1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation
11 #include <sys/queue.h>
16 #include <netinet/in.h>
18 #include <rte_debug.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev.h>
21 #include <rte_cycles.h>
30 #if defined(RTE_ARCH_X86) || defined(RTE_MACHINE_CPUFLAG_CRC32)
35 #include <rte_hash_crc.h>
36 #define DEFAULT_HASH_FUNC rte_hash_crc
38 #include <rte_jhash.h>
39 #define DEFAULT_HASH_FUNC rte_jhash
42 #define IPV6_ADDR_LEN 16
50 } __attribute__((__packed__));
52 union ipv4_5tuple_host {
65 #define XMM_NUM_IN_IPV6_5TUPLE 3
68 uint8_t ip_dst[IPV6_ADDR_LEN];
69 uint8_t ip_src[IPV6_ADDR_LEN];
73 } __attribute__((__packed__));
75 union ipv6_5tuple_host {
80 uint8_t ip_src[IPV6_ADDR_LEN];
81 uint8_t ip_dst[IPV6_ADDR_LEN];
86 xmm_t xmm[XMM_NUM_IN_IPV6_5TUPLE];
91 struct ipv4_l3fwd_em_route {
92 struct ipv4_5tuple key;
96 struct ipv6_l3fwd_em_route {
97 struct ipv6_5tuple key;
101 static struct ipv4_l3fwd_em_route ipv4_l3fwd_em_route_array[] = {
102 {{IPv4(101, 0, 0, 0), IPv4(100, 10, 0, 1), 101, 11, IPPROTO_TCP}, 0},
103 {{IPv4(201, 0, 0, 0), IPv4(200, 20, 0, 1), 102, 12, IPPROTO_TCP}, 1},
104 {{IPv4(111, 0, 0, 0), IPv4(100, 30, 0, 1), 101, 11, IPPROTO_TCP}, 2},
105 {{IPv4(211, 0, 0, 0), IPv4(200, 40, 0, 1), 102, 12, IPPROTO_TCP}, 3},
108 static struct ipv6_l3fwd_em_route ipv6_l3fwd_em_route_array[] = {
110 {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
111 {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
112 101, 11, IPPROTO_TCP}, 0},
115 {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
116 {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
117 102, 12, IPPROTO_TCP}, 1},
120 {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
121 {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
122 101, 11, IPPROTO_TCP}, 2},
125 {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
126 {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
127 102, 12, IPPROTO_TCP}, 3},
130 struct rte_hash *ipv4_l3fwd_em_lookup_struct[NB_SOCKETS];
131 struct rte_hash *ipv6_l3fwd_em_lookup_struct[NB_SOCKETS];
133 static inline uint32_t
134 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
137 const union ipv4_5tuple_host *k;
143 p = (const uint32_t *)&k->port_src;
146 init_val = rte_hash_crc_4byte(t, init_val);
147 init_val = rte_hash_crc_4byte(k->ip_src, init_val);
148 init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
149 init_val = rte_hash_crc_4byte(*p, init_val);
151 init_val = rte_jhash_1word(t, init_val);
152 init_val = rte_jhash_1word(k->ip_src, init_val);
153 init_val = rte_jhash_1word(k->ip_dst, init_val);
154 init_val = rte_jhash_1word(*p, init_val);
160 static inline uint32_t
161 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
164 const union ipv6_5tuple_host *k;
168 const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3;
169 const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
174 p = (const uint32_t *)&k->port_src;
177 ip_src0 = (const uint32_t *) k->ip_src;
178 ip_src1 = (const uint32_t *)(k->ip_src+4);
179 ip_src2 = (const uint32_t *)(k->ip_src+8);
180 ip_src3 = (const uint32_t *)(k->ip_src+12);
181 ip_dst0 = (const uint32_t *) k->ip_dst;
182 ip_dst1 = (const uint32_t *)(k->ip_dst+4);
183 ip_dst2 = (const uint32_t *)(k->ip_dst+8);
184 ip_dst3 = (const uint32_t *)(k->ip_dst+12);
185 init_val = rte_hash_crc_4byte(t, init_val);
186 init_val = rte_hash_crc_4byte(*ip_src0, init_val);
187 init_val = rte_hash_crc_4byte(*ip_src1, init_val);
188 init_val = rte_hash_crc_4byte(*ip_src2, init_val);
189 init_val = rte_hash_crc_4byte(*ip_src3, init_val);
190 init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
191 init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
192 init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
193 init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
194 init_val = rte_hash_crc_4byte(*p, init_val);
196 init_val = rte_jhash_1word(t, init_val);
197 init_val = rte_jhash(k->ip_src,
198 sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
199 init_val = rte_jhash(k->ip_dst,
200 sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
201 init_val = rte_jhash_1word(*p, init_val);
206 #define IPV4_L3FWD_EM_NUM_ROUTES \
207 (sizeof(ipv4_l3fwd_em_route_array) / sizeof(ipv4_l3fwd_em_route_array[0]))
209 #define IPV6_L3FWD_EM_NUM_ROUTES \
210 (sizeof(ipv6_l3fwd_em_route_array) / sizeof(ipv6_l3fwd_em_route_array[0]))
212 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
213 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
215 static rte_xmm_t mask0;
216 static rte_xmm_t mask1;
217 static rte_xmm_t mask2;
219 #if defined(RTE_MACHINE_CPUFLAG_SSE2)
221 em_mask_key(void *key, xmm_t mask)
223 __m128i data = _mm_loadu_si128((__m128i *)(key));
225 return _mm_and_si128(data, mask);
227 #elif defined(RTE_MACHINE_CPUFLAG_NEON)
229 em_mask_key(void *key, xmm_t mask)
231 int32x4_t data = vld1q_s32((int32_t *)key);
233 return vandq_s32(data, mask);
235 #elif defined(RTE_MACHINE_CPUFLAG_ALTIVEC)
237 em_mask_key(void *key, xmm_t mask)
239 xmm_t data = vec_ld(0, (xmm_t *)(key));
241 return vec_and(data, mask);
244 #error No vector engine (SSE, NEON, ALTIVEC) available, check your toolchain
247 static inline uint16_t
248 em_get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, void *lookup_struct)
251 union ipv4_5tuple_host key;
252 struct rte_hash *ipv4_l3fwd_lookup_struct =
253 (struct rte_hash *)lookup_struct;
255 ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
258 * Get 5 tuple: dst port, src port, dst IP address,
259 * src IP address and protocol.
261 key.xmm = em_mask_key(ipv4_hdr, mask0.x);
263 /* Find destination port */
264 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
265 return (ret < 0) ? portid : ipv4_l3fwd_out_if[ret];
268 static inline uint16_t
269 em_get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, void *lookup_struct)
272 union ipv6_5tuple_host key;
273 struct rte_hash *ipv6_l3fwd_lookup_struct =
274 (struct rte_hash *)lookup_struct;
276 ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len);
277 void *data0 = ipv6_hdr;
278 void *data1 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t);
279 void *data2 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t) + sizeof(xmm_t);
281 /* Get part of 5 tuple: src IP address lower 96 bits and protocol */
282 key.xmm[0] = em_mask_key(data0, mask1.x);
285 * Get part of 5 tuple: dst IP address lower 96 bits
286 * and src IP address higher 32 bits.
288 key.xmm[1] = *(xmm_t *)data1;
291 * Get part of 5 tuple: dst port and src port
292 * and dst IP address higher 32 bits.
294 key.xmm[2] = em_mask_key(data2, mask2.x);
296 /* Find destination port */
297 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
298 return (ret < 0) ? portid : ipv6_l3fwd_out_if[ret];
301 #if defined RTE_ARCH_X86 || defined RTE_MACHINE_CPUFLAG_NEON
302 #if defined(NO_HASH_MULTI_LOOKUP)
303 #include "l3fwd_em_sequential.h"
305 #include "l3fwd_em_hlm.h"
308 #include "l3fwd_em.h"
312 convert_ipv4_5tuple(struct ipv4_5tuple *key1,
313 union ipv4_5tuple_host *key2)
315 key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
316 key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
317 key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
318 key2->port_src = rte_cpu_to_be_16(key1->port_src);
319 key2->proto = key1->proto;
325 convert_ipv6_5tuple(struct ipv6_5tuple *key1,
326 union ipv6_5tuple_host *key2)
330 for (i = 0; i < 16; i++) {
331 key2->ip_dst[i] = key1->ip_dst[i];
332 key2->ip_src[i] = key1->ip_src[i];
334 key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
335 key2->port_src = rte_cpu_to_be_16(key1->port_src);
336 key2->proto = key1->proto;
342 #define BYTE_VALUE_MAX 256
343 #define ALL_32_BITS 0xffffffff
344 #define BIT_8_TO_15 0x0000ff00
347 populate_ipv4_few_flow_into_table(const struct rte_hash *h)
352 mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
353 ALL_32_BITS, ALL_32_BITS} };
355 for (i = 0; i < IPV4_L3FWD_EM_NUM_ROUTES; i++) {
356 struct ipv4_l3fwd_em_route entry;
357 union ipv4_5tuple_host newkey;
359 entry = ipv4_l3fwd_em_route_array[i];
360 convert_ipv4_5tuple(&entry.key, &newkey);
361 ret = rte_hash_add_key(h, (void *) &newkey);
363 rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
364 " to the l3fwd hash.\n", i);
366 ipv4_l3fwd_out_if[ret] = entry.if_out;
368 printf("Hash: Adding 0x%" PRIx64 " keys\n",
369 (uint64_t)IPV4_L3FWD_EM_NUM_ROUTES);
372 #define BIT_16_TO_23 0x00ff0000
374 populate_ipv6_few_flow_into_table(const struct rte_hash *h)
379 mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
380 ALL_32_BITS, ALL_32_BITS} };
382 mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
384 for (i = 0; i < IPV6_L3FWD_EM_NUM_ROUTES; i++) {
385 struct ipv6_l3fwd_em_route entry;
386 union ipv6_5tuple_host newkey;
388 entry = ipv6_l3fwd_em_route_array[i];
389 convert_ipv6_5tuple(&entry.key, &newkey);
390 ret = rte_hash_add_key(h, (void *) &newkey);
392 rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
393 " to the l3fwd hash.\n", i);
395 ipv6_l3fwd_out_if[ret] = entry.if_out;
397 printf("Hash: Adding 0x%" PRIx64 "keys\n",
398 (uint64_t)IPV6_L3FWD_EM_NUM_ROUTES);
401 #define NUMBER_PORT_USED 4
403 populate_ipv4_many_flow_into_table(const struct rte_hash *h,
404 unsigned int nr_flow)
408 mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
409 ALL_32_BITS, ALL_32_BITS} };
411 for (i = 0; i < nr_flow; i++) {
412 struct ipv4_l3fwd_em_route entry;
413 union ipv4_5tuple_host newkey;
415 uint8_t a = (uint8_t)
416 ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
417 uint8_t b = (uint8_t)
418 (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
419 uint8_t c = (uint8_t)
420 ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
422 /* Create the ipv4 exact match flow */
423 memset(&entry, 0, sizeof(entry));
424 switch (i & (NUMBER_PORT_USED - 1)) {
426 entry = ipv4_l3fwd_em_route_array[0];
427 entry.key.ip_dst = IPv4(101, c, b, a);
430 entry = ipv4_l3fwd_em_route_array[1];
431 entry.key.ip_dst = IPv4(201, c, b, a);
434 entry = ipv4_l3fwd_em_route_array[2];
435 entry.key.ip_dst = IPv4(111, c, b, a);
438 entry = ipv4_l3fwd_em_route_array[3];
439 entry.key.ip_dst = IPv4(211, c, b, a);
442 convert_ipv4_5tuple(&entry.key, &newkey);
443 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
446 rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
448 ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
451 printf("Hash: Adding 0x%x keys\n", nr_flow);
455 populate_ipv6_many_flow_into_table(const struct rte_hash *h,
456 unsigned int nr_flow)
460 mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
461 ALL_32_BITS, ALL_32_BITS} };
462 mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
464 for (i = 0; i < nr_flow; i++) {
465 struct ipv6_l3fwd_em_route entry;
466 union ipv6_5tuple_host newkey;
468 uint8_t a = (uint8_t)
469 ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
470 uint8_t b = (uint8_t)
471 (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
472 uint8_t c = (uint8_t)
473 ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
475 /* Create the ipv6 exact match flow */
476 memset(&entry, 0, sizeof(entry));
477 switch (i & (NUMBER_PORT_USED - 1)) {
479 entry = ipv6_l3fwd_em_route_array[0];
482 entry = ipv6_l3fwd_em_route_array[1];
485 entry = ipv6_l3fwd_em_route_array[2];
488 entry = ipv6_l3fwd_em_route_array[3];
491 entry.key.ip_dst[13] = c;
492 entry.key.ip_dst[14] = b;
493 entry.key.ip_dst[15] = a;
494 convert_ipv6_5tuple(&entry.key, &newkey);
495 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
498 rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
500 ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
503 printf("Hash: Adding 0x%x keys\n", nr_flow);
507 * 1. IP packets without extension;
508 * 2. L4 payload should be either TCP or UDP.
511 em_check_ptype(int portid)
514 int ptype_l3_ipv4_ext = 0;
515 int ptype_l3_ipv6_ext = 0;
516 int ptype_l4_tcp = 0;
517 int ptype_l4_udp = 0;
518 uint32_t ptype_mask = RTE_PTYPE_L3_MASK | RTE_PTYPE_L4_MASK;
520 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
524 uint32_t ptypes[ret];
526 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
527 for (i = 0; i < ret; ++i) {
529 case RTE_PTYPE_L3_IPV4_EXT:
530 ptype_l3_ipv4_ext = 1;
532 case RTE_PTYPE_L3_IPV6_EXT:
533 ptype_l3_ipv6_ext = 1;
535 case RTE_PTYPE_L4_TCP:
538 case RTE_PTYPE_L4_UDP:
544 if (ptype_l3_ipv4_ext == 0)
545 printf("port %d cannot parse RTE_PTYPE_L3_IPV4_EXT\n", portid);
546 if (ptype_l3_ipv6_ext == 0)
547 printf("port %d cannot parse RTE_PTYPE_L3_IPV6_EXT\n", portid);
548 if (!ptype_l3_ipv4_ext || !ptype_l3_ipv6_ext)
551 if (ptype_l4_tcp == 0)
552 printf("port %d cannot parse RTE_PTYPE_L4_TCP\n", portid);
553 if (ptype_l4_udp == 0)
554 printf("port %d cannot parse RTE_PTYPE_L4_UDP\n", portid);
555 if (ptype_l4_tcp && ptype_l4_udp)
562 em_parse_ptype(struct rte_mbuf *m)
564 struct rte_ether_hdr *eth_hdr;
565 uint32_t packet_type = RTE_PTYPE_UNKNOWN;
569 struct ipv4_hdr *ipv4_hdr;
570 struct ipv6_hdr *ipv6_hdr;
572 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
573 ether_type = eth_hdr->ether_type;
574 l3 = (uint8_t *)eth_hdr + sizeof(struct rte_ether_hdr);
575 if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
576 ipv4_hdr = (struct ipv4_hdr *)l3;
577 hdr_len = (ipv4_hdr->version_ihl & IPV4_HDR_IHL_MASK) *
579 if (hdr_len == sizeof(struct ipv4_hdr)) {
580 packet_type |= RTE_PTYPE_L3_IPV4;
581 if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
582 packet_type |= RTE_PTYPE_L4_TCP;
583 else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
584 packet_type |= RTE_PTYPE_L4_UDP;
586 packet_type |= RTE_PTYPE_L3_IPV4_EXT;
587 } else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
588 ipv6_hdr = (struct ipv6_hdr *)l3;
589 if (ipv6_hdr->proto == IPPROTO_TCP)
590 packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP;
591 else if (ipv6_hdr->proto == IPPROTO_UDP)
592 packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP;
594 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
597 m->packet_type = packet_type;
601 em_cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
602 struct rte_mbuf *pkts[], uint16_t nb_pkts,
603 uint16_t max_pkts __rte_unused,
604 void *user_param __rte_unused)
608 for (i = 0; i < nb_pkts; ++i)
609 em_parse_ptype(pkts[i]);
614 /* main processing loop */
616 em_main_loop(__attribute__((unused)) void *dummy)
618 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
620 uint64_t prev_tsc, diff_tsc, cur_tsc;
624 struct lcore_conf *qconf;
625 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
626 US_PER_S * BURST_TX_DRAIN_US;
630 lcore_id = rte_lcore_id();
631 qconf = &lcore_conf[lcore_id];
633 if (qconf->n_rx_queue == 0) {
634 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
638 RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
640 for (i = 0; i < qconf->n_rx_queue; i++) {
642 portid = qconf->rx_queue_list[i].port_id;
643 queueid = qconf->rx_queue_list[i].queue_id;
645 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
646 lcore_id, portid, queueid);
649 while (!force_quit) {
651 cur_tsc = rte_rdtsc();
654 * TX burst queue drain
656 diff_tsc = cur_tsc - prev_tsc;
657 if (unlikely(diff_tsc > drain_tsc)) {
659 for (i = 0; i < qconf->n_tx_port; ++i) {
660 portid = qconf->tx_port_id[i];
661 if (qconf->tx_mbufs[portid].len == 0)
664 qconf->tx_mbufs[portid].len,
666 qconf->tx_mbufs[portid].len = 0;
673 * Read packet from RX queues
675 for (i = 0; i < qconf->n_rx_queue; ++i) {
676 portid = qconf->rx_queue_list[i].port_id;
677 queueid = qconf->rx_queue_list[i].queue_id;
678 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
683 #if defined RTE_ARCH_X86 || defined RTE_MACHINE_CPUFLAG_NEON
684 l3fwd_em_send_packets(nb_rx, pkts_burst,
687 l3fwd_em_no_opt_send_packets(nb_rx, pkts_burst,
697 * Initialize exact match (hash) parameters.
700 setup_hash(const int socketid)
702 struct rte_hash_parameters ipv4_l3fwd_hash_params = {
704 .entries = L3FWD_HASH_ENTRIES,
705 .key_len = sizeof(union ipv4_5tuple_host),
706 .hash_func = ipv4_hash_crc,
707 .hash_func_init_val = 0,
710 struct rte_hash_parameters ipv6_l3fwd_hash_params = {
712 .entries = L3FWD_HASH_ENTRIES,
713 .key_len = sizeof(union ipv6_5tuple_host),
714 .hash_func = ipv6_hash_crc,
715 .hash_func_init_val = 0,
720 /* create ipv4 hash */
721 snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
722 ipv4_l3fwd_hash_params.name = s;
723 ipv4_l3fwd_hash_params.socket_id = socketid;
724 ipv4_l3fwd_em_lookup_struct[socketid] =
725 rte_hash_create(&ipv4_l3fwd_hash_params);
726 if (ipv4_l3fwd_em_lookup_struct[socketid] == NULL)
727 rte_exit(EXIT_FAILURE,
728 "Unable to create the l3fwd hash on socket %d\n",
731 /* create ipv6 hash */
732 snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
733 ipv6_l3fwd_hash_params.name = s;
734 ipv6_l3fwd_hash_params.socket_id = socketid;
735 ipv6_l3fwd_em_lookup_struct[socketid] =
736 rte_hash_create(&ipv6_l3fwd_hash_params);
737 if (ipv6_l3fwd_em_lookup_struct[socketid] == NULL)
738 rte_exit(EXIT_FAILURE,
739 "Unable to create the l3fwd hash on socket %d\n",
742 if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
743 /* For testing hash matching with a large number of flows we
744 * generate millions of IP 5-tuples with an incremented dst
745 * address to initialize the hash table. */
747 /* populate the ipv4 hash */
748 populate_ipv4_many_flow_into_table(
749 ipv4_l3fwd_em_lookup_struct[socketid],
752 /* populate the ipv6 hash */
753 populate_ipv6_many_flow_into_table(
754 ipv6_l3fwd_em_lookup_struct[socketid],
759 * Use data in ipv4/ipv6 l3fwd lookup table
760 * directly to initialize the hash table.
763 /* populate the ipv4 hash */
764 populate_ipv4_few_flow_into_table(
765 ipv4_l3fwd_em_lookup_struct[socketid]);
767 /* populate the ipv6 hash */
768 populate_ipv6_few_flow_into_table(
769 ipv6_l3fwd_em_lookup_struct[socketid]);
774 /* Return ipv4/ipv6 em fwd lookup struct. */
776 em_get_ipv4_l3fwd_lookup_struct(const int socketid)
778 return ipv4_l3fwd_em_lookup_struct[socketid];
782 em_get_ipv6_l3fwd_lookup_struct(const int socketid)
784 return ipv6_l3fwd_em_lookup_struct[socketid];