1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation
11 #include <sys/queue.h>
16 #include <netinet/in.h>
18 #include <rte_debug.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev.h>
21 #include <rte_cycles.h>
29 #include "l3fwd_event.h"
31 #if defined(RTE_ARCH_X86) || defined(RTE_MACHINE_CPUFLAG_CRC32)
36 #include <rte_hash_crc.h>
37 #define DEFAULT_HASH_FUNC rte_hash_crc
39 #include <rte_jhash.h>
40 #define DEFAULT_HASH_FUNC rte_jhash
43 #define IPV6_ADDR_LEN 16
53 union ipv4_5tuple_host {
66 #define XMM_NUM_IN_IPV6_5TUPLE 3
69 uint8_t ip_dst[IPV6_ADDR_LEN];
70 uint8_t ip_src[IPV6_ADDR_LEN];
76 union ipv6_5tuple_host {
81 uint8_t ip_src[IPV6_ADDR_LEN];
82 uint8_t ip_dst[IPV6_ADDR_LEN];
87 xmm_t xmm[XMM_NUM_IN_IPV6_5TUPLE];
92 struct ipv4_l3fwd_em_route {
93 struct ipv4_5tuple key;
97 struct ipv6_l3fwd_em_route {
98 struct ipv6_5tuple key;
102 static struct ipv4_l3fwd_em_route ipv4_l3fwd_em_route_array[] = {
103 {{RTE_IPV4(101, 0, 0, 0), RTE_IPV4(100, 10, 0, 1), 101, 11, IPPROTO_TCP}, 0},
104 {{RTE_IPV4(201, 0, 0, 0), RTE_IPV4(200, 20, 0, 1), 102, 12, IPPROTO_TCP}, 1},
105 {{RTE_IPV4(111, 0, 0, 0), RTE_IPV4(100, 30, 0, 1), 101, 11, IPPROTO_TCP}, 2},
106 {{RTE_IPV4(211, 0, 0, 0), RTE_IPV4(200, 40, 0, 1), 102, 12, IPPROTO_TCP}, 3},
109 static struct ipv6_l3fwd_em_route ipv6_l3fwd_em_route_array[] = {
111 {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
112 {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
113 101, 11, IPPROTO_TCP}, 0},
116 {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
117 {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
118 102, 12, IPPROTO_TCP}, 1},
121 {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
122 {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
123 101, 11, IPPROTO_TCP}, 2},
126 {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
127 {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
128 102, 12, IPPROTO_TCP}, 3},
131 struct rte_hash *ipv4_l3fwd_em_lookup_struct[NB_SOCKETS];
132 struct rte_hash *ipv6_l3fwd_em_lookup_struct[NB_SOCKETS];
134 static inline uint32_t
135 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
138 const union ipv4_5tuple_host *k;
144 p = (const uint32_t *)&k->port_src;
147 init_val = rte_hash_crc_4byte(t, init_val);
148 init_val = rte_hash_crc_4byte(k->ip_src, init_val);
149 init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
150 init_val = rte_hash_crc_4byte(*p, init_val);
152 init_val = rte_jhash_1word(t, init_val);
153 init_val = rte_jhash_1word(k->ip_src, init_val);
154 init_val = rte_jhash_1word(k->ip_dst, init_val);
155 init_val = rte_jhash_1word(*p, init_val);
161 static inline uint32_t
162 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
165 const union ipv6_5tuple_host *k;
169 const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3;
170 const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
175 p = (const uint32_t *)&k->port_src;
178 ip_src0 = (const uint32_t *) k->ip_src;
179 ip_src1 = (const uint32_t *)(k->ip_src+4);
180 ip_src2 = (const uint32_t *)(k->ip_src+8);
181 ip_src3 = (const uint32_t *)(k->ip_src+12);
182 ip_dst0 = (const uint32_t *) k->ip_dst;
183 ip_dst1 = (const uint32_t *)(k->ip_dst+4);
184 ip_dst2 = (const uint32_t *)(k->ip_dst+8);
185 ip_dst3 = (const uint32_t *)(k->ip_dst+12);
186 init_val = rte_hash_crc_4byte(t, init_val);
187 init_val = rte_hash_crc_4byte(*ip_src0, init_val);
188 init_val = rte_hash_crc_4byte(*ip_src1, init_val);
189 init_val = rte_hash_crc_4byte(*ip_src2, init_val);
190 init_val = rte_hash_crc_4byte(*ip_src3, init_val);
191 init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
192 init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
193 init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
194 init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
195 init_val = rte_hash_crc_4byte(*p, init_val);
197 init_val = rte_jhash_1word(t, init_val);
198 init_val = rte_jhash(k->ip_src,
199 sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
200 init_val = rte_jhash(k->ip_dst,
201 sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
202 init_val = rte_jhash_1word(*p, init_val);
207 #define IPV4_L3FWD_EM_NUM_ROUTES RTE_DIM(ipv4_l3fwd_em_route_array)
209 #define IPV6_L3FWD_EM_NUM_ROUTES RTE_DIM(ipv6_l3fwd_em_route_array)
211 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
212 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
214 static rte_xmm_t mask0;
215 static rte_xmm_t mask1;
216 static rte_xmm_t mask2;
218 #if defined(RTE_MACHINE_CPUFLAG_SSE2)
220 em_mask_key(void *key, xmm_t mask)
222 __m128i data = _mm_loadu_si128((__m128i *)(key));
224 return _mm_and_si128(data, mask);
226 #elif defined(RTE_MACHINE_CPUFLAG_NEON)
228 em_mask_key(void *key, xmm_t mask)
230 int32x4_t data = vld1q_s32((int32_t *)key);
232 return vandq_s32(data, mask);
234 #elif defined(RTE_MACHINE_CPUFLAG_ALTIVEC)
236 em_mask_key(void *key, xmm_t mask)
238 xmm_t data = vec_ld(0, (xmm_t *)(key));
240 return vec_and(data, mask);
243 #error No vector engine (SSE, NEON, ALTIVEC) available, check your toolchain
246 static inline uint16_t
247 em_get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, void *lookup_struct)
250 union ipv4_5tuple_host key;
251 struct rte_hash *ipv4_l3fwd_lookup_struct =
252 (struct rte_hash *)lookup_struct;
254 ipv4_hdr = (uint8_t *)ipv4_hdr +
255 offsetof(struct rte_ipv4_hdr, time_to_live);
258 * Get 5 tuple: dst port, src port, dst IP address,
259 * src IP address and protocol.
261 key.xmm = em_mask_key(ipv4_hdr, mask0.x);
263 /* Find destination port */
264 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
265 return (ret < 0) ? portid : ipv4_l3fwd_out_if[ret];
268 static inline uint16_t
269 em_get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, void *lookup_struct)
272 union ipv6_5tuple_host key;
273 struct rte_hash *ipv6_l3fwd_lookup_struct =
274 (struct rte_hash *)lookup_struct;
276 ipv6_hdr = (uint8_t *)ipv6_hdr +
277 offsetof(struct rte_ipv6_hdr, payload_len);
278 void *data0 = ipv6_hdr;
279 void *data1 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t);
280 void *data2 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t) + sizeof(xmm_t);
282 /* Get part of 5 tuple: src IP address lower 96 bits and protocol */
283 key.xmm[0] = em_mask_key(data0, mask1.x);
286 * Get part of 5 tuple: dst IP address lower 96 bits
287 * and src IP address higher 32 bits.
289 #if defined RTE_ARCH_X86
290 key.xmm[1] = _mm_loadu_si128(data1);
292 key.xmm[1] = *(xmm_t *)data1;
296 * Get part of 5 tuple: dst port and src port
297 * and dst IP address higher 32 bits.
299 key.xmm[2] = em_mask_key(data2, mask2.x);
301 /* Find destination port */
302 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
303 return (ret < 0) ? portid : ipv6_l3fwd_out_if[ret];
306 #if defined RTE_ARCH_X86 || defined RTE_MACHINE_CPUFLAG_NEON
307 #if defined(NO_HASH_MULTI_LOOKUP)
308 #include "l3fwd_em_sequential.h"
310 #include "l3fwd_em_hlm.h"
313 #include "l3fwd_em.h"
317 convert_ipv4_5tuple(struct ipv4_5tuple *key1,
318 union ipv4_5tuple_host *key2)
320 key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
321 key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
322 key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
323 key2->port_src = rte_cpu_to_be_16(key1->port_src);
324 key2->proto = key1->proto;
330 convert_ipv6_5tuple(struct ipv6_5tuple *key1,
331 union ipv6_5tuple_host *key2)
335 for (i = 0; i < 16; i++) {
336 key2->ip_dst[i] = key1->ip_dst[i];
337 key2->ip_src[i] = key1->ip_src[i];
339 key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
340 key2->port_src = rte_cpu_to_be_16(key1->port_src);
341 key2->proto = key1->proto;
347 #define BYTE_VALUE_MAX 256
348 #define ALL_32_BITS 0xffffffff
349 #define BIT_8_TO_15 0x0000ff00
352 populate_ipv4_few_flow_into_table(const struct rte_hash *h)
357 mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
358 ALL_32_BITS, ALL_32_BITS} };
360 for (i = 0; i < IPV4_L3FWD_EM_NUM_ROUTES; i++) {
361 struct ipv4_l3fwd_em_route entry;
362 union ipv4_5tuple_host newkey;
364 entry = ipv4_l3fwd_em_route_array[i];
365 convert_ipv4_5tuple(&entry.key, &newkey);
366 ret = rte_hash_add_key(h, (void *) &newkey);
368 rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
369 " to the l3fwd hash.\n", i);
371 ipv4_l3fwd_out_if[ret] = entry.if_out;
373 printf("Hash: Adding 0x%" PRIx64 " keys\n",
374 (uint64_t)IPV4_L3FWD_EM_NUM_ROUTES);
377 #define BIT_16_TO_23 0x00ff0000
379 populate_ipv6_few_flow_into_table(const struct rte_hash *h)
384 mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
385 ALL_32_BITS, ALL_32_BITS} };
387 mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
389 for (i = 0; i < IPV6_L3FWD_EM_NUM_ROUTES; i++) {
390 struct ipv6_l3fwd_em_route entry;
391 union ipv6_5tuple_host newkey;
393 entry = ipv6_l3fwd_em_route_array[i];
394 convert_ipv6_5tuple(&entry.key, &newkey);
395 ret = rte_hash_add_key(h, (void *) &newkey);
397 rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
398 " to the l3fwd hash.\n", i);
400 ipv6_l3fwd_out_if[ret] = entry.if_out;
402 printf("Hash: Adding 0x%" PRIx64 "keys\n",
403 (uint64_t)IPV6_L3FWD_EM_NUM_ROUTES);
406 #define NUMBER_PORT_USED 4
408 populate_ipv4_many_flow_into_table(const struct rte_hash *h,
409 unsigned int nr_flow)
413 mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
414 ALL_32_BITS, ALL_32_BITS} };
416 for (i = 0; i < nr_flow; i++) {
417 struct ipv4_l3fwd_em_route entry;
418 union ipv4_5tuple_host newkey;
420 uint8_t a = (uint8_t)
421 ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
422 uint8_t b = (uint8_t)
423 (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
424 uint8_t c = (uint8_t)
425 ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
427 /* Create the ipv4 exact match flow */
428 memset(&entry, 0, sizeof(entry));
429 switch (i & (NUMBER_PORT_USED - 1)) {
431 entry = ipv4_l3fwd_em_route_array[0];
432 entry.key.ip_dst = RTE_IPV4(101, c, b, a);
435 entry = ipv4_l3fwd_em_route_array[1];
436 entry.key.ip_dst = RTE_IPV4(201, c, b, a);
439 entry = ipv4_l3fwd_em_route_array[2];
440 entry.key.ip_dst = RTE_IPV4(111, c, b, a);
443 entry = ipv4_l3fwd_em_route_array[3];
444 entry.key.ip_dst = RTE_IPV4(211, c, b, a);
447 convert_ipv4_5tuple(&entry.key, &newkey);
448 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
451 rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
453 ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
456 printf("Hash: Adding 0x%x keys\n", nr_flow);
460 populate_ipv6_many_flow_into_table(const struct rte_hash *h,
461 unsigned int nr_flow)
465 mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
466 ALL_32_BITS, ALL_32_BITS} };
467 mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
469 for (i = 0; i < nr_flow; i++) {
470 struct ipv6_l3fwd_em_route entry;
471 union ipv6_5tuple_host newkey;
473 uint8_t a = (uint8_t)
474 ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
475 uint8_t b = (uint8_t)
476 (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
477 uint8_t c = (uint8_t)
478 ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
480 /* Create the ipv6 exact match flow */
481 memset(&entry, 0, sizeof(entry));
482 switch (i & (NUMBER_PORT_USED - 1)) {
484 entry = ipv6_l3fwd_em_route_array[0];
487 entry = ipv6_l3fwd_em_route_array[1];
490 entry = ipv6_l3fwd_em_route_array[2];
493 entry = ipv6_l3fwd_em_route_array[3];
496 entry.key.ip_dst[13] = c;
497 entry.key.ip_dst[14] = b;
498 entry.key.ip_dst[15] = a;
499 convert_ipv6_5tuple(&entry.key, &newkey);
500 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
503 rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
505 ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
508 printf("Hash: Adding 0x%x keys\n", nr_flow);
512 * 1. IP packets without extension;
513 * 2. L4 payload should be either TCP or UDP.
516 em_check_ptype(int portid)
519 int ptype_l3_ipv4_ext = 0;
520 int ptype_l3_ipv6_ext = 0;
521 int ptype_l4_tcp = 0;
522 int ptype_l4_udp = 0;
523 uint32_t ptype_mask = RTE_PTYPE_L3_MASK | RTE_PTYPE_L4_MASK;
525 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
529 uint32_t ptypes[ret];
531 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
532 for (i = 0; i < ret; ++i) {
534 case RTE_PTYPE_L3_IPV4_EXT:
535 ptype_l3_ipv4_ext = 1;
537 case RTE_PTYPE_L3_IPV6_EXT:
538 ptype_l3_ipv6_ext = 1;
540 case RTE_PTYPE_L4_TCP:
543 case RTE_PTYPE_L4_UDP:
549 if (ptype_l3_ipv4_ext == 0)
550 printf("port %d cannot parse RTE_PTYPE_L3_IPV4_EXT\n", portid);
551 if (ptype_l3_ipv6_ext == 0)
552 printf("port %d cannot parse RTE_PTYPE_L3_IPV6_EXT\n", portid);
553 if (!ptype_l3_ipv4_ext || !ptype_l3_ipv6_ext)
556 if (ptype_l4_tcp == 0)
557 printf("port %d cannot parse RTE_PTYPE_L4_TCP\n", portid);
558 if (ptype_l4_udp == 0)
559 printf("port %d cannot parse RTE_PTYPE_L4_UDP\n", portid);
560 if (ptype_l4_tcp && ptype_l4_udp)
567 em_parse_ptype(struct rte_mbuf *m)
569 struct rte_ether_hdr *eth_hdr;
570 uint32_t packet_type = RTE_PTYPE_UNKNOWN;
574 struct rte_ipv4_hdr *ipv4_hdr;
575 struct rte_ipv6_hdr *ipv6_hdr;
577 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
578 ether_type = eth_hdr->ether_type;
579 l3 = (uint8_t *)eth_hdr + sizeof(struct rte_ether_hdr);
580 if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
581 ipv4_hdr = (struct rte_ipv4_hdr *)l3;
582 hdr_len = (ipv4_hdr->version_ihl & RTE_IPV4_HDR_IHL_MASK) *
583 RTE_IPV4_IHL_MULTIPLIER;
584 if (hdr_len == sizeof(struct rte_ipv4_hdr)) {
585 packet_type |= RTE_PTYPE_L3_IPV4;
586 if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
587 packet_type |= RTE_PTYPE_L4_TCP;
588 else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
589 packet_type |= RTE_PTYPE_L4_UDP;
591 packet_type |= RTE_PTYPE_L3_IPV4_EXT;
592 } else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
593 ipv6_hdr = (struct rte_ipv6_hdr *)l3;
594 if (ipv6_hdr->proto == IPPROTO_TCP)
595 packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP;
596 else if (ipv6_hdr->proto == IPPROTO_UDP)
597 packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP;
599 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
602 m->packet_type = packet_type;
606 em_cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
607 struct rte_mbuf *pkts[], uint16_t nb_pkts,
608 uint16_t max_pkts __rte_unused,
609 void *user_param __rte_unused)
613 for (i = 0; i < nb_pkts; ++i)
614 em_parse_ptype(pkts[i]);
619 /* main processing loop */
621 em_main_loop(__rte_unused void *dummy)
623 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
625 uint64_t prev_tsc, diff_tsc, cur_tsc;
629 struct lcore_conf *qconf;
630 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
631 US_PER_S * BURST_TX_DRAIN_US;
635 lcore_id = rte_lcore_id();
636 qconf = &lcore_conf[lcore_id];
638 if (qconf->n_rx_queue == 0) {
639 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
643 RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
645 for (i = 0; i < qconf->n_rx_queue; i++) {
647 portid = qconf->rx_queue_list[i].port_id;
648 queueid = qconf->rx_queue_list[i].queue_id;
650 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
651 lcore_id, portid, queueid);
654 while (!force_quit) {
656 cur_tsc = rte_rdtsc();
659 * TX burst queue drain
661 diff_tsc = cur_tsc - prev_tsc;
662 if (unlikely(diff_tsc > drain_tsc)) {
664 for (i = 0; i < qconf->n_tx_port; ++i) {
665 portid = qconf->tx_port_id[i];
666 if (qconf->tx_mbufs[portid].len == 0)
669 qconf->tx_mbufs[portid].len,
671 qconf->tx_mbufs[portid].len = 0;
678 * Read packet from RX queues
680 for (i = 0; i < qconf->n_rx_queue; ++i) {
681 portid = qconf->rx_queue_list[i].port_id;
682 queueid = qconf->rx_queue_list[i].queue_id;
683 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
688 #if defined RTE_ARCH_X86 || defined RTE_MACHINE_CPUFLAG_NEON
689 l3fwd_em_send_packets(nb_rx, pkts_burst,
692 l3fwd_em_no_opt_send_packets(nb_rx, pkts_burst,
701 static __rte_always_inline void
702 em_event_loop_single(struct l3fwd_event_resources *evt_rsrc,
705 const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
706 const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[
707 evt_rsrc->evq.nb_queues - 1];
708 const uint8_t event_d_id = evt_rsrc->event_d_id;
709 struct lcore_conf *lconf;
710 unsigned int lcore_id;
716 lcore_id = rte_lcore_id();
717 lconf = &lcore_conf[lcore_id];
719 RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
720 while (!force_quit) {
721 if (!rte_event_dequeue_burst(event_d_id, event_p_id, &ev, 1, 0))
724 struct rte_mbuf *mbuf = ev.mbuf;
726 #if defined RTE_ARCH_X86 || defined RTE_MACHINE_CPUFLAG_NEON
727 mbuf->port = em_get_dst_port(lconf, mbuf, mbuf->port);
728 process_packet(mbuf, &mbuf->port);
730 l3fwd_em_simple_process(mbuf, lconf);
732 if (mbuf->port == BAD_PORT) {
733 rte_pktmbuf_free(mbuf);
737 if (flags & L3FWD_EVENT_TX_ENQ) {
738 ev.queue_id = tx_q_id;
739 ev.op = RTE_EVENT_OP_FORWARD;
740 while (rte_event_enqueue_burst(event_d_id, event_p_id,
741 &ev, 1) && !force_quit)
745 if (flags & L3FWD_EVENT_TX_DIRECT) {
746 rte_event_eth_tx_adapter_txq_set(mbuf, 0);
747 while (!rte_event_eth_tx_adapter_enqueue(event_d_id,
748 event_p_id, &ev, 1, 0) &&
755 static __rte_always_inline void
756 em_event_loop_burst(struct l3fwd_event_resources *evt_rsrc,
759 const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
760 const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[
761 evt_rsrc->evq.nb_queues - 1];
762 const uint8_t event_d_id = evt_rsrc->event_d_id;
763 const uint16_t deq_len = evt_rsrc->deq_depth;
764 struct rte_event events[MAX_PKT_BURST];
765 struct lcore_conf *lconf;
766 unsigned int lcore_id;
767 int i, nb_enq, nb_deq;
772 lcore_id = rte_lcore_id();
774 lconf = &lcore_conf[lcore_id];
776 RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
778 while (!force_quit) {
779 /* Read events from RX queues */
780 nb_deq = rte_event_dequeue_burst(event_d_id, event_p_id,
787 #if defined RTE_ARCH_X86 || defined RTE_MACHINE_CPUFLAG_NEON
788 l3fwd_em_process_events(nb_deq, (struct rte_event **)&events,
791 l3fwd_em_no_opt_process_events(nb_deq,
792 (struct rte_event **)&events,
795 for (i = 0; i < nb_deq; i++) {
796 if (flags & L3FWD_EVENT_TX_ENQ) {
797 events[i].queue_id = tx_q_id;
798 events[i].op = RTE_EVENT_OP_FORWARD;
801 if (flags & L3FWD_EVENT_TX_DIRECT)
802 rte_event_eth_tx_adapter_txq_set(events[i].mbuf,
806 if (flags & L3FWD_EVENT_TX_ENQ) {
807 nb_enq = rte_event_enqueue_burst(event_d_id, event_p_id,
809 while (nb_enq < nb_deq && !force_quit)
810 nb_enq += rte_event_enqueue_burst(event_d_id,
811 event_p_id, events + nb_enq,
815 if (flags & L3FWD_EVENT_TX_DIRECT) {
816 nb_enq = rte_event_eth_tx_adapter_enqueue(event_d_id,
817 event_p_id, events, nb_deq, 0);
818 while (nb_enq < nb_deq && !force_quit)
819 nb_enq += rte_event_eth_tx_adapter_enqueue(
820 event_d_id, event_p_id,
827 static __rte_always_inline void
828 em_event_loop(struct l3fwd_event_resources *evt_rsrc,
831 if (flags & L3FWD_EVENT_SINGLE)
832 em_event_loop_single(evt_rsrc, flags);
833 if (flags & L3FWD_EVENT_BURST)
834 em_event_loop_burst(evt_rsrc, flags);
838 em_event_main_loop_tx_d(__rte_unused void *dummy)
840 struct l3fwd_event_resources *evt_rsrc =
841 l3fwd_get_eventdev_rsrc();
843 em_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_SINGLE);
848 em_event_main_loop_tx_d_burst(__rte_unused void *dummy)
850 struct l3fwd_event_resources *evt_rsrc =
851 l3fwd_get_eventdev_rsrc();
853 em_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_BURST);
858 em_event_main_loop_tx_q(__rte_unused void *dummy)
860 struct l3fwd_event_resources *evt_rsrc =
861 l3fwd_get_eventdev_rsrc();
863 em_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_SINGLE);
868 em_event_main_loop_tx_q_burst(__rte_unused void *dummy)
870 struct l3fwd_event_resources *evt_rsrc =
871 l3fwd_get_eventdev_rsrc();
873 em_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_BURST);
878 * Initialize exact match (hash) parameters.
881 setup_hash(const int socketid)
883 struct rte_hash_parameters ipv4_l3fwd_hash_params = {
885 .entries = L3FWD_HASH_ENTRIES,
886 .key_len = sizeof(union ipv4_5tuple_host),
887 .hash_func = ipv4_hash_crc,
888 .hash_func_init_val = 0,
891 struct rte_hash_parameters ipv6_l3fwd_hash_params = {
893 .entries = L3FWD_HASH_ENTRIES,
894 .key_len = sizeof(union ipv6_5tuple_host),
895 .hash_func = ipv6_hash_crc,
896 .hash_func_init_val = 0,
901 /* create ipv4 hash */
902 snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
903 ipv4_l3fwd_hash_params.name = s;
904 ipv4_l3fwd_hash_params.socket_id = socketid;
905 ipv4_l3fwd_em_lookup_struct[socketid] =
906 rte_hash_create(&ipv4_l3fwd_hash_params);
907 if (ipv4_l3fwd_em_lookup_struct[socketid] == NULL)
908 rte_exit(EXIT_FAILURE,
909 "Unable to create the l3fwd hash on socket %d\n",
912 /* create ipv6 hash */
913 snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
914 ipv6_l3fwd_hash_params.name = s;
915 ipv6_l3fwd_hash_params.socket_id = socketid;
916 ipv6_l3fwd_em_lookup_struct[socketid] =
917 rte_hash_create(&ipv6_l3fwd_hash_params);
918 if (ipv6_l3fwd_em_lookup_struct[socketid] == NULL)
919 rte_exit(EXIT_FAILURE,
920 "Unable to create the l3fwd hash on socket %d\n",
923 if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
924 /* For testing hash matching with a large number of flows we
925 * generate millions of IP 5-tuples with an incremented dst
926 * address to initialize the hash table. */
928 /* populate the ipv4 hash */
929 populate_ipv4_many_flow_into_table(
930 ipv4_l3fwd_em_lookup_struct[socketid],
933 /* populate the ipv6 hash */
934 populate_ipv6_many_flow_into_table(
935 ipv6_l3fwd_em_lookup_struct[socketid],
940 * Use data in ipv4/ipv6 l3fwd lookup table
941 * directly to initialize the hash table.
944 /* populate the ipv4 hash */
945 populate_ipv4_few_flow_into_table(
946 ipv4_l3fwd_em_lookup_struct[socketid]);
948 /* populate the ipv6 hash */
949 populate_ipv6_few_flow_into_table(
950 ipv6_l3fwd_em_lookup_struct[socketid]);
955 /* Return ipv4/ipv6 em fwd lookup struct. */
957 em_get_ipv4_l3fwd_lookup_struct(const int socketid)
959 return ipv4_l3fwd_em_lookup_struct[socketid];
963 em_get_ipv6_l3fwd_lookup_struct(const int socketid)
965 return ipv6_l3fwd_em_lookup_struct[socketid];