1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright 2014 6WIND S.A.
13 * The mbuf library provides the ability to create and destroy buffers
14 * that may be used by the RTE application to store message
15 * buffers. The message buffers are stored in a mempool, using the
16 * RTE mempool library.
18 * The preferred way to create a mbuf pool is to use
19 * rte_pktmbuf_pool_create(). However, in some situations, an
20 * application may want to have more control (ex: populate the pool with
21 * specific memory), in this case it is possible to use functions from
22 * rte_mempool. See how rte_pktmbuf_pool_create() is implemented for
25 * This library provides an API to allocate/free packet mbufs, which are
26 * used to carry network packets.
28 * To understand the concepts of packet buffers or mbufs, you
29 * should read "TCP/IP Illustrated, Volume 2: The Implementation,
30 * Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens"
31 * http://www.kohala.com/start/tcpipiv2.html
35 #include <rte_compat.h>
36 #include <rte_common.h>
37 #include <rte_config.h>
38 #include <rte_mempool.h>
39 #include <rte_memory.h>
40 #include <rte_prefetch.h>
41 #include <rte_branch_prediction.h>
42 #include <rte_byteorder.h>
43 #include <rte_mbuf_ptype.h>
44 #include <rte_mbuf_core.h>
51 * Get the name of a RX offload flag
54 * The mask describing the flag.
56 * The name of this flag, or NULL if it's not a valid RX flag.
58 const char *rte_get_rx_ol_flag_name(uint64_t mask);
61 * Dump the list of RX offload flags in a buffer
64 * The mask describing the RX flags.
68 * The length of the buffer.
70 * 0 on success, (-1) on error.
72 int rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
75 * Get the name of a TX offload flag
78 * The mask describing the flag. Usually only one bit must be set.
79 * Several bits can be given if they belong to the same mask.
82 * The name of this flag, or NULL if it's not a valid TX flag.
84 const char *rte_get_tx_ol_flag_name(uint64_t mask);
87 * Dump the list of TX offload flags in a buffer
90 * The mask describing the TX flags.
94 * The length of the buffer.
96 * 0 on success, (-1) on error.
98 int rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
101 * Prefetch the first part of the mbuf
103 * The first 64 bytes of the mbuf corresponds to fields that are used early
104 * in the receive path. If the cache line of the architecture is higher than
105 * 64B, the second part will also be prefetched.
108 * The pointer to the mbuf.
111 rte_mbuf_prefetch_part1(struct rte_mbuf *m)
113 rte_prefetch0(&m->cacheline0);
117 * Prefetch the second part of the mbuf
119 * The next 64 bytes of the mbuf corresponds to fields that are used in the
120 * transmit path. If the cache line of the architecture is higher than 64B,
121 * this function does nothing as it is expected that the full mbuf is
125 * The pointer to the mbuf.
128 rte_mbuf_prefetch_part2(struct rte_mbuf *m)
130 #if RTE_CACHE_LINE_SIZE == 64
131 rte_prefetch0(&m->cacheline1);
138 static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp);
141 * Return the IO address of the beginning of the mbuf data
144 * The pointer to the mbuf.
146 * The IO address of the beginning of the mbuf data
148 static inline rte_iova_t
149 rte_mbuf_data_iova(const struct rte_mbuf *mb)
151 return mb->buf_iova + mb->data_off;
155 * Return the default IO address of the beginning of the mbuf data
157 * This function is used by drivers in their receive function, as it
158 * returns the location where data should be written by the NIC, taking
159 * the default headroom in account.
162 * The pointer to the mbuf.
164 * The IO address of the beginning of the mbuf data
166 static inline rte_iova_t
167 rte_mbuf_data_iova_default(const struct rte_mbuf *mb)
169 return mb->buf_iova + RTE_PKTMBUF_HEADROOM;
173 * Return the mbuf owning the data buffer address of an indirect mbuf.
176 * The pointer to the indirect mbuf.
178 * The address of the direct mbuf corresponding to buffer_addr.
180 static inline struct rte_mbuf *
181 rte_mbuf_from_indirect(struct rte_mbuf *mi)
183 return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size);
187 * Return address of buffer embedded in the given mbuf.
189 * The return value shall be same as mb->buf_addr if the mbuf is already
190 * initialized and direct. However, this API is useful if mempool of the
191 * mbuf is already known because it doesn't need to access mbuf contents in
192 * order to get the mempool pointer.
195 * @b EXPERIMENTAL: This API may change without prior notice.
196 * This will be used by rte_mbuf_to_baddr() which has redundant code once
197 * experimental tag is removed.
200 * The pointer to the mbuf.
202 * The pointer to the mempool of the mbuf.
204 * The pointer of the mbuf buffer.
208 rte_mbuf_buf_addr(struct rte_mbuf *mb, struct rte_mempool *mp)
210 return (char *)mb + sizeof(*mb) + rte_pktmbuf_priv_size(mp);
214 * Return the default address of the beginning of the mbuf data.
217 * @b EXPERIMENTAL: This API may change without prior notice.
220 * The pointer to the mbuf.
222 * The pointer of the beginning of the mbuf data.
226 rte_mbuf_data_addr_default(__rte_unused struct rte_mbuf *mb)
228 /* gcc complains about calling this experimental function even
229 * when not using it. Hide it with ALLOW_EXPERIMENTAL_API.
231 #ifdef ALLOW_EXPERIMENTAL_API
232 return rte_mbuf_buf_addr(mb, mb->pool) + RTE_PKTMBUF_HEADROOM;
239 * Return address of buffer embedded in the given mbuf.
241 * @note: Accessing mempool pointer of a mbuf is expensive because the
242 * pointer is stored in the 2nd cache line of mbuf. If mempool is known, it
243 * is better not to reference the mempool pointer in mbuf but calling
244 * rte_mbuf_buf_addr() would be more efficient.
247 * The pointer to the mbuf.
249 * The address of the data buffer owned by the mbuf.
252 rte_mbuf_to_baddr(struct rte_mbuf *md)
254 #ifdef ALLOW_EXPERIMENTAL_API
255 return rte_mbuf_buf_addr(md, md->pool);
258 buffer_addr = (char *)md + sizeof(*md) + rte_pktmbuf_priv_size(md->pool);
264 * Return the starting address of the private data area embedded in
267 * Note that no check is made to ensure that a private data area
268 * actually exists in the supplied mbuf.
271 * The pointer to the mbuf.
273 * The starting address of the private data area of the given mbuf.
277 rte_mbuf_to_priv(struct rte_mbuf *m)
279 return RTE_PTR_ADD(m, sizeof(struct rte_mbuf));
283 * Private data in case of pktmbuf pool.
285 * A structure that contains some pktmbuf_pool-specific data that are
286 * appended after the mempool structure (in private data).
288 struct rte_pktmbuf_pool_private {
289 uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */
290 uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */
291 uint32_t flags; /**< reserved for future use. */
295 * Return the flags from private data in an mempool structure.
298 * A pointer to the mempool structure.
300 * The flags from the private data structure.
302 static inline uint32_t
303 rte_pktmbuf_priv_flags(struct rte_mempool *mp)
305 struct rte_pktmbuf_pool_private *mbp_priv;
307 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
308 return mbp_priv->flags;
312 * When set, pktmbuf mempool will hold only mbufs with pinned external
313 * buffer. The external buffer will be attached to the mbuf at the
314 * memory pool creation and will never be detached by the mbuf free calls.
315 * mbuf should not contain any room for data after the mbuf structure.
317 #define RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF (1 << 0)
320 * Returns non zero if given mbuf has a pinned external buffer, or zero
321 * otherwise. The pinned external buffer is allocated at pool creation
322 * time and should not be freed on mbuf freeing.
324 * External buffer is a user-provided anonymous buffer.
326 #define RTE_MBUF_HAS_PINNED_EXTBUF(mb) \
327 (rte_pktmbuf_priv_flags(mb->pool) & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF)
329 #ifdef RTE_LIBRTE_MBUF_DEBUG
331 /** check mbuf type in debug mode */
332 #define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h)
334 #else /* RTE_LIBRTE_MBUF_DEBUG */
336 /** check mbuf type in debug mode */
337 #define __rte_mbuf_sanity_check(m, is_h) do { } while (0)
339 #endif /* RTE_LIBRTE_MBUF_DEBUG */
341 #ifdef RTE_MBUF_REFCNT_ATOMIC
344 * Reads the value of an mbuf's refcnt.
348 * Reference count number.
350 static inline uint16_t
351 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
353 return __atomic_load_n(&m->refcnt, __ATOMIC_RELAXED);
357 * Sets an mbuf's refcnt to a defined value.
364 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
366 __atomic_store_n(&m->refcnt, new_value, __ATOMIC_RELAXED);
370 static inline uint16_t
371 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
373 return __atomic_add_fetch(&m->refcnt, (uint16_t)value,
378 * Adds given value to an mbuf's refcnt and returns its new value.
382 * Value to add/subtract
386 static inline uint16_t
387 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
390 * The atomic_add is an expensive operation, so we don't want to
391 * call it in the case where we know we are the unique holder of
392 * this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic
393 * operation has to be used because concurrent accesses on the
394 * reference counter can occur.
396 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
398 rte_mbuf_refcnt_set(m, (uint16_t)value);
399 return (uint16_t)value;
402 return __rte_mbuf_refcnt_update(m, value);
405 #else /* ! RTE_MBUF_REFCNT_ATOMIC */
408 static inline uint16_t
409 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
411 m->refcnt = (uint16_t)(m->refcnt + value);
416 * Adds given value to an mbuf's refcnt and returns its new value.
418 static inline uint16_t
419 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
421 return __rte_mbuf_refcnt_update(m, value);
425 * Reads the value of an mbuf's refcnt.
427 static inline uint16_t
428 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
434 * Sets an mbuf's refcnt to the defined value.
437 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
439 m->refcnt = new_value;
442 #endif /* RTE_MBUF_REFCNT_ATOMIC */
445 * Reads the refcnt of an external buffer.
448 * Shared data of the external buffer.
450 * Reference count number.
452 static inline uint16_t
453 rte_mbuf_ext_refcnt_read(const struct rte_mbuf_ext_shared_info *shinfo)
455 return __atomic_load_n(&shinfo->refcnt, __ATOMIC_RELAXED);
459 * Set refcnt of an external buffer.
462 * Shared data of the external buffer.
467 rte_mbuf_ext_refcnt_set(struct rte_mbuf_ext_shared_info *shinfo,
470 __atomic_store_n(&shinfo->refcnt, new_value, __ATOMIC_RELAXED);
474 * Add given value to refcnt of an external buffer and return its new
478 * Shared data of the external buffer.
480 * Value to add/subtract
484 static inline uint16_t
485 rte_mbuf_ext_refcnt_update(struct rte_mbuf_ext_shared_info *shinfo,
488 if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1)) {
490 rte_mbuf_ext_refcnt_set(shinfo, (uint16_t)value);
491 return (uint16_t)value;
494 return __atomic_add_fetch(&shinfo->refcnt, (uint16_t)value,
499 #define RTE_MBUF_PREFETCH_TO_FREE(m) do { \
506 * Sanity checks on an mbuf.
508 * Check the consistency of the given mbuf. The function will cause a
509 * panic if corruption is detected.
512 * The mbuf to be checked.
514 * True if the mbuf is a packet header, false if it is a sub-segment
515 * of a packet (in this case, some fields like nb_segs are not checked)
518 rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header);
521 * Sanity checks on a mbuf.
523 * Almost like rte_mbuf_sanity_check(), but this function gives the reason
524 * if corruption is detected rather than panic.
527 * The mbuf to be checked.
529 * True if the mbuf is a packet header, false if it is a sub-segment
530 * of a packet (in this case, some fields like nb_segs are not checked)
532 * A reference to a string pointer where to store the reason why a mbuf is
533 * considered invalid.
535 * - 0 if no issue has been found, reason is left untouched.
536 * - -1 if a problem is detected, reason then points to a string describing
537 * the reason why the mbuf is deemed invalid.
540 int rte_mbuf_check(const struct rte_mbuf *m, int is_header,
541 const char **reason);
543 #define MBUF_RAW_ALLOC_CHECK(m) do { \
544 RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1); \
545 RTE_ASSERT((m)->next == NULL); \
546 RTE_ASSERT((m)->nb_segs == 1); \
547 __rte_mbuf_sanity_check(m, 0); \
551 * Allocate an uninitialized mbuf from mempool *mp*.
553 * This function can be used by PMDs (especially in RX functions) to
554 * allocate an uninitialized mbuf. The driver is responsible of
555 * initializing all the required fields. See rte_pktmbuf_reset().
556 * For standard needs, prefer rte_pktmbuf_alloc().
558 * The caller can expect that the following fields of the mbuf structure
559 * are initialized: buf_addr, buf_iova, buf_len, refcnt=1, nb_segs=1,
560 * next=NULL, pool, priv_size. The other fields must be initialized
564 * The mempool from which mbuf is allocated.
566 * - The pointer to the new mbuf on success.
567 * - NULL if allocation failed.
569 static inline struct rte_mbuf *rte_mbuf_raw_alloc(struct rte_mempool *mp)
573 if (rte_mempool_get(mp, (void **)&m) < 0)
575 MBUF_RAW_ALLOC_CHECK(m);
580 * Put mbuf back into its original mempool.
582 * The caller must ensure that the mbuf is direct and properly
583 * reinitialized (refcnt=1, next=NULL, nb_segs=1), as done by
584 * rte_pktmbuf_prefree_seg().
586 * This function should be used with care, when optimization is
587 * required. For standard needs, prefer rte_pktmbuf_free() or
588 * rte_pktmbuf_free_seg().
591 * The mbuf to be freed.
593 static __rte_always_inline void
594 rte_mbuf_raw_free(struct rte_mbuf *m)
596 RTE_ASSERT(!RTE_MBUF_CLONED(m) &&
597 (!RTE_MBUF_HAS_EXTBUF(m) || RTE_MBUF_HAS_PINNED_EXTBUF(m)));
598 RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1);
599 RTE_ASSERT(m->next == NULL);
600 RTE_ASSERT(m->nb_segs == 1);
601 __rte_mbuf_sanity_check(m, 0);
602 rte_mempool_put(m->pool, m);
606 * The packet mbuf constructor.
608 * This function initializes some fields in the mbuf structure that are
609 * not modified by the user once created (origin pool, buffer start
610 * address, and so on). This function is given as a callback function to
611 * rte_mempool_obj_iter() or rte_mempool_create() at pool creation time.
614 * The mempool from which mbufs originate.
616 * A pointer that can be used by the user to retrieve useful information
617 * for mbuf initialization. This pointer is the opaque argument passed to
618 * rte_mempool_obj_iter() or rte_mempool_create().
620 * The mbuf to initialize.
622 * The index of the mbuf in the pool table.
624 void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg,
625 void *m, unsigned i);
628 * A packet mbuf pool constructor.
630 * This function initializes the mempool private data in the case of a
631 * pktmbuf pool. This private data is needed by the driver. The
632 * function must be called on the mempool before it is used, or it
633 * can be given as a callback function to rte_mempool_create() at
634 * pool creation. It can be extended by the user, for example, to
635 * provide another packet size.
638 * The mempool from which mbufs originate.
640 * A pointer that can be used by the user to retrieve useful information
641 * for mbuf initialization. This pointer is the opaque argument passed to
642 * rte_mempool_create().
644 void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg);
647 * Create a mbuf pool.
649 * This function creates and initializes a packet mbuf pool. It is
650 * a wrapper to rte_mempool functions.
653 * The name of the mbuf pool.
655 * The number of elements in the mbuf pool. The optimum size (in terms
656 * of memory usage) for a mempool is when n is a power of two minus one:
659 * Size of the per-core object cache. See rte_mempool_create() for
662 * Size of application private are between the rte_mbuf structure
663 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
664 * @param data_room_size
665 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
667 * The socket identifier where the memory should be allocated. The
668 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
671 * The pointer to the new allocated mempool, on success. NULL on error
672 * with rte_errno set appropriately. Possible rte_errno values include:
673 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
674 * - E_RTE_SECONDARY - function was called from a secondary process instance
675 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
676 * - ENOSPC - the maximum number of memzones has already been allocated
677 * - EEXIST - a memzone with the same name already exists
678 * - ENOMEM - no appropriate memory area found in which to create memzone
681 rte_pktmbuf_pool_create(const char *name, unsigned n,
682 unsigned cache_size, uint16_t priv_size, uint16_t data_room_size,
686 * Create a mbuf pool with a given mempool ops name
688 * This function creates and initializes a packet mbuf pool. It is
689 * a wrapper to rte_mempool functions.
692 * The name of the mbuf pool.
694 * The number of elements in the mbuf pool. The optimum size (in terms
695 * of memory usage) for a mempool is when n is a power of two minus one:
698 * Size of the per-core object cache. See rte_mempool_create() for
701 * Size of application private are between the rte_mbuf structure
702 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
703 * @param data_room_size
704 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
706 * The socket identifier where the memory should be allocated. The
707 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
710 * The mempool ops name to be used for this mempool instead of
711 * default mempool. The value can be *NULL* to use default mempool.
713 * The pointer to the new allocated mempool, on success. NULL on error
714 * with rte_errno set appropriately. Possible rte_errno values include:
715 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
716 * - E_RTE_SECONDARY - function was called from a secondary process instance
717 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
718 * - ENOSPC - the maximum number of memzones has already been allocated
719 * - EEXIST - a memzone with the same name already exists
720 * - ENOMEM - no appropriate memory area found in which to create memzone
723 rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
724 unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
725 int socket_id, const char *ops_name);
727 /** A structure that describes the pinned external buffer segment. */
728 struct rte_pktmbuf_extmem {
729 void *buf_ptr; /**< The virtual address of data buffer. */
730 rte_iova_t buf_iova; /**< The IO address of the data buffer. */
731 size_t buf_len; /**< External buffer length in bytes. */
732 uint16_t elt_size; /**< mbuf element size in bytes. */
736 * Create a mbuf pool with external pinned data buffers.
738 * This function creates and initializes a packet mbuf pool that contains
739 * only mbufs with external buffer. It is a wrapper to rte_mempool functions.
742 * The name of the mbuf pool.
744 * The number of elements in the mbuf pool. The optimum size (in terms
745 * of memory usage) for a mempool is when n is a power of two minus one:
748 * Size of the per-core object cache. See rte_mempool_create() for
751 * Size of application private are between the rte_mbuf structure
752 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
753 * @param data_room_size
754 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
756 * The socket identifier where the memory should be allocated. The
757 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
760 * Pointer to the array of structures describing the external memory
761 * for data buffers. It is caller responsibility to register this memory
762 * with rte_extmem_register() (if needed), map this memory to appropriate
763 * physical device, etc.
765 * Number of elements in the ext_mem array.
767 * The pointer to the new allocated mempool, on success. NULL on error
768 * with rte_errno set appropriately. Possible rte_errno values include:
769 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
770 * - E_RTE_SECONDARY - function was called from a secondary process instance
771 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
772 * - ENOSPC - the maximum number of memzones has already been allocated
773 * - EEXIST - a memzone with the same name already exists
774 * - ENOMEM - no appropriate memory area found in which to create memzone
778 rte_pktmbuf_pool_create_extbuf(const char *name, unsigned int n,
779 unsigned int cache_size, uint16_t priv_size,
780 uint16_t data_room_size, int socket_id,
781 const struct rte_pktmbuf_extmem *ext_mem,
782 unsigned int ext_num);
785 * Get the data room size of mbufs stored in a pktmbuf_pool
787 * The data room size is the amount of data that can be stored in a
788 * mbuf including the headroom (RTE_PKTMBUF_HEADROOM).
791 * The packet mbuf pool.
793 * The data room size of mbufs stored in this mempool.
795 static inline uint16_t
796 rte_pktmbuf_data_room_size(struct rte_mempool *mp)
798 struct rte_pktmbuf_pool_private *mbp_priv;
800 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
801 return mbp_priv->mbuf_data_room_size;
805 * Get the application private size of mbufs stored in a pktmbuf_pool
807 * The private size of mbuf is a zone located between the rte_mbuf
808 * structure and the data buffer where an application can store data
809 * associated to a packet.
812 * The packet mbuf pool.
814 * The private size of mbufs stored in this mempool.
816 static inline uint16_t
817 rte_pktmbuf_priv_size(struct rte_mempool *mp)
819 struct rte_pktmbuf_pool_private *mbp_priv;
821 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
822 return mbp_priv->mbuf_priv_size;
826 * Reset the data_off field of a packet mbuf to its default value.
828 * The given mbuf must have only one segment, which should be empty.
831 * The packet mbuf's data_off field has to be reset.
833 static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m)
835 m->data_off = (uint16_t)RTE_MIN((uint16_t)RTE_PKTMBUF_HEADROOM,
836 (uint16_t)m->buf_len);
840 * Reset the fields of a packet mbuf to their default values.
842 * The given mbuf must have only one segment.
845 * The packet mbuf to be reset.
847 #define MBUF_INVALID_PORT UINT16_MAX
849 static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
855 m->vlan_tci_outer = 0;
857 m->port = MBUF_INVALID_PORT;
859 m->ol_flags &= EXT_ATTACHED_MBUF;
861 rte_pktmbuf_reset_headroom(m);
864 __rte_mbuf_sanity_check(m, 1);
868 * Allocate a new mbuf from a mempool.
870 * This new mbuf contains one segment, which has a length of 0. The pointer
871 * to data is initialized to have some bytes of headroom in the buffer
872 * (if buffer size allows).
875 * The mempool from which the mbuf is allocated.
877 * - The pointer to the new mbuf on success.
878 * - NULL if allocation failed.
880 static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp)
883 if ((m = rte_mbuf_raw_alloc(mp)) != NULL)
884 rte_pktmbuf_reset(m);
889 * Allocate a bulk of mbufs, initialize refcnt and reset the fields to default
893 * The mempool from which mbufs are allocated.
895 * Array of pointers to mbufs
900 * - -ENOENT: Not enough entries in the mempool; no mbufs are retrieved.
902 static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool,
903 struct rte_mbuf **mbufs, unsigned count)
908 rc = rte_mempool_get_bulk(pool, (void **)mbufs, count);
912 /* To understand duff's device on loop unwinding optimization, see
913 * https://en.wikipedia.org/wiki/Duff's_device.
914 * Here while() loop is used rather than do() while{} to avoid extra
915 * check if count is zero.
919 while (idx != count) {
920 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
921 rte_pktmbuf_reset(mbufs[idx]);
925 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
926 rte_pktmbuf_reset(mbufs[idx]);
930 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
931 rte_pktmbuf_reset(mbufs[idx]);
935 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
936 rte_pktmbuf_reset(mbufs[idx]);
945 * Initialize shared data at the end of an external buffer before attaching
946 * to a mbuf by ``rte_pktmbuf_attach_extbuf()``. This is not a mandatory
947 * initialization but a helper function to simply spare a few bytes at the
948 * end of the buffer for shared data. If shared data is allocated
949 * separately, this should not be called but application has to properly
950 * initialize the shared data according to its need.
952 * Free callback and its argument is saved and the refcnt is set to 1.
955 * The value of buf_len will be reduced to RTE_PTR_DIFF(shinfo, buf_addr)
956 * after this initialization. This shall be used for
957 * ``rte_pktmbuf_attach_extbuf()``
960 * The pointer to the external buffer.
961 * @param [in,out] buf_len
962 * The pointer to length of the external buffer. Input value must be
963 * larger than the size of ``struct rte_mbuf_ext_shared_info`` and
964 * padding for alignment. If not enough, this function will return NULL.
965 * Adjusted buffer length will be returned through this pointer.
967 * Free callback function to call when the external buffer needs to be
970 * Argument for the free callback function.
973 * A pointer to the initialized shared data on success, return NULL
976 static inline struct rte_mbuf_ext_shared_info *
977 rte_pktmbuf_ext_shinfo_init_helper(void *buf_addr, uint16_t *buf_len,
978 rte_mbuf_extbuf_free_callback_t free_cb, void *fcb_opaque)
980 struct rte_mbuf_ext_shared_info *shinfo;
981 void *buf_end = RTE_PTR_ADD(buf_addr, *buf_len);
984 addr = RTE_PTR_ALIGN_FLOOR(RTE_PTR_SUB(buf_end, sizeof(*shinfo)),
986 if (addr <= buf_addr)
989 shinfo = (struct rte_mbuf_ext_shared_info *)addr;
990 shinfo->free_cb = free_cb;
991 shinfo->fcb_opaque = fcb_opaque;
992 rte_mbuf_ext_refcnt_set(shinfo, 1);
994 *buf_len = (uint16_t)RTE_PTR_DIFF(shinfo, buf_addr);
999 * Attach an external buffer to a mbuf.
1001 * User-managed anonymous buffer can be attached to an mbuf. When attaching
1002 * it, corresponding free callback function and its argument should be
1003 * provided via shinfo. This callback function will be called once all the
1004 * mbufs are detached from the buffer (refcnt becomes zero).
1006 * The headroom length of the attaching mbuf will be set to zero and this
1007 * can be properly adjusted after attachment. For example, ``rte_pktmbuf_adj()``
1008 * or ``rte_pktmbuf_reset_headroom()`` might be used.
1010 * Similarly, the packet length is initialized to 0. If the buffer contains
1011 * data, the user has to adjust ``data_len`` and the ``pkt_len`` field of
1012 * the mbuf accordingly.
1014 * More mbufs can be attached to the same external buffer by
1015 * ``rte_pktmbuf_attach()`` once the external buffer has been attached by
1018 * Detachment can be done by either ``rte_pktmbuf_detach_extbuf()`` or
1019 * ``rte_pktmbuf_detach()``.
1021 * Memory for shared data must be provided and user must initialize all of
1022 * the content properly, especially free callback and refcnt. The pointer
1023 * of shared data will be stored in m->shinfo.
1024 * ``rte_pktmbuf_ext_shinfo_init_helper`` can help to simply spare a few
1025 * bytes at the end of buffer for the shared data, store free callback and
1026 * its argument and set the refcnt to 1. The following is an example:
1028 * struct rte_mbuf_ext_shared_info *shinfo =
1029 * rte_pktmbuf_ext_shinfo_init_helper(buf_addr, &buf_len,
1030 * free_cb, fcb_arg);
1031 * rte_pktmbuf_attach_extbuf(m, buf_addr, buf_iova, buf_len, shinfo);
1032 * rte_pktmbuf_reset_headroom(m);
1033 * rte_pktmbuf_adj(m, data_len);
1035 * Attaching an external buffer is quite similar to mbuf indirection in
1036 * replacing buffer addresses and length of a mbuf, but a few differences:
1037 * - When an indirect mbuf is attached, refcnt of the direct mbuf would be
1038 * 2 as long as the direct mbuf itself isn't freed after the attachment.
1039 * In such cases, the buffer area of a direct mbuf must be read-only. But
1040 * external buffer has its own refcnt and it starts from 1. Unless
1041 * multiple mbufs are attached to a mbuf having an external buffer, the
1042 * external buffer is writable.
1043 * - There's no need to allocate buffer from a mempool. Any buffer can be
1044 * attached with appropriate free callback and its IO address.
1045 * - Smaller metadata is required to maintain shared data such as refcnt.
1048 * The pointer to the mbuf.
1050 * The pointer to the external buffer.
1052 * IO address of the external buffer.
1054 * The size of the external buffer.
1056 * User-provided memory for shared data of the external buffer.
1059 rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr,
1060 rte_iova_t buf_iova, uint16_t buf_len,
1061 struct rte_mbuf_ext_shared_info *shinfo)
1063 /* mbuf should not be read-only */
1064 RTE_ASSERT(RTE_MBUF_DIRECT(m) && rte_mbuf_refcnt_read(m) == 1);
1065 RTE_ASSERT(shinfo->free_cb != NULL);
1067 m->buf_addr = buf_addr;
1068 m->buf_iova = buf_iova;
1069 m->buf_len = buf_len;
1074 m->ol_flags |= EXT_ATTACHED_MBUF;
1079 * Detach the external buffer attached to a mbuf, same as
1080 * ``rte_pktmbuf_detach()``
1083 * The mbuf having external buffer.
1085 #define rte_pktmbuf_detach_extbuf(m) rte_pktmbuf_detach(m)
1088 * Copy dynamic fields from msrc to mdst.
1091 * The destination mbuf.
1096 rte_mbuf_dynfield_copy(struct rte_mbuf *mdst, const struct rte_mbuf *msrc)
1098 memcpy(&mdst->dynfield0, msrc->dynfield0, sizeof(mdst->dynfield0));
1099 memcpy(&mdst->dynfield1, msrc->dynfield1, sizeof(mdst->dynfield1));
1104 __rte_pktmbuf_copy_hdr(struct rte_mbuf *mdst, const struct rte_mbuf *msrc)
1106 mdst->port = msrc->port;
1107 mdst->vlan_tci = msrc->vlan_tci;
1108 mdst->vlan_tci_outer = msrc->vlan_tci_outer;
1109 mdst->tx_offload = msrc->tx_offload;
1110 mdst->hash = msrc->hash;
1111 mdst->packet_type = msrc->packet_type;
1112 rte_mbuf_dynfield_copy(mdst, msrc);
1116 * Attach packet mbuf to another packet mbuf.
1118 * If the mbuf we are attaching to isn't a direct buffer and is attached to
1119 * an external buffer, the mbuf being attached will be attached to the
1120 * external buffer instead of mbuf indirection.
1122 * Otherwise, the mbuf will be indirectly attached. After attachment we
1123 * refer the mbuf we attached as 'indirect', while mbuf we attached to as
1124 * 'direct'. The direct mbuf's reference counter is incremented.
1126 * Right now, not supported:
1127 * - attachment for already indirect mbuf (e.g. - mi has to be direct).
1128 * - mbuf we trying to attach (mi) is used by someone else
1129 * e.g. it's reference counter is greater then 1.
1132 * The indirect packet mbuf.
1134 * The packet mbuf we're attaching to.
1136 static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m)
1138 RTE_ASSERT(RTE_MBUF_DIRECT(mi) &&
1139 rte_mbuf_refcnt_read(mi) == 1);
1141 if (RTE_MBUF_HAS_EXTBUF(m)) {
1142 rte_mbuf_ext_refcnt_update(m->shinfo, 1);
1143 mi->ol_flags = m->ol_flags;
1144 mi->shinfo = m->shinfo;
1146 /* if m is not direct, get the mbuf that embeds the data */
1147 rte_mbuf_refcnt_update(rte_mbuf_from_indirect(m), 1);
1148 mi->priv_size = m->priv_size;
1149 mi->ol_flags = m->ol_flags | IND_ATTACHED_MBUF;
1152 __rte_pktmbuf_copy_hdr(mi, m);
1154 mi->data_off = m->data_off;
1155 mi->data_len = m->data_len;
1156 mi->buf_iova = m->buf_iova;
1157 mi->buf_addr = m->buf_addr;
1158 mi->buf_len = m->buf_len;
1161 mi->pkt_len = mi->data_len;
1164 __rte_mbuf_sanity_check(mi, 1);
1165 __rte_mbuf_sanity_check(m, 0);
1169 * @internal used by rte_pktmbuf_detach().
1171 * Decrement the reference counter of the external buffer. When the
1172 * reference counter becomes 0, the buffer is freed by pre-registered
1176 __rte_pktmbuf_free_extbuf(struct rte_mbuf *m)
1178 RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m));
1179 RTE_ASSERT(m->shinfo != NULL);
1181 if (rte_mbuf_ext_refcnt_update(m->shinfo, -1) == 0)
1182 m->shinfo->free_cb(m->buf_addr, m->shinfo->fcb_opaque);
1186 * @internal used by rte_pktmbuf_detach().
1188 * Decrement the direct mbuf's reference counter. When the reference
1189 * counter becomes 0, the direct mbuf is freed.
1192 __rte_pktmbuf_free_direct(struct rte_mbuf *m)
1194 struct rte_mbuf *md;
1196 RTE_ASSERT(RTE_MBUF_CLONED(m));
1198 md = rte_mbuf_from_indirect(m);
1200 if (rte_mbuf_refcnt_update(md, -1) == 0) {
1203 rte_mbuf_refcnt_set(md, 1);
1204 rte_mbuf_raw_free(md);
1209 * Detach a packet mbuf from external buffer or direct buffer.
1211 * - decrement refcnt and free the external/direct buffer if refcnt
1213 * - restore original mbuf address and length values.
1214 * - reset pktmbuf data and data_len to their default values.
1216 * All other fields of the given packet mbuf will be left intact.
1218 * If the packet mbuf was allocated from the pool with pinned
1219 * external buffers the rte_pktmbuf_detach does nothing with the
1220 * mbuf of this kind, because the pinned buffers are not supposed
1224 * The indirect attached packet mbuf.
1226 static inline void rte_pktmbuf_detach(struct rte_mbuf *m)
1228 struct rte_mempool *mp = m->pool;
1229 uint32_t mbuf_size, buf_len;
1232 if (RTE_MBUF_HAS_EXTBUF(m)) {
1234 * The mbuf has the external attached buffer,
1235 * we should check the type of the memory pool where
1236 * the mbuf was allocated from to detect the pinned
1239 uint32_t flags = rte_pktmbuf_priv_flags(mp);
1241 if (flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) {
1243 * The pinned external buffer should not be
1244 * detached from its backing mbuf, just exit.
1248 __rte_pktmbuf_free_extbuf(m);
1250 __rte_pktmbuf_free_direct(m);
1252 priv_size = rte_pktmbuf_priv_size(mp);
1253 mbuf_size = (uint32_t)(sizeof(struct rte_mbuf) + priv_size);
1254 buf_len = rte_pktmbuf_data_room_size(mp);
1256 m->priv_size = priv_size;
1257 m->buf_addr = (char *)m + mbuf_size;
1258 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
1259 m->buf_len = (uint16_t)buf_len;
1260 rte_pktmbuf_reset_headroom(m);
1266 * @internal Handle the packet mbufs with attached pinned external buffer
1267 * on the mbuf freeing:
1269 * - return zero if reference counter in shinfo is one. It means there is
1270 * no more reference to this pinned buffer and mbuf can be returned to
1273 * - otherwise (if reference counter is not one), decrement reference
1274 * counter and return non-zero value to prevent freeing the backing mbuf.
1276 * Returns non zero if mbuf should not be freed.
1278 static inline int __rte_pktmbuf_pinned_extbuf_decref(struct rte_mbuf *m)
1280 struct rte_mbuf_ext_shared_info *shinfo;
1282 /* Clear flags, mbuf is being freed. */
1283 m->ol_flags = EXT_ATTACHED_MBUF;
1286 /* Optimize for performance - do not dec/reinit */
1287 if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1))
1291 * Direct usage of add primitive to avoid
1292 * duplication of comparing with one.
1294 if (likely(__atomic_add_fetch(&shinfo->refcnt, (uint16_t)-1,
1298 /* Reinitialize counter before mbuf freeing. */
1299 rte_mbuf_ext_refcnt_set(shinfo, 1);
1304 * Decrease reference counter and unlink a mbuf segment
1306 * This function does the same than a free, except that it does not
1307 * return the segment to its pool.
1308 * It decreases the reference counter, and if it reaches 0, it is
1309 * detached from its parent for an indirect mbuf.
1312 * The mbuf to be unlinked
1314 * - (m) if it is the last reference. It can be recycled or freed.
1315 * - (NULL) if the mbuf still has remaining references on it.
1317 static __rte_always_inline struct rte_mbuf *
1318 rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
1320 __rte_mbuf_sanity_check(m, 0);
1322 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
1324 if (!RTE_MBUF_DIRECT(m)) {
1325 rte_pktmbuf_detach(m);
1326 if (RTE_MBUF_HAS_EXTBUF(m) &&
1327 RTE_MBUF_HAS_PINNED_EXTBUF(m) &&
1328 __rte_pktmbuf_pinned_extbuf_decref(m))
1332 if (m->next != NULL) {
1339 } else if (__rte_mbuf_refcnt_update(m, -1) == 0) {
1341 if (!RTE_MBUF_DIRECT(m)) {
1342 rte_pktmbuf_detach(m);
1343 if (RTE_MBUF_HAS_EXTBUF(m) &&
1344 RTE_MBUF_HAS_PINNED_EXTBUF(m) &&
1345 __rte_pktmbuf_pinned_extbuf_decref(m))
1349 if (m->next != NULL) {
1353 rte_mbuf_refcnt_set(m, 1);
1361 * Free a segment of a packet mbuf into its original mempool.
1363 * Free an mbuf, without parsing other segments in case of chained
1367 * The packet mbuf segment to be freed.
1369 static __rte_always_inline void
1370 rte_pktmbuf_free_seg(struct rte_mbuf *m)
1372 m = rte_pktmbuf_prefree_seg(m);
1373 if (likely(m != NULL))
1374 rte_mbuf_raw_free(m);
1378 * Free a packet mbuf back into its original mempool.
1380 * Free an mbuf, and all its segments in case of chained buffers. Each
1381 * segment is added back into its original mempool.
1384 * The packet mbuf to be freed. If NULL, the function does nothing.
1386 static inline void rte_pktmbuf_free(struct rte_mbuf *m)
1388 struct rte_mbuf *m_next;
1391 __rte_mbuf_sanity_check(m, 1);
1395 rte_pktmbuf_free_seg(m);
1401 * Free a bulk of packet mbufs back into their original mempools.
1403 * Free a bulk of mbufs, and all their segments in case of chained buffers.
1404 * Each segment is added back into its original mempool.
1407 * Array of pointers to packet mbufs.
1408 * The array may contain NULL pointers.
1413 void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count);
1416 * Create a "clone" of the given packet mbuf.
1418 * Walks through all segments of the given packet mbuf, and for each of them:
1419 * - Creates a new packet mbuf from the given pool.
1420 * - Attaches newly created mbuf to the segment.
1421 * Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values
1422 * from the original packet mbuf.
1425 * The packet mbuf to be cloned.
1427 * The mempool from which the "clone" mbufs are allocated.
1429 * - The pointer to the new "clone" mbuf on success.
1430 * - NULL if allocation fails.
1433 rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp);
1436 * Create a full copy of a given packet mbuf.
1438 * Copies all the data from a given packet mbuf to a newly allocated
1439 * set of mbufs. The private data are is not copied.
1442 * The packet mbuf to be copiedd.
1444 * The mempool from which the "clone" mbufs are allocated.
1446 * The number of bytes to skip before copying.
1447 * If the mbuf does not have that many bytes, it is an error
1448 * and NULL is returned.
1450 * The upper limit on bytes to copy. Passing UINT32_MAX
1451 * means all data (after offset).
1453 * - The pointer to the new "clone" mbuf on success.
1454 * - NULL if allocation fails.
1458 rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp,
1459 uint32_t offset, uint32_t length);
1462 * Adds given value to the refcnt of all packet mbuf segments.
1464 * Walks through all segments of given packet mbuf and for each of them
1465 * invokes rte_mbuf_refcnt_update().
1468 * The packet mbuf whose refcnt to be updated.
1470 * The value to add to the mbuf's segments refcnt.
1472 static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v)
1474 __rte_mbuf_sanity_check(m, 1);
1477 rte_mbuf_refcnt_update(m, v);
1478 } while ((m = m->next) != NULL);
1482 * Get the headroom in a packet mbuf.
1487 * The length of the headroom.
1489 static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m)
1491 __rte_mbuf_sanity_check(m, 0);
1496 * Get the tailroom of a packet mbuf.
1501 * The length of the tailroom.
1503 static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m)
1505 __rte_mbuf_sanity_check(m, 0);
1506 return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) -
1511 * Get the last segment of the packet.
1516 * The last segment of the given mbuf.
1518 static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m)
1520 __rte_mbuf_sanity_check(m, 1);
1521 while (m->next != NULL)
1527 * A macro that returns the length of the packet.
1529 * The value can be read or assigned.
1534 #define rte_pktmbuf_pkt_len(m) ((m)->pkt_len)
1537 * A macro that returns the length of the segment.
1539 * The value can be read or assigned.
1544 #define rte_pktmbuf_data_len(m) ((m)->data_len)
1547 * Prepend len bytes to an mbuf data area.
1549 * Returns a pointer to the new
1550 * data start address. If there is not enough headroom in the first
1551 * segment, the function will return NULL, without modifying the mbuf.
1556 * The amount of data to prepend (in bytes).
1558 * A pointer to the start of the newly prepended data, or
1559 * NULL if there is not enough headroom space in the first segment
1561 static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m,
1564 __rte_mbuf_sanity_check(m, 1);
1566 if (unlikely(len > rte_pktmbuf_headroom(m)))
1569 /* NB: elaborating the subtraction like this instead of using
1570 * -= allows us to ensure the result type is uint16_t
1571 * avoiding compiler warnings on gcc 8.1 at least */
1572 m->data_off = (uint16_t)(m->data_off - len);
1573 m->data_len = (uint16_t)(m->data_len + len);
1574 m->pkt_len = (m->pkt_len + len);
1576 return (char *)m->buf_addr + m->data_off;
1580 * Append len bytes to an mbuf.
1582 * Append len bytes to an mbuf and return a pointer to the start address
1583 * of the added data. If there is not enough tailroom in the last
1584 * segment, the function will return NULL, without modifying the mbuf.
1589 * The amount of data to append (in bytes).
1591 * A pointer to the start of the newly appended data, or
1592 * NULL if there is not enough tailroom space in the last segment
1594 static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
1597 struct rte_mbuf *m_last;
1599 __rte_mbuf_sanity_check(m, 1);
1601 m_last = rte_pktmbuf_lastseg(m);
1602 if (unlikely(len > rte_pktmbuf_tailroom(m_last)))
1605 tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len;
1606 m_last->data_len = (uint16_t)(m_last->data_len + len);
1607 m->pkt_len = (m->pkt_len + len);
1608 return (char*) tail;
1612 * Remove len bytes at the beginning of an mbuf.
1614 * Returns a pointer to the start address of the new data area. If the
1615 * length is greater than the length of the first segment, then the
1616 * function will fail and return NULL, without modifying the mbuf.
1621 * The amount of data to remove (in bytes).
1623 * A pointer to the new start of the data.
1625 static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
1627 __rte_mbuf_sanity_check(m, 1);
1629 if (unlikely(len > m->data_len))
1632 /* NB: elaborating the addition like this instead of using
1633 * += allows us to ensure the result type is uint16_t
1634 * avoiding compiler warnings on gcc 8.1 at least */
1635 m->data_len = (uint16_t)(m->data_len - len);
1636 m->data_off = (uint16_t)(m->data_off + len);
1637 m->pkt_len = (m->pkt_len - len);
1638 return (char *)m->buf_addr + m->data_off;
1642 * Remove len bytes of data at the end of the mbuf.
1644 * If the length is greater than the length of the last segment, the
1645 * function will fail and return -1 without modifying the mbuf.
1650 * The amount of data to remove (in bytes).
1655 static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
1657 struct rte_mbuf *m_last;
1659 __rte_mbuf_sanity_check(m, 1);
1661 m_last = rte_pktmbuf_lastseg(m);
1662 if (unlikely(len > m_last->data_len))
1665 m_last->data_len = (uint16_t)(m_last->data_len - len);
1666 m->pkt_len = (m->pkt_len - len);
1671 * Test if mbuf data is contiguous.
1676 * - 1, if all data is contiguous (one segment).
1677 * - 0, if there is several segments.
1679 static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m)
1681 __rte_mbuf_sanity_check(m, 1);
1682 return m->nb_segs == 1;
1686 * @internal used by rte_pktmbuf_read().
1688 const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
1689 uint32_t len, void *buf);
1692 * Read len data bytes in a mbuf at specified offset.
1694 * If the data is contiguous, return the pointer in the mbuf data, else
1695 * copy the data in the buffer provided by the user and return its
1699 * The pointer to the mbuf.
1701 * The offset of the data in the mbuf.
1703 * The amount of bytes to read.
1705 * The buffer where data is copied if it is not contiguous in mbuf
1706 * data. Its length should be at least equal to the len parameter.
1708 * The pointer to the data, either in the mbuf if it is contiguous,
1709 * or in the user buffer. If mbuf is too small, NULL is returned.
1711 static inline const void *rte_pktmbuf_read(const struct rte_mbuf *m,
1712 uint32_t off, uint32_t len, void *buf)
1714 if (likely(off + len <= rte_pktmbuf_data_len(m)))
1715 return rte_pktmbuf_mtod_offset(m, char *, off);
1717 return __rte_pktmbuf_read(m, off, len, buf);
1721 * Chain an mbuf to another, thereby creating a segmented packet.
1723 * Note: The implementation will do a linear walk over the segments to find
1724 * the tail entry. For cases when there are many segments, it's better to
1725 * chain the entries manually.
1728 * The head of the mbuf chain (the first packet)
1730 * The mbuf to put last in the chain
1734 * - -EOVERFLOW, if the chain segment limit exceeded
1736 static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
1738 struct rte_mbuf *cur_tail;
1740 /* Check for number-of-segments-overflow */
1741 if (head->nb_segs + tail->nb_segs > RTE_MBUF_MAX_NB_SEGS)
1744 /* Chain 'tail' onto the old tail */
1745 cur_tail = rte_pktmbuf_lastseg(head);
1746 cur_tail->next = tail;
1748 /* accumulate number of segments and total length.
1749 * NB: elaborating the addition like this instead of using
1750 * -= allows us to ensure the result type is uint16_t
1751 * avoiding compiler warnings on gcc 8.1 at least */
1752 head->nb_segs = (uint16_t)(head->nb_segs + tail->nb_segs);
1753 head->pkt_len += tail->pkt_len;
1755 /* pkt_len is only set in the head */
1756 tail->pkt_len = tail->data_len;
1763 * @b EXPERIMENTAL: This API may change without prior notice.
1765 * For given input values generate raw tx_offload value.
1766 * Note that it is caller responsibility to make sure that input parameters
1767 * don't exceed maximum bit-field values.
1777 * outer_l3_len value.
1779 * outer_l2_len value.
1783 * raw tx_offload value.
1785 static __rte_always_inline uint64_t
1786 rte_mbuf_tx_offload(uint64_t il2, uint64_t il3, uint64_t il4, uint64_t tso,
1787 uint64_t ol3, uint64_t ol2, uint64_t unused)
1789 return il2 << RTE_MBUF_L2_LEN_OFS |
1790 il3 << RTE_MBUF_L3_LEN_OFS |
1791 il4 << RTE_MBUF_L4_LEN_OFS |
1792 tso << RTE_MBUF_TSO_SEGSZ_OFS |
1793 ol3 << RTE_MBUF_OUTL3_LEN_OFS |
1794 ol2 << RTE_MBUF_OUTL2_LEN_OFS |
1795 unused << RTE_MBUF_TXOFLD_UNUSED_OFS;
1799 * Validate general requirements for Tx offload in mbuf.
1801 * This function checks correctness and completeness of Tx offload settings.
1804 * The packet mbuf to be validated.
1806 * 0 if packet is valid
1809 rte_validate_tx_offload(const struct rte_mbuf *m)
1811 uint64_t ol_flags = m->ol_flags;
1813 /* Does packet set any of available offloads? */
1814 if (!(ol_flags & PKT_TX_OFFLOAD_MASK))
1817 /* IP checksum can be counted only for IPv4 packet */
1818 if ((ol_flags & PKT_TX_IP_CKSUM) && (ol_flags & PKT_TX_IPV6))
1821 /* IP type not set when required */
1822 if (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG))
1823 if (!(ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)))
1826 /* Check requirements for TSO packet */
1827 if (ol_flags & PKT_TX_TCP_SEG)
1828 if ((m->tso_segsz == 0) ||
1829 ((ol_flags & PKT_TX_IPV4) &&
1830 !(ol_flags & PKT_TX_IP_CKSUM)))
1833 /* PKT_TX_OUTER_IP_CKSUM set for non outer IPv4 packet. */
1834 if ((ol_flags & PKT_TX_OUTER_IP_CKSUM) &&
1835 !(ol_flags & PKT_TX_OUTER_IPV4))
1842 * @internal used by rte_pktmbuf_linearize().
1844 int __rte_pktmbuf_linearize(struct rte_mbuf *mbuf);
1847 * Linearize data in mbuf.
1849 * This function moves the mbuf data in the first segment if there is enough
1850 * tailroom. The subsequent segments are unchained and freed.
1859 rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
1861 if (rte_pktmbuf_is_contiguous(mbuf))
1863 return __rte_pktmbuf_linearize(mbuf);
1867 * Dump an mbuf structure to a file.
1869 * Dump all fields for the given packet mbuf and all its associated
1870 * segments (in the case of a chained buffer).
1873 * A pointer to a file for output
1877 * If dump_len != 0, also dump the "dump_len" first data bytes of
1880 void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len);
1883 * Get the value of mbuf sched queue_id field.
1885 static inline uint32_t
1886 rte_mbuf_sched_queue_get(const struct rte_mbuf *m)
1888 return m->hash.sched.queue_id;
1892 * Get the value of mbuf sched traffic_class field.
1894 static inline uint8_t
1895 rte_mbuf_sched_traffic_class_get(const struct rte_mbuf *m)
1897 return m->hash.sched.traffic_class;
1901 * Get the value of mbuf sched color field.
1903 static inline uint8_t
1904 rte_mbuf_sched_color_get(const struct rte_mbuf *m)
1906 return m->hash.sched.color;
1910 * Get the values of mbuf sched queue_id, traffic_class and color.
1915 * Returns the queue id
1916 * @param traffic_class
1917 * Returns the traffic class id
1919 * Returns the colour id
1922 rte_mbuf_sched_get(const struct rte_mbuf *m, uint32_t *queue_id,
1923 uint8_t *traffic_class,
1926 struct rte_mbuf_sched sched = m->hash.sched;
1928 *queue_id = sched.queue_id;
1929 *traffic_class = sched.traffic_class;
1930 *color = sched.color;
1934 * Set the mbuf sched queue_id to the defined value.
1937 rte_mbuf_sched_queue_set(struct rte_mbuf *m, uint32_t queue_id)
1939 m->hash.sched.queue_id = queue_id;
1943 * Set the mbuf sched traffic_class id to the defined value.
1946 rte_mbuf_sched_traffic_class_set(struct rte_mbuf *m, uint8_t traffic_class)
1948 m->hash.sched.traffic_class = traffic_class;
1952 * Set the mbuf sched color id to the defined value.
1955 rte_mbuf_sched_color_set(struct rte_mbuf *m, uint8_t color)
1957 m->hash.sched.color = color;
1961 * Set the mbuf sched queue_id, traffic_class and color.
1966 * Queue id value to be set
1967 * @param traffic_class
1968 * Traffic class id value to be set
1970 * Color id to be set
1973 rte_mbuf_sched_set(struct rte_mbuf *m, uint32_t queue_id,
1974 uint8_t traffic_class,
1977 m->hash.sched = (struct rte_mbuf_sched){
1978 .queue_id = queue_id,
1979 .traffic_class = traffic_class,
1989 #endif /* _RTE_MBUF_H_ */