service: fix lingering active status
[dpdk.git] / lib / eal / common / rte_service.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <inttypes.h>
7 #include <string.h>
8
9 #include <rte_service.h>
10 #include <rte_service_component.h>
11
12 #include <rte_lcore.h>
13 #include <rte_common.h>
14 #include <rte_cycles.h>
15 #include <rte_atomic.h>
16 #include <rte_malloc.h>
17 #include <rte_spinlock.h>
18
19 #include "eal_private.h"
20
21 #define RTE_SERVICE_NUM_MAX 64
22
23 #define SERVICE_F_REGISTERED    (1 << 0)
24 #define SERVICE_F_STATS_ENABLED (1 << 1)
25 #define SERVICE_F_START_CHECK   (1 << 2)
26
27 /* runstates for services and lcores, denoting if they are active or not */
28 #define RUNSTATE_STOPPED 0
29 #define RUNSTATE_RUNNING 1
30
31 /* internal representation of a service */
32 struct rte_service_spec_impl {
33         /* public part of the struct */
34         struct rte_service_spec spec;
35
36         /* spin lock that when set indicates a service core is currently
37          * running this service callback. When not set, a core may take the
38          * lock and then run the service callback.
39          */
40         rte_spinlock_t execute_lock;
41
42         /* API set/get-able variables */
43         int8_t app_runstate;
44         int8_t comp_runstate;
45         uint8_t internal_flags;
46
47         /* per service statistics */
48         /* Indicates how many cores the service is mapped to run on.
49          * It does not indicate the number of cores the service is running
50          * on currently.
51          */
52         uint32_t num_mapped_cores;
53         uint64_t calls;
54         uint64_t cycles_spent;
55 } __rte_cache_aligned;
56
57 /* the internal values of a service core */
58 struct core_state {
59         /* map of services IDs are run on this core */
60         uint64_t service_mask;
61         uint8_t runstate; /* running or stopped */
62         uint8_t thread_active; /* indicates when thread is in service_run() */
63         uint8_t is_service_core; /* set if core is currently a service core */
64         uint8_t service_active_on_lcore[RTE_SERVICE_NUM_MAX];
65         uint64_t loops;
66         uint64_t calls_per_service[RTE_SERVICE_NUM_MAX];
67 } __rte_cache_aligned;
68
69 static uint32_t rte_service_count;
70 static struct rte_service_spec_impl *rte_services;
71 static struct core_state *lcore_states;
72 static uint32_t rte_service_library_initialized;
73
74 int32_t
75 rte_service_init(void)
76 {
77         if (rte_service_library_initialized) {
78                 RTE_LOG(NOTICE, EAL,
79                         "service library init() called, init flag %d\n",
80                         rte_service_library_initialized);
81                 return -EALREADY;
82         }
83
84         rte_services = rte_calloc("rte_services", RTE_SERVICE_NUM_MAX,
85                         sizeof(struct rte_service_spec_impl),
86                         RTE_CACHE_LINE_SIZE);
87         if (!rte_services) {
88                 RTE_LOG(ERR, EAL, "error allocating rte services array\n");
89                 goto fail_mem;
90         }
91
92         lcore_states = rte_calloc("rte_service_core_states", RTE_MAX_LCORE,
93                         sizeof(struct core_state), RTE_CACHE_LINE_SIZE);
94         if (!lcore_states) {
95                 RTE_LOG(ERR, EAL, "error allocating core states array\n");
96                 goto fail_mem;
97         }
98
99         int i;
100         int count = 0;
101         struct rte_config *cfg = rte_eal_get_configuration();
102         for (i = 0; i < RTE_MAX_LCORE; i++) {
103                 if (lcore_config[i].core_role == ROLE_SERVICE) {
104                         if ((unsigned int)i == cfg->main_lcore)
105                                 continue;
106                         rte_service_lcore_add(i);
107                         count++;
108                 }
109         }
110
111         rte_service_library_initialized = 1;
112         return 0;
113 fail_mem:
114         rte_free(rte_services);
115         rte_free(lcore_states);
116         return -ENOMEM;
117 }
118
119 void
120 rte_service_finalize(void)
121 {
122         if (!rte_service_library_initialized)
123                 return;
124
125         rte_service_lcore_reset_all();
126         rte_eal_mp_wait_lcore();
127
128         rte_free(rte_services);
129         rte_free(lcore_states);
130
131         rte_service_library_initialized = 0;
132 }
133
134 /* returns 1 if service is registered and has not been unregistered
135  * Returns 0 if service never registered, or has been unregistered
136  */
137 static inline int
138 service_valid(uint32_t id)
139 {
140         return !!(rte_services[id].internal_flags & SERVICE_F_REGISTERED);
141 }
142
143 static struct rte_service_spec_impl *
144 service_get(uint32_t id)
145 {
146         return &rte_services[id];
147 }
148
149 /* validate ID and retrieve service pointer, or return error value */
150 #define SERVICE_VALID_GET_OR_ERR_RET(id, service, retval) do {          \
151         if (id >= RTE_SERVICE_NUM_MAX || !service_valid(id))            \
152                 return retval;                                          \
153         service = &rte_services[id];                                    \
154 } while (0)
155
156 /* returns 1 if statistics should be collected for service
157  * Returns 0 if statistics should not be collected for service
158  */
159 static inline int
160 service_stats_enabled(struct rte_service_spec_impl *impl)
161 {
162         return !!(impl->internal_flags & SERVICE_F_STATS_ENABLED);
163 }
164
165 static inline int
166 service_mt_safe(struct rte_service_spec_impl *s)
167 {
168         return !!(s->spec.capabilities & RTE_SERVICE_CAP_MT_SAFE);
169 }
170
171 int32_t
172 rte_service_set_stats_enable(uint32_t id, int32_t enabled)
173 {
174         struct rte_service_spec_impl *s;
175         SERVICE_VALID_GET_OR_ERR_RET(id, s, 0);
176
177         if (enabled)
178                 s->internal_flags |= SERVICE_F_STATS_ENABLED;
179         else
180                 s->internal_flags &= ~(SERVICE_F_STATS_ENABLED);
181
182         return 0;
183 }
184
185 int32_t
186 rte_service_set_runstate_mapped_check(uint32_t id, int32_t enabled)
187 {
188         struct rte_service_spec_impl *s;
189         SERVICE_VALID_GET_OR_ERR_RET(id, s, 0);
190
191         if (enabled)
192                 s->internal_flags |= SERVICE_F_START_CHECK;
193         else
194                 s->internal_flags &= ~(SERVICE_F_START_CHECK);
195
196         return 0;
197 }
198
199 uint32_t
200 rte_service_get_count(void)
201 {
202         return rte_service_count;
203 }
204
205 int32_t
206 rte_service_get_by_name(const char *name, uint32_t *service_id)
207 {
208         if (!service_id)
209                 return -EINVAL;
210
211         int i;
212         for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
213                 if (service_valid(i) &&
214                                 strcmp(name, rte_services[i].spec.name) == 0) {
215                         *service_id = i;
216                         return 0;
217                 }
218         }
219
220         return -ENODEV;
221 }
222
223 const char *
224 rte_service_get_name(uint32_t id)
225 {
226         struct rte_service_spec_impl *s;
227         SERVICE_VALID_GET_OR_ERR_RET(id, s, 0);
228         return s->spec.name;
229 }
230
231 int32_t
232 rte_service_probe_capability(uint32_t id, uint32_t capability)
233 {
234         struct rte_service_spec_impl *s;
235         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
236         return !!(s->spec.capabilities & capability);
237 }
238
239 int32_t
240 rte_service_component_register(const struct rte_service_spec *spec,
241                                uint32_t *id_ptr)
242 {
243         uint32_t i;
244         int32_t free_slot = -1;
245
246         if (spec->callback == NULL || strlen(spec->name) == 0)
247                 return -EINVAL;
248
249         for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
250                 if (!service_valid(i)) {
251                         free_slot = i;
252                         break;
253                 }
254         }
255
256         if ((free_slot < 0) || (i == RTE_SERVICE_NUM_MAX))
257                 return -ENOSPC;
258
259         struct rte_service_spec_impl *s = &rte_services[free_slot];
260         s->spec = *spec;
261         s->internal_flags |= SERVICE_F_REGISTERED | SERVICE_F_START_CHECK;
262
263         rte_service_count++;
264
265         if (id_ptr)
266                 *id_ptr = free_slot;
267
268         return 0;
269 }
270
271 int32_t
272 rte_service_component_unregister(uint32_t id)
273 {
274         uint32_t i;
275         struct rte_service_spec_impl *s;
276         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
277
278         rte_service_count--;
279
280         s->internal_flags &= ~(SERVICE_F_REGISTERED);
281
282         /* clear the run-bit in all cores */
283         for (i = 0; i < RTE_MAX_LCORE; i++)
284                 lcore_states[i].service_mask &= ~(UINT64_C(1) << id);
285
286         memset(&rte_services[id], 0, sizeof(struct rte_service_spec_impl));
287
288         return 0;
289 }
290
291 int32_t
292 rte_service_component_runstate_set(uint32_t id, uint32_t runstate)
293 {
294         struct rte_service_spec_impl *s;
295         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
296
297         /* comp_runstate act as the guard variable. Use store-release
298          * memory order. This synchronizes with load-acquire in
299          * service_run and service_runstate_get function.
300          */
301         if (runstate)
302                 __atomic_store_n(&s->comp_runstate, RUNSTATE_RUNNING,
303                         __ATOMIC_RELEASE);
304         else
305                 __atomic_store_n(&s->comp_runstate, RUNSTATE_STOPPED,
306                         __ATOMIC_RELEASE);
307
308         return 0;
309 }
310
311 int32_t
312 rte_service_runstate_set(uint32_t id, uint32_t runstate)
313 {
314         struct rte_service_spec_impl *s;
315         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
316
317         /* app_runstate act as the guard variable. Use store-release
318          * memory order. This synchronizes with load-acquire in
319          * service_run runstate_get function.
320          */
321         if (runstate)
322                 __atomic_store_n(&s->app_runstate, RUNSTATE_RUNNING,
323                         __ATOMIC_RELEASE);
324         else
325                 __atomic_store_n(&s->app_runstate, RUNSTATE_STOPPED,
326                         __ATOMIC_RELEASE);
327
328         return 0;
329 }
330
331 int32_t
332 rte_service_runstate_get(uint32_t id)
333 {
334         struct rte_service_spec_impl *s;
335         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
336
337         /* comp_runstate and app_runstate act as the guard variables.
338          * Use load-acquire memory order. This synchronizes with
339          * store-release in service state set functions.
340          */
341         if (__atomic_load_n(&s->comp_runstate, __ATOMIC_ACQUIRE) ==
342                         RUNSTATE_RUNNING &&
343             __atomic_load_n(&s->app_runstate, __ATOMIC_ACQUIRE) ==
344                         RUNSTATE_RUNNING) {
345                 int check_disabled = !(s->internal_flags &
346                         SERVICE_F_START_CHECK);
347                 int lcore_mapped = (__atomic_load_n(&s->num_mapped_cores,
348                         __ATOMIC_RELAXED) > 0);
349
350                 return (check_disabled | lcore_mapped);
351         } else
352                 return 0;
353
354 }
355
356 static inline void
357 service_runner_do_callback(struct rte_service_spec_impl *s,
358                            struct core_state *cs, uint32_t service_idx)
359 {
360         void *userdata = s->spec.callback_userdata;
361
362         if (service_stats_enabled(s)) {
363                 uint64_t start = rte_rdtsc();
364                 s->spec.callback(userdata);
365                 uint64_t end = rte_rdtsc();
366                 s->cycles_spent += end - start;
367                 cs->calls_per_service[service_idx]++;
368                 s->calls++;
369         } else
370                 s->spec.callback(userdata);
371 }
372
373
374 /* Expects the service 's' is valid. */
375 static int32_t
376 service_run(uint32_t i, struct core_state *cs, uint64_t service_mask,
377             struct rte_service_spec_impl *s, uint32_t serialize_mt_unsafe)
378 {
379         if (!s)
380                 return -EINVAL;
381
382         /* comp_runstate and app_runstate act as the guard variables.
383          * Use load-acquire memory order. This synchronizes with
384          * store-release in service state set functions.
385          */
386         if (__atomic_load_n(&s->comp_runstate, __ATOMIC_ACQUIRE) !=
387                         RUNSTATE_RUNNING ||
388             __atomic_load_n(&s->app_runstate, __ATOMIC_ACQUIRE) !=
389                         RUNSTATE_RUNNING ||
390             !(service_mask & (UINT64_C(1) << i))) {
391                 cs->service_active_on_lcore[i] = 0;
392                 return -ENOEXEC;
393         }
394
395         cs->service_active_on_lcore[i] = 1;
396
397         if ((service_mt_safe(s) == 0) && (serialize_mt_unsafe == 1)) {
398                 if (!rte_spinlock_trylock(&s->execute_lock))
399                         return -EBUSY;
400
401                 service_runner_do_callback(s, cs, i);
402                 rte_spinlock_unlock(&s->execute_lock);
403         } else
404                 service_runner_do_callback(s, cs, i);
405
406         return 0;
407 }
408
409 int32_t
410 rte_service_may_be_active(uint32_t id)
411 {
412         uint32_t ids[RTE_MAX_LCORE] = {0};
413         int32_t lcore_count = rte_service_lcore_list(ids, RTE_MAX_LCORE);
414         int i;
415
416         if (id >= RTE_SERVICE_NUM_MAX || !service_valid(id))
417                 return -EINVAL;
418
419         for (i = 0; i < lcore_count; i++) {
420                 if (lcore_states[ids[i]].service_active_on_lcore[id])
421                         return 1;
422         }
423
424         return 0;
425 }
426
427 int32_t
428 rte_service_run_iter_on_app_lcore(uint32_t id, uint32_t serialize_mt_unsafe)
429 {
430         struct core_state *cs = &lcore_states[rte_lcore_id()];
431         struct rte_service_spec_impl *s;
432
433         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
434
435         /* Increment num_mapped_cores to reflect that this core is
436          * now mapped capable of running the service.
437          */
438         __atomic_add_fetch(&s->num_mapped_cores, 1, __ATOMIC_RELAXED);
439
440         int ret = service_run(id, cs, UINT64_MAX, s, serialize_mt_unsafe);
441
442         __atomic_sub_fetch(&s->num_mapped_cores, 1, __ATOMIC_RELAXED);
443
444         return ret;
445 }
446
447 static int32_t
448 service_runner_func(void *arg)
449 {
450         RTE_SET_USED(arg);
451         uint32_t i;
452         const int lcore = rte_lcore_id();
453         struct core_state *cs = &lcore_states[lcore];
454
455         __atomic_store_n(&cs->thread_active, 1, __ATOMIC_SEQ_CST);
456
457         /* runstate act as the guard variable. Use load-acquire
458          * memory order here to synchronize with store-release
459          * in runstate update functions.
460          */
461         while (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) ==
462                         RUNSTATE_RUNNING) {
463                 const uint64_t service_mask = cs->service_mask;
464
465                 for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
466                         if (!service_valid(i))
467                                 continue;
468                         /* return value ignored as no change to code flow */
469                         service_run(i, cs, service_mask, service_get(i), 1);
470                 }
471
472                 cs->loops++;
473         }
474
475         /* Use SEQ CST memory ordering to avoid any re-ordering around
476          * this store, ensuring that once this store is visible, the service
477          * lcore thread really is done in service cores code.
478          */
479         __atomic_store_n(&cs->thread_active, 0, __ATOMIC_SEQ_CST);
480         return 0;
481 }
482
483 int32_t
484 rte_service_lcore_may_be_active(uint32_t lcore)
485 {
486         if (lcore >= RTE_MAX_LCORE || !lcore_states[lcore].is_service_core)
487                 return -EINVAL;
488
489         /* Load thread_active using ACQUIRE to avoid instructions dependent on
490          * the result being re-ordered before this load completes.
491          */
492         return __atomic_load_n(&lcore_states[lcore].thread_active,
493                                __ATOMIC_ACQUIRE);
494 }
495
496 int32_t
497 rte_service_lcore_count(void)
498 {
499         int32_t count = 0;
500         uint32_t i;
501         for (i = 0; i < RTE_MAX_LCORE; i++)
502                 count += lcore_states[i].is_service_core;
503         return count;
504 }
505
506 int32_t
507 rte_service_lcore_list(uint32_t array[], uint32_t n)
508 {
509         uint32_t count = rte_service_lcore_count();
510         if (count > n)
511                 return -ENOMEM;
512
513         if (!array)
514                 return -EINVAL;
515
516         uint32_t i;
517         uint32_t idx = 0;
518         for (i = 0; i < RTE_MAX_LCORE; i++) {
519                 struct core_state *cs = &lcore_states[i];
520                 if (cs->is_service_core) {
521                         array[idx] = i;
522                         idx++;
523                 }
524         }
525
526         return count;
527 }
528
529 int32_t
530 rte_service_lcore_count_services(uint32_t lcore)
531 {
532         if (lcore >= RTE_MAX_LCORE)
533                 return -EINVAL;
534
535         struct core_state *cs = &lcore_states[lcore];
536         if (!cs->is_service_core)
537                 return -ENOTSUP;
538
539         return __builtin_popcountll(cs->service_mask);
540 }
541
542 int32_t
543 rte_service_start_with_defaults(void)
544 {
545         /* create a default mapping from cores to services, then start the
546          * services to make them transparent to unaware applications.
547          */
548         uint32_t i;
549         int ret;
550         uint32_t count = rte_service_get_count();
551
552         int32_t lcore_iter = 0;
553         uint32_t ids[RTE_MAX_LCORE] = {0};
554         int32_t lcore_count = rte_service_lcore_list(ids, RTE_MAX_LCORE);
555
556         if (lcore_count == 0)
557                 return -ENOTSUP;
558
559         for (i = 0; (int)i < lcore_count; i++)
560                 rte_service_lcore_start(ids[i]);
561
562         for (i = 0; i < count; i++) {
563                 /* do 1:1 core mapping here, with each service getting
564                  * assigned a single core by default. Adding multiple services
565                  * should multiplex to a single core, or 1:1 if there are the
566                  * same amount of services as service-cores
567                  */
568                 ret = rte_service_map_lcore_set(i, ids[lcore_iter], 1);
569                 if (ret)
570                         return -ENODEV;
571
572                 lcore_iter++;
573                 if (lcore_iter >= lcore_count)
574                         lcore_iter = 0;
575
576                 ret = rte_service_runstate_set(i, 1);
577                 if (ret)
578                         return -ENOEXEC;
579         }
580
581         return 0;
582 }
583
584 static int32_t
585 service_update(uint32_t sid, uint32_t lcore, uint32_t *set, uint32_t *enabled)
586 {
587         /* validate ID, or return error value */
588         if (sid >= RTE_SERVICE_NUM_MAX || !service_valid(sid) ||
589             lcore >= RTE_MAX_LCORE || !lcore_states[lcore].is_service_core)
590                 return -EINVAL;
591
592         uint64_t sid_mask = UINT64_C(1) << sid;
593         if (set) {
594                 uint64_t lcore_mapped = lcore_states[lcore].service_mask &
595                         sid_mask;
596
597                 if (*set && !lcore_mapped) {
598                         lcore_states[lcore].service_mask |= sid_mask;
599                         __atomic_add_fetch(&rte_services[sid].num_mapped_cores,
600                                 1, __ATOMIC_RELAXED);
601                 }
602                 if (!*set && lcore_mapped) {
603                         lcore_states[lcore].service_mask &= ~(sid_mask);
604                         __atomic_sub_fetch(&rte_services[sid].num_mapped_cores,
605                                 1, __ATOMIC_RELAXED);
606                 }
607         }
608
609         if (enabled)
610                 *enabled = !!(lcore_states[lcore].service_mask & (sid_mask));
611
612         return 0;
613 }
614
615 int32_t
616 rte_service_map_lcore_set(uint32_t id, uint32_t lcore, uint32_t enabled)
617 {
618         uint32_t on = enabled > 0;
619         return service_update(id, lcore, &on, 0);
620 }
621
622 int32_t
623 rte_service_map_lcore_get(uint32_t id, uint32_t lcore)
624 {
625         uint32_t enabled;
626         int ret = service_update(id, lcore, 0, &enabled);
627         if (ret == 0)
628                 return enabled;
629         return ret;
630 }
631
632 static void
633 set_lcore_state(uint32_t lcore, int32_t state)
634 {
635         /* mark core state in hugepage backed config */
636         struct rte_config *cfg = rte_eal_get_configuration();
637         cfg->lcore_role[lcore] = state;
638
639         /* mark state in process local lcore_config */
640         lcore_config[lcore].core_role = state;
641
642         /* update per-lcore optimized state tracking */
643         lcore_states[lcore].is_service_core = (state == ROLE_SERVICE);
644 }
645
646 int32_t
647 rte_service_lcore_reset_all(void)
648 {
649         /* loop over cores, reset all to mask 0 */
650         uint32_t i;
651         for (i = 0; i < RTE_MAX_LCORE; i++) {
652                 if (lcore_states[i].is_service_core) {
653                         lcore_states[i].service_mask = 0;
654                         set_lcore_state(i, ROLE_RTE);
655                         /* runstate act as guard variable Use
656                          * store-release memory order here to synchronize
657                          * with load-acquire in runstate read functions.
658                          */
659                         __atomic_store_n(&lcore_states[i].runstate,
660                                 RUNSTATE_STOPPED, __ATOMIC_RELEASE);
661                 }
662         }
663         for (i = 0; i < RTE_SERVICE_NUM_MAX; i++)
664                 __atomic_store_n(&rte_services[i].num_mapped_cores, 0,
665                         __ATOMIC_RELAXED);
666
667         return 0;
668 }
669
670 int32_t
671 rte_service_lcore_add(uint32_t lcore)
672 {
673         if (lcore >= RTE_MAX_LCORE)
674                 return -EINVAL;
675         if (lcore_states[lcore].is_service_core)
676                 return -EALREADY;
677
678         set_lcore_state(lcore, ROLE_SERVICE);
679
680         /* ensure that after adding a core the mask and state are defaults */
681         lcore_states[lcore].service_mask = 0;
682         /* Use store-release memory order here to synchronize with
683          * load-acquire in runstate read functions.
684          */
685         __atomic_store_n(&lcore_states[lcore].runstate, RUNSTATE_STOPPED,
686                 __ATOMIC_RELEASE);
687
688         return rte_eal_wait_lcore(lcore);
689 }
690
691 int32_t
692 rte_service_lcore_del(uint32_t lcore)
693 {
694         if (lcore >= RTE_MAX_LCORE)
695                 return -EINVAL;
696
697         struct core_state *cs = &lcore_states[lcore];
698         if (!cs->is_service_core)
699                 return -EINVAL;
700
701         /* runstate act as the guard variable. Use load-acquire
702          * memory order here to synchronize with store-release
703          * in runstate update functions.
704          */
705         if (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) !=
706                         RUNSTATE_STOPPED)
707                 return -EBUSY;
708
709         set_lcore_state(lcore, ROLE_RTE);
710
711         rte_smp_wmb();
712         return 0;
713 }
714
715 int32_t
716 rte_service_lcore_start(uint32_t lcore)
717 {
718         if (lcore >= RTE_MAX_LCORE)
719                 return -EINVAL;
720
721         struct core_state *cs = &lcore_states[lcore];
722         if (!cs->is_service_core)
723                 return -EINVAL;
724
725         /* runstate act as the guard variable. Use load-acquire
726          * memory order here to synchronize with store-release
727          * in runstate update functions.
728          */
729         if (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) ==
730                         RUNSTATE_RUNNING)
731                 return -EALREADY;
732
733         /* set core to run state first, and then launch otherwise it will
734          * return immediately as runstate keeps it in the service poll loop
735          */
736         /* Use load-acquire memory order here to synchronize with
737          * store-release in runstate update functions.
738          */
739         __atomic_store_n(&cs->runstate, RUNSTATE_RUNNING, __ATOMIC_RELEASE);
740
741         int ret = rte_eal_remote_launch(service_runner_func, 0, lcore);
742         /* returns -EBUSY if the core is already launched, 0 on success */
743         return ret;
744 }
745
746 int32_t
747 rte_service_lcore_stop(uint32_t lcore)
748 {
749         if (lcore >= RTE_MAX_LCORE)
750                 return -EINVAL;
751
752         /* runstate act as the guard variable. Use load-acquire
753          * memory order here to synchronize with store-release
754          * in runstate update functions.
755          */
756         if (__atomic_load_n(&lcore_states[lcore].runstate, __ATOMIC_ACQUIRE) ==
757                         RUNSTATE_STOPPED)
758                 return -EALREADY;
759
760         uint32_t i;
761         struct core_state *cs = &lcore_states[lcore];
762         uint64_t service_mask = cs->service_mask;
763
764         for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
765                 int32_t enabled = service_mask & (UINT64_C(1) << i);
766                 int32_t service_running = rte_service_runstate_get(i);
767                 int32_t only_core = (1 ==
768                         __atomic_load_n(&rte_services[i].num_mapped_cores,
769                                 __ATOMIC_RELAXED));
770
771                 /* Switch off this core for all services, to ensure that future
772                  * calls to may_be_active() know this core is switched off.
773                  */
774                 cs->service_active_on_lcore[i] = 0;
775
776                 /* if the core is mapped, and the service is running, and this
777                  * is the only core that is mapped, the service would cease to
778                  * run if this core stopped, so fail instead.
779                  */
780                 if (enabled && service_running && only_core)
781                         return -EBUSY;
782         }
783
784         /* Use store-release memory order here to synchronize with
785          * load-acquire in runstate read functions.
786          */
787         __atomic_store_n(&lcore_states[lcore].runstate, RUNSTATE_STOPPED,
788                 __ATOMIC_RELEASE);
789
790         return 0;
791 }
792
793 int32_t
794 rte_service_attr_get(uint32_t id, uint32_t attr_id, uint64_t *attr_value)
795 {
796         struct rte_service_spec_impl *s;
797         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
798
799         if (!attr_value)
800                 return -EINVAL;
801
802         switch (attr_id) {
803         case RTE_SERVICE_ATTR_CYCLES:
804                 *attr_value = s->cycles_spent;
805                 return 0;
806         case RTE_SERVICE_ATTR_CALL_COUNT:
807                 *attr_value = s->calls;
808                 return 0;
809         default:
810                 return -EINVAL;
811         }
812 }
813
814 int32_t
815 rte_service_lcore_attr_get(uint32_t lcore, uint32_t attr_id,
816                            uint64_t *attr_value)
817 {
818         struct core_state *cs;
819
820         if (lcore >= RTE_MAX_LCORE || !attr_value)
821                 return -EINVAL;
822
823         cs = &lcore_states[lcore];
824         if (!cs->is_service_core)
825                 return -ENOTSUP;
826
827         switch (attr_id) {
828         case RTE_SERVICE_LCORE_ATTR_LOOPS:
829                 *attr_value = cs->loops;
830                 return 0;
831         default:
832                 return -EINVAL;
833         }
834 }
835
836 int32_t
837 rte_service_attr_reset_all(uint32_t id)
838 {
839         struct rte_service_spec_impl *s;
840         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
841
842         s->cycles_spent = 0;
843         s->calls = 0;
844         return 0;
845 }
846
847 int32_t
848 rte_service_lcore_attr_reset_all(uint32_t lcore)
849 {
850         struct core_state *cs;
851
852         if (lcore >= RTE_MAX_LCORE)
853                 return -EINVAL;
854
855         cs = &lcore_states[lcore];
856         if (!cs->is_service_core)
857                 return -ENOTSUP;
858
859         cs->loops = 0;
860
861         return 0;
862 }
863
864 static void
865 service_dump_one(FILE *f, struct rte_service_spec_impl *s)
866 {
867         /* avoid divide by zero */
868         int calls = 1;
869
870         if (s->calls != 0)
871                 calls = s->calls;
872         fprintf(f, "  %s: stats %d\tcalls %"PRIu64"\tcycles %"
873                         PRIu64"\tavg: %"PRIu64"\n",
874                         s->spec.name, service_stats_enabled(s), s->calls,
875                         s->cycles_spent, s->cycles_spent / calls);
876 }
877
878 static void
879 service_dump_calls_per_lcore(FILE *f, uint32_t lcore)
880 {
881         uint32_t i;
882         struct core_state *cs = &lcore_states[lcore];
883
884         fprintf(f, "%02d\t", lcore);
885         for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
886                 if (!service_valid(i))
887                         continue;
888                 fprintf(f, "%"PRIu64"\t", cs->calls_per_service[i]);
889         }
890         fprintf(f, "\n");
891 }
892
893 int32_t
894 rte_service_dump(FILE *f, uint32_t id)
895 {
896         uint32_t i;
897         int print_one = (id != UINT32_MAX);
898
899         /* print only the specified service */
900         if (print_one) {
901                 struct rte_service_spec_impl *s;
902                 SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
903                 fprintf(f, "Service %s Summary\n", s->spec.name);
904                 service_dump_one(f, s);
905                 return 0;
906         }
907
908         /* print all services, as UINT32_MAX was passed as id */
909         fprintf(f, "Services Summary\n");
910         for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
911                 if (!service_valid(i))
912                         continue;
913                 service_dump_one(f, &rte_services[i]);
914         }
915
916         fprintf(f, "Service Cores Summary\n");
917         for (i = 0; i < RTE_MAX_LCORE; i++) {
918                 if (lcore_config[i].core_role != ROLE_SERVICE)
919                         continue;
920
921                 service_dump_calls_per_lcore(f, i);
922         }
923
924         return 0;
925 }