74a7c8fa47806d6deef61756981217d8b7a7228b
[dpdk.git] / examples / l3fwd / l3fwd_em.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <stdbool.h>
16 #include <netinet/in.h>
17
18 #include <rte_debug.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev.h>
21 #include <rte_cycles.h>
22 #include <rte_mbuf.h>
23 #include <rte_ip.h>
24 #include <rte_tcp.h>
25 #include <rte_udp.h>
26 #include <rte_hash.h>
27
28 #include "l3fwd.h"
29
30 #if defined(RTE_ARCH_X86) || defined(RTE_MACHINE_CPUFLAG_CRC32)
31 #define EM_HASH_CRC 1
32 #endif
33
34 #ifdef EM_HASH_CRC
35 #include <rte_hash_crc.h>
36 #define DEFAULT_HASH_FUNC       rte_hash_crc
37 #else
38 #include <rte_jhash.h>
39 #define DEFAULT_HASH_FUNC       rte_jhash
40 #endif
41
42 #define IPV6_ADDR_LEN 16
43
44 struct ipv4_5tuple {
45         uint32_t ip_dst;
46         uint32_t ip_src;
47         uint16_t port_dst;
48         uint16_t port_src;
49         uint8_t  proto;
50 } __attribute__((__packed__));
51
52 union ipv4_5tuple_host {
53         struct {
54                 uint8_t  pad0;
55                 uint8_t  proto;
56                 uint16_t pad1;
57                 uint32_t ip_src;
58                 uint32_t ip_dst;
59                 uint16_t port_src;
60                 uint16_t port_dst;
61         };
62         xmm_t xmm;
63 };
64
65 #define XMM_NUM_IN_IPV6_5TUPLE 3
66
67 struct ipv6_5tuple {
68         uint8_t  ip_dst[IPV6_ADDR_LEN];
69         uint8_t  ip_src[IPV6_ADDR_LEN];
70         uint16_t port_dst;
71         uint16_t port_src;
72         uint8_t  proto;
73 } __attribute__((__packed__));
74
75 union ipv6_5tuple_host {
76         struct {
77                 uint16_t pad0;
78                 uint8_t  proto;
79                 uint8_t  pad1;
80                 uint8_t  ip_src[IPV6_ADDR_LEN];
81                 uint8_t  ip_dst[IPV6_ADDR_LEN];
82                 uint16_t port_src;
83                 uint16_t port_dst;
84                 uint64_t reserve;
85         };
86         xmm_t xmm[XMM_NUM_IN_IPV6_5TUPLE];
87 };
88
89
90
91 struct ipv4_l3fwd_em_route {
92         struct ipv4_5tuple key;
93         uint8_t if_out;
94 };
95
96 struct ipv6_l3fwd_em_route {
97         struct ipv6_5tuple key;
98         uint8_t if_out;
99 };
100
101 static struct ipv4_l3fwd_em_route ipv4_l3fwd_em_route_array[] = {
102         {{RTE_IPV4(101, 0, 0, 0), RTE_IPV4(100, 10, 0, 1),  101, 11, IPPROTO_TCP}, 0},
103         {{RTE_IPV4(201, 0, 0, 0), RTE_IPV4(200, 20, 0, 1),  102, 12, IPPROTO_TCP}, 1},
104         {{RTE_IPV4(111, 0, 0, 0), RTE_IPV4(100, 30, 0, 1),  101, 11, IPPROTO_TCP}, 2},
105         {{RTE_IPV4(211, 0, 0, 0), RTE_IPV4(200, 40, 0, 1),  102, 12, IPPROTO_TCP}, 3},
106 };
107
108 static struct ipv6_l3fwd_em_route ipv6_l3fwd_em_route_array[] = {
109         {{
110         {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
111         {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
112         101, 11, IPPROTO_TCP}, 0},
113
114         {{
115         {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
116         {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
117         102, 12, IPPROTO_TCP}, 1},
118
119         {{
120         {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
121         {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
122         101, 11, IPPROTO_TCP}, 2},
123
124         {{
125         {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
126         {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
127         102, 12, IPPROTO_TCP}, 3},
128 };
129
130 struct rte_hash *ipv4_l3fwd_em_lookup_struct[NB_SOCKETS];
131 struct rte_hash *ipv6_l3fwd_em_lookup_struct[NB_SOCKETS];
132
133 static inline uint32_t
134 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
135                 uint32_t init_val)
136 {
137         const union ipv4_5tuple_host *k;
138         uint32_t t;
139         const uint32_t *p;
140
141         k = data;
142         t = k->proto;
143         p = (const uint32_t *)&k->port_src;
144
145 #ifdef EM_HASH_CRC
146         init_val = rte_hash_crc_4byte(t, init_val);
147         init_val = rte_hash_crc_4byte(k->ip_src, init_val);
148         init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
149         init_val = rte_hash_crc_4byte(*p, init_val);
150 #else
151         init_val = rte_jhash_1word(t, init_val);
152         init_val = rte_jhash_1word(k->ip_src, init_val);
153         init_val = rte_jhash_1word(k->ip_dst, init_val);
154         init_val = rte_jhash_1word(*p, init_val);
155 #endif
156
157         return init_val;
158 }
159
160 static inline uint32_t
161 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
162                 uint32_t init_val)
163 {
164         const union ipv6_5tuple_host *k;
165         uint32_t t;
166         const uint32_t *p;
167 #ifdef EM_HASH_CRC
168         const uint32_t  *ip_src0, *ip_src1, *ip_src2, *ip_src3;
169         const uint32_t  *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
170 #endif
171
172         k = data;
173         t = k->proto;
174         p = (const uint32_t *)&k->port_src;
175
176 #ifdef EM_HASH_CRC
177         ip_src0 = (const uint32_t *) k->ip_src;
178         ip_src1 = (const uint32_t *)(k->ip_src+4);
179         ip_src2 = (const uint32_t *)(k->ip_src+8);
180         ip_src3 = (const uint32_t *)(k->ip_src+12);
181         ip_dst0 = (const uint32_t *) k->ip_dst;
182         ip_dst1 = (const uint32_t *)(k->ip_dst+4);
183         ip_dst2 = (const uint32_t *)(k->ip_dst+8);
184         ip_dst3 = (const uint32_t *)(k->ip_dst+12);
185         init_val = rte_hash_crc_4byte(t, init_val);
186         init_val = rte_hash_crc_4byte(*ip_src0, init_val);
187         init_val = rte_hash_crc_4byte(*ip_src1, init_val);
188         init_val = rte_hash_crc_4byte(*ip_src2, init_val);
189         init_val = rte_hash_crc_4byte(*ip_src3, init_val);
190         init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
191         init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
192         init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
193         init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
194         init_val = rte_hash_crc_4byte(*p, init_val);
195 #else
196         init_val = rte_jhash_1word(t, init_val);
197         init_val = rte_jhash(k->ip_src,
198                         sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
199         init_val = rte_jhash(k->ip_dst,
200                         sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
201         init_val = rte_jhash_1word(*p, init_val);
202 #endif
203         return init_val;
204 }
205
206 #define IPV4_L3FWD_EM_NUM_ROUTES \
207         (sizeof(ipv4_l3fwd_em_route_array) / sizeof(ipv4_l3fwd_em_route_array[0]))
208
209 #define IPV6_L3FWD_EM_NUM_ROUTES \
210         (sizeof(ipv6_l3fwd_em_route_array) / sizeof(ipv6_l3fwd_em_route_array[0]))
211
212 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
213 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
214
215 static rte_xmm_t mask0;
216 static rte_xmm_t mask1;
217 static rte_xmm_t mask2;
218
219 #if defined(RTE_MACHINE_CPUFLAG_SSE2)
220 static inline xmm_t
221 em_mask_key(void *key, xmm_t mask)
222 {
223         __m128i data = _mm_loadu_si128((__m128i *)(key));
224
225         return _mm_and_si128(data, mask);
226 }
227 #elif defined(RTE_MACHINE_CPUFLAG_NEON)
228 static inline xmm_t
229 em_mask_key(void *key, xmm_t mask)
230 {
231         int32x4_t data = vld1q_s32((int32_t *)key);
232
233         return vandq_s32(data, mask);
234 }
235 #elif defined(RTE_MACHINE_CPUFLAG_ALTIVEC)
236 static inline xmm_t
237 em_mask_key(void *key, xmm_t mask)
238 {
239         xmm_t data = vec_ld(0, (xmm_t *)(key));
240
241         return vec_and(data, mask);
242 }
243 #else
244 #error No vector engine (SSE, NEON, ALTIVEC) available, check your toolchain
245 #endif
246
247 static inline uint16_t
248 em_get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, void *lookup_struct)
249 {
250         int ret = 0;
251         union ipv4_5tuple_host key;
252         struct rte_hash *ipv4_l3fwd_lookup_struct =
253                 (struct rte_hash *)lookup_struct;
254
255         ipv4_hdr = (uint8_t *)ipv4_hdr +
256                 offsetof(struct rte_ipv4_hdr, time_to_live);
257
258         /*
259          * Get 5 tuple: dst port, src port, dst IP address,
260          * src IP address and protocol.
261          */
262         key.xmm = em_mask_key(ipv4_hdr, mask0.x);
263
264         /* Find destination port */
265         ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
266         return (ret < 0) ? portid : ipv4_l3fwd_out_if[ret];
267 }
268
269 static inline uint16_t
270 em_get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, void *lookup_struct)
271 {
272         int ret = 0;
273         union ipv6_5tuple_host key;
274         struct rte_hash *ipv6_l3fwd_lookup_struct =
275                 (struct rte_hash *)lookup_struct;
276
277         ipv6_hdr = (uint8_t *)ipv6_hdr +
278                 offsetof(struct rte_ipv6_hdr, payload_len);
279         void *data0 = ipv6_hdr;
280         void *data1 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t);
281         void *data2 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t) + sizeof(xmm_t);
282
283         /* Get part of 5 tuple: src IP address lower 96 bits and protocol */
284         key.xmm[0] = em_mask_key(data0, mask1.x);
285
286         /*
287          * Get part of 5 tuple: dst IP address lower 96 bits
288          * and src IP address higher 32 bits.
289          */
290 #if defined RTE_ARCH_X86
291         key.xmm[1] = _mm_loadu_si128(data1);
292 #else
293         key.xmm[1] = *(xmm_t *)data1;
294 #endif
295
296         /*
297          * Get part of 5 tuple: dst port and src port
298          * and dst IP address higher 32 bits.
299          */
300         key.xmm[2] = em_mask_key(data2, mask2.x);
301
302         /* Find destination port */
303         ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
304         return (ret < 0) ? portid : ipv6_l3fwd_out_if[ret];
305 }
306
307 #if defined RTE_ARCH_X86 || defined RTE_MACHINE_CPUFLAG_NEON
308 #if defined(NO_HASH_MULTI_LOOKUP)
309 #include "l3fwd_em_sequential.h"
310 #else
311 #include "l3fwd_em_hlm.h"
312 #endif
313 #else
314 #include "l3fwd_em.h"
315 #endif
316
317 static void
318 convert_ipv4_5tuple(struct ipv4_5tuple *key1,
319                 union ipv4_5tuple_host *key2)
320 {
321         key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
322         key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
323         key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
324         key2->port_src = rte_cpu_to_be_16(key1->port_src);
325         key2->proto = key1->proto;
326         key2->pad0 = 0;
327         key2->pad1 = 0;
328 }
329
330 static void
331 convert_ipv6_5tuple(struct ipv6_5tuple *key1,
332                 union ipv6_5tuple_host *key2)
333 {
334         uint32_t i;
335
336         for (i = 0; i < 16; i++) {
337                 key2->ip_dst[i] = key1->ip_dst[i];
338                 key2->ip_src[i] = key1->ip_src[i];
339         }
340         key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
341         key2->port_src = rte_cpu_to_be_16(key1->port_src);
342         key2->proto = key1->proto;
343         key2->pad0 = 0;
344         key2->pad1 = 0;
345         key2->reserve = 0;
346 }
347
348 #define BYTE_VALUE_MAX 256
349 #define ALL_32_BITS 0xffffffff
350 #define BIT_8_TO_15 0x0000ff00
351
352 static inline void
353 populate_ipv4_few_flow_into_table(const struct rte_hash *h)
354 {
355         uint32_t i;
356         int32_t ret;
357
358         mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
359                                 ALL_32_BITS, ALL_32_BITS} };
360
361         for (i = 0; i < IPV4_L3FWD_EM_NUM_ROUTES; i++) {
362                 struct ipv4_l3fwd_em_route  entry;
363                 union ipv4_5tuple_host newkey;
364
365                 entry = ipv4_l3fwd_em_route_array[i];
366                 convert_ipv4_5tuple(&entry.key, &newkey);
367                 ret = rte_hash_add_key(h, (void *) &newkey);
368                 if (ret < 0) {
369                         rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
370                                 " to the l3fwd hash.\n", i);
371                 }
372                 ipv4_l3fwd_out_if[ret] = entry.if_out;
373         }
374         printf("Hash: Adding 0x%" PRIx64 " keys\n",
375                 (uint64_t)IPV4_L3FWD_EM_NUM_ROUTES);
376 }
377
378 #define BIT_16_TO_23 0x00ff0000
379 static inline void
380 populate_ipv6_few_flow_into_table(const struct rte_hash *h)
381 {
382         uint32_t i;
383         int32_t ret;
384
385         mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
386                                 ALL_32_BITS, ALL_32_BITS} };
387
388         mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
389
390         for (i = 0; i < IPV6_L3FWD_EM_NUM_ROUTES; i++) {
391                 struct ipv6_l3fwd_em_route entry;
392                 union ipv6_5tuple_host newkey;
393
394                 entry = ipv6_l3fwd_em_route_array[i];
395                 convert_ipv6_5tuple(&entry.key, &newkey);
396                 ret = rte_hash_add_key(h, (void *) &newkey);
397                 if (ret < 0) {
398                         rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
399                                 " to the l3fwd hash.\n", i);
400                 }
401                 ipv6_l3fwd_out_if[ret] = entry.if_out;
402         }
403         printf("Hash: Adding 0x%" PRIx64 "keys\n",
404                 (uint64_t)IPV6_L3FWD_EM_NUM_ROUTES);
405 }
406
407 #define NUMBER_PORT_USED 4
408 static inline void
409 populate_ipv4_many_flow_into_table(const struct rte_hash *h,
410                 unsigned int nr_flow)
411 {
412         unsigned i;
413
414         mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
415                                 ALL_32_BITS, ALL_32_BITS} };
416
417         for (i = 0; i < nr_flow; i++) {
418                 struct ipv4_l3fwd_em_route entry;
419                 union ipv4_5tuple_host newkey;
420
421                 uint8_t a = (uint8_t)
422                         ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
423                 uint8_t b = (uint8_t)
424                         (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
425                 uint8_t c = (uint8_t)
426                         ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
427
428                 /* Create the ipv4 exact match flow */
429                 memset(&entry, 0, sizeof(entry));
430                 switch (i & (NUMBER_PORT_USED - 1)) {
431                 case 0:
432                         entry = ipv4_l3fwd_em_route_array[0];
433                         entry.key.ip_dst = RTE_IPV4(101, c, b, a);
434                         break;
435                 case 1:
436                         entry = ipv4_l3fwd_em_route_array[1];
437                         entry.key.ip_dst = RTE_IPV4(201, c, b, a);
438                         break;
439                 case 2:
440                         entry = ipv4_l3fwd_em_route_array[2];
441                         entry.key.ip_dst = RTE_IPV4(111, c, b, a);
442                         break;
443                 case 3:
444                         entry = ipv4_l3fwd_em_route_array[3];
445                         entry.key.ip_dst = RTE_IPV4(211, c, b, a);
446                         break;
447                 };
448                 convert_ipv4_5tuple(&entry.key, &newkey);
449                 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
450
451                 if (ret < 0)
452                         rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
453
454                 ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
455
456         }
457         printf("Hash: Adding 0x%x keys\n", nr_flow);
458 }
459
460 static inline void
461 populate_ipv6_many_flow_into_table(const struct rte_hash *h,
462                 unsigned int nr_flow)
463 {
464         unsigned i;
465
466         mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
467                                 ALL_32_BITS, ALL_32_BITS} };
468         mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
469
470         for (i = 0; i < nr_flow; i++) {
471                 struct ipv6_l3fwd_em_route entry;
472                 union ipv6_5tuple_host newkey;
473
474                 uint8_t a = (uint8_t)
475                         ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
476                 uint8_t b = (uint8_t)
477                         (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
478                 uint8_t c = (uint8_t)
479                         ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
480
481                 /* Create the ipv6 exact match flow */
482                 memset(&entry, 0, sizeof(entry));
483                 switch (i & (NUMBER_PORT_USED - 1)) {
484                 case 0:
485                         entry = ipv6_l3fwd_em_route_array[0];
486                         break;
487                 case 1:
488                         entry = ipv6_l3fwd_em_route_array[1];
489                         break;
490                 case 2:
491                         entry = ipv6_l3fwd_em_route_array[2];
492                         break;
493                 case 3:
494                         entry = ipv6_l3fwd_em_route_array[3];
495                         break;
496                 };
497                 entry.key.ip_dst[13] = c;
498                 entry.key.ip_dst[14] = b;
499                 entry.key.ip_dst[15] = a;
500                 convert_ipv6_5tuple(&entry.key, &newkey);
501                 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
502
503                 if (ret < 0)
504                         rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
505
506                 ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
507
508         }
509         printf("Hash: Adding 0x%x keys\n", nr_flow);
510 }
511
512 /* Requirements:
513  * 1. IP packets without extension;
514  * 2. L4 payload should be either TCP or UDP.
515  */
516 int
517 em_check_ptype(int portid)
518 {
519         int i, ret;
520         int ptype_l3_ipv4_ext = 0;
521         int ptype_l3_ipv6_ext = 0;
522         int ptype_l4_tcp = 0;
523         int ptype_l4_udp = 0;
524         uint32_t ptype_mask = RTE_PTYPE_L3_MASK | RTE_PTYPE_L4_MASK;
525
526         ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
527         if (ret <= 0)
528                 return 0;
529
530         uint32_t ptypes[ret];
531
532         ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
533         for (i = 0; i < ret; ++i) {
534                 switch (ptypes[i]) {
535                 case RTE_PTYPE_L3_IPV4_EXT:
536                         ptype_l3_ipv4_ext = 1;
537                         break;
538                 case RTE_PTYPE_L3_IPV6_EXT:
539                         ptype_l3_ipv6_ext = 1;
540                         break;
541                 case RTE_PTYPE_L4_TCP:
542                         ptype_l4_tcp = 1;
543                         break;
544                 case RTE_PTYPE_L4_UDP:
545                         ptype_l4_udp = 1;
546                         break;
547                 }
548         }
549
550         if (ptype_l3_ipv4_ext == 0)
551                 printf("port %d cannot parse RTE_PTYPE_L3_IPV4_EXT\n", portid);
552         if (ptype_l3_ipv6_ext == 0)
553                 printf("port %d cannot parse RTE_PTYPE_L3_IPV6_EXT\n", portid);
554         if (!ptype_l3_ipv4_ext || !ptype_l3_ipv6_ext)
555                 return 0;
556
557         if (ptype_l4_tcp == 0)
558                 printf("port %d cannot parse RTE_PTYPE_L4_TCP\n", portid);
559         if (ptype_l4_udp == 0)
560                 printf("port %d cannot parse RTE_PTYPE_L4_UDP\n", portid);
561         if (ptype_l4_tcp && ptype_l4_udp)
562                 return 1;
563
564         return 0;
565 }
566
567 static inline void
568 em_parse_ptype(struct rte_mbuf *m)
569 {
570         struct rte_ether_hdr *eth_hdr;
571         uint32_t packet_type = RTE_PTYPE_UNKNOWN;
572         uint16_t ether_type;
573         void *l3;
574         int hdr_len;
575         struct rte_ipv4_hdr *ipv4_hdr;
576         struct rte_ipv6_hdr *ipv6_hdr;
577
578         eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
579         ether_type = eth_hdr->ether_type;
580         l3 = (uint8_t *)eth_hdr + sizeof(struct rte_ether_hdr);
581         if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
582                 ipv4_hdr = (struct rte_ipv4_hdr *)l3;
583                 hdr_len = (ipv4_hdr->version_ihl & RTE_IPV4_HDR_IHL_MASK) *
584                           RTE_IPV4_IHL_MULTIPLIER;
585                 if (hdr_len == sizeof(struct rte_ipv4_hdr)) {
586                         packet_type |= RTE_PTYPE_L3_IPV4;
587                         if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
588                                 packet_type |= RTE_PTYPE_L4_TCP;
589                         else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
590                                 packet_type |= RTE_PTYPE_L4_UDP;
591                 } else
592                         packet_type |= RTE_PTYPE_L3_IPV4_EXT;
593         } else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
594                 ipv6_hdr = (struct rte_ipv6_hdr *)l3;
595                 if (ipv6_hdr->proto == IPPROTO_TCP)
596                         packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP;
597                 else if (ipv6_hdr->proto == IPPROTO_UDP)
598                         packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP;
599                 else
600                         packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
601         }
602
603         m->packet_type = packet_type;
604 }
605
606 uint16_t
607 em_cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
608                   struct rte_mbuf *pkts[], uint16_t nb_pkts,
609                   uint16_t max_pkts __rte_unused,
610                   void *user_param __rte_unused)
611 {
612         unsigned i;
613
614         for (i = 0; i < nb_pkts; ++i)
615                 em_parse_ptype(pkts[i]);
616
617         return nb_pkts;
618 }
619
620 /* main processing loop */
621 int
622 em_main_loop(__attribute__((unused)) void *dummy)
623 {
624         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
625         unsigned lcore_id;
626         uint64_t prev_tsc, diff_tsc, cur_tsc;
627         int i, nb_rx;
628         uint8_t queueid;
629         uint16_t portid;
630         struct lcore_conf *qconf;
631         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
632                 US_PER_S * BURST_TX_DRAIN_US;
633
634         prev_tsc = 0;
635
636         lcore_id = rte_lcore_id();
637         qconf = &lcore_conf[lcore_id];
638
639         if (qconf->n_rx_queue == 0) {
640                 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
641                 return 0;
642         }
643
644         RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
645
646         for (i = 0; i < qconf->n_rx_queue; i++) {
647
648                 portid = qconf->rx_queue_list[i].port_id;
649                 queueid = qconf->rx_queue_list[i].queue_id;
650                 RTE_LOG(INFO, L3FWD,
651                         " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
652                         lcore_id, portid, queueid);
653         }
654
655         while (!force_quit) {
656
657                 cur_tsc = rte_rdtsc();
658
659                 /*
660                  * TX burst queue drain
661                  */
662                 diff_tsc = cur_tsc - prev_tsc;
663                 if (unlikely(diff_tsc > drain_tsc)) {
664
665                         for (i = 0; i < qconf->n_tx_port; ++i) {
666                                 portid = qconf->tx_port_id[i];
667                                 if (qconf->tx_mbufs[portid].len == 0)
668                                         continue;
669                                 send_burst(qconf,
670                                         qconf->tx_mbufs[portid].len,
671                                         portid);
672                                 qconf->tx_mbufs[portid].len = 0;
673                         }
674
675                         prev_tsc = cur_tsc;
676                 }
677
678                 /*
679                  * Read packet from RX queues
680                  */
681                 for (i = 0; i < qconf->n_rx_queue; ++i) {
682                         portid = qconf->rx_queue_list[i].port_id;
683                         queueid = qconf->rx_queue_list[i].queue_id;
684                         nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
685                                 MAX_PKT_BURST);
686                         if (nb_rx == 0)
687                                 continue;
688
689 #if defined RTE_ARCH_X86 || defined RTE_MACHINE_CPUFLAG_NEON
690                         l3fwd_em_send_packets(nb_rx, pkts_burst,
691                                                         portid, qconf);
692 #else
693                         l3fwd_em_no_opt_send_packets(nb_rx, pkts_burst,
694                                                         portid, qconf);
695 #endif
696                 }
697         }
698
699         return 0;
700 }
701
702 /*
703  * Initialize exact match (hash) parameters.
704  */
705 void
706 setup_hash(const int socketid)
707 {
708         struct rte_hash_parameters ipv4_l3fwd_hash_params = {
709                 .name = NULL,
710                 .entries = L3FWD_HASH_ENTRIES,
711                 .key_len = sizeof(union ipv4_5tuple_host),
712                 .hash_func = ipv4_hash_crc,
713                 .hash_func_init_val = 0,
714         };
715
716         struct rte_hash_parameters ipv6_l3fwd_hash_params = {
717                 .name = NULL,
718                 .entries = L3FWD_HASH_ENTRIES,
719                 .key_len = sizeof(union ipv6_5tuple_host),
720                 .hash_func = ipv6_hash_crc,
721                 .hash_func_init_val = 0,
722         };
723
724         char s[64];
725
726         /* create ipv4 hash */
727         snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
728         ipv4_l3fwd_hash_params.name = s;
729         ipv4_l3fwd_hash_params.socket_id = socketid;
730         ipv4_l3fwd_em_lookup_struct[socketid] =
731                 rte_hash_create(&ipv4_l3fwd_hash_params);
732         if (ipv4_l3fwd_em_lookup_struct[socketid] == NULL)
733                 rte_exit(EXIT_FAILURE,
734                         "Unable to create the l3fwd hash on socket %d\n",
735                         socketid);
736
737         /* create ipv6 hash */
738         snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
739         ipv6_l3fwd_hash_params.name = s;
740         ipv6_l3fwd_hash_params.socket_id = socketid;
741         ipv6_l3fwd_em_lookup_struct[socketid] =
742                 rte_hash_create(&ipv6_l3fwd_hash_params);
743         if (ipv6_l3fwd_em_lookup_struct[socketid] == NULL)
744                 rte_exit(EXIT_FAILURE,
745                         "Unable to create the l3fwd hash on socket %d\n",
746                         socketid);
747
748         if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
749                 /* For testing hash matching with a large number of flows we
750                  * generate millions of IP 5-tuples with an incremented dst
751                  * address to initialize the hash table. */
752                 if (ipv6 == 0) {
753                         /* populate the ipv4 hash */
754                         populate_ipv4_many_flow_into_table(
755                                 ipv4_l3fwd_em_lookup_struct[socketid],
756                                 hash_entry_number);
757                 } else {
758                         /* populate the ipv6 hash */
759                         populate_ipv6_many_flow_into_table(
760                                 ipv6_l3fwd_em_lookup_struct[socketid],
761                                 hash_entry_number);
762                 }
763         } else {
764                 /*
765                  * Use data in ipv4/ipv6 l3fwd lookup table
766                  * directly to initialize the hash table.
767                  */
768                 if (ipv6 == 0) {
769                         /* populate the ipv4 hash */
770                         populate_ipv4_few_flow_into_table(
771                                 ipv4_l3fwd_em_lookup_struct[socketid]);
772                 } else {
773                         /* populate the ipv6 hash */
774                         populate_ipv6_few_flow_into_table(
775                                 ipv6_l3fwd_em_lookup_struct[socketid]);
776                 }
777         }
778 }
779
780 /* Return ipv4/ipv6 em fwd lookup struct. */
781 void *
782 em_get_ipv4_l3fwd_lookup_struct(const int socketid)
783 {
784         return ipv4_l3fwd_em_lookup_struct[socketid];
785 }
786
787 void *
788 em_get_ipv6_l3fwd_lookup_struct(const int socketid)
789 {
790         return ipv6_l3fwd_em_lookup_struct[socketid];
791 }