
1458                 "  --" CMD_LINE_OPT_FRAG_TTL " FRAG_TTL_NS"
1459                 ": fragments lifetime in nanoseconds, default\n"
1460                 "    and maximum value is 10.000.000.000 ns (10 s)\n"
1461                 "\n",
1462                 prgname);
1463 }
1464
1465 static int
1466 parse_mask(const char *str, uint64_t *val)
1467 {
1468         char *end;
1469         unsigned long t;
1470
1471         errno = 0;
1472         t = strtoul(str, &end, 0);
1473         if (errno != 0 || end[0] != 0)
1474                 return -EINVAL;
1475
1476         *val = t;
1477         return 0;
1478 }
1479
1480 static int32_t
1481 parse_portmask(const char *portmask)
1482 {
1483         char *end = NULL;
1484         unsigned long pm;
1485
1486         errno = 0;
1487
1488         /* parse hexadecimal string */
1489         pm = strtoul(portmask, &end, 16);
1490         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1491                 return -1;
1492
1493         if ((pm == 0) && errno)
1494                 return -1;
1495
1496         return pm;
1497 }
1498
1499 static int64_t
1500 parse_decimal(const char *str)
1501 {
1502         char *end = NULL;
1503         uint64_t num;
1504
1505         num = strtoull(str, &end, 10);
1506         if ((str[0] == '\0') || (end == NULL) || (*end != '\0')
1507                 || num > INT64_MAX)
1508                 return -1;
1509
1510         return num;
1511 }
1512
1513 static int32_t
1514 parse_config(const char *q_arg)
1515 {
1516         char s[256];
1517         const char *p, *p0 = q_arg;
1518         char *end;
1519         enum fieldnames {
1520                 FLD_PORT = 0,
1521                 FLD_QUEUE,
1522                 FLD_LCORE,
1523                 _NUM_FLD
1524         };
1525         unsigned long int_fld[_NUM_FLD];
1526         char *str_fld[_NUM_FLD];
1527         int32_t i;
1528         uint32_t size;
1529
1530         nb_lcore_params = 0;
1531
1532         while ((p = strchr(p0, '(')) != NULL) {
1533                 ++p;
1534                 p0 = strchr(p, ')');
1535                 if (p0 == NULL)
1536                         return -1;
1537
1538                 size = p0 - p;
1539                 if (size >= sizeof(s))
1540                         return -1;
1541
1542                 snprintf(s, sizeof(s), "%.*s", size, p);
1543                 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1544                                 _NUM_FLD)
1545                         return -1;
1546                 for (i = 0; i < _NUM_FLD; i++) {
1547                         errno = 0;
1548                         int_fld[i] = strtoul(str_fld[i], &end, 0);
1549                         if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1550                                 return -1;
1551                 }
1552                 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1553                         printf("exceeded max number of lcore params: %hu\n",
1554                                 nb_lcore_params);
1555                         return -1;
1556                 }
1557                 lcore_params_array[nb_lcore_params].port_id =
1558                         (uint8_t)int_fld[FLD_PORT];
1559                 lcore_params_array[nb_lcore_params].queue_id =
1560                         (uint8_t)int_fld[FLD_QUEUE];
1561                 lcore_params_array[nb_lcore_params].lcore_id =
1562                         (uint8_t)int_fld[FLD_LCORE];
1563                 ++nb_lcore_params;
1564         }
1565         lcore_params = lcore_params_array;
1566         return 0;
1567 }
1568
1569 static void
1570 print_app_sa_prm(const struct app_sa_prm *prm)
1571 {
1572         printf("librte_ipsec usage: %s\n",
1573                 (prm->enable == 0) ? "disabled" : "enabled");
1574
1575         printf("replay window size: %u\n", prm->window_size);
1576         printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled");
1577         printf("SA flags: %#" PRIx64 "\n", prm->flags);
1578         printf("Frag TTL: %" PRIu64 " ns\n", frag_ttl_ns);
1579 }
1580
1581 static int
1582 parse_transfer_mode(struct eh_conf *conf, const char *optarg)
1583 {
1584         if (!strcmp(CMD_LINE_ARG_POLL, optarg))
1585                 conf->mode = EH_PKT_TRANSFER_MODE_POLL;
1586         else if (!strcmp(CMD_LINE_ARG_EVENT, optarg))
1587                 conf->mode = EH_PKT_TRANSFER_MODE_EVENT;
1588         else {
1589                 printf("Unsupported packet transfer mode\n");
1590                 return -EINVAL;
1591         }
1592
1593         return 0;
1594 }
1595
1596 static int
1597 parse_schedule_type(struct eh_conf *conf, const char *optarg)
1598 {
1599         struct eventmode_conf *em_conf = NULL;
1600
1601         /* Get eventmode conf */
1602         em_conf = conf->mode_params;
1603
1604         if (!strcmp(CMD_LINE_ARG_ORDERED, optarg))
1605                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
1606         else if (!strcmp(CMD_LINE_ARG_ATOMIC, optarg))
1607                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ATOMIC;
1608         else if (!strcmp(CMD_LINE_ARG_PARALLEL, optarg))
1609                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_PARALLEL;
1610         else {
1611                 printf("Unsupported queue schedule type\n");
1612                 return -EINVAL;
1613         }
1614
1615         return 0;
1616 }
1617
1618 static int32_t
1619 parse_args(int32_t argc, char **argv, struct eh_conf *eh_conf)
1620 {
1621         int opt;
1622         int64_t ret;
1623         char **argvopt;
1624         int32_t option_index;
1625         char *prgname = argv[0];
1626         int32_t f_present = 0;
1627
1628         argvopt = argv;
1629
1630         while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:c:s:",
1631                                 lgopts, &option_index)) != EOF) {
1632
1633                 switch (opt) {
1634                 case 'p':
1635                         enabled_port_mask = parse_portmask(optarg);
1636                         if (enabled_port_mask == 0) {
1637                                 printf("invalid portmask\n");
1638                                 print_usage(prgname);
1639                                 return -1;
1640                         }
1641                         break;
1642                 case 'P':
1643                         printf("Promiscuous mode selected\n");
1644                         promiscuous_on = 1;
1645                         break;
1646                 case 'u':
1647                         unprotected_port_mask = parse_portmask(optarg);
1648                         if (unprotected_port_mask == 0) {
1649                                 printf("invalid unprotected portmask\n");
1650                                 print_usage(prgname);
1651                                 return -1;
1652                         }
1653                         break;
1654                 case 'f':
1655                         if (f_present == 1) {
1656                                 printf("\"-f\" option present more than "
1657                                         "once!\n");
1658                                 print_usage(prgname);
1659                                 return -1;
1660                         }
1661                         cfgfile = optarg;
1662                         f_present = 1;
1663                         break;
1664
1665                 case 's':
1666                         ret = parse_decimal(optarg);
1667                         if (ret < 0) {
1668                                 printf("Invalid number of buffers in a pool: "
1669                                         "%s\n", optarg);
1670                                 print_usage(prgname);
1671                                 return -1;
1672                         }
1673
1674                         nb_bufs_in_pool = ret;
1675                         break;
1676
1677                 case 'j':
1678                         ret = parse_decimal(optarg);
1679                         if (ret < RTE_MBUF_DEFAULT_BUF_SIZE ||
1680                                         ret > UINT16_MAX) {
1681                                 printf("Invalid frame buffer size value: %s\n",
1682                                         optarg);
1683                                 print_usage(prgname);
1684                                 return -1;
1685                         }
1686                         frame_buf_size = ret;
1687                         printf("Custom frame buffer size %u\n", frame_buf_size);
1688                         break;
1689                 case 'l':
1690                         app_sa_prm.enable = 1;
1691                         break;
1692                 case 'w':
1693                         app_sa_prm.window_size = parse_decimal(optarg);
1694                         break;
1695                 case 'e':
1696                         app_sa_prm.enable_esn = 1;
1697                         break;
1698                 case 'a':
1699                         app_sa_prm.enable = 1;
1700                         app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM;
1701                         break;
1702                 case 'c':
1703                         ret = parse_decimal(optarg);
1704                         if (ret < 0) {
1705                                 printf("Invalid SA cache size: %s\n", optarg);
1706                                 print_usage(prgname);
1707                                 return -1;
1708                         }
1709                         app_sa_prm.cache_sz = ret;
1710                         break;
1711                 case CMD_LINE_OPT_CONFIG_NUM:
1712                         ret = parse_config(optarg);
1713                         if (ret) {
1714                                 printf("Invalid config\n");
1715                                 print_usage(prgname);
1716                                 return -1;
1717                         }
1718                         break;
1719                 case CMD_LINE_OPT_SINGLE_SA_NUM:
1720                         ret = parse_decimal(optarg);
1721                         if (ret == -1 || ret > UINT32_MAX) {
1722                                 printf("Invalid argument[sa_idx]\n");
1723                                 print_usage(prgname);
1724                                 return -1;
1725                         }
1726
1727                         /* else */
1728                         single_sa = 1;
1729                         single_sa_idx = ret;
1730                         eh_conf->ipsec_mode = EH_IPSEC_MODE_TYPE_DRIVER;
1731                         printf("Configured with single SA index %u\n",
1732                                         single_sa_idx);
1733                         break;
1734                 case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1735                         ret = parse_portmask(optarg);
1736                         if (ret == -1) {
1737                                 printf("Invalid argument[portmask]\n");
1738                                 print_usage(prgname);
1739                                 return -1;
1740                         }
1741
1742                         /* else */
1743                         enabled_cryptodev_mask = ret;
1744                         break;
1745
1746                 case CMD_LINE_OPT_TRANSFER_MODE_NUM:
1747                         ret = parse_transfer_mode(eh_conf, optarg);
1748                         if (ret < 0) {
1749                                 printf("Invalid packet transfer mode\n");
1750                                 print_usage(prgname);
1751                                 return -1;
1752                         }
1753                         break;
1754
1755                 case CMD_LINE_OPT_SCHEDULE_TYPE_NUM:
1756                         ret = parse_schedule_type(eh_conf, optarg);
1757                         if (ret < 0) {
1758                                 printf("Invalid queue schedule type\n");
1759                                 print_usage(prgname);
1760                                 return -1;
1761                         }
1762                         break;
1763
1764                 case CMD_LINE_OPT_RX_OFFLOAD_NUM:
1765                         ret = parse_mask(optarg, &dev_rx_offload);
1766                         if (ret != 0) {
1767                                 printf("Invalid argument for \'%s\': %s\n",
1768                                         CMD_LINE_OPT_RX_OFFLOAD, optarg);
1769                                 print_usage(prgname);
1770                                 return -1;
1771                         }
1772                         break;
1773                 case CMD_LINE_OPT_TX_OFFLOAD_NUM:
1774                         ret = parse_mask(optarg, &dev_tx_offload);
1775                         if (ret != 0) {
1776                                 printf("Invalid argument for \'%s\': %s\n",
1777                                         CMD_LINE_OPT_TX_OFFLOAD, optarg);
1778                                 print_usage(prgname);
1779                                 return -1;
1780                         }
1781                         break;
1782                 case CMD_LINE_OPT_REASSEMBLE_NUM:
1783                         ret = parse_decimal(optarg);
1784                         if (ret < 0 || ret > UINT32_MAX) {
1785                                 printf("Invalid argument for \'%s\': %s\n",
1786                                         CMD_LINE_OPT_REASSEMBLE, optarg);
1787                                 print_usage(prgname);
1788                                 return -1;
1789                         }
1790                         frag_tbl_sz = ret;
1791                         break;
1792                 case CMD_LINE_OPT_MTU_NUM:
1793                         ret = parse_decimal(optarg);
1794                         if (ret < 0 || ret > RTE_IPV4_MAX_PKT_LEN) {
1795                                 printf("Invalid argument for \'%s\': %s\n",
1796                                         CMD_LINE_OPT_MTU, optarg);
1797                                 print_usage(prgname);
1798                                 return -1;
1799                         }
1800                         mtu_size = ret;
1801                         break;
1802                 case CMD_LINE_OPT_FRAG_TTL_NUM:
1803                         ret = parse_decimal(optarg);
1804                         if (ret < 0 || ret > MAX_FRAG_TTL_NS) {
1805                                 printf("Invalid argument for \'%s\': %s\n",
1806                                         CMD_LINE_OPT_MTU, optarg);
1807                                 print_usage(prgname);
1808                                 return -1;
1809                         }
1810                         frag_ttl_ns = ret;
1811                         break;
1812                 default:
1813                         print_usage(prgname);
1814                         return -1;
1815                 }
1816         }
1817
1818         if (f_present == 0) {
1819                 printf("Mandatory option \"-f\" not present\n");
1820                 return -1;
1821         }
1822
1823         /* check do we need to enable multi-seg support */
1824         if (multi_seg_required()) {
1825                 /* legacy mode doesn't support multi-seg */
1826                 app_sa_prm.enable = 1;
1827                 printf("frame buf size: %u, mtu: %u, "
1828                         "number of reassemble entries: %u\n"
1829                         "multi-segment support is required\n",
1830                         frame_buf_size, mtu_size, frag_tbl_sz);
1831         }
1832
1833         print_app_sa_prm(&app_sa_prm);
1834
1835         if (optind >= 0)
1836                 argv[optind-1] = prgname;
1837
1838         ret = optind-1;
1839         optind = 1; /* reset getopt lib */
1840         return ret;
1841 }
1842
1843 static void
1844 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1845 {
1846         char buf[RTE_ETHER_ADDR_FMT_SIZE];
1847         rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1848         printf("%s%s", name, buf);
1849 }
1850
1851 /*
1852  * Update destination ethaddr for the port.
1853  */
1854 int
1855 add_dst_ethaddr(uint16_t port, const struct rte_ether_addr *addr)
1856 {
1857         if (port >= RTE_DIM(ethaddr_tbl))
1858                 return -EINVAL;
1859
1860         ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr);
1861         return 0;
1862 }
1863
1864 /* Check the link status of all ports in up to 9s, and print them finally */
1865 static void
1866 check_all_ports_link_status(uint32_t port_mask)
1867 {
1868 #define CHECK_INTERVAL 100 /* 100ms */
1869 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1870         uint16_t portid;
1871         uint8_t count, all_ports_up, print_flag = 0;
1872         struct rte_eth_link link;
1873         int ret;
1874         char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
1875
1876         printf("\nChecking link status");
1877         fflush(stdout);
1878         for (count = 0; count <= MAX_CHECK_TIME; count++) {
1879                 all_ports_up = 1;
1880                 RTE_ETH_FOREACH_DEV(portid) {
1881                         if ((port_mask & (1 << portid)) == 0)
1882                                 continue;
1883                         memset(&link, 0, sizeof(link));
1884                         ret = rte_eth_link_get_nowait(portid, &link);
1885                         if (ret < 0) {
1886                                 all_ports_up = 0;
1887                                 if (print_flag == 1)
1888                                         printf("Port %u link get failed: %s\n",
1889                                                 portid, rte_strerror(-ret));
1890                                 continue;
1891                         }
1892                         /* print link status if flag set */
1893                         if (print_flag == 1) {
1894                                 rte_eth_link_to_str(link_status_text,
1895                                         sizeof(link_status_text), &link);
1896                                 printf("Port %d %s\n", portid,
1897                                        link_status_text);
1898                                 continue;
1899                         }
1900                         /* clear all_ports_up flag if any link down */
1901                         if (link.link_status == ETH_LINK_DOWN) {
1902                                 all_ports_up = 0;
1903                                 break;
1904                         }
1905                 }
1906                 /* after finally printing all link status, get out */
1907                 if (print_flag == 1)
1908                         break;
1909
1910                 if (all_ports_up == 0) {
1911                         printf(".");
1912                         fflush(stdout);
1913                         rte_delay_ms(CHECK_INTERVAL);
1914                 }
1915
1916                 /* set the print_flag if all ports up or timeout */
1917                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1918                         print_flag = 1;
1919                         printf("done\n");
1920                 }
1921         }
1922 }
1923
1924 static int32_t
1925 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1926                 uint16_t qp, struct lcore_params *params,
1927                 struct ipsec_ctx *ipsec_ctx,
1928                 const struct rte_cryptodev_capabilities *cipher,
1929                 const struct rte_cryptodev_capabilities *auth,
1930                 const struct rte_cryptodev_capabilities *aead)
1931 {
1932         int32_t ret = 0;
1933         unsigned long i;
1934         struct cdev_key key = { 0 };
1935
1936         key.lcore_id = params->lcore_id;
1937         if (cipher)
1938                 key.cipher_algo = cipher->sym.cipher.algo;
1939         if (auth)
1940                 key.auth_algo = auth->sym.auth.algo;
1941         if (aead)
1942                 key.aead_algo = aead->sym.aead.algo;
1943
1944         ret = rte_hash_lookup(map, &key);
1945         if (ret != -ENOENT)
1946                 return 0;
1947
1948         for (i = 0; i < ipsec_ctx->nb_qps; i++)
1949                 if (ipsec_ctx->tbl[i].id == cdev_id)
1950                         break;
1951
1952         if (i == ipsec_ctx->nb_qps) {
1953                 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1954                         printf("Maximum number of crypto devices assigned to "
1955                                 "a core, increase MAX_QP_PER_LCORE value\n");
1956                         return 0;
1957                 }
1958                 ipsec_ctx->tbl[i].id = cdev_id;
1959                 ipsec_ctx->tbl[i].qp = qp;
1960                 ipsec_ctx->nb_qps++;
1961                 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1962                                 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1963                                 cdev_id, qp, i);
1964         }
1965
1966         ret = rte_hash_add_key_data(map, &key, (void *)i);
1967         if (ret < 0) {
1968                 printf("Faled to insert cdev mapping for (lcore %u, "
1969                                 "cdev %u, qp %u), errno %d\n",
1970                                 key.lcore_id, ipsec_ctx->tbl[i].id,
1971                                 ipsec_ctx->tbl[i].qp, ret);
1972                 return 0;
1973         }
1974
1975         return 1;
1976 }
1977
1978 static int32_t
1979 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1980                 uint16_t qp, struct lcore_params *params)
1981 {
1982         int32_t ret = 0;
1983         const struct rte_cryptodev_capabilities *i, *j;
1984         struct rte_hash *map;
1985         struct lcore_conf *qconf;
1986         struct ipsec_ctx *ipsec_ctx;
1987         const char *str;
1988
1989         qconf = &lcore_conf[params->lcore_id];
1990
1991         if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1992                 map = cdev_map_out;
1993                 ipsec_ctx = &qconf->outbound;
1994                 str = "Outbound";
1995         } else {
1996                 map = cdev_map_in;
1997                 ipsec_ctx = &qconf->inbound;
1998                 str = "Inbound";
1999         }
2000
2001         /* Required cryptodevs with operation chainning */
2002         if (!(dev_info->feature_flags &
2003                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
2004                 return ret;
2005
2006         for (i = dev_info->capabilities;
2007                         i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
2008                 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
2009                         continue;
2010
2011                 if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
2012                         ret |= add_mapping(map, str, cdev_id, qp, params,
2013                                         ipsec_ctx, NULL, NULL, i);
2014                         continue;
2015                 }
2016
2017                 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
2018                         continue;
2019
2020                 for (j = dev_info->capabilities;
2021                                 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
2022                         if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
2023                                 continue;
2024
2025                         if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
2026                                 continue;
2027
2028                         ret |= add_mapping(map, str, cdev_id, qp, params,
2029                                                 ipsec_ctx, i, j, NULL);
2030                 }
2031         }
2032
2033         return ret;
2034 }
2035
2036 /* Check if the device is enabled by cryptodev_mask */
2037 static int
2038 check_cryptodev_mask(uint8_t cdev_id)
2039 {
2040         if (enabled_cryptodev_mask & (1 << cdev_id))
2041                 return 0;
2042
2043         return -1;
2044 }
2045
2046 static uint16_t
2047 cryptodevs_init(uint16_t req_queue_num)
2048 {
2049         struct rte_cryptodev_config dev_conf;
2050         struct rte_cryptodev_qp_conf qp_conf;
2051         uint16_t idx, max_nb_qps, qp, total_nb_qps, i;
2052         int16_t cdev_id;
2053         struct rte_hash_parameters params = { 0 };
2054
2055         const uint64_t mseg_flag = multi_seg_required() ?
2056                                 RTE_CRYPTODEV_FF_IN_PLACE_SGL : 0;
2057
2058         params.entries = CDEV_MAP_ENTRIES;
2059         params.key_len = sizeof(struct cdev_key);
2060         params.hash_func = rte_jhash;
2061         params.hash_func_init_val = 0;
2062         params.socket_id = rte_socket_id();
2063
2064         params.name = "cdev_map_in";
2065         cdev_map_in = rte_hash_create(&params);
2066         if (cdev_map_in == NULL)
2067                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
2068                                 rte_errno);
2069
2070         params.name = "cdev_map_out";
2071         cdev_map_out = rte_hash_create(&params);
2072         if (cdev_map_out == NULL)
2073                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
2074                                 rte_errno);
2075
2076         printf("lcore/cryptodev/qp mappings:\n");
2077
2078         idx = 0;
2079         total_nb_qps = 0;
2080         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
2081                 struct rte_cryptodev_info cdev_info;
2082
2083                 if (check_cryptodev_mask((uint8_t)cdev_id))
2084                         continue;
2085
2086                 rte_cryptodev_info_get(cdev_id, &cdev_info);
2087
2088                 if ((mseg_flag & cdev_info.feature_flags) != mseg_flag)
2089                         rte_exit(EXIT_FAILURE,
2090                                 "Device %hd does not support \'%s\' feature\n",
2091                                 cdev_id,
2092                                 rte_cryptodev_get_feature_name(mseg_flag));
2093
2094                 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
2095                         max_nb_qps = cdev_info.max_nb_queue_pairs;
2096                 else
2097                         max_nb_qps = nb_lcore_params;
2098
2099                 qp = 0;
2100                 i = 0;
2101                 while (qp < max_nb_qps && i < nb_lcore_params) {
2102                         if (add_cdev_mapping(&cdev_info, cdev_id, qp,
2103                                                 &lcore_params[idx]))
2104                                 qp++;
2105                         idx++;
2106                         idx = idx % nb_lcore_params;
2107                         i++;
2108                 }
2109
2110                 qp = RTE_MIN(max_nb_qps, RTE_MAX(req_queue_num, qp));
2111                 if (qp == 0)
2112                         continue;
2113
2114                 total_nb_qps += qp;
2115                 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
2116                 dev_conf.nb_queue_pairs = qp;
2117                 dev_conf.ff_disable = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO;
2118
2119                 uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
2120                 if (dev_max_sess != 0 &&
2121                                 dev_max_sess < get_nb_crypto_sessions())
2122                         rte_exit(EXIT_FAILURE,
2123                                 "Device does not support at least %u "
2124                                 "sessions", get_nb_crypto_sessions());
2125
2126                 if (rte_cryptodev_configure(cdev_id, &dev_conf))
2127                         rte_panic("Failed to initialize cryptodev %u\n",
2128                                         cdev_id);
2129
2130                 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
2131                 qp_conf.mp_session =
2132                         socket_ctx[dev_conf.socket_id].session_pool;
2133                 qp_conf.mp_session_private =
2134                         socket_ctx[dev_conf.socket_id].session_priv_pool;
2135                 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
2136                         if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
2137                                         &qp_conf, dev_conf.socket_id))
2138                                 rte_panic("Failed to setup queue %u for "
2139                                                 "cdev_id %u\n", 0, cdev_id);
2140
2141                 if (rte_cryptodev_start(cdev_id))
2142                         rte_panic("Failed to start cryptodev %u\n",
2143                                         cdev_id);
2144         }
2145
2146         printf("\n");
2147
2148         return total_nb_qps;
2149 }
2150
2151 static void
2152 port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads)
2153 {
2154         struct rte_eth_dev_info dev_info;
2155         struct rte_eth_txconf *txconf;
2156         uint16_t nb_tx_queue, nb_rx_queue;
2157         uint16_t tx_queueid, rx_queueid, queue, lcore_id;
2158         int32_t ret, socket_id;
2159         struct lcore_conf *qconf;
2160         struct rte_ether_addr ethaddr;
2161         struct rte_eth_conf local_port_conf = port_conf;
2162
2163         ret = rte_eth_dev_info_get(portid, &dev_info);
2164         if (ret != 0)
2165                 rte_exit(EXIT_FAILURE,
2166                         "Error during getting device (port %u) info: %s\n",
2167                         portid, strerror(-ret));
2168
2169         /* limit allowed HW offloafs, as user requested */
2170         dev_info.rx_offload_capa &= dev_rx_offload;
2171         dev_info.tx_offload_capa &= dev_tx_offload;
2172
2173         printf("Configuring device port %u:\n", portid);
2174
2175         ret = rte_eth_macaddr_get(portid, &ethaddr);
2176         if (ret != 0)
2177                 rte_exit(EXIT_FAILURE,
2178                         "Error getting MAC address (port %u): %s\n",
2179                         portid, rte_strerror(-ret));
2180
2181         ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(&ethaddr);
2182         print_ethaddr("Address: ", &ethaddr);
2183         printf("\n");
2184
2185         nb_rx_queue = get_port_nb_rx_queues(portid);
2186         nb_tx_queue = nb_lcores;
2187
2188         if (nb_rx_queue > dev_info.max_rx_queues)
2189                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2190                                 "(max rx queue is %u)\n",
2191                                 nb_rx_queue, dev_info.max_rx_queues);
2192
2193         if (nb_tx_queue > dev_info.max_tx_queues)
2194                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2195                                 "(max tx queue is %u)\n",
2196                                 nb_tx_queue, dev_info.max_tx_queues);
2197
2198         printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
2199                         nb_rx_queue, nb_tx_queue);
2200
2201         if (mtu_size > RTE_ETHER_MTU)
2202                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2203         local_port_conf.rxmode.mtu = mtu_size;
2204
2205         if (multi_seg_required()) {
2206                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SCATTER;
2207                 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
2208         }
2209
2210         local_port_conf.rxmode.offloads |= req_rx_offloads;
2211         local_port_conf.txmode.offloads |= req_tx_offloads;
2212
2213         /* Check that all required capabilities are supported */
2214         if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) !=
2215                         local_port_conf.rxmode.offloads)
2216                 rte_exit(EXIT_FAILURE,
2217                         "Error: port %u required RX offloads: 0x%" PRIx64
2218                         ", avaialbe RX offloads: 0x%" PRIx64 "\n",
2219                         portid, local_port_conf.rxmode.offloads,
2220                         dev_info.rx_offload_capa);
2221
2222         if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) !=
2223                         local_port_conf.txmode.offloads)
2224                 rte_exit(EXIT_FAILURE,
2225                         "Error: port %u required TX offloads: 0x%" PRIx64
2226                         ", avaialbe TX offloads: 0x%" PRIx64 "\n",
2227                         portid, local_port_conf.txmode.offloads,
2228                         dev_info.tx_offload_capa);
2229
2230         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
2231                 local_port_conf.txmode.offloads |=
2232                         DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2233
2234         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM)
2235                 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM;
2236
2237         printf("port %u configurng rx_offloads=0x%" PRIx64
2238                 ", tx_offloads=0x%" PRIx64 "\n",
2239                 portid, local_port_conf.rxmode.offloads,
2240                 local_port_conf.txmode.offloads);
2241
2242         local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2243                 dev_info.flow_type_rss_offloads;
2244         if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2245                         port_conf.rx_adv_conf.rss_conf.rss_hf) {
2246                 printf("Port %u modified RSS hash function based on hardware support,"
2247                         "requested:%#"PRIx64" configured:%#"PRIx64"\n",
2248                         portid,
2249                         port_conf.rx_adv_conf.rss_conf.rss_hf,
2250                         local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2251         }
2252
2253         ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
2254                         &local_port_conf);
2255         if (ret < 0)
2256                 rte_exit(EXIT_FAILURE, "Cannot configure device: "
2257                                 "err=%d, port=%d\n", ret, portid);
2258
2259         ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
2260         if (ret < 0)
2261                 rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
2262                                 "err=%d, port=%d\n", ret, portid);
2263
2264         /* init one TX queue per lcore */
2265         tx_queueid = 0;
2266         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2267                 if (rte_lcore_is_enabled(lcore_id) == 0)
2268                         continue;
2269
2270                 if (numa_on)
2271                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2272                 else
2273                         socket_id = 0;
2274
2275                 /* init TX queue */
2276                 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
2277
2278                 txconf = &dev_info.default_txconf;
2279                 txconf->offloads = local_port_conf.txmode.offloads;
2280
2281                 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
2282                                 socket_id, txconf);
2283                 if (ret < 0)
2284                         rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
2285                                         "err=%d, port=%d\n", ret, portid);
2286
2287                 qconf = &lcore_conf[lcore_id];
2288                 qconf->tx_queue_id[portid] = tx_queueid;
2289
2290                 /* Pre-populate pkt offloads based on capabilities */
2291                 qconf->outbound.ipv4_offloads = PKT_TX_IPV4;
2292                 qconf->outbound.ipv6_offloads = PKT_TX_IPV6;
2293                 if (local_port_conf.txmode.offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
2294                         qconf->outbound.ipv4_offloads |= PKT_TX_IP_CKSUM;
2295
2296                 tx_queueid++;
2297
2298                 /* init RX queues */
2299                 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
2300                         struct rte_eth_rxconf rxq_conf;
2301
2302                         if (portid != qconf->rx_queue_list[queue].port_id)
2303                                 continue;
2304
2305                         rx_queueid = qconf->rx_queue_list[queue].queue_id;
2306
2307                         printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
2308                                         socket_id);
2309
2310                         rxq_conf = dev_info.default_rxconf;
2311                         rxq_conf.offloads = local_port_conf.rxmode.offloads;
2312                         ret = rte_eth_rx_queue_setup(portid, rx_queueid,
2313                                         nb_rxd, socket_id, &rxq_conf,
2314                                         socket_ctx[socket_id].mbuf_pool);
2315                         if (ret < 0)
2316                                 rte_exit(EXIT_FAILURE,
2317                                         "rte_eth_rx_queue_setup: err=%d, "
2318                                         "port=%d\n", ret, portid);
2319                 }
2320         }
2321         printf("\n");
2322 }
2323
2324 static size_t
2325 max_session_size(void)
2326 {
2327         size_t max_sz, sz;
2328         void *sec_ctx;
2329         int16_t cdev_id, port_id, n;
2330
2331         max_sz = 0;
2332         n =  rte_cryptodev_count();
2333         for (cdev_id = 0; cdev_id != n; cdev_id++) {
2334                 sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
2335                 if (sz > max_sz)
2336                         max_sz = sz;
2337                 /*
2338                  * If crypto device is security capable, need to check the
2339                  * size of security session as well.
2340                  */
2341
2342                 /* Get security context of the crypto device */
2343                 sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
2344                 if (sec_ctx == NULL)
2345                         continue;
2346
2347                 /* Get size of security session */
2348                 sz = rte_security_session_get_size(sec_ctx);
2349                 if (sz > max_sz)
2350                         max_sz = sz;
2351         }
2352
2353         RTE_ETH_FOREACH_DEV(port_id) {
2354                 if ((enabled_port_mask & (1 << port_id)) == 0)
2355                         continue;
2356
2357                 sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
2358                 if (sec_ctx == NULL)
2359                         continue;
2360
2361                 sz = rte_security_session_get_size(sec_ctx);
2362                 if (sz > max_sz)
2363                         max_sz = sz;
2364         }
2365
2366         return max_sz;
2367 }
2368
2369 static void
2370 session_pool_init(struct socket_ctx *ctx, int32_t socket_id, size_t sess_sz)
2371 {
2372         char mp_name[RTE_MEMPOOL_NAMESIZE];
2373         struct rte_mempool *sess_mp;
2374         uint32_t nb_sess;
2375
2376         snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2377                         "sess_mp_%u", socket_id);
2378         nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2379                 rte_lcore_count());
2380         nb_sess = RTE_MAX(nb_sess, CDEV_MP_CACHE_SZ *
2381                         CDEV_MP_CACHE_MULTIPLIER);
2382         sess_mp = rte_cryptodev_sym_session_pool_create(
2383                         mp_name, nb_sess, sess_sz, CDEV_MP_CACHE_SZ, 0,
2384                         socket_id);
2385         ctx->session_pool = sess_mp;
2386
2387         if (ctx->session_pool == NULL)
2388                 rte_exit(EXIT_FAILURE,
2389                         "Cannot init session pool on socket %d\n", socket_id);
2390         else
2391                 printf("Allocated session pool on socket %d\n", socket_id);
2392 }
2393
2394 static void
2395 session_priv_pool_init(struct socket_ctx *ctx, int32_t socket_id,
2396         size_t sess_sz)
2397 {
2398         char mp_name[RTE_MEMPOOL_NAMESIZE];
2399         struct rte_mempool *sess_mp;
2400         uint32_t nb_sess;
2401
2402         snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2403                         "sess_mp_priv_%u", socket_id);
2404         nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2405                 rte_lcore_count());
2406         nb_sess = RTE_MAX(nb_sess, CDEV_MP_CACHE_SZ *
2407                         CDEV_MP_CACHE_MULTIPLIER);
2408         sess_mp = rte_mempool_create(mp_name,
2409                         nb_sess,
2410                         sess_sz,
2411                         CDEV_MP_CACHE_SZ,
2412                         0, NULL, NULL, NULL,
2413                         NULL, socket_id,
2414                         0);
2415         ctx->session_priv_pool = sess_mp;
2416
2417         if (ctx->session_priv_pool == NULL)
2418                 rte_exit(EXIT_FAILURE,
2419                         "Cannot init session priv pool on socket %d\n",
2420                         socket_id);
2421         else
2422                 printf("Allocated session priv pool on socket %d\n",
2423                         socket_id);
2424 }
2425
2426 static void
2427 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
2428 {
2429         char s[64];
2430         int32_t ms;
2431
2432         snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
2433         ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
2434                         MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
2435                         frame_buf_size, socket_id);
2436
2437         /*
2438          * if multi-segment support is enabled, then create a pool
2439          * for indirect mbufs.
2440          */
2441         ms = multi_seg_required();
2442         if (ms != 0) {
2443                 snprintf(s, sizeof(s), "mbuf_pool_indir_%d", socket_id);
2444                 ctx->mbuf_pool_indir = rte_pktmbuf_pool_create(s, nb_mbuf,
2445                         MEMPOOL_CACHE_SIZE, 0, 0, socket_id);
2446         }
2447
2448         if (ctx->mbuf_pool == NULL || (ms != 0 && ctx->mbuf_pool_indir == NULL))
2449                 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
2450                                 socket_id);
2451         else
2452                 printf("Allocated mbuf pool on socket %d\n", socket_id);
2453 }
2454
2455 static inline int
2456 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
2457 {
2458         struct ipsec_sa *sa;
2459
2460         /* For inline protocol processing, the metadata in the event will
2461          * uniquely identify the security session which raised the event.
2462          * Application would then need the userdata it had registered with the
2463          * security session to process the event.
2464          */
2465
2466         sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
2467
2468         if (sa == NULL) {
2469                 /* userdata could not be retrieved */
2470                 return -1;
2471         }
2472
2473         /* Sequence number over flow. SA need to be re-established */
2474         RTE_SET_USED(sa);
2475         return 0;
2476 }
2477
2478 static int
2479 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
2480                  void *param, void *ret_param)
2481 {
2482         uint64_t md;
2483         struct rte_eth_event_ipsec_desc *event_desc = NULL;
2484         struct rte_security_ctx *ctx = (struct rte_security_ctx *)
2485                                         rte_eth_dev_get_sec_ctx(port_id);
2486
2487         RTE_SET_USED(param);
2488
2489         if (type != RTE_ETH_EVENT_IPSEC)
2490                 return -1;
2491
2492         event_desc = ret_param;
2493         if (event_desc == NULL) {
2494                 printf("Event descriptor not set\n");
2495                 return -1;
2496         }
2497
2498         md = event_desc->metadata;
2499
2500         if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW)
2501                 return inline_ipsec_event_esn_overflow(ctx, md);
2502         else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
2503                 printf("Invalid IPsec event reported\n");
2504                 return -1;
2505         }
2506
2507         return -1;
2508 }
2509
2510 static uint16_t
2511 rx_callback(__rte_unused uint16_t port, __rte_unused uint16_t queue,
2512         struct rte_mbuf *pkt[], uint16_t nb_pkts,
2513         __rte_unused uint16_t max_pkts, void *user_param)
2514 {
2515         uint64_t tm;
2516         uint32_t i, k;
2517         struct lcore_conf *lc;
2518         struct rte_mbuf *mb;
2519         struct rte_ether_hdr *eth;
2520
2521         lc = user_param;
2522         k = 0;
2523         tm = 0;
2524
2525         for (i = 0; i != nb_pkts; i++) {
2526
2527                 mb = pkt[i];
2528                 eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *);
2529                 if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
2530
2531                         struct rte_ipv4_hdr *iph;
2532
2533                         iph = (struct rte_ipv4_hdr *)(eth + 1);
2534                         if (rte_ipv4_frag_pkt_is_fragmented(iph)) {
2535
2536                                 mb->l2_len = sizeof(*eth);
2537                                 mb->l3_len = sizeof(*iph);
2538                                 tm = (tm != 0) ? tm : rte_rdtsc();
2539                                 mb = rte_ipv4_frag_reassemble_packet(
2540                                         lc->frag.tbl, &lc->frag.dr,
2541                                         mb, tm, iph);
2542
2543                                 if (mb != NULL) {
2544                                         /* fix ip cksum after reassemble. */
2545                                         iph = rte_pktmbuf_mtod_offset(mb,
2546                                                 struct rte_ipv4_hdr *,
2547                                                 mb->l2_len);
2548                                         iph->hdr_checksum = 0;
2549                                         iph->hdr_checksum = rte_ipv4_cksum(iph);
2550                                 }
2551                         }
2552                 } else if (eth->ether_type ==
2553                                 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
2554
2555                         struct rte_ipv6_hdr *iph;
2556                         struct ipv6_extension_fragment *fh;
2557
2558                         iph = (struct rte_ipv6_hdr *)(eth + 1);
2559                         fh = rte_ipv6_frag_get_ipv6_fragment_header(iph);
2560                         if (fh != NULL) {
2561                                 mb->l2_len = sizeof(*eth);
2562                                 mb->l3_len = (uintptr_t)fh - (uintptr_t)iph +
2563                                         sizeof(*fh);
2564                                 tm = (tm != 0) ? tm : rte_rdtsc();
2565                                 mb = rte_ipv6_frag_reassemble_packet(
2566                                         lc->frag.tbl, &lc->frag.dr,
2567                                         mb, tm, iph, fh);
2568                                 if (mb != NULL)
2569                                         /* fix l3_len after reassemble. */
2570                                         mb->l3_len = mb->l3_len - sizeof(*fh);
2571                         }
2572                 }
2573
2574                 pkt[k] = mb;
2575                 k += (mb != NULL);
2576         }
2577
2578         /* some fragments were encountered, drain death row */
2579         if (tm != 0)
2580                 rte_ip_frag_free_death_row(&lc->frag.dr, 0);
2581
2582         return k;
2583 }
2584
2585
2586 static int
2587 reassemble_lcore_init(struct lcore_conf *lc, uint32_t cid)
2588 {
2589         int32_t sid;
2590         uint32_t i;
2591         uint64_t frag_cycles;
2592         const struct lcore_rx_queue *rxq;
2593         const struct rte_eth_rxtx_callback *cb;
2594
2595         /* create fragment table */
2596         sid = rte_lcore_to_socket_id(cid);
2597         frag_cycles = (rte_get_tsc_hz() + NS_PER_S - 1) /
2598                 NS_PER_S * frag_ttl_ns;
2599
2600         lc->frag.tbl = rte_ip_frag_table_create(frag_tbl_sz,
2601                 FRAG_TBL_BUCKET_ENTRIES, frag_tbl_sz, frag_cycles, sid);
2602         if (lc->frag.tbl == NULL) {
2603                 printf("%s(%u): failed to create fragment table of size: %u, "
2604                         "error code: %d\n",
2605                         __func__, cid, frag_tbl_sz, rte_errno);
2606                 return -ENOMEM;
2607         }
2608
2609         /* setup reassemble RX callbacks for all queues */
2610         for (i = 0; i != lc->nb_rx_queue; i++) {
2611
2612                 rxq = lc->rx_queue_list + i;
2613                 cb = rte_eth_add_rx_callback(rxq->port_id, rxq->queue_id,
2614                         rx_callback, lc);
2615                 if (cb == NULL) {
2616                         printf("%s(%u): failed to install RX callback for "
2617                                 "portid=%u, queueid=%u, error code: %d\n",
2618                                 __func__, cid,
2619                                 rxq->port_id, rxq->queue_id, rte_errno);
2620                         return -ENOMEM;
2621                 }
2622         }
2623
2624         return 0;
2625 }
2626
2627 static int
2628 reassemble_init(void)
2629 {
2630         int32_t rc;
2631         uint32_t i, lc;
2632
2633         rc = 0;
2634         for (i = 0; i != nb_lcore_params; i++) {
2635                 lc = lcore_params[i].lcore_id;
2636                 rc = reassemble_lcore_init(lcore_conf + lc, lc);
2637                 if (rc != 0)
2638                         break;
2639         }
2640
2641         return rc;
2642 }
2643
2644 static void
2645 create_default_ipsec_flow(uint16_t port_id, uint64_t rx_offloads)
2646 {
2647         struct rte_flow_action action[2];
2648         struct rte_flow_item pattern[2];
2649         struct rte_flow_attr attr = {0};
2650         struct rte_flow_error err;
2651         struct rte_flow *flow;
2652         int ret;
2653
2654         if (!(rx_offloads & DEV_RX_OFFLOAD_SECURITY))
2655                 return;
2656
2657         /* Add the default rte_flow to enable SECURITY for all ESP packets */
2658
2659         pattern[0].type = RTE_FLOW_ITEM_TYPE_ESP;
2660         pattern[0].spec = NULL;
2661         pattern[0].mask = NULL;
2662         pattern[0].last = NULL;
2663         pattern[1].type = RTE_FLOW_ITEM_TYPE_END;
2664
2665         action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY;
2666         action[0].conf = NULL;
2667         action[1].type = RTE_FLOW_ACTION_TYPE_END;
2668         action[1].conf = NULL;
2669
2670         attr.ingress = 1;
2671
2672         ret = rte_flow_validate(port_id, &attr, pattern, action, &err);
2673         if (ret)
2674                 return;
2675
2676         flow = rte_flow_create(port_id, &attr, pattern, action, &err);
2677         if (flow == NULL)
2678                 return;
2679
2680         flow_info_tbl[port_id].rx_def_flow = flow;
2681         RTE_LOG(INFO, IPSEC,
2682                 "Created default flow enabling SECURITY for all ESP traffic on port %d\n",
2683                 port_id);
2684 }
2685
2686 static void
2687 signal_handler(int signum)
2688 {
2689         if (signum == SIGINT || signum == SIGTERM) {
2690                 printf("\n\nSignal %d received, preparing to exit...\n",
2691                                 signum);
2692                 force_quit = true;
2693         }
2694 }
2695
2696 static void
2697 ev_mode_sess_verify(struct ipsec_sa *sa, int nb_sa)
2698 {
2699         struct rte_ipsec_session *ips;
2700         int32_t i;
2701
2702         if (!sa || !nb_sa)
2703                 return;
2704
2705         for (i = 0; i < nb_sa; i++) {
2706                 ips = ipsec_get_primary_session(&sa[i]);
2707                 if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)
2708                         rte_exit(EXIT_FAILURE, "Event mode supports only "
2709                                  "inline protocol sessions\n");
2710         }
2711
2712 }
2713
2714 static int32_t
2715 check_event_mode_params(struct eh_conf *eh_conf)
2716 {
2717         struct eventmode_conf *em_conf = NULL;
2718         struct lcore_params *params;
2719         uint16_t portid;
2720
2721         if (!eh_conf || !eh_conf->mode_params)
2722                 return -EINVAL;
2723
2724         /* Get eventmode conf */
2725         em_conf = eh_conf->mode_params;
2726
2727         if (eh_conf->mode == EH_PKT_TRANSFER_MODE_POLL &&
2728             em_conf->ext_params.sched_type != SCHED_TYPE_NOT_SET) {
2729                 printf("error: option --event-schedule-type applies only to "
2730                        "event mode\n");
2731                 return -EINVAL;
2732         }
2733
2734         if (eh_conf->mode != EH_PKT_TRANSFER_MODE_EVENT)
2735                 return 0;
2736
2737         /* Set schedule type to ORDERED if it wasn't explicitly set by user */
2738         if (em_conf->ext_params.sched_type == SCHED_TYPE_NOT_SET)
2739                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
2740
2741         /*
2742          * Event mode currently supports only inline protocol sessions.
2743          * If there are other types of sessions configured then exit with
2744          * error.
2745          */
2746         ev_mode_sess_verify(sa_in, nb_sa_in);
2747         ev_mode_sess_verify(sa_out, nb_sa_out);
2748
2749
2750         /* Option --config does not apply to event mode */
2751         if (nb_lcore_params > 0) {
2752                 printf("error: option --config applies only to poll mode\n");
2753                 return -EINVAL;
2754         }
2755
2756         /*
2757          * In order to use the same port_init routine for both poll and event
2758          * modes initialize lcore_params with one queue for each eth port
2759          */
2760         lcore_params = lcore_params_array;
2761         RTE_ETH_FOREACH_DEV(portid) {
2762                 if ((enabled_port_mask & (1 << portid)) == 0)
2763                         continue;
2764
2765                 params = &lcore_params[nb_lcore_params++];
2766                 params->port_id = portid;
2767                 params->queue_id = 0;
2768                 params->lcore_id = rte_get_next_lcore(0, 0, 1);
2769         }
2770
2771         return 0;
2772 }
2773
2774 static void
2775 inline_sessions_free(struct sa_ctx *sa_ctx)
2776 {
2777         struct rte_ipsec_session *ips;
2778         struct ipsec_sa *sa;
2779         int32_t ret;
2780         uint32_t i;
2781
2782         if (!sa_ctx)
2783                 return;
2784
2785         for (i = 0; i < sa_ctx->nb_sa; i++) {
2786
2787                 sa = &sa_ctx->sa[i];
2788                 if (!sa->spi)
2789                         continue;
2790
2791                 ips = ipsec_get_primary_session(sa);
2792                 if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL &&
2793                     ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO)
2794                         continue;
2795
2796                 if (!rte_eth_dev_is_valid_port(sa->portid))
2797                         continue;
2798
2799                 ret = rte_security_session_destroy(
2800                                 rte_eth_dev_get_sec_ctx(sa->portid),
2801                                 ips->security.ses);
2802                 if (ret)
2803                         RTE_LOG(ERR, IPSEC, "Failed to destroy security "
2804                                             "session type %d, spi %d\n",
2805                                             ips->type, sa->spi);
2806         }
2807 }
2808
2809 static uint32_t
2810 calculate_nb_mbufs(uint16_t nb_ports, uint16_t nb_crypto_qp, uint32_t nb_rxq,
2811                 uint32_t nb_txq)
2812 {
2813         return RTE_MAX((nb_rxq * nb_rxd +
2814                         nb_ports * nb_lcores * MAX_PKT_BURST +
2815                         nb_ports * nb_txq * nb_txd +
2816                         nb_lcores * MEMPOOL_CACHE_SIZE +
2817                         nb_crypto_qp * CDEV_QUEUE_DESC +
2818                         nb_lcores * frag_tbl_sz *
2819                         FRAG_TBL_BUCKET_ENTRIES),
2820                        8192U);
2821 }
2822
2823 int32_t
2824 main(int32_t argc, char **argv)
2825 {
2826         int32_t ret;
2827         uint32_t lcore_id, nb_txq, nb_rxq = 0;
2828         uint32_t cdev_id;
2829         uint32_t i;
2830         uint8_t socket_id;
2831         uint16_t portid, nb_crypto_qp, nb_ports = 0;
2832         uint64_t req_rx_offloads[RTE_MAX_ETHPORTS];
2833         uint64_t req_tx_offloads[RTE_MAX_ETHPORTS];
2834         struct eh_conf *eh_conf = NULL;
2835         size_t sess_sz;
2836
2837         nb_bufs_in_pool = 0;
2838
2839         /* init EAL */
2840         ret = rte_eal_init(argc, argv);
2841         if (ret < 0)
2842                 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2843         argc -= ret;
2844         argv += ret;
2845
2846         force_quit = false;
2847         signal(SIGINT, signal_handler);
2848         signal(SIGTERM, signal_handler);
2849
2850         /* initialize event helper configuration */
2851         eh_conf = eh_conf_init();
2852         if (eh_conf == NULL)
2853                 rte_exit(EXIT_FAILURE, "Failed to init event helper config");
2854
2855         /* parse application arguments (after the EAL ones) */
2856         ret = parse_args(argc, argv, eh_conf);
2857         if (ret < 0)
2858                 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
2859
2860         /* parse configuration file */
2861         if (parse_cfg_file(cfgfile) < 0) {
2862                 printf("parsing file \"%s\" failed\n",
2863                         optarg);
2864                 print_usage(argv[0]);
2865                 return -1;
2866         }
2867
2868         if ((unprotected_port_mask & enabled_port_mask) !=
2869                         unprotected_port_mask)
2870                 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
2871                                 unprotected_port_mask);
2872
2873         if (check_poll_mode_params(eh_conf) < 0)
2874                 rte_exit(EXIT_FAILURE, "check_poll_mode_params failed\n");
2875
2876         if (check_event_mode_params(eh_conf) < 0)
2877                 rte_exit(EXIT_FAILURE, "check_event_mode_params failed\n");
2878
2879         ret = init_lcore_rx_queues();
2880         if (ret < 0)
2881                 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2882
2883         nb_lcores = rte_lcore_count();
2884
2885         sess_sz = max_session_size();
2886
2887         /*
2888          * In event mode request minimum number of crypto queues
2889          * to be reserved equal to number of ports.
2890          */
2891         if (eh_conf->mode == EH_PKT_TRANSFER_MODE_EVENT)
2892                 nb_crypto_qp = rte_eth_dev_count_avail();
2893         else
2894                 nb_crypto_qp = 0;
2895
2896         nb_crypto_qp = cryptodevs_init(nb_crypto_qp);
2897
2898         if (nb_bufs_in_pool == 0) {
2899                 RTE_ETH_FOREACH_DEV(portid) {
2900                         if ((enabled_port_mask & (1 << portid)) == 0)
2901                                 continue;
2902                         nb_ports++;
2903                         nb_rxq += get_port_nb_rx_queues(portid);
2904                 }
2905
2906                 nb_txq = nb_lcores;
2907
2908                 nb_bufs_in_pool = calculate_nb_mbufs(nb_ports, nb_crypto_qp,
2909                                                 nb_rxq, nb_txq);
2910         }
2911
2912         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2913                 if (rte_lcore_is_enabled(lcore_id) == 0)
2914                         continue;
2915
2916                 if (numa_on)
2917                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2918                 else
2919                         socket_id = 0;
2920
2921                 /* mbuf_pool is initialised by the pool_init() function*/
2922                 if (socket_ctx[socket_id].mbuf_pool)
2923                         continue;
2924
2925                 pool_init(&socket_ctx[socket_id], socket_id, nb_bufs_in_pool);
2926                 session_pool_init(&socket_ctx[socket_id], socket_id, sess_sz);
2927                 session_priv_pool_init(&socket_ctx[socket_id], socket_id,
2928                         sess_sz);
2929         }
2930         printf("Number of mbufs in packet pool %d\n", nb_bufs_in_pool);
2931
2932         RTE_ETH_FOREACH_DEV(portid) {
2933                 if ((enabled_port_mask & (1 << portid)) == 0)
2934                         continue;
2935
2936                 sa_check_offloads(portid, &req_rx_offloads[portid],
2937                                 &req_tx_offloads[portid]);
2938                 port_init(portid, req_rx_offloads[portid],
2939                                 req_tx_offloads[portid]);
2940         }
2941
2942         /*
2943          * Set the enabled port mask in helper config for use by helper
2944          * sub-system. This will be used while initializing devices using
2945          * helper sub-system.
2946          */
2947         eh_conf->eth_portmask = enabled_port_mask;
2948
2949         /* Initialize eventmode components */
2950         ret = eh_devs_init(eh_conf);
2951         if (ret < 0)
2952                 rte_exit(EXIT_FAILURE, "eh_devs_init failed, err=%d\n", ret);
2953
2954         /* start ports */
2955         RTE_ETH_FOREACH_DEV(portid) {
2956                 if ((enabled_port_mask & (1 << portid)) == 0)
2957                         continue;
2958
2959                 /* Create flow before starting the device */
2960                 create_default_ipsec_flow(portid, req_rx_offloads[portid]);
2961
2962                 ret = rte_eth_dev_start(portid);
2963                 if (ret < 0)
2964                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
2965                                         "err=%d, port=%d\n", ret, portid);
2966                 /*
2967                  * If enabled, put device in promiscuous mode.
2968                  * This allows IO forwarding mode to forward packets
2969                  * to itself through 2 cross-connected  ports of the
2970                  * target machine.
2971                  */
2972                 if (promiscuous_on) {
2973                         ret = rte_eth_promiscuous_enable(portid);
2974                         if (ret != 0)
2975                                 rte_exit(EXIT_FAILURE,
2976                                         "rte_eth_promiscuous_enable: err=%s, port=%d\n",
2977                                         rte_strerror(-ret), portid);
2978                 }
2979
2980                 rte_eth_dev_callback_register(portid,
2981                         RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
2982         }
2983
2984         /* fragment reassemble is enabled */
2985         if (frag_tbl_sz != 0) {
2986                 ret = reassemble_init();
2987                 if (ret != 0)
2988                         rte_exit(EXIT_FAILURE, "failed at reassemble init");
2989         }
2990
2991         /* Replicate each context per socket */
2992         for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
2993                 socket_id = rte_socket_id_by_idx(i);
2994                 if ((socket_ctx[socket_id].mbuf_pool != NULL) &&
2995                         (socket_ctx[socket_id].sa_in == NULL) &&
2996                         (socket_ctx[socket_id].sa_out == NULL)) {
2997                         sa_init(&socket_ctx[socket_id], socket_id);
2998                         sp4_init(&socket_ctx[socket_id], socket_id);
2999                         sp6_init(&socket_ctx[socket_id], socket_id);
3000                         rt_init(&socket_ctx[socket_id], socket_id);
3001                 }
3002         }
3003
3004         flow_init();
3005
3006         check_all_ports_link_status(enabled_port_mask);
3007
3008 #if (STATS_INTERVAL > 0)
3009         rte_eal_alarm_set(STATS_INTERVAL * US_PER_S, print_stats_cb, NULL);
3010 #else
3011         RTE_LOG(INFO, IPSEC, "Stats display disabled\n");
3012 #endif /* STATS_INTERVAL */
3013
3014         /* launch per-lcore init on every lcore */
3015         rte_eal_mp_remote_launch(ipsec_launch_one_lcore, eh_conf, CALL_MAIN);
3016         RTE_LCORE_FOREACH_WORKER(lcore_id) {
3017                 if (rte_eal_wait_lcore(lcore_id) < 0)
3018                         return -1;
3019         }
3020
3021         /* Uninitialize eventmode components */
3022         ret = eh_devs_uninit(eh_conf);
3023         if (ret < 0)
3024                 rte_exit(EXIT_FAILURE, "eh_devs_uninit failed, err=%d\n", ret);
3025
3026         /* Free eventmode configuration memory */
3027         eh_conf_uninit(eh_conf);
3028
3029         /* Destroy inline inbound and outbound sessions */
3030         for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
3031                 socket_id = rte_socket_id_by_idx(i);
3032                 inline_sessions_free(socket_ctx[socket_id].sa_in);
3033                 inline_sessions_free(socket_ctx[socket_id].sa_out);
3034         }
3035
3036         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
3037                 printf("Closing cryptodev %d...", cdev_id);
3038                 rte_cryptodev_stop(cdev_id);
3039                 rte_cryptodev_close(cdev_id);
3040                 printf(" Done\n");
3041         }
3042
3043         RTE_ETH_FOREACH_DEV(portid) {
3044                 if ((enabled_port_mask & (1 << portid)) == 0)
3045                         continue;
3046
3047                 printf("Closing port %d...", portid);
3048                 if (flow_info_tbl[portid].rx_def_flow) {
3049                         struct rte_flow_error err;
3050
3051                         ret = rte_flow_destroy(portid,
3052                                 flow_info_tbl[portid].rx_def_flow, &err);
3053                         if (ret)
3054                                 RTE_LOG(ERR, IPSEC, "Failed to destroy flow "
3055                                         " for port %u, err msg: %s\n", portid,
3056                                         err.message);
3057                 }
3058                 ret = rte_eth_dev_stop(portid);
3059                 if (ret != 0)
3060                         RTE_LOG(ERR, IPSEC,
3061                                 "rte_eth_dev_stop: err=%s, port=%u\n",
3062                                 rte_strerror(-ret), portid);
3063
3064                 rte_eth_dev_close(portid);
3065                 printf(" Done\n");
3066         }
3067
3068         /* clean up the EAL */
3069         rte_eal_cleanup();
3070         printf("Bye...\n");
3071
3072         return 0;
3073 }