9553455be25584813687249c2328582ffabca7d7
[dpdk.git] / examples / vm_power_manager / power_manager.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/un.h>
10 #include <fcntl.h>
11 #include <unistd.h>
12 #include <dirent.h>
13 #include <errno.h>
14
15 #include <sys/sysinfo.h>
16 #include <sys/types.h>
17
18 #include <rte_log.h>
19 #include <rte_power.h>
20 #include <rte_spinlock.h>
21
22 #include "channel_manager.h"
23 #include "power_manager.h"
24 #include "oob_monitor.h"
25
26 #define POWER_SCALE_CORE(DIRECTION, core_num , ret) do { \
27         if (core_num >= ci.core_count) \
28                 return -1; \
29         if (!(ci.cd[core_num].global_enabled_cpus)) \
30                 return -1; \
31         rte_spinlock_lock(&global_core_freq_info[core_num].power_sl); \
32         ret = rte_power_freq_##DIRECTION(core_num); \
33         rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl); \
34 } while (0)
35
36 struct freq_info {
37         rte_spinlock_t power_sl;
38         uint32_t freqs[RTE_MAX_LCORE_FREQS];
39         unsigned num_freqs;
40 } __rte_cache_aligned;
41
42 static struct freq_info global_core_freq_info[RTE_MAX_LCORE];
43
44 struct core_info ci;
45
46 #define SYSFS_CPU_PATH "/sys/devices/system/cpu/cpu%u/topology/core_id"
47
48 struct core_info *
49 get_core_info(void)
50 {
51         return &ci;
52 }
53
54 int
55 core_info_init(void)
56 {
57         struct core_info *ci;
58         int i;
59
60         ci = get_core_info();
61
62         ci->core_count = get_nprocs_conf();
63         ci->branch_ratio_threshold = BRANCH_RATIO_THRESHOLD;
64         ci->cd = malloc(ci->core_count * sizeof(struct core_details));
65         if (!ci->cd) {
66                 RTE_LOG(ERR, POWER_MANAGER, "Failed to allocate memory for core info.");
67                 return -1;
68         }
69         for (i = 0; i < ci->core_count; i++) {
70                 ci->cd[i].global_enabled_cpus = 1;
71                 ci->cd[i].oob_enabled = 0;
72                 ci->cd[i].msr_fd = 0;
73         }
74         printf("%d cores in system\n", ci->core_count);
75         return 0;
76 }
77
78 int
79 power_manager_init(void)
80 {
81         unsigned int i, num_cpus = 0, num_freqs = 0;
82         int ret = 0;
83         struct core_info *ci;
84         unsigned int max_core_num;
85
86         rte_power_set_env(PM_ENV_NOT_SET);
87
88         ci = get_core_info();
89         if (!ci) {
90                 RTE_LOG(ERR, POWER_MANAGER,
91                                 "Failed to get core info!\n");
92                 return -1;
93         }
94
95         if (ci->core_count > RTE_MAX_LCORE)
96                 max_core_num = RTE_MAX_LCORE;
97         else
98                 max_core_num = ci->core_count;
99
100         for (i = 0; i < max_core_num; i++) {
101                 if (ci->cd[i].global_enabled_cpus) {
102                         if (rte_power_init(i) < 0)
103                                 RTE_LOG(ERR, POWER_MANAGER,
104                                                 "Unable to initialize power manager "
105                                                 "for core %u\n", i);
106                         num_cpus++;
107                         num_freqs = rte_power_freqs(i,
108                                         global_core_freq_info[i].freqs,
109                                         RTE_MAX_LCORE_FREQS);
110                         if (num_freqs == 0) {
111                                 RTE_LOG(ERR, POWER_MANAGER,
112                                         "Unable to get frequency list for core %u\n",
113                                         i);
114                                 ci->cd[i].oob_enabled = 0;
115                                 ret = -1;
116                         }
117                         global_core_freq_info[i].num_freqs = num_freqs;
118
119                         rte_spinlock_init(&global_core_freq_info[i].power_sl);
120                 }
121                 if (ci->cd[i].oob_enabled)
122                         add_core_to_monitor(i);
123         }
124         RTE_LOG(INFO, POWER_MANAGER, "Managing %u cores out of %u available host cores\n",
125                         num_cpus, ci->core_count);
126         return ret;
127
128 }
129
130 uint32_t
131 power_manager_get_current_frequency(unsigned core_num)
132 {
133         uint32_t freq, index;
134
135         if (core_num >= RTE_MAX_LCORE) {
136                 RTE_LOG(ERR, POWER_MANAGER, "Core(%u) is out of range 0...%d\n",
137                                 core_num, RTE_MAX_LCORE-1);
138                 return -1;
139         }
140         if (!(ci.cd[core_num].global_enabled_cpus))
141                 return 0;
142
143         rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
144         index = rte_power_get_freq(core_num);
145         rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
146         if (index >= RTE_MAX_LCORE)
147                 freq = 0;
148         else
149                 freq = global_core_freq_info[core_num].freqs[index];
150
151         return freq;
152 }
153
154 int
155 power_manager_exit(void)
156 {
157         unsigned int i;
158         int ret = 0;
159         struct core_info *ci;
160         unsigned int max_core_num;
161
162         ci = get_core_info();
163         if (!ci) {
164                 RTE_LOG(ERR, POWER_MANAGER,
165                                 "Failed to get core info!\n");
166                 return -1;
167         }
168
169         if (ci->core_count > RTE_MAX_LCORE)
170                 max_core_num = RTE_MAX_LCORE;
171         else
172                 max_core_num = ci->core_count;
173
174         for (i = 0; i < max_core_num; i++) {
175                 if (ci->cd[i].global_enabled_cpus) {
176                         if (rte_power_exit(i) < 0) {
177                                 RTE_LOG(ERR, POWER_MANAGER, "Unable to shutdown power manager "
178                                                 "for core %u\n", i);
179                                 ret = -1;
180                         }
181                         ci->cd[i].global_enabled_cpus = 0;
182                 }
183                 remove_core_from_monitor(i);
184         }
185         return ret;
186 }
187
188 int
189 power_manager_scale_core_up(unsigned core_num)
190 {
191         int ret = 0;
192
193         POWER_SCALE_CORE(up, core_num, ret);
194         return ret;
195 }
196
197 int
198 power_manager_scale_core_down(unsigned core_num)
199 {
200         int ret = 0;
201
202         POWER_SCALE_CORE(down, core_num, ret);
203         return ret;
204 }
205
206 int
207 power_manager_scale_core_min(unsigned core_num)
208 {
209         int ret = 0;
210
211         POWER_SCALE_CORE(min, core_num, ret);
212         return ret;
213 }
214
215 int
216 power_manager_scale_core_max(unsigned core_num)
217 {
218         int ret = 0;
219
220         POWER_SCALE_CORE(max, core_num, ret);
221         return ret;
222 }
223
224 int
225 power_manager_enable_turbo_core(unsigned int core_num)
226 {
227         int ret = 0;
228
229         POWER_SCALE_CORE(enable_turbo, core_num, ret);
230         return ret;
231 }
232
233 int
234 power_manager_disable_turbo_core(unsigned int core_num)
235 {
236         int ret = 0;
237
238         POWER_SCALE_CORE(disable_turbo, core_num, ret);
239         return ret;
240 }
241
242 int
243 power_manager_scale_core_med(unsigned int core_num)
244 {
245         int ret = 0;
246         struct core_info *ci;
247
248         ci = get_core_info();
249         if (core_num >= RTE_MAX_LCORE)
250                 return -1;
251         if (!(ci->cd[core_num].global_enabled_cpus))
252                 return -1;
253         rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
254         ret = rte_power_set_freq(core_num,
255                                 global_core_freq_info[core_num].num_freqs / 2);
256         rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
257         return ret;
258 }