1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright 2014 6WIND S.A.
13 * The mbuf library provides the ability to create and destroy buffers
14 * that may be used by the RTE application to store message
15 * buffers. The message buffers are stored in a mempool, using the
16 * RTE mempool library.
18 * The preferred way to create a mbuf pool is to use
19 * rte_pktmbuf_pool_create(). However, in some situations, an
20 * application may want to have more control (ex: populate the pool with
21 * specific memory), in this case it is possible to use functions from
22 * rte_mempool. See how rte_pktmbuf_pool_create() is implemented for
25 * This library provides an API to allocate/free packet mbufs, which are
26 * used to carry network packets.
28 * To understand the concepts of packet buffers or mbufs, you
29 * should read "TCP/IP Illustrated, Volume 2: The Implementation,
30 * Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens"
31 * http://www.kohala.com/start/tcpipiv2.html
35 #include <rte_compat.h>
36 #include <rte_common.h>
37 #include <rte_config.h>
38 #include <rte_mempool.h>
39 #include <rte_memory.h>
40 #include <rte_atomic.h>
41 #include <rte_prefetch.h>
42 #include <rte_branch_prediction.h>
43 #include <rte_mbuf_ptype.h>
50 * Packet Offload Features Flags. It also carry packet type information.
51 * Critical resources. Both rx/tx shared these bits. Be cautious on any change
53 * - RX flags start at bit position zero, and get added to the left of previous
55 * - The most-significant 3 bits are reserved for generic mbuf flags
56 * - TX flags therefore start at bit position 60 (i.e. 63-3), and new flags get
57 * added to the right of the previously defined flags i.e. they should count
58 * downwards, not upwards.
60 * Keep these flags synchronized with rte_get_rx_ol_flag_name() and
61 * rte_get_tx_ol_flag_name().
65 * The RX packet is a 802.1q VLAN packet, and the tci has been
66 * saved in in mbuf->vlan_tci.
67 * If the flag PKT_RX_VLAN_STRIPPED is also present, the VLAN
68 * header has been stripped from mbuf data, else it is still
71 #define PKT_RX_VLAN (1ULL << 0)
73 #define PKT_RX_RSS_HASH (1ULL << 1) /**< RX packet with RSS hash result. */
74 #define PKT_RX_FDIR (1ULL << 2) /**< RX packet with FDIR match indicate. */
78 * Checking this flag alone is deprecated: check the 2 bits of
79 * PKT_RX_L4_CKSUM_MASK.
80 * This flag was set when the L4 checksum of a packet was detected as
81 * wrong by the hardware.
83 #define PKT_RX_L4_CKSUM_BAD (1ULL << 3)
87 * Checking this flag alone is deprecated: check the 2 bits of
88 * PKT_RX_IP_CKSUM_MASK.
89 * This flag was set when the IP checksum of a packet was detected as
90 * wrong by the hardware.
92 #define PKT_RX_IP_CKSUM_BAD (1ULL << 4)
94 #define PKT_RX_EIP_CKSUM_BAD (1ULL << 5) /**< External IP header checksum error. */
97 * A vlan has been stripped by the hardware and its tci is saved in
98 * mbuf->vlan_tci. This can only happen if vlan stripping is enabled
99 * in the RX configuration of the PMD.
100 * When PKT_RX_VLAN_STRIPPED is set, PKT_RX_VLAN must also be set.
102 #define PKT_RX_VLAN_STRIPPED (1ULL << 6)
105 * Mask of bits used to determine the status of RX IP checksum.
106 * - PKT_RX_IP_CKSUM_UNKNOWN: no information about the RX IP checksum
107 * - PKT_RX_IP_CKSUM_BAD: the IP checksum in the packet is wrong
108 * - PKT_RX_IP_CKSUM_GOOD: the IP checksum in the packet is valid
109 * - PKT_RX_IP_CKSUM_NONE: the IP checksum is not correct in the packet
110 * data, but the integrity of the IP header is verified.
112 #define PKT_RX_IP_CKSUM_MASK ((1ULL << 4) | (1ULL << 7))
114 #define PKT_RX_IP_CKSUM_UNKNOWN 0
115 #define PKT_RX_IP_CKSUM_BAD (1ULL << 4)
116 #define PKT_RX_IP_CKSUM_GOOD (1ULL << 7)
117 #define PKT_RX_IP_CKSUM_NONE ((1ULL << 4) | (1ULL << 7))
120 * Mask of bits used to determine the status of RX L4 checksum.
121 * - PKT_RX_L4_CKSUM_UNKNOWN: no information about the RX L4 checksum
122 * - PKT_RX_L4_CKSUM_BAD: the L4 checksum in the packet is wrong
123 * - PKT_RX_L4_CKSUM_GOOD: the L4 checksum in the packet is valid
124 * - PKT_RX_L4_CKSUM_NONE: the L4 checksum is not correct in the packet
125 * data, but the integrity of the L4 data is verified.
127 #define PKT_RX_L4_CKSUM_MASK ((1ULL << 3) | (1ULL << 8))
129 #define PKT_RX_L4_CKSUM_UNKNOWN 0
130 #define PKT_RX_L4_CKSUM_BAD (1ULL << 3)
131 #define PKT_RX_L4_CKSUM_GOOD (1ULL << 8)
132 #define PKT_RX_L4_CKSUM_NONE ((1ULL << 3) | (1ULL << 8))
134 #define PKT_RX_IEEE1588_PTP (1ULL << 9) /**< RX IEEE1588 L2 Ethernet PT Packet. */
135 #define PKT_RX_IEEE1588_TMST (1ULL << 10) /**< RX IEEE1588 L2/L4 timestamped packet.*/
136 #define PKT_RX_FDIR_ID (1ULL << 13) /**< FD id reported if FDIR match. */
137 #define PKT_RX_FDIR_FLX (1ULL << 14) /**< Flexible bytes reported if FDIR match. */
140 * The 2 vlans have been stripped by the hardware and their tci are
141 * saved in mbuf->vlan_tci (inner) and mbuf->vlan_tci_outer (outer).
142 * This can only happen if vlan stripping is enabled in the RX
143 * configuration of the PMD. If this flag is set,
144 * When PKT_RX_QINQ_STRIPPED is set, the flags (PKT_RX_VLAN |
145 * PKT_RX_VLAN_STRIPPED | PKT_RX_QINQ) must also be set.
147 #define PKT_RX_QINQ_STRIPPED (1ULL << 15)
150 * When packets are coalesced by a hardware or virtual driver, this flag
151 * can be set in the RX mbuf, meaning that the m->tso_segsz field is
152 * valid and is set to the segment size of original packets.
154 #define PKT_RX_LRO (1ULL << 16)
157 * Indicate that the timestamp field in the mbuf is valid.
159 #define PKT_RX_TIMESTAMP (1ULL << 17)
162 * Indicate that security offload processing was applied on the RX packet.
164 #define PKT_RX_SEC_OFFLOAD (1ULL << 18)
167 * Indicate that security offload processing failed on the RX packet.
169 #define PKT_RX_SEC_OFFLOAD_FAILED (1ULL << 19)
172 * The RX packet is a double VLAN, and the outer tci has been
173 * saved in in mbuf->vlan_tci_outer.
174 * If the flag PKT_RX_QINQ_STRIPPED is also present, both VLANs
175 * headers have been stripped from mbuf data, else they are still
178 #define PKT_RX_QINQ (1ULL << 20)
180 /* add new RX flags here */
182 /* add new TX flags here */
185 * UDP Fragmentation Offload flag. This flag is used for enabling UDP
186 * fragmentation in SW or in HW. When use UFO, mbuf->tso_segsz is used
187 * to store the MSS of UDP fragments.
189 #define PKT_TX_UDP_SEG (1ULL << 42)
192 * Request security offload processing on the TX packet.
194 #define PKT_TX_SEC_OFFLOAD (1ULL << 43)
197 * Offload the MACsec. This flag must be set by the application to enable
198 * this offload feature for a packet to be transmitted.
200 #define PKT_TX_MACSEC (1ULL << 44)
203 * Bits 45:48 used for the tunnel type.
204 * The tunnel type must be specified for TSO or checksum on the inner part
206 * These flags can be used with PKT_TX_TCP_SEG for TSO, or PKT_TX_xxx_CKSUM.
207 * The mbuf fields for inner and outer header lengths are required:
208 * outer_l2_len, outer_l3_len, l2_len, l3_len, l4_len and tso_segsz for TSO.
210 #define PKT_TX_TUNNEL_VXLAN (0x1ULL << 45)
211 #define PKT_TX_TUNNEL_GRE (0x2ULL << 45)
212 #define PKT_TX_TUNNEL_IPIP (0x3ULL << 45)
213 #define PKT_TX_TUNNEL_GENEVE (0x4ULL << 45)
214 /** TX packet with MPLS-in-UDP RFC 7510 header. */
215 #define PKT_TX_TUNNEL_MPLSINUDP (0x5ULL << 45)
216 #define PKT_TX_TUNNEL_VXLAN_GPE (0x6ULL << 45)
218 * Generic IP encapsulated tunnel type, used for TSO and checksum offload.
219 * It can be used for tunnels which are not standards or listed above.
220 * It is preferred to use specific tunnel flags like PKT_TX_TUNNEL_GRE
221 * or PKT_TX_TUNNEL_IPIP if possible.
222 * The ethdev must be configured with DEV_TX_OFFLOAD_IP_TNL_TSO.
223 * Outer and inner checksums are done according to the existing flags like
225 * Specific tunnel headers that contain payload length, sequence id
226 * or checksum are not expected to be updated.
228 #define PKT_TX_TUNNEL_IP (0xDULL << 45)
230 * Generic UDP encapsulated tunnel type, used for TSO and checksum offload.
231 * UDP tunnel type implies outer IP layer.
232 * It can be used for tunnels which are not standards or listed above.
233 * It is preferred to use specific tunnel flags like PKT_TX_TUNNEL_VXLAN
235 * The ethdev must be configured with DEV_TX_OFFLOAD_UDP_TNL_TSO.
236 * Outer and inner checksums are done according to the existing flags like
238 * Specific tunnel headers that contain payload length, sequence id
239 * or checksum are not expected to be updated.
241 #define PKT_TX_TUNNEL_UDP (0xEULL << 45)
242 /* add new TX TUNNEL type here */
243 #define PKT_TX_TUNNEL_MASK (0xFULL << 45)
246 * Second VLAN insertion (QinQ) flag.
248 #define PKT_TX_QINQ (1ULL << 49) /**< TX packet with double VLAN inserted. */
249 /* this old name is deprecated */
250 #define PKT_TX_QINQ_PKT PKT_TX_QINQ
253 * TCP segmentation offload. To enable this offload feature for a
254 * packet to be transmitted on hardware supporting TSO:
255 * - set the PKT_TX_TCP_SEG flag in mbuf->ol_flags (this flag implies
257 * - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
258 * - if it's IPv4, set the PKT_TX_IP_CKSUM flag
259 * - fill the mbuf offload information: l2_len, l3_len, l4_len, tso_segsz
261 #define PKT_TX_TCP_SEG (1ULL << 50)
263 #define PKT_TX_IEEE1588_TMST (1ULL << 51) /**< TX IEEE1588 packet to timestamp. */
266 * Bits 52+53 used for L4 packet type with checksum enabled: 00: Reserved,
267 * 01: TCP checksum, 10: SCTP checksum, 11: UDP checksum. To use hardware
268 * L4 checksum offload, the user needs to:
269 * - fill l2_len and l3_len in mbuf
270 * - set the flags PKT_TX_TCP_CKSUM, PKT_TX_SCTP_CKSUM or PKT_TX_UDP_CKSUM
271 * - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
273 #define PKT_TX_L4_NO_CKSUM (0ULL << 52) /**< Disable L4 cksum of TX pkt. */
274 #define PKT_TX_TCP_CKSUM (1ULL << 52) /**< TCP cksum of TX pkt. computed by NIC. */
275 #define PKT_TX_SCTP_CKSUM (2ULL << 52) /**< SCTP cksum of TX pkt. computed by NIC. */
276 #define PKT_TX_UDP_CKSUM (3ULL << 52) /**< UDP cksum of TX pkt. computed by NIC. */
277 #define PKT_TX_L4_MASK (3ULL << 52) /**< Mask for L4 cksum offload request. */
280 * Offload the IP checksum in the hardware. The flag PKT_TX_IPV4 should
281 * also be set by the application, although a PMD will only check
283 * - fill the mbuf offload information: l2_len, l3_len
285 #define PKT_TX_IP_CKSUM (1ULL << 54)
288 * Packet is IPv4. This flag must be set when using any offload feature
289 * (TSO, L3 or L4 checksum) to tell the NIC that the packet is an IPv4
290 * packet. If the packet is a tunneled packet, this flag is related to
293 #define PKT_TX_IPV4 (1ULL << 55)
296 * Packet is IPv6. This flag must be set when using an offload feature
297 * (TSO or L4 checksum) to tell the NIC that the packet is an IPv6
298 * packet. If the packet is a tunneled packet, this flag is related to
301 #define PKT_TX_IPV6 (1ULL << 56)
304 * TX packet is a 802.1q VLAN packet.
306 #define PKT_TX_VLAN (1ULL << 57)
307 /* this old name is deprecated */
308 #define PKT_TX_VLAN_PKT PKT_TX_VLAN
311 * Offload the IP checksum of an external header in the hardware. The
312 * flag PKT_TX_OUTER_IPV4 should also be set by the application, although
313 * a PMD will only check PKT_TX_OUTER_IP_CKSUM.
314 * - fill the mbuf offload information: outer_l2_len, outer_l3_len
316 #define PKT_TX_OUTER_IP_CKSUM (1ULL << 58)
319 * Packet outer header is IPv4. This flag must be set when using any
320 * outer offload feature (L3 or L4 checksum) to tell the NIC that the
321 * outer header of the tunneled packet is an IPv4 packet.
323 #define PKT_TX_OUTER_IPV4 (1ULL << 59)
326 * Packet outer header is IPv6. This flag must be set when using any
327 * outer offload feature (L4 checksum) to tell the NIC that the outer
328 * header of the tunneled packet is an IPv6 packet.
330 #define PKT_TX_OUTER_IPV6 (1ULL << 60)
333 * Bitmask of all supported packet Tx offload features flags,
334 * which can be set for packet.
336 #define PKT_TX_OFFLOAD_MASK ( \
339 PKT_TX_OUTER_IP_CKSUM | \
341 PKT_TX_IEEE1588_TMST | \
344 PKT_TX_TUNNEL_MASK | \
348 #define __RESERVED (1ULL << 61) /**< reserved for future mbuf use */
350 #define IND_ATTACHED_MBUF (1ULL << 62) /**< Indirect attached mbuf */
352 /** Alignment constraint of mbuf private area. */
353 #define RTE_MBUF_PRIV_ALIGN 8
356 * Get the name of a RX offload flag
359 * The mask describing the flag.
361 * The name of this flag, or NULL if it's not a valid RX flag.
363 const char *rte_get_rx_ol_flag_name(uint64_t mask);
366 * Dump the list of RX offload flags in a buffer
369 * The mask describing the RX flags.
373 * The length of the buffer.
375 * 0 on success, (-1) on error.
377 int rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
380 * Get the name of a TX offload flag
383 * The mask describing the flag. Usually only one bit must be set.
384 * Several bits can be given if they belong to the same mask.
385 * Ex: PKT_TX_L4_MASK.
387 * The name of this flag, or NULL if it's not a valid TX flag.
389 const char *rte_get_tx_ol_flag_name(uint64_t mask);
392 * Dump the list of TX offload flags in a buffer
395 * The mask describing the TX flags.
399 * The length of the buffer.
401 * 0 on success, (-1) on error.
403 int rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
406 * Some NICs need at least 2KB buffer to RX standard Ethernet frame without
407 * splitting it into multiple segments.
408 * So, for mbufs that planned to be involved into RX/TX, the recommended
409 * minimal buffer length is 2KB + RTE_PKTMBUF_HEADROOM.
411 #define RTE_MBUF_DEFAULT_DATAROOM 2048
412 #define RTE_MBUF_DEFAULT_BUF_SIZE \
413 (RTE_MBUF_DEFAULT_DATAROOM + RTE_PKTMBUF_HEADROOM)
415 /* define a set of marker types that can be used to refer to set points in the
418 typedef void *MARKER[0]; /**< generic marker for a point in a structure */
420 typedef uint8_t MARKER8[0]; /**< generic marker with 1B alignment */
422 typedef uint64_t MARKER64[0]; /**< marker that allows us to overwrite 8 bytes
423 * with a single assignment */
426 * The generic rte_mbuf, containing a packet mbuf.
431 void *buf_addr; /**< Virtual address of segment buffer. */
433 * Physical address of segment buffer.
434 * Force alignment to 8-bytes, so as to ensure we have the exact
435 * same mbuf cacheline0 layout for 32-bit and 64-bit. This makes
436 * working on vector drivers easier.
441 rte_iova_t buf_physaddr; /**< deprecated */
442 } __rte_aligned(sizeof(rte_iova_t));
444 /* next 8 bytes are initialised on RX descriptor rearm */
449 * Reference counter. Its size should at least equal to the size
450 * of port field (16 bits), to support zero-copy broadcast.
451 * It should only be accessed using the following functions:
452 * rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and
453 * rte_mbuf_refcnt_set(). The functionality of these functions (atomic,
454 * or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC
459 rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */
460 uint16_t refcnt; /**< Non-atomically accessed refcnt */
462 uint16_t nb_segs; /**< Number of segments. */
464 /** Input port (16 bits to support more than 256 virtual ports). */
467 uint64_t ol_flags; /**< Offload features. */
469 /* remaining bytes are set on RX when pulling packet from descriptor */
470 MARKER rx_descriptor_fields1;
473 * The packet type, which is the combination of outer/inner L2, L3, L4
474 * and tunnel types. The packet_type is about data really present in the
475 * mbuf. Example: if vlan stripping is enabled, a received vlan packet
476 * would have RTE_PTYPE_L2_ETHER and not RTE_PTYPE_L2_VLAN because the
477 * vlan is stripped from the data.
481 uint32_t packet_type; /**< L2/L3/L4 and tunnel information. */
483 uint32_t l2_type:4; /**< (Outer) L2 type. */
484 uint32_t l3_type:4; /**< (Outer) L3 type. */
485 uint32_t l4_type:4; /**< (Outer) L4 type. */
486 uint32_t tun_type:4; /**< Tunnel type. */
489 uint8_t inner_esp_next_proto;
490 /**< ESP next protocol type, valid if
491 * RTE_PTYPE_TUNNEL_ESP tunnel type is set
496 uint8_t inner_l2_type:4;
497 /**< Inner L2 type. */
498 uint8_t inner_l3_type:4;
499 /**< Inner L3 type. */
502 uint32_t inner_l4_type:4; /**< Inner L4 type. */
506 uint32_t pkt_len; /**< Total pkt len: sum of all segments. */
507 uint16_t data_len; /**< Amount of data in segment buffer. */
508 /** VLAN TCI (CPU order), valid if PKT_RX_VLAN is set. */
512 uint32_t rss; /**< RSS hash result if RSS enabled */
521 /**< Second 4 flexible bytes */
524 /**< First 4 flexible bytes or FD ID, dependent on
525 PKT_RX_FDIR_* flag in ol_flags. */
526 } fdir; /**< Filter identifier if FDIR enabled */
530 } sched; /**< Hierarchical scheduler */
531 uint32_t usr; /**< User defined tags. See rte_distributor_process() */
532 } hash; /**< hash information */
534 /** Outer VLAN TCI (CPU order), valid if PKT_RX_QINQ is set. */
535 uint16_t vlan_tci_outer;
537 uint16_t buf_len; /**< Length of segment buffer. */
539 /** Valid if PKT_RX_TIMESTAMP is set. The unit and time reference
540 * are not normalized but are always the same for a given port.
544 /* second cache line - fields only used in slow path or on TX */
545 MARKER cacheline1 __rte_cache_min_aligned;
549 void *userdata; /**< Can be used for external metadata */
550 uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */
553 struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */
554 struct rte_mbuf *next; /**< Next segment of scattered packet. */
556 /* fields to support TX offloads */
559 uint64_t tx_offload; /**< combined for easy fetch */
563 /**< L2 (MAC) Header Length for non-tunneling pkt.
564 * Outer_L4_len + ... + Inner_L2_len for tunneling pkt.
566 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
567 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
568 uint64_t tso_segsz:16; /**< TCP TSO segment size */
570 /* fields for TX offloading of tunnels */
571 uint64_t outer_l3_len:9; /**< Outer L3 (IP) Hdr Length. */
572 uint64_t outer_l2_len:7; /**< Outer L2 (MAC) Hdr Length. */
574 /* uint64_t unused:8; */
578 /** Size of the application private data. In case of an indirect
579 * mbuf, it stores the direct mbuf private data size. */
582 /** Timesync flags for use with IEEE1588. */
585 /** Sequence number. See also rte_reorder_insert(). */
588 } __rte_cache_aligned;
590 /**< Maximum number of nb_segs allowed. */
591 #define RTE_MBUF_MAX_NB_SEGS UINT16_MAX
594 * Prefetch the first part of the mbuf
596 * The first 64 bytes of the mbuf corresponds to fields that are used early
597 * in the receive path. If the cache line of the architecture is higher than
598 * 64B, the second part will also be prefetched.
601 * The pointer to the mbuf.
604 rte_mbuf_prefetch_part1(struct rte_mbuf *m)
606 rte_prefetch0(&m->cacheline0);
610 * Prefetch the second part of the mbuf
612 * The next 64 bytes of the mbuf corresponds to fields that are used in the
613 * transmit path. If the cache line of the architecture is higher than 64B,
614 * this function does nothing as it is expected that the full mbuf is
618 * The pointer to the mbuf.
621 rte_mbuf_prefetch_part2(struct rte_mbuf *m)
623 #if RTE_CACHE_LINE_SIZE == 64
624 rte_prefetch0(&m->cacheline1);
631 static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp);
634 * Return the IO address of the beginning of the mbuf data
637 * The pointer to the mbuf.
639 * The IO address of the beginning of the mbuf data
641 static inline rte_iova_t
642 rte_mbuf_data_iova(const struct rte_mbuf *mb)
644 return mb->buf_iova + mb->data_off;
648 static inline phys_addr_t
649 rte_mbuf_data_dma_addr(const struct rte_mbuf *mb)
651 return rte_mbuf_data_iova(mb);
655 * Return the default IO address of the beginning of the mbuf data
657 * This function is used by drivers in their receive function, as it
658 * returns the location where data should be written by the NIC, taking
659 * the default headroom in account.
662 * The pointer to the mbuf.
664 * The IO address of the beginning of the mbuf data
666 static inline rte_iova_t
667 rte_mbuf_data_iova_default(const struct rte_mbuf *mb)
669 return mb->buf_iova + RTE_PKTMBUF_HEADROOM;
673 static inline phys_addr_t
674 rte_mbuf_data_dma_addr_default(const struct rte_mbuf *mb)
676 return rte_mbuf_data_iova_default(mb);
680 * Return the mbuf owning the data buffer address of an indirect mbuf.
683 * The pointer to the indirect mbuf.
685 * The address of the direct mbuf corresponding to buffer_addr.
687 static inline struct rte_mbuf *
688 rte_mbuf_from_indirect(struct rte_mbuf *mi)
690 return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size);
694 * Return the buffer address embedded in the given mbuf.
697 * The pointer to the mbuf.
699 * The address of the data buffer owned by the mbuf.
702 rte_mbuf_to_baddr(struct rte_mbuf *md)
705 buffer_addr = (char *)md + sizeof(*md) + rte_pktmbuf_priv_size(md->pool);
710 * Returns TRUE if given mbuf is indirect, or FALSE otherwise.
712 #define RTE_MBUF_INDIRECT(mb) ((mb)->ol_flags & IND_ATTACHED_MBUF)
715 * Returns TRUE if given mbuf is direct, or FALSE otherwise.
717 #define RTE_MBUF_DIRECT(mb) (!RTE_MBUF_INDIRECT(mb))
720 * Private data in case of pktmbuf pool.
722 * A structure that contains some pktmbuf_pool-specific data that are
723 * appended after the mempool structure (in private data).
725 struct rte_pktmbuf_pool_private {
726 uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */
727 uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */
730 #ifdef RTE_LIBRTE_MBUF_DEBUG
732 /** check mbuf type in debug mode */
733 #define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h)
735 #else /* RTE_LIBRTE_MBUF_DEBUG */
737 /** check mbuf type in debug mode */
738 #define __rte_mbuf_sanity_check(m, is_h) do { } while (0)
740 #endif /* RTE_LIBRTE_MBUF_DEBUG */
742 #ifdef RTE_MBUF_REFCNT_ATOMIC
745 * Reads the value of an mbuf's refcnt.
749 * Reference count number.
751 static inline uint16_t
752 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
754 return (uint16_t)(rte_atomic16_read(&m->refcnt_atomic));
758 * Sets an mbuf's refcnt to a defined value.
765 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
767 rte_atomic16_set(&m->refcnt_atomic, new_value);
771 static inline uint16_t
772 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
774 return (uint16_t)(rte_atomic16_add_return(&m->refcnt_atomic, value));
778 * Adds given value to an mbuf's refcnt and returns its new value.
782 * Value to add/subtract
786 static inline uint16_t
787 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
790 * The atomic_add is an expensive operation, so we don't want to
791 * call it in the case where we know we are the uniq holder of
792 * this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic
793 * operation has to be used because concurrent accesses on the
794 * reference counter can occur.
796 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
797 rte_mbuf_refcnt_set(m, 1 + value);
801 return __rte_mbuf_refcnt_update(m, value);
804 #else /* ! RTE_MBUF_REFCNT_ATOMIC */
807 static inline uint16_t
808 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
810 m->refcnt = (uint16_t)(m->refcnt + value);
815 * Adds given value to an mbuf's refcnt and returns its new value.
817 static inline uint16_t
818 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
820 return __rte_mbuf_refcnt_update(m, value);
824 * Reads the value of an mbuf's refcnt.
826 static inline uint16_t
827 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
833 * Sets an mbuf's refcnt to the defined value.
836 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
838 m->refcnt = new_value;
841 #endif /* RTE_MBUF_REFCNT_ATOMIC */
844 #define RTE_MBUF_PREFETCH_TO_FREE(m) do { \
851 * Sanity checks on an mbuf.
853 * Check the consistency of the given mbuf. The function will cause a
854 * panic if corruption is detected.
857 * The mbuf to be checked.
859 * True if the mbuf is a packet header, false if it is a sub-segment
860 * of a packet (in this case, some fields like nb_segs are not checked)
863 rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header);
865 #define MBUF_RAW_ALLOC_CHECK(m) do { \
866 RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1); \
867 RTE_ASSERT((m)->next == NULL); \
868 RTE_ASSERT((m)->nb_segs == 1); \
869 __rte_mbuf_sanity_check(m, 0); \
873 * Allocate an uninitialized mbuf from mempool *mp*.
875 * This function can be used by PMDs (especially in RX functions) to
876 * allocate an uninitialized mbuf. The driver is responsible of
877 * initializing all the required fields. See rte_pktmbuf_reset().
878 * For standard needs, prefer rte_pktmbuf_alloc().
880 * The caller can expect that the following fields of the mbuf structure
881 * are initialized: buf_addr, buf_iova, buf_len, refcnt=1, nb_segs=1,
882 * next=NULL, pool, priv_size. The other fields must be initialized
886 * The mempool from which mbuf is allocated.
888 * - The pointer to the new mbuf on success.
889 * - NULL if allocation failed.
891 static inline struct rte_mbuf *rte_mbuf_raw_alloc(struct rte_mempool *mp)
895 if (rte_mempool_get(mp, (void **)&m) < 0)
897 MBUF_RAW_ALLOC_CHECK(m);
902 * Put mbuf back into its original mempool.
904 * The caller must ensure that the mbuf is direct and properly
905 * reinitialized (refcnt=1, next=NULL, nb_segs=1), as done by
906 * rte_pktmbuf_prefree_seg().
908 * This function should be used with care, when optimization is
909 * required. For standard needs, prefer rte_pktmbuf_free() or
910 * rte_pktmbuf_free_seg().
913 * The mbuf to be freed.
915 static __rte_always_inline void
916 rte_mbuf_raw_free(struct rte_mbuf *m)
918 RTE_ASSERT(RTE_MBUF_DIRECT(m));
919 RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1);
920 RTE_ASSERT(m->next == NULL);
921 RTE_ASSERT(m->nb_segs == 1);
922 __rte_mbuf_sanity_check(m, 0);
923 rte_mempool_put(m->pool, m);
926 /* compat with older versions */
929 __rte_mbuf_raw_free(struct rte_mbuf *m)
931 rte_mbuf_raw_free(m);
935 * The packet mbuf constructor.
937 * This function initializes some fields in the mbuf structure that are
938 * not modified by the user once created (origin pool, buffer start
939 * address, and so on). This function is given as a callback function to
940 * rte_mempool_obj_iter() or rte_mempool_create() at pool creation time.
943 * The mempool from which mbufs originate.
945 * A pointer that can be used by the user to retrieve useful information
946 * for mbuf initialization. This pointer is the opaque argument passed to
947 * rte_mempool_obj_iter() or rte_mempool_create().
949 * The mbuf to initialize.
951 * The index of the mbuf in the pool table.
953 void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg,
954 void *m, unsigned i);
958 * A packet mbuf pool constructor.
960 * This function initializes the mempool private data in the case of a
961 * pktmbuf pool. This private data is needed by the driver. The
962 * function must be called on the mempool before it is used, or it
963 * can be given as a callback function to rte_mempool_create() at
964 * pool creation. It can be extended by the user, for example, to
965 * provide another packet size.
968 * The mempool from which mbufs originate.
970 * A pointer that can be used by the user to retrieve useful information
971 * for mbuf initialization. This pointer is the opaque argument passed to
972 * rte_mempool_create().
974 void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg);
977 * Create a mbuf pool.
979 * This function creates and initializes a packet mbuf pool. It is
980 * a wrapper to rte_mempool functions.
983 * The name of the mbuf pool.
985 * The number of elements in the mbuf pool. The optimum size (in terms
986 * of memory usage) for a mempool is when n is a power of two minus one:
989 * Size of the per-core object cache. See rte_mempool_create() for
992 * Size of application private are between the rte_mbuf structure
993 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
994 * @param data_room_size
995 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
997 * The socket identifier where the memory should be allocated. The
998 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
1001 * The pointer to the new allocated mempool, on success. NULL on error
1002 * with rte_errno set appropriately. Possible rte_errno values include:
1003 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
1004 * - E_RTE_SECONDARY - function was called from a secondary process instance
1005 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
1006 * - ENOSPC - the maximum number of memzones has already been allocated
1007 * - EEXIST - a memzone with the same name already exists
1008 * - ENOMEM - no appropriate memory area found in which to create memzone
1010 struct rte_mempool *
1011 rte_pktmbuf_pool_create(const char *name, unsigned n,
1012 unsigned cache_size, uint16_t priv_size, uint16_t data_room_size,
1016 * Create a mbuf pool with a given mempool ops name
1018 * This function creates and initializes a packet mbuf pool. It is
1019 * a wrapper to rte_mempool functions.
1022 * The name of the mbuf pool.
1024 * The number of elements in the mbuf pool. The optimum size (in terms
1025 * of memory usage) for a mempool is when n is a power of two minus one:
1028 * Size of the per-core object cache. See rte_mempool_create() for
1031 * Size of application private are between the rte_mbuf structure
1032 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
1033 * @param data_room_size
1034 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
1036 * The socket identifier where the memory should be allocated. The
1037 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
1040 * The mempool ops name to be used for this mempool instead of
1041 * default mempool. The value can be *NULL* to use default mempool.
1043 * The pointer to the new allocated mempool, on success. NULL on error
1044 * with rte_errno set appropriately. Possible rte_errno values include:
1045 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
1046 * - E_RTE_SECONDARY - function was called from a secondary process instance
1047 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
1048 * - ENOSPC - the maximum number of memzones has already been allocated
1049 * - EEXIST - a memzone with the same name already exists
1050 * - ENOMEM - no appropriate memory area found in which to create memzone
1052 struct rte_mempool * __rte_experimental
1053 rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
1054 unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
1055 int socket_id, const char *ops_name);
1058 * Get the data room size of mbufs stored in a pktmbuf_pool
1060 * The data room size is the amount of data that can be stored in a
1061 * mbuf including the headroom (RTE_PKTMBUF_HEADROOM).
1064 * The packet mbuf pool.
1066 * The data room size of mbufs stored in this mempool.
1068 static inline uint16_t
1069 rte_pktmbuf_data_room_size(struct rte_mempool *mp)
1071 struct rte_pktmbuf_pool_private *mbp_priv;
1073 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
1074 return mbp_priv->mbuf_data_room_size;
1078 * Get the application private size of mbufs stored in a pktmbuf_pool
1080 * The private size of mbuf is a zone located between the rte_mbuf
1081 * structure and the data buffer where an application can store data
1082 * associated to a packet.
1085 * The packet mbuf pool.
1087 * The private size of mbufs stored in this mempool.
1089 static inline uint16_t
1090 rte_pktmbuf_priv_size(struct rte_mempool *mp)
1092 struct rte_pktmbuf_pool_private *mbp_priv;
1094 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
1095 return mbp_priv->mbuf_priv_size;
1099 * Reset the data_off field of a packet mbuf to its default value.
1101 * The given mbuf must have only one segment, which should be empty.
1104 * The packet mbuf's data_off field has to be reset.
1106 static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m)
1108 m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
1112 * Reset the fields of a packet mbuf to their default values.
1114 * The given mbuf must have only one segment.
1117 * The packet mbuf to be resetted.
1119 #define MBUF_INVALID_PORT UINT16_MAX
1121 static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
1127 m->vlan_tci_outer = 0;
1129 m->port = MBUF_INVALID_PORT;
1133 rte_pktmbuf_reset_headroom(m);
1136 __rte_mbuf_sanity_check(m, 1);
1140 * Allocate a new mbuf from a mempool.
1142 * This new mbuf contains one segment, which has a length of 0. The pointer
1143 * to data is initialized to have some bytes of headroom in the buffer
1144 * (if buffer size allows).
1147 * The mempool from which the mbuf is allocated.
1149 * - The pointer to the new mbuf on success.
1150 * - NULL if allocation failed.
1152 static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp)
1155 if ((m = rte_mbuf_raw_alloc(mp)) != NULL)
1156 rte_pktmbuf_reset(m);
1161 * Allocate a bulk of mbufs, initialize refcnt and reset the fields to default
1165 * The mempool from which mbufs are allocated.
1167 * Array of pointers to mbufs
1172 * - -ENOENT: Not enough entries in the mempool; no mbufs are retrieved.
1174 static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool,
1175 struct rte_mbuf **mbufs, unsigned count)
1180 rc = rte_mempool_get_bulk(pool, (void **)mbufs, count);
1184 /* To understand duff's device on loop unwinding optimization, see
1185 * https://en.wikipedia.org/wiki/Duff's_device.
1186 * Here while() loop is used rather than do() while{} to avoid extra
1187 * check if count is zero.
1189 switch (count % 4) {
1191 while (idx != count) {
1192 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
1193 rte_pktmbuf_reset(mbufs[idx]);
1197 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
1198 rte_pktmbuf_reset(mbufs[idx]);
1202 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
1203 rte_pktmbuf_reset(mbufs[idx]);
1207 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
1208 rte_pktmbuf_reset(mbufs[idx]);
1217 * Attach packet mbuf to another packet mbuf.
1219 * After attachment we refer the mbuf we attached as 'indirect',
1220 * while mbuf we attached to as 'direct'.
1221 * The direct mbuf's reference counter is incremented.
1223 * Right now, not supported:
1224 * - attachment for already indirect mbuf (e.g. - mi has to be direct).
1225 * - mbuf we trying to attach (mi) is used by someone else
1226 * e.g. it's reference counter is greater then 1.
1229 * The indirect packet mbuf.
1231 * The packet mbuf we're attaching to.
1233 static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m)
1235 struct rte_mbuf *md;
1237 RTE_ASSERT(RTE_MBUF_DIRECT(mi) &&
1238 rte_mbuf_refcnt_read(mi) == 1);
1240 /* if m is not direct, get the mbuf that embeds the data */
1241 if (RTE_MBUF_DIRECT(m))
1244 md = rte_mbuf_from_indirect(m);
1246 rte_mbuf_refcnt_update(md, 1);
1247 mi->priv_size = m->priv_size;
1248 mi->buf_iova = m->buf_iova;
1249 mi->buf_addr = m->buf_addr;
1250 mi->buf_len = m->buf_len;
1252 mi->data_off = m->data_off;
1253 mi->data_len = m->data_len;
1255 mi->vlan_tci = m->vlan_tci;
1256 mi->vlan_tci_outer = m->vlan_tci_outer;
1257 mi->tx_offload = m->tx_offload;
1261 mi->pkt_len = mi->data_len;
1263 mi->ol_flags = m->ol_flags | IND_ATTACHED_MBUF;
1264 mi->packet_type = m->packet_type;
1265 mi->timestamp = m->timestamp;
1267 __rte_mbuf_sanity_check(mi, 1);
1268 __rte_mbuf_sanity_check(m, 0);
1272 * Detach an indirect packet mbuf.
1274 * - restore original mbuf address and length values.
1275 * - reset pktmbuf data and data_len to their default values.
1276 * - decrement the direct mbuf's reference counter. When the
1277 * reference counter becomes 0, the direct mbuf is freed.
1279 * All other fields of the given packet mbuf will be left intact.
1282 * The indirect attached packet mbuf.
1284 static inline void rte_pktmbuf_detach(struct rte_mbuf *m)
1286 struct rte_mbuf *md = rte_mbuf_from_indirect(m);
1287 struct rte_mempool *mp = m->pool;
1288 uint32_t mbuf_size, buf_len, priv_size;
1290 priv_size = rte_pktmbuf_priv_size(mp);
1291 mbuf_size = sizeof(struct rte_mbuf) + priv_size;
1292 buf_len = rte_pktmbuf_data_room_size(mp);
1294 m->priv_size = priv_size;
1295 m->buf_addr = (char *)m + mbuf_size;
1296 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
1297 m->buf_len = (uint16_t)buf_len;
1298 rte_pktmbuf_reset_headroom(m);
1302 if (rte_mbuf_refcnt_update(md, -1) == 0) {
1305 rte_mbuf_refcnt_set(md, 1);
1306 rte_mbuf_raw_free(md);
1311 * Decrease reference counter and unlink a mbuf segment
1313 * This function does the same than a free, except that it does not
1314 * return the segment to its pool.
1315 * It decreases the reference counter, and if it reaches 0, it is
1316 * detached from its parent for an indirect mbuf.
1319 * The mbuf to be unlinked
1321 * - (m) if it is the last reference. It can be recycled or freed.
1322 * - (NULL) if the mbuf still has remaining references on it.
1324 static __rte_always_inline struct rte_mbuf *
1325 rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
1327 __rte_mbuf_sanity_check(m, 0);
1329 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
1331 if (RTE_MBUF_INDIRECT(m))
1332 rte_pktmbuf_detach(m);
1334 if (m->next != NULL) {
1341 } else if (__rte_mbuf_refcnt_update(m, -1) == 0) {
1343 if (RTE_MBUF_INDIRECT(m))
1344 rte_pktmbuf_detach(m);
1346 if (m->next != NULL) {
1350 rte_mbuf_refcnt_set(m, 1);
1357 /* deprecated, replaced by rte_pktmbuf_prefree_seg() */
1359 static inline struct rte_mbuf *
1360 __rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
1362 return rte_pktmbuf_prefree_seg(m);
1366 * Free a segment of a packet mbuf into its original mempool.
1368 * Free an mbuf, without parsing other segments in case of chained
1372 * The packet mbuf segment to be freed.
1374 static __rte_always_inline void
1375 rte_pktmbuf_free_seg(struct rte_mbuf *m)
1377 m = rte_pktmbuf_prefree_seg(m);
1378 if (likely(m != NULL))
1379 rte_mbuf_raw_free(m);
1383 * Free a packet mbuf back into its original mempool.
1385 * Free an mbuf, and all its segments in case of chained buffers. Each
1386 * segment is added back into its original mempool.
1389 * The packet mbuf to be freed. If NULL, the function does nothing.
1391 static inline void rte_pktmbuf_free(struct rte_mbuf *m)
1393 struct rte_mbuf *m_next;
1396 __rte_mbuf_sanity_check(m, 1);
1400 rte_pktmbuf_free_seg(m);
1406 * Creates a "clone" of the given packet mbuf.
1408 * Walks through all segments of the given packet mbuf, and for each of them:
1409 * - Creates a new packet mbuf from the given pool.
1410 * - Attaches newly created mbuf to the segment.
1411 * Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values
1412 * from the original packet mbuf.
1415 * The packet mbuf to be cloned.
1417 * The mempool from which the "clone" mbufs are allocated.
1419 * - The pointer to the new "clone" mbuf on success.
1420 * - NULL if allocation fails.
1422 static inline struct rte_mbuf *rte_pktmbuf_clone(struct rte_mbuf *md,
1423 struct rte_mempool *mp)
1425 struct rte_mbuf *mc, *mi, **prev;
1429 if (unlikely ((mc = rte_pktmbuf_alloc(mp)) == NULL))
1434 pktlen = md->pkt_len;
1439 rte_pktmbuf_attach(mi, md);
1442 } while ((md = md->next) != NULL &&
1443 (mi = rte_pktmbuf_alloc(mp)) != NULL);
1447 mc->pkt_len = pktlen;
1449 /* Allocation of new indirect segment failed */
1450 if (unlikely (mi == NULL)) {
1451 rte_pktmbuf_free(mc);
1455 __rte_mbuf_sanity_check(mc, 1);
1460 * Adds given value to the refcnt of all packet mbuf segments.
1462 * Walks through all segments of given packet mbuf and for each of them
1463 * invokes rte_mbuf_refcnt_update().
1466 * The packet mbuf whose refcnt to be updated.
1468 * The value to add to the mbuf's segments refcnt.
1470 static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v)
1472 __rte_mbuf_sanity_check(m, 1);
1475 rte_mbuf_refcnt_update(m, v);
1476 } while ((m = m->next) != NULL);
1480 * Get the headroom in a packet mbuf.
1485 * The length of the headroom.
1487 static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m)
1489 __rte_mbuf_sanity_check(m, 0);
1494 * Get the tailroom of a packet mbuf.
1499 * The length of the tailroom.
1501 static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m)
1503 __rte_mbuf_sanity_check(m, 0);
1504 return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) -
1509 * Get the last segment of the packet.
1514 * The last segment of the given mbuf.
1516 static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m)
1518 __rte_mbuf_sanity_check(m, 1);
1519 while (m->next != NULL)
1525 * A macro that points to an offset into the data in the mbuf.
1527 * The returned pointer is cast to type t. Before using this
1528 * function, the user must ensure that the first segment is large
1529 * enough to accommodate its data.
1534 * The offset into the mbuf data.
1536 * The type to cast the result into.
1538 #define rte_pktmbuf_mtod_offset(m, t, o) \
1539 ((t)((char *)(m)->buf_addr + (m)->data_off + (o)))
1542 * A macro that points to the start of the data in the mbuf.
1544 * The returned pointer is cast to type t. Before using this
1545 * function, the user must ensure that the first segment is large
1546 * enough to accommodate its data.
1551 * The type to cast the result into.
1553 #define rte_pktmbuf_mtod(m, t) rte_pktmbuf_mtod_offset(m, t, 0)
1556 * A macro that returns the IO address that points to an offset of the
1557 * start of the data in the mbuf
1562 * The offset into the data to calculate address from.
1564 #define rte_pktmbuf_iova_offset(m, o) \
1565 (rte_iova_t)((m)->buf_iova + (m)->data_off + (o))
1568 #define rte_pktmbuf_mtophys_offset(m, o) \
1569 rte_pktmbuf_iova_offset(m, o)
1572 * A macro that returns the IO address that points to the start of the
1578 #define rte_pktmbuf_iova(m) rte_pktmbuf_iova_offset(m, 0)
1581 #define rte_pktmbuf_mtophys(m) rte_pktmbuf_iova(m)
1584 * A macro that returns the length of the packet.
1586 * The value can be read or assigned.
1591 #define rte_pktmbuf_pkt_len(m) ((m)->pkt_len)
1594 * A macro that returns the length of the segment.
1596 * The value can be read or assigned.
1601 #define rte_pktmbuf_data_len(m) ((m)->data_len)
1604 * Prepend len bytes to an mbuf data area.
1606 * Returns a pointer to the new
1607 * data start address. If there is not enough headroom in the first
1608 * segment, the function will return NULL, without modifying the mbuf.
1613 * The amount of data to prepend (in bytes).
1615 * A pointer to the start of the newly prepended data, or
1616 * NULL if there is not enough headroom space in the first segment
1618 static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m,
1621 __rte_mbuf_sanity_check(m, 1);
1623 if (unlikely(len > rte_pktmbuf_headroom(m)))
1627 m->data_len = (uint16_t)(m->data_len + len);
1628 m->pkt_len = (m->pkt_len + len);
1630 return (char *)m->buf_addr + m->data_off;
1634 * Append len bytes to an mbuf.
1636 * Append len bytes to an mbuf and return a pointer to the start address
1637 * of the added data. If there is not enough tailroom in the last
1638 * segment, the function will return NULL, without modifying the mbuf.
1643 * The amount of data to append (in bytes).
1645 * A pointer to the start of the newly appended data, or
1646 * NULL if there is not enough tailroom space in the last segment
1648 static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
1651 struct rte_mbuf *m_last;
1653 __rte_mbuf_sanity_check(m, 1);
1655 m_last = rte_pktmbuf_lastseg(m);
1656 if (unlikely(len > rte_pktmbuf_tailroom(m_last)))
1659 tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len;
1660 m_last->data_len = (uint16_t)(m_last->data_len + len);
1661 m->pkt_len = (m->pkt_len + len);
1662 return (char*) tail;
1666 * Remove len bytes at the beginning of an mbuf.
1668 * Returns a pointer to the start address of the new data area. If the
1669 * length is greater than the length of the first segment, then the
1670 * function will fail and return NULL, without modifying the mbuf.
1675 * The amount of data to remove (in bytes).
1677 * A pointer to the new start of the data.
1679 static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
1681 __rte_mbuf_sanity_check(m, 1);
1683 if (unlikely(len > m->data_len))
1686 m->data_len = (uint16_t)(m->data_len - len);
1688 m->pkt_len = (m->pkt_len - len);
1689 return (char *)m->buf_addr + m->data_off;
1693 * Remove len bytes of data at the end of the mbuf.
1695 * If the length is greater than the length of the last segment, the
1696 * function will fail and return -1 without modifying the mbuf.
1701 * The amount of data to remove (in bytes).
1706 static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
1708 struct rte_mbuf *m_last;
1710 __rte_mbuf_sanity_check(m, 1);
1712 m_last = rte_pktmbuf_lastseg(m);
1713 if (unlikely(len > m_last->data_len))
1716 m_last->data_len = (uint16_t)(m_last->data_len - len);
1717 m->pkt_len = (m->pkt_len - len);
1722 * Test if mbuf data is contiguous.
1727 * - 1, if all data is contiguous (one segment).
1728 * - 0, if there is several segments.
1730 static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m)
1732 __rte_mbuf_sanity_check(m, 1);
1733 return !!(m->nb_segs == 1);
1737 * @internal used by rte_pktmbuf_read().
1739 const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
1740 uint32_t len, void *buf);
1743 * Read len data bytes in a mbuf at specified offset.
1745 * If the data is contiguous, return the pointer in the mbuf data, else
1746 * copy the data in the buffer provided by the user and return its
1750 * The pointer to the mbuf.
1752 * The offset of the data in the mbuf.
1754 * The amount of bytes to read.
1756 * The buffer where data is copied if it is not contiguous in mbuf
1757 * data. Its length should be at least equal to the len parameter.
1759 * The pointer to the data, either in the mbuf if it is contiguous,
1760 * or in the user buffer. If mbuf is too small, NULL is returned.
1762 static inline const void *rte_pktmbuf_read(const struct rte_mbuf *m,
1763 uint32_t off, uint32_t len, void *buf)
1765 if (likely(off + len <= rte_pktmbuf_data_len(m)))
1766 return rte_pktmbuf_mtod_offset(m, char *, off);
1768 return __rte_pktmbuf_read(m, off, len, buf);
1772 * Chain an mbuf to another, thereby creating a segmented packet.
1774 * Note: The implementation will do a linear walk over the segments to find
1775 * the tail entry. For cases when there are many segments, it's better to
1776 * chain the entries manually.
1779 * The head of the mbuf chain (the first packet)
1781 * The mbuf to put last in the chain
1785 * - -EOVERFLOW, if the chain segment limit exceeded
1787 static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
1789 struct rte_mbuf *cur_tail;
1791 /* Check for number-of-segments-overflow */
1792 if (head->nb_segs + tail->nb_segs > RTE_MBUF_MAX_NB_SEGS)
1795 /* Chain 'tail' onto the old tail */
1796 cur_tail = rte_pktmbuf_lastseg(head);
1797 cur_tail->next = tail;
1799 /* accumulate number of segments and total length. */
1800 head->nb_segs += tail->nb_segs;
1801 head->pkt_len += tail->pkt_len;
1803 /* pkt_len is only set in the head */
1804 tail->pkt_len = tail->data_len;
1810 * Validate general requirements for Tx offload in mbuf.
1812 * This function checks correctness and completeness of Tx offload settings.
1815 * The packet mbuf to be validated.
1817 * 0 if packet is valid
1820 rte_validate_tx_offload(const struct rte_mbuf *m)
1822 uint64_t ol_flags = m->ol_flags;
1823 uint64_t inner_l3_offset = m->l2_len;
1825 /* Does packet set any of available offloads? */
1826 if (!(ol_flags & PKT_TX_OFFLOAD_MASK))
1829 if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
1830 inner_l3_offset += m->outer_l2_len + m->outer_l3_len;
1832 /* Headers are fragmented */
1833 if (rte_pktmbuf_data_len(m) < inner_l3_offset + m->l3_len + m->l4_len)
1836 /* IP checksum can be counted only for IPv4 packet */
1837 if ((ol_flags & PKT_TX_IP_CKSUM) && (ol_flags & PKT_TX_IPV6))
1840 /* IP type not set when required */
1841 if (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG))
1842 if (!(ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)))
1845 /* Check requirements for TSO packet */
1846 if (ol_flags & PKT_TX_TCP_SEG)
1847 if ((m->tso_segsz == 0) ||
1848 ((ol_flags & PKT_TX_IPV4) &&
1849 !(ol_flags & PKT_TX_IP_CKSUM)))
1852 /* PKT_TX_OUTER_IP_CKSUM set for non outer IPv4 packet. */
1853 if ((ol_flags & PKT_TX_OUTER_IP_CKSUM) &&
1854 !(ol_flags & PKT_TX_OUTER_IPV4))
1861 * Linearize data in mbuf.
1863 * This function moves the mbuf data in the first segment if there is enough
1864 * tailroom. The subsequent segments are unchained and freed.
1873 rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
1875 int seg_len, copy_len;
1877 struct rte_mbuf *m_next;
1880 if (rte_pktmbuf_is_contiguous(mbuf))
1883 /* Extend first segment to the total packet length */
1884 copy_len = rte_pktmbuf_pkt_len(mbuf) - rte_pktmbuf_data_len(mbuf);
1886 if (unlikely(copy_len > rte_pktmbuf_tailroom(mbuf)))
1889 buffer = rte_pktmbuf_mtod_offset(mbuf, char *, mbuf->data_len);
1890 mbuf->data_len = (uint16_t)(mbuf->pkt_len);
1892 /* Append data from next segments to the first one */
1897 seg_len = rte_pktmbuf_data_len(m);
1898 rte_memcpy(buffer, rte_pktmbuf_mtod(m, char *), seg_len);
1901 rte_pktmbuf_free_seg(m);
1912 * Dump an mbuf structure to a file.
1914 * Dump all fields for the given packet mbuf and all its associated
1915 * segments (in the case of a chained buffer).
1918 * A pointer to a file for output
1922 * If dump_len != 0, also dump the "dump_len" first data bytes of
1925 void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len);
1931 #endif /* _RTE_MBUF_H_ */