lpm: extend IPv4 next hop field
[dpdk.git] / examples / load_balancer / runtime.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <string.h>
40 #include <sys/queue.h>
41 #include <stdarg.h>
42 #include <errno.h>
43 #include <getopt.h>
44
45 #include <rte_common.h>
46 #include <rte_byteorder.h>
47 #include <rte_log.h>
48 #include <rte_memory.h>
49 #include <rte_memcpy.h>
50 #include <rte_memzone.h>
51 #include <rte_eal.h>
52 #include <rte_per_lcore.h>
53 #include <rte_launch.h>
54 #include <rte_atomic.h>
55 #include <rte_cycles.h>
56 #include <rte_prefetch.h>
57 #include <rte_lcore.h>
58 #include <rte_per_lcore.h>
59 #include <rte_branch_prediction.h>
60 #include <rte_interrupts.h>
61 #include <rte_pci.h>
62 #include <rte_random.h>
63 #include <rte_debug.h>
64 #include <rte_ether.h>
65 #include <rte_ethdev.h>
66 #include <rte_ring.h>
67 #include <rte_mempool.h>
68 #include <rte_mbuf.h>
69 #include <rte_ip.h>
70 #include <rte_tcp.h>
71 #include <rte_lpm.h>
72
73 #include "main.h"
74
75 #ifndef APP_LCORE_IO_FLUSH
76 #define APP_LCORE_IO_FLUSH           1000000
77 #endif
78
79 #ifndef APP_LCORE_WORKER_FLUSH
80 #define APP_LCORE_WORKER_FLUSH       1000000
81 #endif
82
83 #ifndef APP_STATS
84 #define APP_STATS                    1000000
85 #endif
86
87 #define APP_IO_RX_DROP_ALL_PACKETS   0
88 #define APP_WORKER_DROP_ALL_PACKETS  0
89 #define APP_IO_TX_DROP_ALL_PACKETS   0
90
91 #ifndef APP_IO_RX_PREFETCH_ENABLE
92 #define APP_IO_RX_PREFETCH_ENABLE    1
93 #endif
94
95 #ifndef APP_WORKER_PREFETCH_ENABLE
96 #define APP_WORKER_PREFETCH_ENABLE   1
97 #endif
98
99 #ifndef APP_IO_TX_PREFETCH_ENABLE
100 #define APP_IO_TX_PREFETCH_ENABLE    1
101 #endif
102
103 #if APP_IO_RX_PREFETCH_ENABLE
104 #define APP_IO_RX_PREFETCH0(p)       rte_prefetch0(p)
105 #define APP_IO_RX_PREFETCH1(p)       rte_prefetch1(p)
106 #else
107 #define APP_IO_RX_PREFETCH0(p)
108 #define APP_IO_RX_PREFETCH1(p)
109 #endif
110
111 #if APP_WORKER_PREFETCH_ENABLE
112 #define APP_WORKER_PREFETCH0(p)      rte_prefetch0(p)
113 #define APP_WORKER_PREFETCH1(p)      rte_prefetch1(p)
114 #else
115 #define APP_WORKER_PREFETCH0(p)
116 #define APP_WORKER_PREFETCH1(p)
117 #endif
118
119 #if APP_IO_TX_PREFETCH_ENABLE
120 #define APP_IO_TX_PREFETCH0(p)       rte_prefetch0(p)
121 #define APP_IO_TX_PREFETCH1(p)       rte_prefetch1(p)
122 #else
123 #define APP_IO_TX_PREFETCH0(p)
124 #define APP_IO_TX_PREFETCH1(p)
125 #endif
126
127 static inline void
128 app_lcore_io_rx_buffer_to_send (
129         struct app_lcore_params_io *lp,
130         uint32_t worker,
131         struct rte_mbuf *mbuf,
132         uint32_t bsz)
133 {
134         uint32_t pos;
135         int ret;
136
137         pos = lp->rx.mbuf_out[worker].n_mbufs;
138         lp->rx.mbuf_out[worker].array[pos ++] = mbuf;
139         if (likely(pos < bsz)) {
140                 lp->rx.mbuf_out[worker].n_mbufs = pos;
141                 return;
142         }
143
144         ret = rte_ring_sp_enqueue_bulk(
145                 lp->rx.rings[worker],
146                 (void **) lp->rx.mbuf_out[worker].array,
147                 bsz);
148
149         if (unlikely(ret == -ENOBUFS)) {
150                 uint32_t k;
151                 for (k = 0; k < bsz; k ++) {
152                         struct rte_mbuf *m = lp->rx.mbuf_out[worker].array[k];
153                         rte_pktmbuf_free(m);
154                 }
155         }
156
157         lp->rx.mbuf_out[worker].n_mbufs = 0;
158         lp->rx.mbuf_out_flush[worker] = 0;
159
160 #if APP_STATS
161         lp->rx.rings_iters[worker] ++;
162         if (likely(ret == 0)) {
163                 lp->rx.rings_count[worker] ++;
164         }
165         if (unlikely(lp->rx.rings_iters[worker] == APP_STATS)) {
166                 unsigned lcore = rte_lcore_id();
167
168                 printf("\tI/O RX %u out (worker %u): enq success rate = %.2f\n",
169                         lcore,
170                         (unsigned)worker,
171                         ((double) lp->rx.rings_count[worker]) / ((double) lp->rx.rings_iters[worker]));
172                 lp->rx.rings_iters[worker] = 0;
173                 lp->rx.rings_count[worker] = 0;
174         }
175 #endif
176 }
177
178 static inline void
179 app_lcore_io_rx(
180         struct app_lcore_params_io *lp,
181         uint32_t n_workers,
182         uint32_t bsz_rd,
183         uint32_t bsz_wr,
184         uint8_t pos_lb)
185 {
186         struct rte_mbuf *mbuf_1_0, *mbuf_1_1, *mbuf_2_0, *mbuf_2_1;
187         uint8_t *data_1_0, *data_1_1 = NULL;
188         uint32_t i;
189
190         for (i = 0; i < lp->rx.n_nic_queues; i ++) {
191                 uint8_t port = lp->rx.nic_queues[i].port;
192                 uint8_t queue = lp->rx.nic_queues[i].queue;
193                 uint32_t n_mbufs, j;
194
195                 n_mbufs = rte_eth_rx_burst(
196                         port,
197                         queue,
198                         lp->rx.mbuf_in.array,
199                         (uint16_t) bsz_rd);
200
201                 if (unlikely(n_mbufs == 0)) {
202                         continue;
203                 }
204
205 #if APP_STATS
206                 lp->rx.nic_queues_iters[i] ++;
207                 lp->rx.nic_queues_count[i] += n_mbufs;
208                 if (unlikely(lp->rx.nic_queues_iters[i] == APP_STATS)) {
209                         struct rte_eth_stats stats;
210                         unsigned lcore = rte_lcore_id();
211
212                         rte_eth_stats_get(port, &stats);
213
214                         printf("I/O RX %u in (NIC port %u): NIC drop ratio = %.2f avg burst size = %.2f\n",
215                                 lcore,
216                                 (unsigned) port,
217                                 (double) stats.imissed / (double) (stats.imissed + stats.ipackets),
218                                 ((double) lp->rx.nic_queues_count[i]) / ((double) lp->rx.nic_queues_iters[i]));
219                         lp->rx.nic_queues_iters[i] = 0;
220                         lp->rx.nic_queues_count[i] = 0;
221                 }
222 #endif
223
224 #if APP_IO_RX_DROP_ALL_PACKETS
225                 for (j = 0; j < n_mbufs; j ++) {
226                         struct rte_mbuf *pkt = lp->rx.mbuf_in.array[j];
227                         rte_pktmbuf_free(pkt);
228                 }
229
230                 continue;
231 #endif
232
233                 mbuf_1_0 = lp->rx.mbuf_in.array[0];
234                 mbuf_1_1 = lp->rx.mbuf_in.array[1];
235                 data_1_0 = rte_pktmbuf_mtod(mbuf_1_0, uint8_t *);
236                 if (likely(n_mbufs > 1)) {
237                         data_1_1 = rte_pktmbuf_mtod(mbuf_1_1, uint8_t *);
238                 }
239
240                 mbuf_2_0 = lp->rx.mbuf_in.array[2];
241                 mbuf_2_1 = lp->rx.mbuf_in.array[3];
242                 APP_IO_RX_PREFETCH0(mbuf_2_0);
243                 APP_IO_RX_PREFETCH0(mbuf_2_1);
244
245                 for (j = 0; j + 3 < n_mbufs; j += 2) {
246                         struct rte_mbuf *mbuf_0_0, *mbuf_0_1;
247                         uint8_t *data_0_0, *data_0_1;
248                         uint32_t worker_0, worker_1;
249
250                         mbuf_0_0 = mbuf_1_0;
251                         mbuf_0_1 = mbuf_1_1;
252                         data_0_0 = data_1_0;
253                         data_0_1 = data_1_1;
254
255                         mbuf_1_0 = mbuf_2_0;
256                         mbuf_1_1 = mbuf_2_1;
257                         data_1_0 = rte_pktmbuf_mtod(mbuf_2_0, uint8_t *);
258                         data_1_1 = rte_pktmbuf_mtod(mbuf_2_1, uint8_t *);
259                         APP_IO_RX_PREFETCH0(data_1_0);
260                         APP_IO_RX_PREFETCH0(data_1_1);
261
262                         mbuf_2_0 = lp->rx.mbuf_in.array[j+4];
263                         mbuf_2_1 = lp->rx.mbuf_in.array[j+5];
264                         APP_IO_RX_PREFETCH0(mbuf_2_0);
265                         APP_IO_RX_PREFETCH0(mbuf_2_1);
266
267                         worker_0 = data_0_0[pos_lb] & (n_workers - 1);
268                         worker_1 = data_0_1[pos_lb] & (n_workers - 1);
269
270                         app_lcore_io_rx_buffer_to_send(lp, worker_0, mbuf_0_0, bsz_wr);
271                         app_lcore_io_rx_buffer_to_send(lp, worker_1, mbuf_0_1, bsz_wr);
272                 }
273
274                 /* Handle the last 1, 2 (when n_mbufs is even) or 3 (when n_mbufs is odd) packets  */
275                 for ( ; j < n_mbufs; j += 1) {
276                         struct rte_mbuf *mbuf;
277                         uint8_t *data;
278                         uint32_t worker;
279
280                         mbuf = mbuf_1_0;
281                         mbuf_1_0 = mbuf_1_1;
282                         mbuf_1_1 = mbuf_2_0;
283                         mbuf_2_0 = mbuf_2_1;
284
285                         data = rte_pktmbuf_mtod(mbuf, uint8_t *);
286
287                         APP_IO_RX_PREFETCH0(mbuf_1_0);
288
289                         worker = data[pos_lb] & (n_workers - 1);
290
291                         app_lcore_io_rx_buffer_to_send(lp, worker, mbuf, bsz_wr);
292                 }
293         }
294 }
295
296 static inline void
297 app_lcore_io_rx_flush(struct app_lcore_params_io *lp, uint32_t n_workers)
298 {
299         uint32_t worker;
300
301         for (worker = 0; worker < n_workers; worker ++) {
302                 int ret;
303
304                 if (likely((lp->rx.mbuf_out_flush[worker] == 0) ||
305                            (lp->rx.mbuf_out[worker].n_mbufs == 0))) {
306                         lp->rx.mbuf_out_flush[worker] = 1;
307                         continue;
308                 }
309
310                 ret = rte_ring_sp_enqueue_bulk(
311                         lp->rx.rings[worker],
312                         (void **) lp->rx.mbuf_out[worker].array,
313                         lp->rx.mbuf_out[worker].n_mbufs);
314
315                 if (unlikely(ret < 0)) {
316                         uint32_t k;
317                         for (k = 0; k < lp->rx.mbuf_out[worker].n_mbufs; k ++) {
318                                 struct rte_mbuf *pkt_to_free = lp->rx.mbuf_out[worker].array[k];
319                                 rte_pktmbuf_free(pkt_to_free);
320                         }
321                 }
322
323                 lp->rx.mbuf_out[worker].n_mbufs = 0;
324                 lp->rx.mbuf_out_flush[worker] = 1;
325         }
326 }
327
328 static inline void
329 app_lcore_io_tx(
330         struct app_lcore_params_io *lp,
331         uint32_t n_workers,
332         uint32_t bsz_rd,
333         uint32_t bsz_wr)
334 {
335         uint32_t worker;
336
337         for (worker = 0; worker < n_workers; worker ++) {
338                 uint32_t i;
339
340                 for (i = 0; i < lp->tx.n_nic_ports; i ++) {
341                         uint8_t port = lp->tx.nic_ports[i];
342                         struct rte_ring *ring = lp->tx.rings[port][worker];
343                         uint32_t n_mbufs, n_pkts;
344                         int ret;
345
346                         n_mbufs = lp->tx.mbuf_out[port].n_mbufs;
347                         ret = rte_ring_sc_dequeue_bulk(
348                                 ring,
349                                 (void **) &lp->tx.mbuf_out[port].array[n_mbufs],
350                                 bsz_rd);
351
352                         if (unlikely(ret == -ENOENT)) {
353                                 continue;
354                         }
355
356                         n_mbufs += bsz_rd;
357
358 #if APP_IO_TX_DROP_ALL_PACKETS
359                         {
360                                 uint32_t j;
361                                 APP_IO_TX_PREFETCH0(lp->tx.mbuf_out[port].array[0]);
362                                 APP_IO_TX_PREFETCH0(lp->tx.mbuf_out[port].array[1]);
363
364                                 for (j = 0; j < n_mbufs; j ++) {
365                                         if (likely(j < n_mbufs - 2)) {
366                                                 APP_IO_TX_PREFETCH0(lp->tx.mbuf_out[port].array[j + 2]);
367                                         }
368
369                                         rte_pktmbuf_free(lp->tx.mbuf_out[port].array[j]);
370                                 }
371
372                                 lp->tx.mbuf_out[port].n_mbufs = 0;
373
374                                 continue;
375                         }
376 #endif
377
378                         if (unlikely(n_mbufs < bsz_wr)) {
379                                 lp->tx.mbuf_out[port].n_mbufs = n_mbufs;
380                                 continue;
381                         }
382
383                         n_pkts = rte_eth_tx_burst(
384                                 port,
385                                 0,
386                                 lp->tx.mbuf_out[port].array,
387                                 (uint16_t) n_mbufs);
388
389 #if APP_STATS
390                         lp->tx.nic_ports_iters[port] ++;
391                         lp->tx.nic_ports_count[port] += n_pkts;
392                         if (unlikely(lp->tx.nic_ports_iters[port] == APP_STATS)) {
393                                 unsigned lcore = rte_lcore_id();
394
395                                 printf("\t\t\tI/O TX %u out (port %u): avg burst size = %.2f\n",
396                                         lcore,
397                                         (unsigned) port,
398                                         ((double) lp->tx.nic_ports_count[port]) / ((double) lp->tx.nic_ports_iters[port]));
399                                 lp->tx.nic_ports_iters[port] = 0;
400                                 lp->tx.nic_ports_count[port] = 0;
401                         }
402 #endif
403
404                         if (unlikely(n_pkts < n_mbufs)) {
405                                 uint32_t k;
406                                 for (k = n_pkts; k < n_mbufs; k ++) {
407                                         struct rte_mbuf *pkt_to_free = lp->tx.mbuf_out[port].array[k];
408                                         rte_pktmbuf_free(pkt_to_free);
409                                 }
410                         }
411                         lp->tx.mbuf_out[port].n_mbufs = 0;
412                         lp->tx.mbuf_out_flush[port] = 0;
413                 }
414         }
415 }
416
417 static inline void
418 app_lcore_io_tx_flush(struct app_lcore_params_io *lp)
419 {
420         uint8_t port;
421
422         for (port = 0; port < lp->tx.n_nic_ports; port ++) {
423                 uint32_t n_pkts;
424
425                 if (likely((lp->tx.mbuf_out_flush[port] == 0) ||
426                            (lp->tx.mbuf_out[port].n_mbufs == 0))) {
427                         lp->tx.mbuf_out_flush[port] = 1;
428                         continue;
429                 }
430
431                 n_pkts = rte_eth_tx_burst(
432                         port,
433                         0,
434                         lp->tx.mbuf_out[port].array,
435                         (uint16_t) lp->tx.mbuf_out[port].n_mbufs);
436
437                 if (unlikely(n_pkts < lp->tx.mbuf_out[port].n_mbufs)) {
438                         uint32_t k;
439                         for (k = n_pkts; k < lp->tx.mbuf_out[port].n_mbufs; k ++) {
440                                 struct rte_mbuf *pkt_to_free = lp->tx.mbuf_out[port].array[k];
441                                 rte_pktmbuf_free(pkt_to_free);
442                         }
443                 }
444
445                 lp->tx.mbuf_out[port].n_mbufs = 0;
446                 lp->tx.mbuf_out_flush[port] = 1;
447         }
448 }
449
450 static void
451 app_lcore_main_loop_io(void)
452 {
453         uint32_t lcore = rte_lcore_id();
454         struct app_lcore_params_io *lp = &app.lcore_params[lcore].io;
455         uint32_t n_workers = app_get_lcores_worker();
456         uint64_t i = 0;
457
458         uint32_t bsz_rx_rd = app.burst_size_io_rx_read;
459         uint32_t bsz_rx_wr = app.burst_size_io_rx_write;
460         uint32_t bsz_tx_rd = app.burst_size_io_tx_read;
461         uint32_t bsz_tx_wr = app.burst_size_io_tx_write;
462
463         uint8_t pos_lb = app.pos_lb;
464
465         for ( ; ; ) {
466                 if (APP_LCORE_IO_FLUSH && (unlikely(i == APP_LCORE_IO_FLUSH))) {
467                         if (likely(lp->rx.n_nic_queues > 0)) {
468                                 app_lcore_io_rx_flush(lp, n_workers);
469                         }
470
471                         if (likely(lp->tx.n_nic_ports > 0)) {
472                                 app_lcore_io_tx_flush(lp);
473                         }
474
475                         i = 0;
476                 }
477
478                 if (likely(lp->rx.n_nic_queues > 0)) {
479                         app_lcore_io_rx(lp, n_workers, bsz_rx_rd, bsz_rx_wr, pos_lb);
480                 }
481
482                 if (likely(lp->tx.n_nic_ports > 0)) {
483                         app_lcore_io_tx(lp, n_workers, bsz_tx_rd, bsz_tx_wr);
484                 }
485
486                 i ++;
487         }
488 }
489
490 static inline void
491 app_lcore_worker(
492         struct app_lcore_params_worker *lp,
493         uint32_t bsz_rd,
494         uint32_t bsz_wr)
495 {
496         uint32_t i;
497
498         for (i = 0; i < lp->n_rings_in; i ++) {
499                 struct rte_ring *ring_in = lp->rings_in[i];
500                 uint32_t j;
501                 int ret;
502
503                 ret = rte_ring_sc_dequeue_bulk(
504                         ring_in,
505                         (void **) lp->mbuf_in.array,
506                         bsz_rd);
507
508                 if (unlikely(ret == -ENOENT)) {
509                         continue;
510                 }
511
512 #if APP_WORKER_DROP_ALL_PACKETS
513                 for (j = 0; j < bsz_rd; j ++) {
514                         struct rte_mbuf *pkt = lp->mbuf_in.array[j];
515                         rte_pktmbuf_free(pkt);
516                 }
517
518                 continue;
519 #endif
520
521                 APP_WORKER_PREFETCH1(rte_pktmbuf_mtod(lp->mbuf_in.array[0], unsigned char *));
522                 APP_WORKER_PREFETCH0(lp->mbuf_in.array[1]);
523
524                 for (j = 0; j < bsz_rd; j ++) {
525                         struct rte_mbuf *pkt;
526                         struct ipv4_hdr *ipv4_hdr;
527                         uint32_t ipv4_dst, pos;
528                         uint32_t port;
529
530                         if (likely(j < bsz_rd - 1)) {
531                                 APP_WORKER_PREFETCH1(rte_pktmbuf_mtod(lp->mbuf_in.array[j+1], unsigned char *));
532                         }
533                         if (likely(j < bsz_rd - 2)) {
534                                 APP_WORKER_PREFETCH0(lp->mbuf_in.array[j+2]);
535                         }
536
537                         pkt = lp->mbuf_in.array[j];
538                         ipv4_hdr = rte_pktmbuf_mtod_offset(pkt,
539                                                            struct ipv4_hdr *,
540                                                            sizeof(struct ether_hdr));
541                         ipv4_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
542
543                         if (unlikely(rte_lpm_lookup(lp->lpm_table, ipv4_dst, &port) != 0)) {
544                                 port = pkt->port;
545                         }
546
547                         pos = lp->mbuf_out[port].n_mbufs;
548
549                         lp->mbuf_out[port].array[pos ++] = pkt;
550                         if (likely(pos < bsz_wr)) {
551                                 lp->mbuf_out[port].n_mbufs = pos;
552                                 continue;
553                         }
554
555                         ret = rte_ring_sp_enqueue_bulk(
556                                 lp->rings_out[port],
557                                 (void **) lp->mbuf_out[port].array,
558                                 bsz_wr);
559
560 #if APP_STATS
561                         lp->rings_out_iters[port] ++;
562                         if (ret == 0) {
563                                 lp->rings_out_count[port] += 1;
564                         }
565                         if (lp->rings_out_iters[port] == APP_STATS){
566                                 printf("\t\tWorker %u out (NIC port %u): enq success rate = %.2f\n",
567                                         (unsigned) lp->worker_id,
568                                         (unsigned) port,
569                                         ((double) lp->rings_out_count[port]) / ((double) lp->rings_out_iters[port]));
570                                 lp->rings_out_iters[port] = 0;
571                                 lp->rings_out_count[port] = 0;
572                         }
573 #endif
574
575                         if (unlikely(ret == -ENOBUFS)) {
576                                 uint32_t k;
577                                 for (k = 0; k < bsz_wr; k ++) {
578                                         struct rte_mbuf *pkt_to_free = lp->mbuf_out[port].array[k];
579                                         rte_pktmbuf_free(pkt_to_free);
580                                 }
581                         }
582
583                         lp->mbuf_out[port].n_mbufs = 0;
584                         lp->mbuf_out_flush[port] = 0;
585                 }
586         }
587 }
588
589 static inline void
590 app_lcore_worker_flush(struct app_lcore_params_worker *lp)
591 {
592         uint32_t port;
593
594         for (port = 0; port < APP_MAX_NIC_PORTS; port ++) {
595                 int ret;
596
597                 if (unlikely(lp->rings_out[port] == NULL)) {
598                         continue;
599                 }
600
601                 if (likely((lp->mbuf_out_flush[port] == 0) ||
602                            (lp->mbuf_out[port].n_mbufs == 0))) {
603                         lp->mbuf_out_flush[port] = 1;
604                         continue;
605                 }
606
607                 ret = rte_ring_sp_enqueue_bulk(
608                         lp->rings_out[port],
609                         (void **) lp->mbuf_out[port].array,
610                         lp->mbuf_out[port].n_mbufs);
611
612                 if (unlikely(ret < 0)) {
613                         uint32_t k;
614                         for (k = 0; k < lp->mbuf_out[port].n_mbufs; k ++) {
615                                 struct rte_mbuf *pkt_to_free = lp->mbuf_out[port].array[k];
616                                 rte_pktmbuf_free(pkt_to_free);
617                         }
618                 }
619
620                 lp->mbuf_out[port].n_mbufs = 0;
621                 lp->mbuf_out_flush[port] = 1;
622         }
623 }
624
625 static void
626 app_lcore_main_loop_worker(void) {
627         uint32_t lcore = rte_lcore_id();
628         struct app_lcore_params_worker *lp = &app.lcore_params[lcore].worker;
629         uint64_t i = 0;
630
631         uint32_t bsz_rd = app.burst_size_worker_read;
632         uint32_t bsz_wr = app.burst_size_worker_write;
633
634         for ( ; ; ) {
635                 if (APP_LCORE_WORKER_FLUSH && (unlikely(i == APP_LCORE_WORKER_FLUSH))) {
636                         app_lcore_worker_flush(lp);
637                         i = 0;
638                 }
639
640                 app_lcore_worker(lp, bsz_rd, bsz_wr);
641
642                 i ++;
643         }
644 }
645
646 int
647 app_lcore_main_loop(__attribute__((unused)) void *arg)
648 {
649         struct app_lcore_params *lp;
650         unsigned lcore;
651
652         lcore = rte_lcore_id();
653         lp = &app.lcore_params[lcore];
654
655         if (lp->type == e_APP_LCORE_IO) {
656                 printf("Logical core %u (I/O) main loop.\n", lcore);
657                 app_lcore_main_loop_io();
658         }
659
660         if (lp->type == e_APP_LCORE_WORKER) {
661                 printf("Logical core %u (worker %u) main loop.\n",
662                         lcore,
663                         (unsigned) lp->worker.worker_id);
664                 app_lcore_main_loop_worker();
665         }
666
667         return 0;
668 }