eal: remove Xen dom0 support
[dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   Copyright(c) 2013 6WIND.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #define _FILE_OFFSET_BITS 64
36 #include <errno.h>
37 #include <stdarg.h>
38 #include <stdbool.h>
39 #include <stdlib.h>
40 #include <stdio.h>
41 #include <stdint.h>
42 #include <inttypes.h>
43 #include <string.h>
44 #include <sys/mman.h>
45 #include <sys/types.h>
46 #include <sys/stat.h>
47 #include <sys/queue.h>
48 #include <sys/file.h>
49 #include <unistd.h>
50 #include <limits.h>
51 #include <sys/ioctl.h>
52 #include <sys/time.h>
53 #include <signal.h>
54 #include <setjmp.h>
55 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
56 #include <numa.h>
57 #include <numaif.h>
58 #endif
59
60 #include <rte_log.h>
61 #include <rte_memory.h>
62 #include <rte_memzone.h>
63 #include <rte_launch.h>
64 #include <rte_eal.h>
65 #include <rte_eal_memconfig.h>
66 #include <rte_per_lcore.h>
67 #include <rte_lcore.h>
68 #include <rte_common.h>
69 #include <rte_string_fns.h>
70
71 #include "eal_private.h"
72 #include "eal_internal_cfg.h"
73 #include "eal_filesystem.h"
74 #include "eal_hugepages.h"
75
76 #define PFN_MASK_SIZE   8
77
78 /**
79  * @file
80  * Huge page mapping under linux
81  *
82  * To reserve a big contiguous amount of memory, we use the hugepage
83  * feature of linux. For that, we need to have hugetlbfs mounted. This
84  * code will create many files in this directory (one per page) and
85  * map them in virtual memory. For each page, we will retrieve its
86  * physical address and remap it in order to have a virtual contiguous
87  * zone as well as a physical contiguous zone.
88  */
89
90 static uint64_t baseaddr_offset;
91
92 static bool phys_addrs_available = true;
93
94 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
95
96 static void
97 test_phys_addrs_available(void)
98 {
99         uint64_t tmp;
100         phys_addr_t physaddr;
101
102         if (!rte_eal_has_hugepages()) {
103                 RTE_LOG(ERR, EAL,
104                         "Started without hugepages support, physical addresses not available\n");
105                 phys_addrs_available = false;
106                 return;
107         }
108
109         physaddr = rte_mem_virt2phy(&tmp);
110         if (physaddr == RTE_BAD_PHYS_ADDR) {
111                 RTE_LOG(ERR, EAL,
112                         "Cannot obtain physical addresses: %s. "
113                         "Only vfio will function.\n",
114                         strerror(errno));
115                 phys_addrs_available = false;
116         }
117 }
118
119 /*
120  * Get physical address of any mapped virtual address in the current process.
121  */
122 phys_addr_t
123 rte_mem_virt2phy(const void *virtaddr)
124 {
125         int fd, retval;
126         uint64_t page, physaddr;
127         unsigned long virt_pfn;
128         int page_size;
129         off_t offset;
130
131         if (rte_eal_iova_mode() == RTE_IOVA_VA)
132                 return (uintptr_t)virtaddr;
133
134         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
135         if (!phys_addrs_available)
136                 return RTE_BAD_PHYS_ADDR;
137
138         /* standard page size */
139         page_size = getpagesize();
140
141         fd = open("/proc/self/pagemap", O_RDONLY);
142         if (fd < 0) {
143                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
144                         __func__, strerror(errno));
145                 return RTE_BAD_PHYS_ADDR;
146         }
147
148         virt_pfn = (unsigned long)virtaddr / page_size;
149         offset = sizeof(uint64_t) * virt_pfn;
150         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
151                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
152                                 __func__, strerror(errno));
153                 close(fd);
154                 return RTE_BAD_PHYS_ADDR;
155         }
156
157         retval = read(fd, &page, PFN_MASK_SIZE);
158         close(fd);
159         if (retval < 0) {
160                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
161                                 __func__, strerror(errno));
162                 return RTE_BAD_PHYS_ADDR;
163         } else if (retval != PFN_MASK_SIZE) {
164                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
165                                 "but expected %d:\n",
166                                 __func__, retval, PFN_MASK_SIZE);
167                 return RTE_BAD_PHYS_ADDR;
168         }
169
170         /*
171          * the pfn (page frame number) are bits 0-54 (see
172          * pagemap.txt in linux Documentation)
173          */
174         if ((page & 0x7fffffffffffffULL) == 0)
175                 return RTE_BAD_PHYS_ADDR;
176
177         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
178                 + ((unsigned long)virtaddr % page_size);
179
180         return physaddr;
181 }
182
183 /*
184  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
185  * it by browsing the /proc/self/pagemap special file.
186  */
187 static int
188 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
189 {
190         unsigned int i;
191         phys_addr_t addr;
192
193         for (i = 0; i < hpi->num_pages[0]; i++) {
194                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
195                 if (addr == RTE_BAD_PHYS_ADDR)
196                         return -1;
197                 hugepg_tbl[i].physaddr = addr;
198         }
199         return 0;
200 }
201
202 /*
203  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
204  */
205 static int
206 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
207 {
208         unsigned int i;
209         static phys_addr_t addr;
210
211         for (i = 0; i < hpi->num_pages[0]; i++) {
212                 hugepg_tbl[i].physaddr = addr;
213                 addr += hugepg_tbl[i].size;
214         }
215         return 0;
216 }
217
218 /*
219  * Check whether address-space layout randomization is enabled in
220  * the kernel. This is important for multi-process as it can prevent
221  * two processes mapping data to the same virtual address
222  * Returns:
223  *    0 - address space randomization disabled
224  *    1/2 - address space randomization enabled
225  *    negative error code on error
226  */
227 static int
228 aslr_enabled(void)
229 {
230         char c;
231         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
232         if (fd < 0)
233                 return -errno;
234         retval = read(fd, &c, 1);
235         close(fd);
236         if (retval < 0)
237                 return -errno;
238         if (retval == 0)
239                 return -EIO;
240         switch (c) {
241                 case '0' : return 0;
242                 case '1' : return 1;
243                 case '2' : return 2;
244                 default: return -EINVAL;
245         }
246 }
247
248 /*
249  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
250  * pointer to the mmap'd area and keep *size unmodified. Else, retry
251  * with a smaller zone: decrease *size by hugepage_sz until it reaches
252  * 0. In this case, return NULL. Note: this function returns an address
253  * which is a multiple of hugepage size.
254  */
255 static void *
256 get_virtual_area(size_t *size, size_t hugepage_sz)
257 {
258         void *addr;
259         int fd;
260         long aligned_addr;
261
262         if (internal_config.base_virtaddr != 0) {
263                 addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
264                                 baseaddr_offset);
265         }
266         else addr = NULL;
267
268         RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
269
270         fd = open("/dev/zero", O_RDONLY);
271         if (fd < 0){
272                 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
273                 return NULL;
274         }
275         do {
276                 addr = mmap(addr,
277                                 (*size) + hugepage_sz, PROT_READ,
278 #ifdef RTE_ARCH_PPC_64
279                                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
280 #else
281                                 MAP_PRIVATE,
282 #endif
283                                 fd, 0);
284                 if (addr == MAP_FAILED)
285                         *size -= hugepage_sz;
286         } while (addr == MAP_FAILED && *size > 0);
287
288         if (addr == MAP_FAILED) {
289                 close(fd);
290                 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
291                         strerror(errno));
292                 return NULL;
293         }
294
295         munmap(addr, (*size) + hugepage_sz);
296         close(fd);
297
298         /* align addr to a huge page size boundary */
299         aligned_addr = (long)addr;
300         aligned_addr += (hugepage_sz - 1);
301         aligned_addr &= (~(hugepage_sz - 1));
302         addr = (void *)(aligned_addr);
303
304         RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
305                 addr, *size);
306
307         /* increment offset */
308         baseaddr_offset += *size;
309
310         return addr;
311 }
312
313 static sigjmp_buf huge_jmpenv;
314
315 static void huge_sigbus_handler(int signo __rte_unused)
316 {
317         siglongjmp(huge_jmpenv, 1);
318 }
319
320 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
321  * non-static local variable in the stack frame calling sigsetjmp might be
322  * clobbered by a call to longjmp.
323  */
324 static int huge_wrap_sigsetjmp(void)
325 {
326         return sigsetjmp(huge_jmpenv, 1);
327 }
328
329 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
330 /* Callback for numa library. */
331 void numa_error(char *where)
332 {
333         RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
334 }
335 #endif
336
337 /*
338  * Mmap all hugepages of hugepage table: it first open a file in
339  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
340  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
341  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
342  * map continguous physical blocks in contiguous virtual blocks.
343  */
344 static unsigned
345 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
346                   uint64_t *essential_memory __rte_unused, int orig)
347 {
348         int fd;
349         unsigned i;
350         void *virtaddr;
351         void *vma_addr = NULL;
352         size_t vma_len = 0;
353 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
354         int node_id = -1;
355         int essential_prev = 0;
356         int oldpolicy;
357         struct bitmask *oldmask = numa_allocate_nodemask();
358         bool have_numa = true;
359         unsigned long maxnode = 0;
360
361         /* Check if kernel supports NUMA. */
362         if (numa_available() != 0) {
363                 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
364                 have_numa = false;
365         }
366
367         if (orig && have_numa) {
368                 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
369                 if (get_mempolicy(&oldpolicy, oldmask->maskp,
370                                   oldmask->size + 1, 0, 0) < 0) {
371                         RTE_LOG(ERR, EAL,
372                                 "Failed to get current mempolicy: %s. "
373                                 "Assuming MPOL_DEFAULT.\n", strerror(errno));
374                         oldpolicy = MPOL_DEFAULT;
375                 }
376                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
377                         if (internal_config.socket_mem[i])
378                                 maxnode = i + 1;
379         }
380 #endif
381
382         for (i = 0; i < hpi->num_pages[0]; i++) {
383                 uint64_t hugepage_sz = hpi->hugepage_sz;
384
385 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
386                 if (maxnode) {
387                         unsigned int j;
388
389                         for (j = 0; j < maxnode; j++)
390                                 if (essential_memory[j])
391                                         break;
392
393                         if (j == maxnode) {
394                                 node_id = (node_id + 1) % maxnode;
395                                 while (!internal_config.socket_mem[node_id]) {
396                                         node_id++;
397                                         node_id %= maxnode;
398                                 }
399                                 essential_prev = 0;
400                         } else {
401                                 node_id = j;
402                                 essential_prev = essential_memory[j];
403
404                                 if (essential_memory[j] < hugepage_sz)
405                                         essential_memory[j] = 0;
406                                 else
407                                         essential_memory[j] -= hugepage_sz;
408                         }
409
410                         RTE_LOG(DEBUG, EAL,
411                                 "Setting policy MPOL_PREFERRED for socket %d\n",
412                                 node_id);
413                         numa_set_preferred(node_id);
414                 }
415 #endif
416
417                 if (orig) {
418                         hugepg_tbl[i].file_id = i;
419                         hugepg_tbl[i].size = hugepage_sz;
420                         eal_get_hugefile_path(hugepg_tbl[i].filepath,
421                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
422                                         hugepg_tbl[i].file_id);
423                         hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
424                 }
425 #ifndef RTE_ARCH_64
426                 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
427                  * original map address as final map address.
428                  */
429                 else if ((hugepage_sz == RTE_PGSIZE_1G)
430                         || (hugepage_sz == RTE_PGSIZE_16G)) {
431                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
432                         hugepg_tbl[i].orig_va = NULL;
433                         continue;
434                 }
435 #endif
436                 else if (vma_len == 0) {
437                         unsigned j, num_pages;
438
439                         /* reserve a virtual area for next contiguous
440                          * physical block: count the number of
441                          * contiguous physical pages. */
442                         for (j = i+1; j < hpi->num_pages[0] ; j++) {
443 #ifdef RTE_ARCH_PPC_64
444                                 /* The physical addresses are sorted in
445                                  * descending order on PPC64 */
446                                 if (hugepg_tbl[j].physaddr !=
447                                     hugepg_tbl[j-1].physaddr - hugepage_sz)
448                                         break;
449 #else
450                                 if (hugepg_tbl[j].physaddr !=
451                                     hugepg_tbl[j-1].physaddr + hugepage_sz)
452                                         break;
453 #endif
454                         }
455                         num_pages = j - i;
456                         vma_len = num_pages * hugepage_sz;
457
458                         /* get the biggest virtual memory area up to
459                          * vma_len. If it fails, vma_addr is NULL, so
460                          * let the kernel provide the address. */
461                         vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
462                         if (vma_addr == NULL)
463                                 vma_len = hugepage_sz;
464                 }
465
466                 /* try to create hugepage file */
467                 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
468                 if (fd < 0) {
469                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
470                                         strerror(errno));
471                         goto out;
472                 }
473
474                 /* map the segment, and populate page tables,
475                  * the kernel fills this segment with zeros */
476                 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
477                                 MAP_SHARED | MAP_POPULATE, fd, 0);
478                 if (virtaddr == MAP_FAILED) {
479                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
480                                         strerror(errno));
481                         close(fd);
482                         goto out;
483                 }
484
485                 if (orig) {
486                         hugepg_tbl[i].orig_va = virtaddr;
487                 }
488                 else {
489                         hugepg_tbl[i].final_va = virtaddr;
490                 }
491
492                 if (orig) {
493                         /* In linux, hugetlb limitations, like cgroup, are
494                          * enforced at fault time instead of mmap(), even
495                          * with the option of MAP_POPULATE. Kernel will send
496                          * a SIGBUS signal. To avoid to be killed, save stack
497                          * environment here, if SIGBUS happens, we can jump
498                          * back here.
499                          */
500                         if (huge_wrap_sigsetjmp()) {
501                                 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
502                                         "hugepages of size %u MB\n",
503                                         (unsigned)(hugepage_sz / 0x100000));
504                                 munmap(virtaddr, hugepage_sz);
505                                 close(fd);
506                                 unlink(hugepg_tbl[i].filepath);
507 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
508                                 if (maxnode)
509                                         essential_memory[node_id] =
510                                                 essential_prev;
511 #endif
512                                 goto out;
513                         }
514                         *(int *)virtaddr = 0;
515                 }
516
517
518                 /* set shared flock on the file. */
519                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
520                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
521                                 __func__, strerror(errno));
522                         close(fd);
523                         goto out;
524                 }
525
526                 close(fd);
527
528                 vma_addr = (char *)vma_addr + hugepage_sz;
529                 vma_len -= hugepage_sz;
530         }
531
532 out:
533 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
534         if (maxnode) {
535                 RTE_LOG(DEBUG, EAL,
536                         "Restoring previous memory policy: %d\n", oldpolicy);
537                 if (oldpolicy == MPOL_DEFAULT) {
538                         numa_set_localalloc();
539                 } else if (set_mempolicy(oldpolicy, oldmask->maskp,
540                                          oldmask->size + 1) < 0) {
541                         RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
542                                 strerror(errno));
543                         numa_set_localalloc();
544                 }
545         }
546         numa_free_cpumask(oldmask);
547 #endif
548         return i;
549 }
550
551 /* Unmap all hugepages from original mapping */
552 static int
553 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
554 {
555         unsigned i;
556         for (i = 0; i < hpi->num_pages[0]; i++) {
557                 if (hugepg_tbl[i].orig_va) {
558                         munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
559                         hugepg_tbl[i].orig_va = NULL;
560                 }
561         }
562         return 0;
563 }
564
565 /*
566  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
567  * page.
568  */
569 static int
570 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
571 {
572         int socket_id;
573         char *end, *nodestr;
574         unsigned i, hp_count = 0;
575         uint64_t virt_addr;
576         char buf[BUFSIZ];
577         char hugedir_str[PATH_MAX];
578         FILE *f;
579
580         f = fopen("/proc/self/numa_maps", "r");
581         if (f == NULL) {
582                 RTE_LOG(NOTICE, EAL, "NUMA support not available"
583                         " consider that all memory is in socket_id 0\n");
584                 return 0;
585         }
586
587         snprintf(hugedir_str, sizeof(hugedir_str),
588                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
589
590         /* parse numa map */
591         while (fgets(buf, sizeof(buf), f) != NULL) {
592
593                 /* ignore non huge page */
594                 if (strstr(buf, " huge ") == NULL &&
595                                 strstr(buf, hugedir_str) == NULL)
596                         continue;
597
598                 /* get zone addr */
599                 virt_addr = strtoull(buf, &end, 16);
600                 if (virt_addr == 0 || end == buf) {
601                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
602                         goto error;
603                 }
604
605                 /* get node id (socket id) */
606                 nodestr = strstr(buf, " N");
607                 if (nodestr == NULL) {
608                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
609                         goto error;
610                 }
611                 nodestr += 2;
612                 end = strstr(nodestr, "=");
613                 if (end == NULL) {
614                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
615                         goto error;
616                 }
617                 end[0] = '\0';
618                 end = NULL;
619
620                 socket_id = strtoul(nodestr, &end, 0);
621                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
622                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
623                         goto error;
624                 }
625
626                 /* if we find this page in our mappings, set socket_id */
627                 for (i = 0; i < hpi->num_pages[0]; i++) {
628                         void *va = (void *)(unsigned long)virt_addr;
629                         if (hugepg_tbl[i].orig_va == va) {
630                                 hugepg_tbl[i].socket_id = socket_id;
631                                 hp_count++;
632 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
633                                 RTE_LOG(DEBUG, EAL,
634                                         "Hugepage %s is on socket %d\n",
635                                         hugepg_tbl[i].filepath, socket_id);
636 #endif
637                         }
638                 }
639         }
640
641         if (hp_count < hpi->num_pages[0])
642                 goto error;
643
644         fclose(f);
645         return 0;
646
647 error:
648         fclose(f);
649         return -1;
650 }
651
652 static int
653 cmp_physaddr(const void *a, const void *b)
654 {
655 #ifndef RTE_ARCH_PPC_64
656         const struct hugepage_file *p1 = a;
657         const struct hugepage_file *p2 = b;
658 #else
659         /* PowerPC needs memory sorted in reverse order from x86 */
660         const struct hugepage_file *p1 = b;
661         const struct hugepage_file *p2 = a;
662 #endif
663         if (p1->physaddr < p2->physaddr)
664                 return -1;
665         else if (p1->physaddr > p2->physaddr)
666                 return 1;
667         else
668                 return 0;
669 }
670
671 /*
672  * Uses mmap to create a shared memory area for storage of data
673  * Used in this file to store the hugepage file map on disk
674  */
675 static void *
676 create_shared_memory(const char *filename, const size_t mem_size)
677 {
678         void *retval;
679         int fd = open(filename, O_CREAT | O_RDWR, 0666);
680         if (fd < 0)
681                 return NULL;
682         if (ftruncate(fd, mem_size) < 0) {
683                 close(fd);
684                 return NULL;
685         }
686         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
687         close(fd);
688         return retval;
689 }
690
691 /*
692  * this copies *active* hugepages from one hugepage table to another.
693  * destination is typically the shared memory.
694  */
695 static int
696 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
697                 const struct hugepage_file * src, int src_size)
698 {
699         int src_pos, dst_pos = 0;
700
701         for (src_pos = 0; src_pos < src_size; src_pos++) {
702                 if (src[src_pos].final_va != NULL) {
703                         /* error on overflow attempt */
704                         if (dst_pos == dest_size)
705                                 return -1;
706                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
707                         dst_pos++;
708                 }
709         }
710         return 0;
711 }
712
713 static int
714 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
715                 unsigned num_hp_info)
716 {
717         unsigned socket, size;
718         int page, nrpages = 0;
719
720         /* get total number of hugepages */
721         for (size = 0; size < num_hp_info; size++)
722                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
723                         nrpages +=
724                         internal_config.hugepage_info[size].num_pages[socket];
725
726         for (page = 0; page < nrpages; page++) {
727                 struct hugepage_file *hp = &hugepg_tbl[page];
728
729                 if (hp->final_va != NULL && unlink(hp->filepath)) {
730                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
731                                 __func__, hp->filepath, strerror(errno));
732                 }
733         }
734         return 0;
735 }
736
737 /*
738  * unmaps hugepages that are not going to be used. since we originally allocate
739  * ALL hugepages (not just those we need), additional unmapping needs to be done.
740  */
741 static int
742 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
743                 struct hugepage_info *hpi,
744                 unsigned num_hp_info)
745 {
746         unsigned socket, size;
747         int page, nrpages = 0;
748
749         /* get total number of hugepages */
750         for (size = 0; size < num_hp_info; size++)
751                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
752                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
753
754         for (size = 0; size < num_hp_info; size++) {
755                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
756                         unsigned pages_found = 0;
757
758                         /* traverse until we have unmapped all the unused pages */
759                         for (page = 0; page < nrpages; page++) {
760                                 struct hugepage_file *hp = &hugepg_tbl[page];
761
762                                 /* find a page that matches the criteria */
763                                 if ((hp->size == hpi[size].hugepage_sz) &&
764                                                 (hp->socket_id == (int) socket)) {
765
766                                         /* if we skipped enough pages, unmap the rest */
767                                         if (pages_found == hpi[size].num_pages[socket]) {
768                                                 uint64_t unmap_len;
769
770                                                 unmap_len = hp->size;
771
772                                                 /* get start addr and len of the remaining segment */
773                                                 munmap(hp->final_va, (size_t) unmap_len);
774
775                                                 hp->final_va = NULL;
776                                                 if (unlink(hp->filepath) == -1) {
777                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
778                                                                         __func__, hp->filepath, strerror(errno));
779                                                         return -1;
780                                                 }
781                                         } else {
782                                                 /* lock the page and skip */
783                                                 pages_found++;
784                                         }
785
786                                 } /* match page */
787                         } /* foreach page */
788                 } /* foreach socket */
789         } /* foreach pagesize */
790
791         return 0;
792 }
793
794 static inline uint64_t
795 get_socket_mem_size(int socket)
796 {
797         uint64_t size = 0;
798         unsigned i;
799
800         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
801                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
802                 if (hpi->hugedir != NULL)
803                         size += hpi->hugepage_sz * hpi->num_pages[socket];
804         }
805
806         return size;
807 }
808
809 /*
810  * This function is a NUMA-aware equivalent of calc_num_pages.
811  * It takes in the list of hugepage sizes and the
812  * number of pages thereof, and calculates the best number of
813  * pages of each size to fulfill the request for <memory> ram
814  */
815 static int
816 calc_num_pages_per_socket(uint64_t * memory,
817                 struct hugepage_info *hp_info,
818                 struct hugepage_info *hp_used,
819                 unsigned num_hp_info)
820 {
821         unsigned socket, j, i = 0;
822         unsigned requested, available;
823         int total_num_pages = 0;
824         uint64_t remaining_mem, cur_mem;
825         uint64_t total_mem = internal_config.memory;
826
827         if (num_hp_info == 0)
828                 return -1;
829
830         /* if specific memory amounts per socket weren't requested */
831         if (internal_config.force_sockets == 0) {
832                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
833                 size_t default_size, total_size;
834                 unsigned lcore_id;
835
836                 /* Compute number of cores per socket */
837                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
838                 RTE_LCORE_FOREACH(lcore_id) {
839                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
840                 }
841
842                 /*
843                  * Automatically spread requested memory amongst detected sockets according
844                  * to number of cores from cpu mask present on each socket
845                  */
846                 total_size = internal_config.memory;
847                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
848
849                         /* Set memory amount per socket */
850                         default_size = (internal_config.memory * cpu_per_socket[socket])
851                                         / rte_lcore_count();
852
853                         /* Limit to maximum available memory on socket */
854                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
855
856                         /* Update sizes */
857                         memory[socket] = default_size;
858                         total_size -= default_size;
859                 }
860
861                 /*
862                  * If some memory is remaining, try to allocate it by getting all
863                  * available memory from sockets, one after the other
864                  */
865                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
866                         /* take whatever is available */
867                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
868                                                total_size);
869
870                         /* Update sizes */
871                         memory[socket] += default_size;
872                         total_size -= default_size;
873                 }
874         }
875
876         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
877                 /* skips if the memory on specific socket wasn't requested */
878                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
879                         hp_used[i].hugedir = hp_info[i].hugedir;
880                         hp_used[i].num_pages[socket] = RTE_MIN(
881                                         memory[socket] / hp_info[i].hugepage_sz,
882                                         hp_info[i].num_pages[socket]);
883
884                         cur_mem = hp_used[i].num_pages[socket] *
885                                         hp_used[i].hugepage_sz;
886
887                         memory[socket] -= cur_mem;
888                         total_mem -= cur_mem;
889
890                         total_num_pages += hp_used[i].num_pages[socket];
891
892                         /* check if we have met all memory requests */
893                         if (memory[socket] == 0)
894                                 break;
895
896                         /* check if we have any more pages left at this size, if so
897                          * move on to next size */
898                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
899                                 continue;
900                         /* At this point we know that there are more pages available that are
901                          * bigger than the memory we want, so lets see if we can get enough
902                          * from other page sizes.
903                          */
904                         remaining_mem = 0;
905                         for (j = i+1; j < num_hp_info; j++)
906                                 remaining_mem += hp_info[j].hugepage_sz *
907                                 hp_info[j].num_pages[socket];
908
909                         /* is there enough other memory, if not allocate another page and quit */
910                         if (remaining_mem < memory[socket]){
911                                 cur_mem = RTE_MIN(memory[socket],
912                                                 hp_info[i].hugepage_sz);
913                                 memory[socket] -= cur_mem;
914                                 total_mem -= cur_mem;
915                                 hp_used[i].num_pages[socket]++;
916                                 total_num_pages++;
917                                 break; /* we are done with this socket*/
918                         }
919                 }
920                 /* if we didn't satisfy all memory requirements per socket */
921                 if (memory[socket] > 0) {
922                         /* to prevent icc errors */
923                         requested = (unsigned) (internal_config.socket_mem[socket] /
924                                         0x100000);
925                         available = requested -
926                                         ((unsigned) (memory[socket] / 0x100000));
927                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
928                                         "Requested: %uMB, available: %uMB\n", socket,
929                                         requested, available);
930                         return -1;
931                 }
932         }
933
934         /* if we didn't satisfy total memory requirements */
935         if (total_mem > 0) {
936                 requested = (unsigned) (internal_config.memory / 0x100000);
937                 available = requested - (unsigned) (total_mem / 0x100000);
938                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
939                                 " available: %uMB\n", requested, available);
940                 return -1;
941         }
942         return total_num_pages;
943 }
944
945 static inline size_t
946 eal_get_hugepage_mem_size(void)
947 {
948         uint64_t size = 0;
949         unsigned i, j;
950
951         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
952                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
953                 if (hpi->hugedir != NULL) {
954                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
955                                 size += hpi->hugepage_sz * hpi->num_pages[j];
956                         }
957                 }
958         }
959
960         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
961 }
962
963 static struct sigaction huge_action_old;
964 static int huge_need_recover;
965
966 static void
967 huge_register_sigbus(void)
968 {
969         sigset_t mask;
970         struct sigaction action;
971
972         sigemptyset(&mask);
973         sigaddset(&mask, SIGBUS);
974         action.sa_flags = 0;
975         action.sa_mask = mask;
976         action.sa_handler = huge_sigbus_handler;
977
978         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
979 }
980
981 static void
982 huge_recover_sigbus(void)
983 {
984         if (huge_need_recover) {
985                 sigaction(SIGBUS, &huge_action_old, NULL);
986                 huge_need_recover = 0;
987         }
988 }
989
990 /*
991  * Prepare physical memory mapping: fill configuration structure with
992  * these infos, return 0 on success.
993  *  1. map N huge pages in separate files in hugetlbfs
994  *  2. find associated physical addr
995  *  3. find associated NUMA socket ID
996  *  4. sort all huge pages by physical address
997  *  5. remap these N huge pages in the correct order
998  *  6. unmap the first mapping
999  *  7. fill memsegs in configuration with contiguous zones
1000  */
1001 int
1002 rte_eal_hugepage_init(void)
1003 {
1004         struct rte_mem_config *mcfg;
1005         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
1006         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1007
1008         uint64_t memory[RTE_MAX_NUMA_NODES];
1009
1010         unsigned hp_offset;
1011         int i, j, new_memseg;
1012         int nr_hugefiles, nr_hugepages = 0;
1013         void *addr;
1014
1015         test_phys_addrs_available();
1016
1017         memset(used_hp, 0, sizeof(used_hp));
1018
1019         /* get pointer to global configuration */
1020         mcfg = rte_eal_get_configuration()->mem_config;
1021
1022         /* hugetlbfs can be disabled */
1023         if (internal_config.no_hugetlbfs) {
1024                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
1025                                 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
1026                 if (addr == MAP_FAILED) {
1027                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1028                                         strerror(errno));
1029                         return -1;
1030                 }
1031                 mcfg->memseg[0].phys_addr = RTE_BAD_PHYS_ADDR;
1032                 mcfg->memseg[0].addr = addr;
1033                 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
1034                 mcfg->memseg[0].len = internal_config.memory;
1035                 mcfg->memseg[0].socket_id = 0;
1036                 return 0;
1037         }
1038
1039         /* calculate total number of hugepages available. at this point we haven't
1040          * yet started sorting them so they all are on socket 0 */
1041         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1042                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1043                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1044
1045                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1046         }
1047
1048         /*
1049          * allocate a memory area for hugepage table.
1050          * this isn't shared memory yet. due to the fact that we need some
1051          * processing done on these pages, shared memory will be created
1052          * at a later stage.
1053          */
1054         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1055         if (tmp_hp == NULL)
1056                 goto fail;
1057
1058         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1059
1060         hp_offset = 0; /* where we start the current page size entries */
1061
1062         huge_register_sigbus();
1063
1064         /* make a copy of socket_mem, needed for balanced allocation. */
1065         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1066                 memory[i] = internal_config.socket_mem[i];
1067
1068
1069         /* map all hugepages and sort them */
1070         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1071                 unsigned pages_old, pages_new;
1072                 struct hugepage_info *hpi;
1073
1074                 /*
1075                  * we don't yet mark hugepages as used at this stage, so
1076                  * we just map all hugepages available to the system
1077                  * all hugepages are still located on socket 0
1078                  */
1079                 hpi = &internal_config.hugepage_info[i];
1080
1081                 if (hpi->num_pages[0] == 0)
1082                         continue;
1083
1084                 /* map all hugepages available */
1085                 pages_old = hpi->num_pages[0];
1086                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi,
1087                                               memory, 1);
1088                 if (pages_new < pages_old) {
1089                         RTE_LOG(DEBUG, EAL,
1090                                 "%d not %d hugepages of size %u MB allocated\n",
1091                                 pages_new, pages_old,
1092                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1093
1094                         int pages = pages_old - pages_new;
1095
1096                         nr_hugepages -= pages;
1097                         hpi->num_pages[0] = pages_new;
1098                         if (pages_new == 0)
1099                                 continue;
1100                 }
1101
1102                 if (phys_addrs_available) {
1103                         /* find physical addresses for each hugepage */
1104                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1105                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1106                                         "for %u MB pages\n",
1107                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1108                                 goto fail;
1109                         }
1110                 } else {
1111                         /* set physical addresses for each hugepage */
1112                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1113                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1114                                         "for %u MB pages\n",
1115                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1116                                 goto fail;
1117                         }
1118                 }
1119
1120                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1121                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1122                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1123                         goto fail;
1124                 }
1125
1126                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1127                       sizeof(struct hugepage_file), cmp_physaddr);
1128
1129                 /* remap all hugepages */
1130                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, NULL, 0) !=
1131                     hpi->num_pages[0]) {
1132                         RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
1133                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1134                         goto fail;
1135                 }
1136
1137                 /* unmap original mappings */
1138                 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1139                         goto fail;
1140
1141                 /* we have processed a num of hugepages of this size, so inc offset */
1142                 hp_offset += hpi->num_pages[0];
1143         }
1144
1145         huge_recover_sigbus();
1146
1147         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1148                 internal_config.memory = eal_get_hugepage_mem_size();
1149
1150         nr_hugefiles = nr_hugepages;
1151
1152
1153         /* clean out the numbers of pages */
1154         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1155                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1156                         internal_config.hugepage_info[i].num_pages[j] = 0;
1157
1158         /* get hugepages for each socket */
1159         for (i = 0; i < nr_hugefiles; i++) {
1160                 int socket = tmp_hp[i].socket_id;
1161
1162                 /* find a hugepage info with right size and increment num_pages */
1163                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1164                                 (int)internal_config.num_hugepage_sizes);
1165                 for (j = 0; j < nb_hpsizes; j++) {
1166                         if (tmp_hp[i].size ==
1167                                         internal_config.hugepage_info[j].hugepage_sz) {
1168                                 internal_config.hugepage_info[j].num_pages[socket]++;
1169                         }
1170                 }
1171         }
1172
1173         /* make a copy of socket_mem, needed for number of pages calculation */
1174         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1175                 memory[i] = internal_config.socket_mem[i];
1176
1177         /* calculate final number of pages */
1178         nr_hugepages = calc_num_pages_per_socket(memory,
1179                         internal_config.hugepage_info, used_hp,
1180                         internal_config.num_hugepage_sizes);
1181
1182         /* error if not enough memory available */
1183         if (nr_hugepages < 0)
1184                 goto fail;
1185
1186         /* reporting in! */
1187         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1188                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1189                         if (used_hp[i].num_pages[j] > 0) {
1190                                 RTE_LOG(DEBUG, EAL,
1191                                         "Requesting %u pages of size %uMB"
1192                                         " from socket %i\n",
1193                                         used_hp[i].num_pages[j],
1194                                         (unsigned)
1195                                         (used_hp[i].hugepage_sz / 0x100000),
1196                                         j);
1197                         }
1198                 }
1199         }
1200
1201         /* create shared memory */
1202         hugepage = create_shared_memory(eal_hugepage_info_path(),
1203                         nr_hugefiles * sizeof(struct hugepage_file));
1204
1205         if (hugepage == NULL) {
1206                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1207                 goto fail;
1208         }
1209         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1210
1211         /*
1212          * unmap pages that we won't need (looks at used_hp).
1213          * also, sets final_va to NULL on pages that were unmapped.
1214          */
1215         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1216                         internal_config.num_hugepage_sizes) < 0) {
1217                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1218                 goto fail;
1219         }
1220
1221         /*
1222          * copy stuff from malloc'd hugepage* to the actual shared memory.
1223          * this procedure only copies those hugepages that have final_va
1224          * not NULL. has overflow protection.
1225          */
1226         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1227                         tmp_hp, nr_hugefiles) < 0) {
1228                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1229                 goto fail;
1230         }
1231
1232         /* free the hugepage backing files */
1233         if (internal_config.hugepage_unlink &&
1234                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1235                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1236                 goto fail;
1237         }
1238
1239         /* free the temporary hugepage table */
1240         free(tmp_hp);
1241         tmp_hp = NULL;
1242
1243         /* first memseg index shall be 0 after incrementing it below */
1244         j = -1;
1245         for (i = 0; i < nr_hugefiles; i++) {
1246                 new_memseg = 0;
1247
1248                 /* if this is a new section, create a new memseg */
1249                 if (i == 0)
1250                         new_memseg = 1;
1251                 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1252                         new_memseg = 1;
1253                 else if (hugepage[i].size != hugepage[i-1].size)
1254                         new_memseg = 1;
1255
1256 #ifdef RTE_ARCH_PPC_64
1257                 /* On PPC64 architecture, the mmap always start from higher
1258                  * virtual address to lower address. Here, both the physical
1259                  * address and virtual address are in descending order */
1260                 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1261                     hugepage[i].size)
1262                         new_memseg = 1;
1263                 else if (((unsigned long)hugepage[i-1].final_va -
1264                     (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1265                         new_memseg = 1;
1266 #else
1267                 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1268                     hugepage[i].size)
1269                         new_memseg = 1;
1270                 else if (((unsigned long)hugepage[i].final_va -
1271                     (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1272                         new_memseg = 1;
1273 #endif
1274
1275                 if (new_memseg) {
1276                         j += 1;
1277                         if (j == RTE_MAX_MEMSEG)
1278                                 break;
1279
1280                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1281                         mcfg->memseg[j].addr = hugepage[i].final_va;
1282                         mcfg->memseg[j].len = hugepage[i].size;
1283                         mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1284                         mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1285                 }
1286                 /* continuation of previous memseg */
1287                 else {
1288 #ifdef RTE_ARCH_PPC_64
1289                 /* Use the phy and virt address of the last page as segment
1290                  * address for IBM Power architecture */
1291                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1292                         mcfg->memseg[j].addr = hugepage[i].final_va;
1293 #endif
1294                         mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1295                 }
1296                 hugepage[i].memseg_id = j;
1297         }
1298
1299         if (i < nr_hugefiles) {
1300                 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1301                         "from %d requested\n"
1302                         "Current %s=%d is not enough\n"
1303                         "Please either increase it or request less amount "
1304                         "of memory.\n",
1305                         i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1306                         RTE_MAX_MEMSEG);
1307                 goto fail;
1308         }
1309
1310         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1311
1312         return 0;
1313
1314 fail:
1315         huge_recover_sigbus();
1316         free(tmp_hp);
1317         if (hugepage != NULL)
1318                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1319
1320         return -1;
1321 }
1322
1323 /*
1324  * uses fstat to report the size of a file on disk
1325  */
1326 static off_t
1327 getFileSize(int fd)
1328 {
1329         struct stat st;
1330         if (fstat(fd, &st) < 0)
1331                 return 0;
1332         return st.st_size;
1333 }
1334
1335 /*
1336  * This creates the memory mappings in the secondary process to match that of
1337  * the server process. It goes through each memory segment in the DPDK runtime
1338  * configuration and finds the hugepages which form that segment, mapping them
1339  * in order to form a contiguous block in the virtual memory space
1340  */
1341 int
1342 rte_eal_hugepage_attach(void)
1343 {
1344         const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1345         struct hugepage_file *hp = NULL;
1346         unsigned num_hp = 0;
1347         unsigned i, s = 0; /* s used to track the segment number */
1348         unsigned max_seg = RTE_MAX_MEMSEG;
1349         off_t size = 0;
1350         int fd, fd_zero = -1, fd_hugepage = -1;
1351
1352         if (aslr_enabled() > 0) {
1353                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1354                                 "(ASLR) is enabled in the kernel.\n");
1355                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1356                                 "into secondary processes\n");
1357         }
1358
1359         test_phys_addrs_available();
1360
1361         fd_zero = open("/dev/zero", O_RDONLY);
1362         if (fd_zero < 0) {
1363                 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1364                 goto error;
1365         }
1366         fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1367         if (fd_hugepage < 0) {
1368                 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1369                 goto error;
1370         }
1371
1372         /* map all segments into memory to make sure we get the addrs */
1373         for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1374                 void *base_addr;
1375
1376                 /*
1377                  * the first memory segment with len==0 is the one that
1378                  * follows the last valid segment.
1379                  */
1380                 if (mcfg->memseg[s].len == 0)
1381                         break;
1382
1383                 /*
1384                  * fdzero is mmapped to get a contiguous block of virtual
1385                  * addresses of the appropriate memseg size.
1386                  * use mmap to get identical addresses as the primary process.
1387                  */
1388                 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1389                                  PROT_READ,
1390 #ifdef RTE_ARCH_PPC_64
1391                                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
1392 #else
1393                                  MAP_PRIVATE,
1394 #endif
1395                                  fd_zero, 0);
1396                 if (base_addr == MAP_FAILED ||
1397                     base_addr != mcfg->memseg[s].addr) {
1398                         max_seg = s;
1399                         if (base_addr != MAP_FAILED) {
1400                                 /* errno is stale, don't use */
1401                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1402                                         "in /dev/zero at [%p], got [%p] - "
1403                                         "please use '--base-virtaddr' option\n",
1404                                         (unsigned long long)mcfg->memseg[s].len,
1405                                         mcfg->memseg[s].addr, base_addr);
1406                                 munmap(base_addr, mcfg->memseg[s].len);
1407                         } else {
1408                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1409                                         "in /dev/zero at [%p]: '%s'\n",
1410                                         (unsigned long long)mcfg->memseg[s].len,
1411                                         mcfg->memseg[s].addr, strerror(errno));
1412                         }
1413                         if (aslr_enabled() > 0) {
1414                                 RTE_LOG(ERR, EAL, "It is recommended to "
1415                                         "disable ASLR in the kernel "
1416                                         "and retry running both primary "
1417                                         "and secondary processes\n");
1418                         }
1419                         goto error;
1420                 }
1421         }
1422
1423         size = getFileSize(fd_hugepage);
1424         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1425         if (hp == MAP_FAILED) {
1426                 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1427                 goto error;
1428         }
1429
1430         num_hp = size / sizeof(struct hugepage_file);
1431         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1432
1433         s = 0;
1434         while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1435                 void *addr, *base_addr;
1436                 uintptr_t offset = 0;
1437                 size_t mapping_size;
1438                 /*
1439                  * free previously mapped memory so we can map the
1440                  * hugepages into the space
1441                  */
1442                 base_addr = mcfg->memseg[s].addr;
1443                 munmap(base_addr, mcfg->memseg[s].len);
1444
1445                 /* find the hugepages for this segment and map them
1446                  * we don't need to worry about order, as the server sorted the
1447                  * entries before it did the second mmap of them */
1448                 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1449                         if (hp[i].memseg_id == (int)s){
1450                                 fd = open(hp[i].filepath, O_RDWR);
1451                                 if (fd < 0) {
1452                                         RTE_LOG(ERR, EAL, "Could not open %s\n",
1453                                                 hp[i].filepath);
1454                                         goto error;
1455                                 }
1456                                 mapping_size = hp[i].size;
1457                                 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1458                                                 mapping_size, PROT_READ | PROT_WRITE,
1459                                                 MAP_SHARED, fd, 0);
1460                                 close(fd); /* close file both on success and on failure */
1461                                 if (addr == MAP_FAILED ||
1462                                                 addr != RTE_PTR_ADD(base_addr, offset)) {
1463                                         RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1464                                                 hp[i].filepath);
1465                                         goto error;
1466                                 }
1467                                 offset+=mapping_size;
1468                         }
1469                 }
1470                 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1471                                 (unsigned long long)mcfg->memseg[s].len);
1472                 s++;
1473         }
1474         /* unmap the hugepage config file, since we are done using it */
1475         munmap(hp, size);
1476         close(fd_zero);
1477         close(fd_hugepage);
1478         return 0;
1479
1480 error:
1481         for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
1482                 munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
1483         if (hp != NULL && hp != MAP_FAILED)
1484                 munmap(hp, size);
1485         if (fd_zero >= 0)
1486                 close(fd_zero);
1487         if (fd_hugepage >= 0)
1488                 close(fd_hugepage);
1489         return -1;
1490 }
1491
1492 bool
1493 rte_eal_using_phys_addrs(void)
1494 {
1495         return phys_addrs_available;
1496 }