1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright 2014 6WIND S.A.
13 * The mbuf library provides the ability to create and destroy buffers
14 * that may be used by the RTE application to store message
15 * buffers. The message buffers are stored in a mempool, using the
16 * RTE mempool library.
18 * The preferred way to create a mbuf pool is to use
19 * rte_pktmbuf_pool_create(). However, in some situations, an
20 * application may want to have more control (ex: populate the pool with
21 * specific memory), in this case it is possible to use functions from
22 * rte_mempool. See how rte_pktmbuf_pool_create() is implemented for
25 * This library provides an API to allocate/free packet mbufs, which are
26 * used to carry network packets.
28 * To understand the concepts of packet buffers or mbufs, you
29 * should read "TCP/IP Illustrated, Volume 2: The Implementation,
30 * Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens"
31 * http://www.kohala.com/start/tcpipiv2.html
35 #include <rte_compat.h>
36 #include <rte_common.h>
37 #include <rte_config.h>
38 #include <rte_mempool.h>
39 #include <rte_memory.h>
40 #include <rte_atomic.h>
41 #include <rte_prefetch.h>
42 #include <rte_branch_prediction.h>
43 #include <rte_byteorder.h>
44 #include <rte_mbuf_ptype.h>
51 * Packet Offload Features Flags. It also carry packet type information.
52 * Critical resources. Both rx/tx shared these bits. Be cautious on any change
54 * - RX flags start at bit position zero, and get added to the left of previous
56 * - The most-significant 3 bits are reserved for generic mbuf flags
57 * - TX flags therefore start at bit position 60 (i.e. 63-3), and new flags get
58 * added to the right of the previously defined flags i.e. they should count
59 * downwards, not upwards.
61 * Keep these flags synchronized with rte_get_rx_ol_flag_name() and
62 * rte_get_tx_ol_flag_name().
66 * The RX packet is a 802.1q VLAN packet, and the tci has been
67 * saved in in mbuf->vlan_tci.
68 * If the flag PKT_RX_VLAN_STRIPPED is also present, the VLAN
69 * header has been stripped from mbuf data, else it is still
72 #define PKT_RX_VLAN (1ULL << 0)
74 #define PKT_RX_RSS_HASH (1ULL << 1) /**< RX packet with RSS hash result. */
75 #define PKT_RX_FDIR (1ULL << 2) /**< RX packet with FDIR match indicate. */
79 * Checking this flag alone is deprecated: check the 2 bits of
80 * PKT_RX_L4_CKSUM_MASK.
81 * This flag was set when the L4 checksum of a packet was detected as
82 * wrong by the hardware.
84 #define PKT_RX_L4_CKSUM_BAD (1ULL << 3)
88 * Checking this flag alone is deprecated: check the 2 bits of
89 * PKT_RX_IP_CKSUM_MASK.
90 * This flag was set when the IP checksum of a packet was detected as
91 * wrong by the hardware.
93 #define PKT_RX_IP_CKSUM_BAD (1ULL << 4)
95 #define PKT_RX_EIP_CKSUM_BAD (1ULL << 5) /**< External IP header checksum error. */
98 * A vlan has been stripped by the hardware and its tci is saved in
99 * mbuf->vlan_tci. This can only happen if vlan stripping is enabled
100 * in the RX configuration of the PMD.
101 * When PKT_RX_VLAN_STRIPPED is set, PKT_RX_VLAN must also be set.
103 #define PKT_RX_VLAN_STRIPPED (1ULL << 6)
106 * Mask of bits used to determine the status of RX IP checksum.
107 * - PKT_RX_IP_CKSUM_UNKNOWN: no information about the RX IP checksum
108 * - PKT_RX_IP_CKSUM_BAD: the IP checksum in the packet is wrong
109 * - PKT_RX_IP_CKSUM_GOOD: the IP checksum in the packet is valid
110 * - PKT_RX_IP_CKSUM_NONE: the IP checksum is not correct in the packet
111 * data, but the integrity of the IP header is verified.
113 #define PKT_RX_IP_CKSUM_MASK ((1ULL << 4) | (1ULL << 7))
115 #define PKT_RX_IP_CKSUM_UNKNOWN 0
116 #define PKT_RX_IP_CKSUM_BAD (1ULL << 4)
117 #define PKT_RX_IP_CKSUM_GOOD (1ULL << 7)
118 #define PKT_RX_IP_CKSUM_NONE ((1ULL << 4) | (1ULL << 7))
121 * Mask of bits used to determine the status of RX L4 checksum.
122 * - PKT_RX_L4_CKSUM_UNKNOWN: no information about the RX L4 checksum
123 * - PKT_RX_L4_CKSUM_BAD: the L4 checksum in the packet is wrong
124 * - PKT_RX_L4_CKSUM_GOOD: the L4 checksum in the packet is valid
125 * - PKT_RX_L4_CKSUM_NONE: the L4 checksum is not correct in the packet
126 * data, but the integrity of the L4 data is verified.
128 #define PKT_RX_L4_CKSUM_MASK ((1ULL << 3) | (1ULL << 8))
130 #define PKT_RX_L4_CKSUM_UNKNOWN 0
131 #define PKT_RX_L4_CKSUM_BAD (1ULL << 3)
132 #define PKT_RX_L4_CKSUM_GOOD (1ULL << 8)
133 #define PKT_RX_L4_CKSUM_NONE ((1ULL << 3) | (1ULL << 8))
135 #define PKT_RX_IEEE1588_PTP (1ULL << 9) /**< RX IEEE1588 L2 Ethernet PT Packet. */
136 #define PKT_RX_IEEE1588_TMST (1ULL << 10) /**< RX IEEE1588 L2/L4 timestamped packet.*/
137 #define PKT_RX_FDIR_ID (1ULL << 13) /**< FD id reported if FDIR match. */
138 #define PKT_RX_FDIR_FLX (1ULL << 14) /**< Flexible bytes reported if FDIR match. */
141 * The 2 vlans have been stripped by the hardware and their tci are
142 * saved in mbuf->vlan_tci (inner) and mbuf->vlan_tci_outer (outer).
143 * This can only happen if vlan stripping is enabled in the RX
144 * configuration of the PMD.
145 * When PKT_RX_QINQ_STRIPPED is set, the flags (PKT_RX_VLAN |
146 * PKT_RX_VLAN_STRIPPED | PKT_RX_QINQ) must also be set.
148 #define PKT_RX_QINQ_STRIPPED (1ULL << 15)
151 * When packets are coalesced by a hardware or virtual driver, this flag
152 * can be set in the RX mbuf, meaning that the m->tso_segsz field is
153 * valid and is set to the segment size of original packets.
155 #define PKT_RX_LRO (1ULL << 16)
158 * Indicate that the timestamp field in the mbuf is valid.
160 #define PKT_RX_TIMESTAMP (1ULL << 17)
163 * Indicate that security offload processing was applied on the RX packet.
165 #define PKT_RX_SEC_OFFLOAD (1ULL << 18)
168 * Indicate that security offload processing failed on the RX packet.
170 #define PKT_RX_SEC_OFFLOAD_FAILED (1ULL << 19)
173 * The RX packet is a double VLAN, and the outer tci has been
174 * saved in in mbuf->vlan_tci_outer. If PKT_RX_QINQ set, PKT_RX_VLAN
175 * also should be set and inner tci should be saved to mbuf->vlan_tci.
176 * If the flag PKT_RX_QINQ_STRIPPED is also present, both VLANs
177 * headers have been stripped from mbuf data, else they are still
180 #define PKT_RX_QINQ (1ULL << 20)
183 * Mask of bits used to determine the status of outer RX L4 checksum.
184 * - PKT_RX_OUTER_L4_CKSUM_UNKNOWN: no info about the outer RX L4 checksum
185 * - PKT_RX_OUTER_L4_CKSUM_BAD: the outer L4 checksum in the packet is wrong
186 * - PKT_RX_OUTER_L4_CKSUM_GOOD: the outer L4 checksum in the packet is valid
187 * - PKT_RX_OUTER_L4_CKSUM_INVALID: invalid outer L4 checksum state.
189 * The detection of PKT_RX_OUTER_L4_CKSUM_GOOD shall be based on the given
190 * HW capability, At minimum, the PMD should support
191 * PKT_RX_OUTER_L4_CKSUM_UNKNOWN and PKT_RX_OUTER_L4_CKSUM_BAD states
192 * if the DEV_RX_OFFLOAD_OUTER_UDP_CKSUM offload is available.
194 #define PKT_RX_OUTER_L4_CKSUM_MASK ((1ULL << 21) | (1ULL << 22))
196 #define PKT_RX_OUTER_L4_CKSUM_UNKNOWN 0
197 #define PKT_RX_OUTER_L4_CKSUM_BAD (1ULL << 21)
198 #define PKT_RX_OUTER_L4_CKSUM_GOOD (1ULL << 22)
199 #define PKT_RX_OUTER_L4_CKSUM_INVALID ((1ULL << 21) | (1ULL << 22))
201 /* add new RX flags here */
203 /* add new TX flags here */
206 * Indicate that the metadata field in the mbuf is in use.
208 #define PKT_TX_METADATA (1ULL << 40)
211 * Outer UDP checksum offload flag. This flag is used for enabling
212 * outer UDP checksum in PMD. To use outer UDP checksum, the user needs to
213 * 1) Enable the following in mbuff,
214 * a) Fill outer_l2_len and outer_l3_len in mbuf.
215 * b) Set the PKT_TX_OUTER_UDP_CKSUM flag.
216 * c) Set the PKT_TX_OUTER_IPV4 or PKT_TX_OUTER_IPV6 flag.
217 * 2) Configure DEV_TX_OFFLOAD_OUTER_UDP_CKSUM offload flag.
219 #define PKT_TX_OUTER_UDP_CKSUM (1ULL << 41)
222 * UDP Fragmentation Offload flag. This flag is used for enabling UDP
223 * fragmentation in SW or in HW. When use UFO, mbuf->tso_segsz is used
224 * to store the MSS of UDP fragments.
226 #define PKT_TX_UDP_SEG (1ULL << 42)
229 * Request security offload processing on the TX packet.
231 #define PKT_TX_SEC_OFFLOAD (1ULL << 43)
234 * Offload the MACsec. This flag must be set by the application to enable
235 * this offload feature for a packet to be transmitted.
237 #define PKT_TX_MACSEC (1ULL << 44)
240 * Bits 45:48 used for the tunnel type.
241 * The tunnel type must be specified for TSO or checksum on the inner part
243 * These flags can be used with PKT_TX_TCP_SEG for TSO, or PKT_TX_xxx_CKSUM.
244 * The mbuf fields for inner and outer header lengths are required:
245 * outer_l2_len, outer_l3_len, l2_len, l3_len, l4_len and tso_segsz for TSO.
247 #define PKT_TX_TUNNEL_VXLAN (0x1ULL << 45)
248 #define PKT_TX_TUNNEL_GRE (0x2ULL << 45)
249 #define PKT_TX_TUNNEL_IPIP (0x3ULL << 45)
250 #define PKT_TX_TUNNEL_GENEVE (0x4ULL << 45)
251 /** TX packet with MPLS-in-UDP RFC 7510 header. */
252 #define PKT_TX_TUNNEL_MPLSINUDP (0x5ULL << 45)
253 #define PKT_TX_TUNNEL_VXLAN_GPE (0x6ULL << 45)
255 * Generic IP encapsulated tunnel type, used for TSO and checksum offload.
256 * It can be used for tunnels which are not standards or listed above.
257 * It is preferred to use specific tunnel flags like PKT_TX_TUNNEL_GRE
258 * or PKT_TX_TUNNEL_IPIP if possible.
259 * The ethdev must be configured with DEV_TX_OFFLOAD_IP_TNL_TSO.
260 * Outer and inner checksums are done according to the existing flags like
262 * Specific tunnel headers that contain payload length, sequence id
263 * or checksum are not expected to be updated.
265 #define PKT_TX_TUNNEL_IP (0xDULL << 45)
267 * Generic UDP encapsulated tunnel type, used for TSO and checksum offload.
268 * UDP tunnel type implies outer IP layer.
269 * It can be used for tunnels which are not standards or listed above.
270 * It is preferred to use specific tunnel flags like PKT_TX_TUNNEL_VXLAN
272 * The ethdev must be configured with DEV_TX_OFFLOAD_UDP_TNL_TSO.
273 * Outer and inner checksums are done according to the existing flags like
275 * Specific tunnel headers that contain payload length, sequence id
276 * or checksum are not expected to be updated.
278 #define PKT_TX_TUNNEL_UDP (0xEULL << 45)
279 /* add new TX TUNNEL type here */
280 #define PKT_TX_TUNNEL_MASK (0xFULL << 45)
283 * Second VLAN insertion (QinQ) flag.
285 #define PKT_TX_QINQ (1ULL << 49) /**< TX packet with double VLAN inserted. */
286 /* this old name is deprecated */
287 #define PKT_TX_QINQ_PKT PKT_TX_QINQ
290 * TCP segmentation offload. To enable this offload feature for a
291 * packet to be transmitted on hardware supporting TSO:
292 * - set the PKT_TX_TCP_SEG flag in mbuf->ol_flags (this flag implies
294 * - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
295 * - if it's IPv4, set the PKT_TX_IP_CKSUM flag
296 * - fill the mbuf offload information: l2_len, l3_len, l4_len, tso_segsz
298 #define PKT_TX_TCP_SEG (1ULL << 50)
300 #define PKT_TX_IEEE1588_TMST (1ULL << 51) /**< TX IEEE1588 packet to timestamp. */
303 * Bits 52+53 used for L4 packet type with checksum enabled: 00: Reserved,
304 * 01: TCP checksum, 10: SCTP checksum, 11: UDP checksum. To use hardware
305 * L4 checksum offload, the user needs to:
306 * - fill l2_len and l3_len in mbuf
307 * - set the flags PKT_TX_TCP_CKSUM, PKT_TX_SCTP_CKSUM or PKT_TX_UDP_CKSUM
308 * - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
310 #define PKT_TX_L4_NO_CKSUM (0ULL << 52) /**< Disable L4 cksum of TX pkt. */
311 #define PKT_TX_TCP_CKSUM (1ULL << 52) /**< TCP cksum of TX pkt. computed by NIC. */
312 #define PKT_TX_SCTP_CKSUM (2ULL << 52) /**< SCTP cksum of TX pkt. computed by NIC. */
313 #define PKT_TX_UDP_CKSUM (3ULL << 52) /**< UDP cksum of TX pkt. computed by NIC. */
314 #define PKT_TX_L4_MASK (3ULL << 52) /**< Mask for L4 cksum offload request. */
317 * Offload the IP checksum in the hardware. The flag PKT_TX_IPV4 should
318 * also be set by the application, although a PMD will only check
320 * - fill the mbuf offload information: l2_len, l3_len
322 #define PKT_TX_IP_CKSUM (1ULL << 54)
325 * Packet is IPv4. This flag must be set when using any offload feature
326 * (TSO, L3 or L4 checksum) to tell the NIC that the packet is an IPv4
327 * packet. If the packet is a tunneled packet, this flag is related to
330 #define PKT_TX_IPV4 (1ULL << 55)
333 * Packet is IPv6. This flag must be set when using an offload feature
334 * (TSO or L4 checksum) to tell the NIC that the packet is an IPv6
335 * packet. If the packet is a tunneled packet, this flag is related to
338 #define PKT_TX_IPV6 (1ULL << 56)
341 * TX packet is a 802.1q VLAN packet.
343 #define PKT_TX_VLAN (1ULL << 57)
344 /* this old name is deprecated */
345 #define PKT_TX_VLAN_PKT PKT_TX_VLAN
348 * Offload the IP checksum of an external header in the hardware. The
349 * flag PKT_TX_OUTER_IPV4 should also be set by the application, although
350 * a PMD will only check PKT_TX_OUTER_IP_CKSUM.
351 * - fill the mbuf offload information: outer_l2_len, outer_l3_len
353 #define PKT_TX_OUTER_IP_CKSUM (1ULL << 58)
356 * Packet outer header is IPv4. This flag must be set when using any
357 * outer offload feature (L3 or L4 checksum) to tell the NIC that the
358 * outer header of the tunneled packet is an IPv4 packet.
360 #define PKT_TX_OUTER_IPV4 (1ULL << 59)
363 * Packet outer header is IPv6. This flag must be set when using any
364 * outer offload feature (L4 checksum) to tell the NIC that the outer
365 * header of the tunneled packet is an IPv6 packet.
367 #define PKT_TX_OUTER_IPV6 (1ULL << 60)
370 * Bitmask of all supported packet Tx offload features flags,
371 * which can be set for packet.
373 #define PKT_TX_OFFLOAD_MASK ( \
374 PKT_TX_OUTER_IPV6 | \
375 PKT_TX_OUTER_IPV4 | \
376 PKT_TX_OUTER_IP_CKSUM | \
382 PKT_TX_IEEE1588_TMST | \
385 PKT_TX_TUNNEL_MASK | \
387 PKT_TX_SEC_OFFLOAD | \
389 PKT_TX_OUTER_UDP_CKSUM | \
393 * Mbuf having an external buffer attached. shinfo in mbuf must be filled.
395 #define EXT_ATTACHED_MBUF (1ULL << 61)
397 #define IND_ATTACHED_MBUF (1ULL << 62) /**< Indirect attached mbuf */
399 /** Alignment constraint of mbuf private area. */
400 #define RTE_MBUF_PRIV_ALIGN 8
403 * Get the name of a RX offload flag
406 * The mask describing the flag.
408 * The name of this flag, or NULL if it's not a valid RX flag.
410 const char *rte_get_rx_ol_flag_name(uint64_t mask);
413 * Dump the list of RX offload flags in a buffer
416 * The mask describing the RX flags.
420 * The length of the buffer.
422 * 0 on success, (-1) on error.
424 int rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
427 * Get the name of a TX offload flag
430 * The mask describing the flag. Usually only one bit must be set.
431 * Several bits can be given if they belong to the same mask.
432 * Ex: PKT_TX_L4_MASK.
434 * The name of this flag, or NULL if it's not a valid TX flag.
436 const char *rte_get_tx_ol_flag_name(uint64_t mask);
439 * Dump the list of TX offload flags in a buffer
442 * The mask describing the TX flags.
446 * The length of the buffer.
448 * 0 on success, (-1) on error.
450 int rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
453 * Some NICs need at least 2KB buffer to RX standard Ethernet frame without
454 * splitting it into multiple segments.
455 * So, for mbufs that planned to be involved into RX/TX, the recommended
456 * minimal buffer length is 2KB + RTE_PKTMBUF_HEADROOM.
458 #define RTE_MBUF_DEFAULT_DATAROOM 2048
459 #define RTE_MBUF_DEFAULT_BUF_SIZE \
460 (RTE_MBUF_DEFAULT_DATAROOM + RTE_PKTMBUF_HEADROOM)
462 /* define a set of marker types that can be used to refer to set points in the
465 typedef void *MARKER[0]; /**< generic marker for a point in a structure */
467 typedef uint8_t MARKER8[0]; /**< generic marker with 1B alignment */
469 typedef uint64_t MARKER64[0]; /**< marker that allows us to overwrite 8 bytes
470 * with a single assignment */
472 struct rte_mbuf_sched {
473 uint32_t queue_id; /**< Queue ID. */
474 uint8_t traffic_class;
475 /**< Traffic class ID. Traffic class 0
476 * is the highest priority traffic class.
479 /**< Color. @see enum rte_color.*/
480 uint16_t reserved; /**< Reserved. */
481 }; /**< Hierarchical scheduler */
484 * enum for the tx_offload bit-fields lenghts and offsets.
485 * defines the layout of rte_mbuf tx_offload field.
488 RTE_MBUF_L2_LEN_BITS = 7,
489 RTE_MBUF_L3_LEN_BITS = 9,
490 RTE_MBUF_L4_LEN_BITS = 8,
491 RTE_MBUF_TSO_SEGSZ_BITS = 16,
492 RTE_MBUF_OUTL3_LEN_BITS = 9,
493 RTE_MBUF_OUTL2_LEN_BITS = 7,
494 RTE_MBUF_TXOFLD_UNUSED_BITS = sizeof(uint64_t) * CHAR_BIT -
495 RTE_MBUF_L2_LEN_BITS -
496 RTE_MBUF_L3_LEN_BITS -
497 RTE_MBUF_L4_LEN_BITS -
498 RTE_MBUF_TSO_SEGSZ_BITS -
499 RTE_MBUF_OUTL3_LEN_BITS -
500 RTE_MBUF_OUTL2_LEN_BITS,
501 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
502 RTE_MBUF_L2_LEN_OFS =
503 sizeof(uint64_t) * CHAR_BIT - RTE_MBUF_L2_LEN_BITS
504 RTE_MBUF_L3_LEN_OFS = RTE_MBUF_L2_LEN_OFS - RTE_MBUF_L3_LEN_BITS,
505 RTE_MBUF_L4_LEN_OFS = RTE_MBUF_L3_LEN_OFS - RTE_MBUF_L4_LEN_BITS,
506 RTE_MBUF_TSO_SEGSZ_OFS = RTE_MBUF_L4_LEN_OFS - RTE_MBUF_TSO_SEGSZ_BITS,
507 RTE_MBUF_OUTL3_LEN_OFS =
508 RTE_MBUF_TSO_SEGSZ_OFS - RTE_MBUF_OUTL3_LEN_BITS,
509 RTE_MBUF_OUTL2_LEN_OFS =
510 RTE_MBUF_OUTL3_LEN_OFS - RTE_MBUF_OUTL2_LEN_BITS,
511 RTE_MBUF_TXOFLD_UNUSED_OFS =
512 RTE_MBUF_OUTL2_LEN_OFS - RTE_MBUF_TXOFLD_UNUSED_BITS,
514 RTE_MBUF_L2_LEN_OFS = 0,
515 RTE_MBUF_L3_LEN_OFS = RTE_MBUF_L2_LEN_OFS + RTE_MBUF_L2_LEN_BITS,
516 RTE_MBUF_L4_LEN_OFS = RTE_MBUF_L3_LEN_OFS + RTE_MBUF_L3_LEN_BITS,
517 RTE_MBUF_TSO_SEGSZ_OFS = RTE_MBUF_L4_LEN_OFS + RTE_MBUF_L4_LEN_BITS,
518 RTE_MBUF_OUTL3_LEN_OFS =
519 RTE_MBUF_TSO_SEGSZ_OFS + RTE_MBUF_TSO_SEGSZ_BITS,
520 RTE_MBUF_OUTL2_LEN_OFS =
521 RTE_MBUF_OUTL3_LEN_OFS + RTE_MBUF_OUTL3_LEN_BITS,
522 RTE_MBUF_TXOFLD_UNUSED_OFS =
523 RTE_MBUF_OUTL2_LEN_OFS + RTE_MBUF_OUTL2_LEN_BITS,
528 * The generic rte_mbuf, containing a packet mbuf.
533 void *buf_addr; /**< Virtual address of segment buffer. */
535 * Physical address of segment buffer.
536 * Force alignment to 8-bytes, so as to ensure we have the exact
537 * same mbuf cacheline0 layout for 32-bit and 64-bit. This makes
538 * working on vector drivers easier.
543 rte_iova_t buf_physaddr; /**< deprecated */
544 } __rte_aligned(sizeof(rte_iova_t));
546 /* next 8 bytes are initialised on RX descriptor rearm */
551 * Reference counter. Its size should at least equal to the size
552 * of port field (16 bits), to support zero-copy broadcast.
553 * It should only be accessed using the following functions:
554 * rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and
555 * rte_mbuf_refcnt_set(). The functionality of these functions (atomic,
556 * or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC
561 rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */
562 uint16_t refcnt; /**< Non-atomically accessed refcnt */
564 uint16_t nb_segs; /**< Number of segments. */
566 /** Input port (16 bits to support more than 256 virtual ports).
567 * The event eth Tx adapter uses this field to specify the output port.
571 uint64_t ol_flags; /**< Offload features. */
573 /* remaining bytes are set on RX when pulling packet from descriptor */
574 MARKER rx_descriptor_fields1;
577 * The packet type, which is the combination of outer/inner L2, L3, L4
578 * and tunnel types. The packet_type is about data really present in the
579 * mbuf. Example: if vlan stripping is enabled, a received vlan packet
580 * would have RTE_PTYPE_L2_ETHER and not RTE_PTYPE_L2_VLAN because the
581 * vlan is stripped from the data.
585 uint32_t packet_type; /**< L2/L3/L4 and tunnel information. */
587 uint32_t l2_type:4; /**< (Outer) L2 type. */
588 uint32_t l3_type:4; /**< (Outer) L3 type. */
589 uint32_t l4_type:4; /**< (Outer) L4 type. */
590 uint32_t tun_type:4; /**< Tunnel type. */
593 uint8_t inner_esp_next_proto;
594 /**< ESP next protocol type, valid if
595 * RTE_PTYPE_TUNNEL_ESP tunnel type is set
600 uint8_t inner_l2_type:4;
601 /**< Inner L2 type. */
602 uint8_t inner_l3_type:4;
603 /**< Inner L3 type. */
606 uint32_t inner_l4_type:4; /**< Inner L4 type. */
610 uint32_t pkt_len; /**< Total pkt len: sum of all segments. */
611 uint16_t data_len; /**< Amount of data in segment buffer. */
612 /** VLAN TCI (CPU order), valid if PKT_RX_VLAN is set. */
618 uint32_t rss; /**< RSS hash result if RSS enabled */
626 /**< Second 4 flexible bytes */
629 /**< First 4 flexible bytes or FD ID, dependent
630 * on PKT_RX_FDIR_* flag in ol_flags.
632 } fdir; /**< Filter identifier if FDIR enabled */
633 struct rte_mbuf_sched sched;
634 /**< Hierarchical scheduler : 8 bytes */
639 /**< The event eth Tx adapter uses this field
640 * to store Tx queue id.
641 * @see rte_event_eth_tx_adapter_txq_set()
643 } txadapter; /**< Eventdev ethdev Tx adapter */
644 /**< User defined tags. See rte_distributor_process() */
646 } hash; /**< hash information */
649 * Application specific metadata value
650 * for egress flow rule match.
651 * Valid if PKT_TX_METADATA is set.
652 * Located here to allow conjunct use
653 * with hash.sched.hi.
655 uint32_t tx_metadata;
660 /** Outer VLAN TCI (CPU order), valid if PKT_RX_QINQ is set. */
661 uint16_t vlan_tci_outer;
663 uint16_t buf_len; /**< Length of segment buffer. */
665 /** Valid if PKT_RX_TIMESTAMP is set. The unit and time reference
666 * are not normalized but are always the same for a given port.
670 /* second cache line - fields only used in slow path or on TX */
671 MARKER cacheline1 __rte_cache_min_aligned;
675 void *userdata; /**< Can be used for external metadata */
676 uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */
679 struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */
680 struct rte_mbuf *next; /**< Next segment of scattered packet. */
682 /* fields to support TX offloads */
685 uint64_t tx_offload; /**< combined for easy fetch */
688 uint64_t l2_len:RTE_MBUF_L2_LEN_BITS;
689 /**< L2 (MAC) Header Length for non-tunneling pkt.
690 * Outer_L4_len + ... + Inner_L2_len for tunneling pkt.
692 uint64_t l3_len:RTE_MBUF_L3_LEN_BITS;
693 /**< L3 (IP) Header Length. */
694 uint64_t l4_len:RTE_MBUF_L4_LEN_BITS;
695 /**< L4 (TCP/UDP) Header Length. */
696 uint64_t tso_segsz:RTE_MBUF_TSO_SEGSZ_BITS;
697 /**< TCP TSO segment size */
699 /* fields for TX offloading of tunnels */
700 uint64_t outer_l3_len:RTE_MBUF_OUTL3_LEN_BITS;
701 /**< Outer L3 (IP) Hdr Length. */
702 uint64_t outer_l2_len:RTE_MBUF_OUTL2_LEN_BITS;
703 /**< Outer L2 (MAC) Hdr Length. */
705 /* uint64_t unused:RTE_MBUF_TXOFLD_UNUSED_BITS; */
709 /** Size of the application private data. In case of an indirect
710 * mbuf, it stores the direct mbuf private data size. */
713 /** Timesync flags for use with IEEE1588. */
716 /** Sequence number. See also rte_reorder_insert(). */
719 /** Shared data for external buffer attached to mbuf. See
720 * rte_pktmbuf_attach_extbuf().
722 struct rte_mbuf_ext_shared_info *shinfo;
724 } __rte_cache_aligned;
727 * Function typedef of callback to free externally attached buffer.
729 typedef void (*rte_mbuf_extbuf_free_callback_t)(void *addr, void *opaque);
732 * Shared data at the end of an external buffer.
734 struct rte_mbuf_ext_shared_info {
735 rte_mbuf_extbuf_free_callback_t free_cb; /**< Free callback function */
736 void *fcb_opaque; /**< Free callback argument */
737 rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */
740 /**< Maximum number of nb_segs allowed. */
741 #define RTE_MBUF_MAX_NB_SEGS UINT16_MAX
744 * Prefetch the first part of the mbuf
746 * The first 64 bytes of the mbuf corresponds to fields that are used early
747 * in the receive path. If the cache line of the architecture is higher than
748 * 64B, the second part will also be prefetched.
751 * The pointer to the mbuf.
754 rte_mbuf_prefetch_part1(struct rte_mbuf *m)
756 rte_prefetch0(&m->cacheline0);
760 * Prefetch the second part of the mbuf
762 * The next 64 bytes of the mbuf corresponds to fields that are used in the
763 * transmit path. If the cache line of the architecture is higher than 64B,
764 * this function does nothing as it is expected that the full mbuf is
768 * The pointer to the mbuf.
771 rte_mbuf_prefetch_part2(struct rte_mbuf *m)
773 #if RTE_CACHE_LINE_SIZE == 64
774 rte_prefetch0(&m->cacheline1);
781 static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp);
784 * Return the IO address of the beginning of the mbuf data
787 * The pointer to the mbuf.
789 * The IO address of the beginning of the mbuf data
791 static inline rte_iova_t
792 rte_mbuf_data_iova(const struct rte_mbuf *mb)
794 return mb->buf_iova + mb->data_off;
798 static inline phys_addr_t
799 rte_mbuf_data_dma_addr(const struct rte_mbuf *mb)
801 return rte_mbuf_data_iova(mb);
805 * Return the default IO address of the beginning of the mbuf data
807 * This function is used by drivers in their receive function, as it
808 * returns the location where data should be written by the NIC, taking
809 * the default headroom in account.
812 * The pointer to the mbuf.
814 * The IO address of the beginning of the mbuf data
816 static inline rte_iova_t
817 rte_mbuf_data_iova_default(const struct rte_mbuf *mb)
819 return mb->buf_iova + RTE_PKTMBUF_HEADROOM;
823 static inline phys_addr_t
824 rte_mbuf_data_dma_addr_default(const struct rte_mbuf *mb)
826 return rte_mbuf_data_iova_default(mb);
830 * Return the mbuf owning the data buffer address of an indirect mbuf.
833 * The pointer to the indirect mbuf.
835 * The address of the direct mbuf corresponding to buffer_addr.
837 static inline struct rte_mbuf *
838 rte_mbuf_from_indirect(struct rte_mbuf *mi)
840 return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size);
844 * Return address of buffer embedded in the given mbuf.
846 * The return value shall be same as mb->buf_addr if the mbuf is already
847 * initialized and direct. However, this API is useful if mempool of the
848 * mbuf is already known because it doesn't need to access mbuf contents in
849 * order to get the mempool pointer.
852 * @b EXPERIMENTAL: This API may change without prior notice.
853 * This will be used by rte_mbuf_to_baddr() which has redundant code once
854 * experimental tag is removed.
857 * The pointer to the mbuf.
859 * The pointer to the mempool of the mbuf.
861 * The pointer of the mbuf buffer.
863 static inline char * __rte_experimental
864 rte_mbuf_buf_addr(struct rte_mbuf *mb, struct rte_mempool *mp)
866 return (char *)mb + sizeof(*mb) + rte_pktmbuf_priv_size(mp);
870 * Return the default address of the beginning of the mbuf data.
873 * @b EXPERIMENTAL: This API may change without prior notice.
876 * The pointer to the mbuf.
878 * The pointer of the beginning of the mbuf data.
880 static inline char * __rte_experimental
881 rte_mbuf_data_addr_default(struct rte_mbuf *mb)
883 return rte_mbuf_buf_addr(mb, mb->pool) + RTE_PKTMBUF_HEADROOM;
887 * Return address of buffer embedded in the given mbuf.
889 * @note: Accessing mempool pointer of a mbuf is expensive because the
890 * pointer is stored in the 2nd cache line of mbuf. If mempool is known, it
891 * is better not to reference the mempool pointer in mbuf but calling
892 * rte_mbuf_buf_addr() would be more efficient.
895 * The pointer to the mbuf.
897 * The address of the data buffer owned by the mbuf.
900 rte_mbuf_to_baddr(struct rte_mbuf *md)
902 #ifdef ALLOW_EXPERIMENTAL_API
903 return rte_mbuf_buf_addr(md, md->pool);
906 buffer_addr = (char *)md + sizeof(*md) + rte_pktmbuf_priv_size(md->pool);
912 * Return the starting address of the private data area embedded in
915 * Note that no check is made to ensure that a private data area
916 * actually exists in the supplied mbuf.
919 * The pointer to the mbuf.
921 * The starting address of the private data area of the given mbuf.
923 static inline void * __rte_experimental
924 rte_mbuf_to_priv(struct rte_mbuf *m)
926 return RTE_PTR_ADD(m, sizeof(struct rte_mbuf));
930 * Returns TRUE if given mbuf is cloned by mbuf indirection, or FALSE
933 * If a mbuf has its data in another mbuf and references it by mbuf
934 * indirection, this mbuf can be defined as a cloned mbuf.
936 #define RTE_MBUF_CLONED(mb) ((mb)->ol_flags & IND_ATTACHED_MBUF)
939 * Returns TRUE if given mbuf has an external buffer, or FALSE otherwise.
941 * External buffer is a user-provided anonymous buffer.
943 #define RTE_MBUF_HAS_EXTBUF(mb) ((mb)->ol_flags & EXT_ATTACHED_MBUF)
946 * Returns TRUE if given mbuf is direct, or FALSE otherwise.
948 * If a mbuf embeds its own data after the rte_mbuf structure, this mbuf
949 * can be defined as a direct mbuf.
951 #define RTE_MBUF_DIRECT(mb) \
952 (!((mb)->ol_flags & (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF)))
955 * Private data in case of pktmbuf pool.
957 * A structure that contains some pktmbuf_pool-specific data that are
958 * appended after the mempool structure (in private data).
960 struct rte_pktmbuf_pool_private {
961 uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */
962 uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */
965 #ifdef RTE_LIBRTE_MBUF_DEBUG
967 /** check mbuf type in debug mode */
968 #define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h)
970 #else /* RTE_LIBRTE_MBUF_DEBUG */
972 /** check mbuf type in debug mode */
973 #define __rte_mbuf_sanity_check(m, is_h) do { } while (0)
975 #endif /* RTE_LIBRTE_MBUF_DEBUG */
977 #ifdef RTE_MBUF_REFCNT_ATOMIC
980 * Reads the value of an mbuf's refcnt.
984 * Reference count number.
986 static inline uint16_t
987 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
989 return (uint16_t)(rte_atomic16_read(&m->refcnt_atomic));
993 * Sets an mbuf's refcnt to a defined value.
1000 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
1002 rte_atomic16_set(&m->refcnt_atomic, (int16_t)new_value);
1006 static inline uint16_t
1007 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
1009 return (uint16_t)(rte_atomic16_add_return(&m->refcnt_atomic, value));
1013 * Adds given value to an mbuf's refcnt and returns its new value.
1017 * Value to add/subtract
1021 static inline uint16_t
1022 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
1025 * The atomic_add is an expensive operation, so we don't want to
1026 * call it in the case where we know we are the unique holder of
1027 * this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic
1028 * operation has to be used because concurrent accesses on the
1029 * reference counter can occur.
1031 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
1033 rte_mbuf_refcnt_set(m, (uint16_t)value);
1034 return (uint16_t)value;
1037 return __rte_mbuf_refcnt_update(m, value);
1040 #else /* ! RTE_MBUF_REFCNT_ATOMIC */
1043 static inline uint16_t
1044 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
1046 m->refcnt = (uint16_t)(m->refcnt + value);
1051 * Adds given value to an mbuf's refcnt and returns its new value.
1053 static inline uint16_t
1054 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
1056 return __rte_mbuf_refcnt_update(m, value);
1060 * Reads the value of an mbuf's refcnt.
1062 static inline uint16_t
1063 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
1069 * Sets an mbuf's refcnt to the defined value.
1072 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
1074 m->refcnt = new_value;
1077 #endif /* RTE_MBUF_REFCNT_ATOMIC */
1080 * Reads the refcnt of an external buffer.
1083 * Shared data of the external buffer.
1085 * Reference count number.
1087 static inline uint16_t
1088 rte_mbuf_ext_refcnt_read(const struct rte_mbuf_ext_shared_info *shinfo)
1090 return (uint16_t)(rte_atomic16_read(&shinfo->refcnt_atomic));
1094 * Set refcnt of an external buffer.
1097 * Shared data of the external buffer.
1102 rte_mbuf_ext_refcnt_set(struct rte_mbuf_ext_shared_info *shinfo,
1105 rte_atomic16_set(&shinfo->refcnt_atomic, (int16_t)new_value);
1109 * Add given value to refcnt of an external buffer and return its new
1113 * Shared data of the external buffer.
1115 * Value to add/subtract
1119 static inline uint16_t
1120 rte_mbuf_ext_refcnt_update(struct rte_mbuf_ext_shared_info *shinfo,
1123 if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1)) {
1125 rte_mbuf_ext_refcnt_set(shinfo, (uint16_t)value);
1126 return (uint16_t)value;
1129 return (uint16_t)rte_atomic16_add_return(&shinfo->refcnt_atomic, value);
1132 /** Mbuf prefetch */
1133 #define RTE_MBUF_PREFETCH_TO_FREE(m) do { \
1140 * Sanity checks on an mbuf.
1142 * Check the consistency of the given mbuf. The function will cause a
1143 * panic if corruption is detected.
1146 * The mbuf to be checked.
1148 * True if the mbuf is a packet header, false if it is a sub-segment
1149 * of a packet (in this case, some fields like nb_segs are not checked)
1152 rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header);
1155 * Sanity checks on a mbuf.
1157 * Almost like rte_mbuf_sanity_check(), but this function gives the reason
1158 * if corruption is detected rather than panic.
1161 * The mbuf to be checked.
1163 * True if the mbuf is a packet header, false if it is a sub-segment
1164 * of a packet (in this case, some fields like nb_segs are not checked)
1166 * A reference to a string pointer where to store the reason why a mbuf is
1167 * considered invalid.
1169 * - 0 if no issue has been found, reason is left untouched.
1170 * - -1 if a problem is detected, reason then points to a string describing
1171 * the reason why the mbuf is deemed invalid.
1174 int rte_mbuf_check(const struct rte_mbuf *m, int is_header,
1175 const char **reason);
1177 #define MBUF_RAW_ALLOC_CHECK(m) do { \
1178 RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1); \
1179 RTE_ASSERT((m)->next == NULL); \
1180 RTE_ASSERT((m)->nb_segs == 1); \
1181 __rte_mbuf_sanity_check(m, 0); \
1185 * Allocate an uninitialized mbuf from mempool *mp*.
1187 * This function can be used by PMDs (especially in RX functions) to
1188 * allocate an uninitialized mbuf. The driver is responsible of
1189 * initializing all the required fields. See rte_pktmbuf_reset().
1190 * For standard needs, prefer rte_pktmbuf_alloc().
1192 * The caller can expect that the following fields of the mbuf structure
1193 * are initialized: buf_addr, buf_iova, buf_len, refcnt=1, nb_segs=1,
1194 * next=NULL, pool, priv_size. The other fields must be initialized
1198 * The mempool from which mbuf is allocated.
1200 * - The pointer to the new mbuf on success.
1201 * - NULL if allocation failed.
1203 static inline struct rte_mbuf *rte_mbuf_raw_alloc(struct rte_mempool *mp)
1207 if (rte_mempool_get(mp, (void **)&m) < 0)
1209 MBUF_RAW_ALLOC_CHECK(m);
1214 * Put mbuf back into its original mempool.
1216 * The caller must ensure that the mbuf is direct and properly
1217 * reinitialized (refcnt=1, next=NULL, nb_segs=1), as done by
1218 * rte_pktmbuf_prefree_seg().
1220 * This function should be used with care, when optimization is
1221 * required. For standard needs, prefer rte_pktmbuf_free() or
1222 * rte_pktmbuf_free_seg().
1225 * The mbuf to be freed.
1227 static __rte_always_inline void
1228 rte_mbuf_raw_free(struct rte_mbuf *m)
1230 RTE_ASSERT(RTE_MBUF_DIRECT(m));
1231 RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1);
1232 RTE_ASSERT(m->next == NULL);
1233 RTE_ASSERT(m->nb_segs == 1);
1234 __rte_mbuf_sanity_check(m, 0);
1235 rte_mempool_put(m->pool, m);
1239 * The packet mbuf constructor.
1241 * This function initializes some fields in the mbuf structure that are
1242 * not modified by the user once created (origin pool, buffer start
1243 * address, and so on). This function is given as a callback function to
1244 * rte_mempool_obj_iter() or rte_mempool_create() at pool creation time.
1247 * The mempool from which mbufs originate.
1249 * A pointer that can be used by the user to retrieve useful information
1250 * for mbuf initialization. This pointer is the opaque argument passed to
1251 * rte_mempool_obj_iter() or rte_mempool_create().
1253 * The mbuf to initialize.
1255 * The index of the mbuf in the pool table.
1257 void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg,
1258 void *m, unsigned i);
1262 * A packet mbuf pool constructor.
1264 * This function initializes the mempool private data in the case of a
1265 * pktmbuf pool. This private data is needed by the driver. The
1266 * function must be called on the mempool before it is used, or it
1267 * can be given as a callback function to rte_mempool_create() at
1268 * pool creation. It can be extended by the user, for example, to
1269 * provide another packet size.
1272 * The mempool from which mbufs originate.
1274 * A pointer that can be used by the user to retrieve useful information
1275 * for mbuf initialization. This pointer is the opaque argument passed to
1276 * rte_mempool_create().
1278 void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg);
1281 * Create a mbuf pool.
1283 * This function creates and initializes a packet mbuf pool. It is
1284 * a wrapper to rte_mempool functions.
1287 * The name of the mbuf pool.
1289 * The number of elements in the mbuf pool. The optimum size (in terms
1290 * of memory usage) for a mempool is when n is a power of two minus one:
1293 * Size of the per-core object cache. See rte_mempool_create() for
1296 * Size of application private are between the rte_mbuf structure
1297 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
1298 * @param data_room_size
1299 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
1301 * The socket identifier where the memory should be allocated. The
1302 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
1305 * The pointer to the new allocated mempool, on success. NULL on error
1306 * with rte_errno set appropriately. Possible rte_errno values include:
1307 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
1308 * - E_RTE_SECONDARY - function was called from a secondary process instance
1309 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
1310 * - ENOSPC - the maximum number of memzones has already been allocated
1311 * - EEXIST - a memzone with the same name already exists
1312 * - ENOMEM - no appropriate memory area found in which to create memzone
1314 struct rte_mempool *
1315 rte_pktmbuf_pool_create(const char *name, unsigned n,
1316 unsigned cache_size, uint16_t priv_size, uint16_t data_room_size,
1320 * Create a mbuf pool with a given mempool ops name
1322 * This function creates and initializes a packet mbuf pool. It is
1323 * a wrapper to rte_mempool functions.
1326 * The name of the mbuf pool.
1328 * The number of elements in the mbuf pool. The optimum size (in terms
1329 * of memory usage) for a mempool is when n is a power of two minus one:
1332 * Size of the per-core object cache. See rte_mempool_create() for
1335 * Size of application private are between the rte_mbuf structure
1336 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
1337 * @param data_room_size
1338 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
1340 * The socket identifier where the memory should be allocated. The
1341 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
1344 * The mempool ops name to be used for this mempool instead of
1345 * default mempool. The value can be *NULL* to use default mempool.
1347 * The pointer to the new allocated mempool, on success. NULL on error
1348 * with rte_errno set appropriately. Possible rte_errno values include:
1349 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
1350 * - E_RTE_SECONDARY - function was called from a secondary process instance
1351 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
1352 * - ENOSPC - the maximum number of memzones has already been allocated
1353 * - EEXIST - a memzone with the same name already exists
1354 * - ENOMEM - no appropriate memory area found in which to create memzone
1356 struct rte_mempool *
1357 rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
1358 unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
1359 int socket_id, const char *ops_name);
1362 * Get the data room size of mbufs stored in a pktmbuf_pool
1364 * The data room size is the amount of data that can be stored in a
1365 * mbuf including the headroom (RTE_PKTMBUF_HEADROOM).
1368 * The packet mbuf pool.
1370 * The data room size of mbufs stored in this mempool.
1372 static inline uint16_t
1373 rte_pktmbuf_data_room_size(struct rte_mempool *mp)
1375 struct rte_pktmbuf_pool_private *mbp_priv;
1377 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
1378 return mbp_priv->mbuf_data_room_size;
1382 * Get the application private size of mbufs stored in a pktmbuf_pool
1384 * The private size of mbuf is a zone located between the rte_mbuf
1385 * structure and the data buffer where an application can store data
1386 * associated to a packet.
1389 * The packet mbuf pool.
1391 * The private size of mbufs stored in this mempool.
1393 static inline uint16_t
1394 rte_pktmbuf_priv_size(struct rte_mempool *mp)
1396 struct rte_pktmbuf_pool_private *mbp_priv;
1398 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
1399 return mbp_priv->mbuf_priv_size;
1403 * Reset the data_off field of a packet mbuf to its default value.
1405 * The given mbuf must have only one segment, which should be empty.
1408 * The packet mbuf's data_off field has to be reset.
1410 static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m)
1412 m->data_off = (uint16_t)RTE_MIN((uint16_t)RTE_PKTMBUF_HEADROOM,
1413 (uint16_t)m->buf_len);
1417 * Reset the fields of a packet mbuf to their default values.
1419 * The given mbuf must have only one segment.
1422 * The packet mbuf to be resetted.
1424 #define MBUF_INVALID_PORT UINT16_MAX
1426 static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
1432 m->vlan_tci_outer = 0;
1434 m->port = MBUF_INVALID_PORT;
1438 rte_pktmbuf_reset_headroom(m);
1441 __rte_mbuf_sanity_check(m, 1);
1445 * Allocate a new mbuf from a mempool.
1447 * This new mbuf contains one segment, which has a length of 0. The pointer
1448 * to data is initialized to have some bytes of headroom in the buffer
1449 * (if buffer size allows).
1452 * The mempool from which the mbuf is allocated.
1454 * - The pointer to the new mbuf on success.
1455 * - NULL if allocation failed.
1457 static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp)
1460 if ((m = rte_mbuf_raw_alloc(mp)) != NULL)
1461 rte_pktmbuf_reset(m);
1466 * Allocate a bulk of mbufs, initialize refcnt and reset the fields to default
1470 * The mempool from which mbufs are allocated.
1472 * Array of pointers to mbufs
1477 * - -ENOENT: Not enough entries in the mempool; no mbufs are retrieved.
1479 static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool,
1480 struct rte_mbuf **mbufs, unsigned count)
1485 rc = rte_mempool_get_bulk(pool, (void **)mbufs, count);
1489 /* To understand duff's device on loop unwinding optimization, see
1490 * https://en.wikipedia.org/wiki/Duff's_device.
1491 * Here while() loop is used rather than do() while{} to avoid extra
1492 * check if count is zero.
1494 switch (count % 4) {
1496 while (idx != count) {
1497 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
1498 rte_pktmbuf_reset(mbufs[idx]);
1502 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
1503 rte_pktmbuf_reset(mbufs[idx]);
1507 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
1508 rte_pktmbuf_reset(mbufs[idx]);
1512 MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
1513 rte_pktmbuf_reset(mbufs[idx]);
1522 * Initialize shared data at the end of an external buffer before attaching
1523 * to a mbuf by ``rte_pktmbuf_attach_extbuf()``. This is not a mandatory
1524 * initialization but a helper function to simply spare a few bytes at the
1525 * end of the buffer for shared data. If shared data is allocated
1526 * separately, this should not be called but application has to properly
1527 * initialize the shared data according to its need.
1529 * Free callback and its argument is saved and the refcnt is set to 1.
1532 * The value of buf_len will be reduced to RTE_PTR_DIFF(shinfo, buf_addr)
1533 * after this initialization. This shall be used for
1534 * ``rte_pktmbuf_attach_extbuf()``
1537 * The pointer to the external buffer.
1538 * @param [in,out] buf_len
1539 * The pointer to length of the external buffer. Input value must be
1540 * larger than the size of ``struct rte_mbuf_ext_shared_info`` and
1541 * padding for alignment. If not enough, this function will return NULL.
1542 * Adjusted buffer length will be returned through this pointer.
1544 * Free callback function to call when the external buffer needs to be
1547 * Argument for the free callback function.
1550 * A pointer to the initialized shared data on success, return NULL
1553 static inline struct rte_mbuf_ext_shared_info *
1554 rte_pktmbuf_ext_shinfo_init_helper(void *buf_addr, uint16_t *buf_len,
1555 rte_mbuf_extbuf_free_callback_t free_cb, void *fcb_opaque)
1557 struct rte_mbuf_ext_shared_info *shinfo;
1558 void *buf_end = RTE_PTR_ADD(buf_addr, *buf_len);
1561 addr = RTE_PTR_ALIGN_FLOOR(RTE_PTR_SUB(buf_end, sizeof(*shinfo)),
1563 if (addr <= buf_addr)
1566 shinfo = (struct rte_mbuf_ext_shared_info *)addr;
1567 shinfo->free_cb = free_cb;
1568 shinfo->fcb_opaque = fcb_opaque;
1569 rte_mbuf_ext_refcnt_set(shinfo, 1);
1571 *buf_len = (uint16_t)RTE_PTR_DIFF(shinfo, buf_addr);
1576 * Attach an external buffer to a mbuf.
1578 * User-managed anonymous buffer can be attached to an mbuf. When attaching
1579 * it, corresponding free callback function and its argument should be
1580 * provided via shinfo. This callback function will be called once all the
1581 * mbufs are detached from the buffer (refcnt becomes zero).
1583 * The headroom for the attaching mbuf will be set to zero and this can be
1584 * properly adjusted after attachment. For example, ``rte_pktmbuf_adj()``
1585 * or ``rte_pktmbuf_reset_headroom()`` might be used.
1587 * More mbufs can be attached to the same external buffer by
1588 * ``rte_pktmbuf_attach()`` once the external buffer has been attached by
1591 * Detachment can be done by either ``rte_pktmbuf_detach_extbuf()`` or
1592 * ``rte_pktmbuf_detach()``.
1594 * Memory for shared data must be provided and user must initialize all of
1595 * the content properly, escpecially free callback and refcnt. The pointer
1596 * of shared data will be stored in m->shinfo.
1597 * ``rte_pktmbuf_ext_shinfo_init_helper`` can help to simply spare a few
1598 * bytes at the end of buffer for the shared data, store free callback and
1599 * its argument and set the refcnt to 1. The following is an example:
1601 * struct rte_mbuf_ext_shared_info *shinfo =
1602 * rte_pktmbuf_ext_shinfo_init_helper(buf_addr, &buf_len,
1603 * free_cb, fcb_arg);
1604 * rte_pktmbuf_attach_extbuf(m, buf_addr, buf_iova, buf_len, shinfo);
1605 * rte_pktmbuf_reset_headroom(m);
1606 * rte_pktmbuf_adj(m, data_len);
1608 * Attaching an external buffer is quite similar to mbuf indirection in
1609 * replacing buffer addresses and length of a mbuf, but a few differences:
1610 * - When an indirect mbuf is attached, refcnt of the direct mbuf would be
1611 * 2 as long as the direct mbuf itself isn't freed after the attachment.
1612 * In such cases, the buffer area of a direct mbuf must be read-only. But
1613 * external buffer has its own refcnt and it starts from 1. Unless
1614 * multiple mbufs are attached to a mbuf having an external buffer, the
1615 * external buffer is writable.
1616 * - There's no need to allocate buffer from a mempool. Any buffer can be
1617 * attached with appropriate free callback and its IO address.
1618 * - Smaller metadata is required to maintain shared data such as refcnt.
1621 * The pointer to the mbuf.
1623 * The pointer to the external buffer.
1625 * IO address of the external buffer.
1627 * The size of the external buffer.
1629 * User-provided memory for shared data of the external buffer.
1632 rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr,
1633 rte_iova_t buf_iova, uint16_t buf_len,
1634 struct rte_mbuf_ext_shared_info *shinfo)
1636 /* mbuf should not be read-only */
1637 RTE_ASSERT(RTE_MBUF_DIRECT(m) && rte_mbuf_refcnt_read(m) == 1);
1638 RTE_ASSERT(shinfo->free_cb != NULL);
1640 m->buf_addr = buf_addr;
1641 m->buf_iova = buf_iova;
1642 m->buf_len = buf_len;
1647 m->ol_flags |= EXT_ATTACHED_MBUF;
1652 * Detach the external buffer attached to a mbuf, same as
1653 * ``rte_pktmbuf_detach()``
1656 * The mbuf having external buffer.
1658 #define rte_pktmbuf_detach_extbuf(m) rte_pktmbuf_detach(m)
1661 * Attach packet mbuf to another packet mbuf.
1663 * If the mbuf we are attaching to isn't a direct buffer and is attached to
1664 * an external buffer, the mbuf being attached will be attached to the
1665 * external buffer instead of mbuf indirection.
1667 * Otherwise, the mbuf will be indirectly attached. After attachment we
1668 * refer the mbuf we attached as 'indirect', while mbuf we attached to as
1669 * 'direct'. The direct mbuf's reference counter is incremented.
1671 * Right now, not supported:
1672 * - attachment for already indirect mbuf (e.g. - mi has to be direct).
1673 * - mbuf we trying to attach (mi) is used by someone else
1674 * e.g. it's reference counter is greater then 1.
1677 * The indirect packet mbuf.
1679 * The packet mbuf we're attaching to.
1681 static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m)
1683 RTE_ASSERT(RTE_MBUF_DIRECT(mi) &&
1684 rte_mbuf_refcnt_read(mi) == 1);
1686 if (RTE_MBUF_HAS_EXTBUF(m)) {
1687 rte_mbuf_ext_refcnt_update(m->shinfo, 1);
1688 mi->ol_flags = m->ol_flags;
1689 mi->shinfo = m->shinfo;
1691 /* if m is not direct, get the mbuf that embeds the data */
1692 rte_mbuf_refcnt_update(rte_mbuf_from_indirect(m), 1);
1693 mi->priv_size = m->priv_size;
1694 mi->ol_flags = m->ol_flags | IND_ATTACHED_MBUF;
1697 mi->buf_iova = m->buf_iova;
1698 mi->buf_addr = m->buf_addr;
1699 mi->buf_len = m->buf_len;
1701 mi->data_off = m->data_off;
1702 mi->data_len = m->data_len;
1704 mi->vlan_tci = m->vlan_tci;
1705 mi->vlan_tci_outer = m->vlan_tci_outer;
1706 mi->tx_offload = m->tx_offload;
1710 mi->pkt_len = mi->data_len;
1712 mi->packet_type = m->packet_type;
1713 mi->timestamp = m->timestamp;
1715 __rte_mbuf_sanity_check(mi, 1);
1716 __rte_mbuf_sanity_check(m, 0);
1720 * @internal used by rte_pktmbuf_detach().
1722 * Decrement the reference counter of the external buffer. When the
1723 * reference counter becomes 0, the buffer is freed by pre-registered
1727 __rte_pktmbuf_free_extbuf(struct rte_mbuf *m)
1729 RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m));
1730 RTE_ASSERT(m->shinfo != NULL);
1732 if (rte_mbuf_ext_refcnt_update(m->shinfo, -1) == 0)
1733 m->shinfo->free_cb(m->buf_addr, m->shinfo->fcb_opaque);
1737 * @internal used by rte_pktmbuf_detach().
1739 * Decrement the direct mbuf's reference counter. When the reference
1740 * counter becomes 0, the direct mbuf is freed.
1743 __rte_pktmbuf_free_direct(struct rte_mbuf *m)
1745 struct rte_mbuf *md;
1747 RTE_ASSERT(RTE_MBUF_CLONED(m));
1749 md = rte_mbuf_from_indirect(m);
1751 if (rte_mbuf_refcnt_update(md, -1) == 0) {
1754 rte_mbuf_refcnt_set(md, 1);
1755 rte_mbuf_raw_free(md);
1760 * Detach a packet mbuf from external buffer or direct buffer.
1762 * - decrement refcnt and free the external/direct buffer if refcnt
1764 * - restore original mbuf address and length values.
1765 * - reset pktmbuf data and data_len to their default values.
1767 * All other fields of the given packet mbuf will be left intact.
1770 * The indirect attached packet mbuf.
1772 static inline void rte_pktmbuf_detach(struct rte_mbuf *m)
1774 struct rte_mempool *mp = m->pool;
1775 uint32_t mbuf_size, buf_len;
1778 if (RTE_MBUF_HAS_EXTBUF(m))
1779 __rte_pktmbuf_free_extbuf(m);
1781 __rte_pktmbuf_free_direct(m);
1783 priv_size = rte_pktmbuf_priv_size(mp);
1784 mbuf_size = (uint32_t)(sizeof(struct rte_mbuf) + priv_size);
1785 buf_len = rte_pktmbuf_data_room_size(mp);
1787 m->priv_size = priv_size;
1788 m->buf_addr = (char *)m + mbuf_size;
1789 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
1790 m->buf_len = (uint16_t)buf_len;
1791 rte_pktmbuf_reset_headroom(m);
1797 * Decrease reference counter and unlink a mbuf segment
1799 * This function does the same than a free, except that it does not
1800 * return the segment to its pool.
1801 * It decreases the reference counter, and if it reaches 0, it is
1802 * detached from its parent for an indirect mbuf.
1805 * The mbuf to be unlinked
1807 * - (m) if it is the last reference. It can be recycled or freed.
1808 * - (NULL) if the mbuf still has remaining references on it.
1810 static __rte_always_inline struct rte_mbuf *
1811 rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
1813 __rte_mbuf_sanity_check(m, 0);
1815 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
1817 if (!RTE_MBUF_DIRECT(m))
1818 rte_pktmbuf_detach(m);
1820 if (m->next != NULL) {
1827 } else if (__rte_mbuf_refcnt_update(m, -1) == 0) {
1829 if (!RTE_MBUF_DIRECT(m))
1830 rte_pktmbuf_detach(m);
1832 if (m->next != NULL) {
1836 rte_mbuf_refcnt_set(m, 1);
1844 * Free a segment of a packet mbuf into its original mempool.
1846 * Free an mbuf, without parsing other segments in case of chained
1850 * The packet mbuf segment to be freed.
1852 static __rte_always_inline void
1853 rte_pktmbuf_free_seg(struct rte_mbuf *m)
1855 m = rte_pktmbuf_prefree_seg(m);
1856 if (likely(m != NULL))
1857 rte_mbuf_raw_free(m);
1861 * Free a packet mbuf back into its original mempool.
1863 * Free an mbuf, and all its segments in case of chained buffers. Each
1864 * segment is added back into its original mempool.
1867 * The packet mbuf to be freed. If NULL, the function does nothing.
1869 static inline void rte_pktmbuf_free(struct rte_mbuf *m)
1871 struct rte_mbuf *m_next;
1874 __rte_mbuf_sanity_check(m, 1);
1878 rte_pktmbuf_free_seg(m);
1884 * Creates a "clone" of the given packet mbuf.
1886 * Walks through all segments of the given packet mbuf, and for each of them:
1887 * - Creates a new packet mbuf from the given pool.
1888 * - Attaches newly created mbuf to the segment.
1889 * Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values
1890 * from the original packet mbuf.
1893 * The packet mbuf to be cloned.
1895 * The mempool from which the "clone" mbufs are allocated.
1897 * - The pointer to the new "clone" mbuf on success.
1898 * - NULL if allocation fails.
1900 static inline struct rte_mbuf *rte_pktmbuf_clone(struct rte_mbuf *md,
1901 struct rte_mempool *mp)
1903 struct rte_mbuf *mc, *mi, **prev;
1907 if (unlikely ((mc = rte_pktmbuf_alloc(mp)) == NULL))
1912 pktlen = md->pkt_len;
1917 rte_pktmbuf_attach(mi, md);
1920 } while ((md = md->next) != NULL &&
1921 (mi = rte_pktmbuf_alloc(mp)) != NULL);
1925 mc->pkt_len = pktlen;
1927 /* Allocation of new indirect segment failed */
1928 if (unlikely (mi == NULL)) {
1929 rte_pktmbuf_free(mc);
1933 __rte_mbuf_sanity_check(mc, 1);
1938 * Adds given value to the refcnt of all packet mbuf segments.
1940 * Walks through all segments of given packet mbuf and for each of them
1941 * invokes rte_mbuf_refcnt_update().
1944 * The packet mbuf whose refcnt to be updated.
1946 * The value to add to the mbuf's segments refcnt.
1948 static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v)
1950 __rte_mbuf_sanity_check(m, 1);
1953 rte_mbuf_refcnt_update(m, v);
1954 } while ((m = m->next) != NULL);
1958 * Get the headroom in a packet mbuf.
1963 * The length of the headroom.
1965 static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m)
1967 __rte_mbuf_sanity_check(m, 0);
1972 * Get the tailroom of a packet mbuf.
1977 * The length of the tailroom.
1979 static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m)
1981 __rte_mbuf_sanity_check(m, 0);
1982 return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) -
1987 * Get the last segment of the packet.
1992 * The last segment of the given mbuf.
1994 static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m)
1996 __rte_mbuf_sanity_check(m, 1);
1997 while (m->next != NULL)
2003 * A macro that points to an offset into the data in the mbuf.
2005 * The returned pointer is cast to type t. Before using this
2006 * function, the user must ensure that the first segment is large
2007 * enough to accommodate its data.
2012 * The offset into the mbuf data.
2014 * The type to cast the result into.
2016 #define rte_pktmbuf_mtod_offset(m, t, o) \
2017 ((t)((char *)(m)->buf_addr + (m)->data_off + (o)))
2020 * A macro that points to the start of the data in the mbuf.
2022 * The returned pointer is cast to type t. Before using this
2023 * function, the user must ensure that the first segment is large
2024 * enough to accommodate its data.
2029 * The type to cast the result into.
2031 #define rte_pktmbuf_mtod(m, t) rte_pktmbuf_mtod_offset(m, t, 0)
2034 * A macro that returns the IO address that points to an offset of the
2035 * start of the data in the mbuf
2040 * The offset into the data to calculate address from.
2042 #define rte_pktmbuf_iova_offset(m, o) \
2043 (rte_iova_t)((m)->buf_iova + (m)->data_off + (o))
2046 #define rte_pktmbuf_mtophys_offset(m, o) \
2047 rte_pktmbuf_iova_offset(m, o)
2050 * A macro that returns the IO address that points to the start of the
2056 #define rte_pktmbuf_iova(m) rte_pktmbuf_iova_offset(m, 0)
2059 #define rte_pktmbuf_mtophys(m) rte_pktmbuf_iova(m)
2062 * A macro that returns the length of the packet.
2064 * The value can be read or assigned.
2069 #define rte_pktmbuf_pkt_len(m) ((m)->pkt_len)
2072 * A macro that returns the length of the segment.
2074 * The value can be read or assigned.
2079 #define rte_pktmbuf_data_len(m) ((m)->data_len)
2082 * Prepend len bytes to an mbuf data area.
2084 * Returns a pointer to the new
2085 * data start address. If there is not enough headroom in the first
2086 * segment, the function will return NULL, without modifying the mbuf.
2091 * The amount of data to prepend (in bytes).
2093 * A pointer to the start of the newly prepended data, or
2094 * NULL if there is not enough headroom space in the first segment
2096 static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m,
2099 __rte_mbuf_sanity_check(m, 1);
2101 if (unlikely(len > rte_pktmbuf_headroom(m)))
2104 /* NB: elaborating the subtraction like this instead of using
2105 * -= allows us to ensure the result type is uint16_t
2106 * avoiding compiler warnings on gcc 8.1 at least */
2107 m->data_off = (uint16_t)(m->data_off - len);
2108 m->data_len = (uint16_t)(m->data_len + len);
2109 m->pkt_len = (m->pkt_len + len);
2111 return (char *)m->buf_addr + m->data_off;
2115 * Append len bytes to an mbuf.
2117 * Append len bytes to an mbuf and return a pointer to the start address
2118 * of the added data. If there is not enough tailroom in the last
2119 * segment, the function will return NULL, without modifying the mbuf.
2124 * The amount of data to append (in bytes).
2126 * A pointer to the start of the newly appended data, or
2127 * NULL if there is not enough tailroom space in the last segment
2129 static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
2132 struct rte_mbuf *m_last;
2134 __rte_mbuf_sanity_check(m, 1);
2136 m_last = rte_pktmbuf_lastseg(m);
2137 if (unlikely(len > rte_pktmbuf_tailroom(m_last)))
2140 tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len;
2141 m_last->data_len = (uint16_t)(m_last->data_len + len);
2142 m->pkt_len = (m->pkt_len + len);
2143 return (char*) tail;
2147 * Remove len bytes at the beginning of an mbuf.
2149 * Returns a pointer to the start address of the new data area. If the
2150 * length is greater than the length of the first segment, then the
2151 * function will fail and return NULL, without modifying the mbuf.
2156 * The amount of data to remove (in bytes).
2158 * A pointer to the new start of the data.
2160 static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
2162 __rte_mbuf_sanity_check(m, 1);
2164 if (unlikely(len > m->data_len))
2167 /* NB: elaborating the addition like this instead of using
2168 * += allows us to ensure the result type is uint16_t
2169 * avoiding compiler warnings on gcc 8.1 at least */
2170 m->data_len = (uint16_t)(m->data_len - len);
2171 m->data_off = (uint16_t)(m->data_off + len);
2172 m->pkt_len = (m->pkt_len - len);
2173 return (char *)m->buf_addr + m->data_off;
2177 * Remove len bytes of data at the end of the mbuf.
2179 * If the length is greater than the length of the last segment, the
2180 * function will fail and return -1 without modifying the mbuf.
2185 * The amount of data to remove (in bytes).
2190 static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
2192 struct rte_mbuf *m_last;
2194 __rte_mbuf_sanity_check(m, 1);
2196 m_last = rte_pktmbuf_lastseg(m);
2197 if (unlikely(len > m_last->data_len))
2200 m_last->data_len = (uint16_t)(m_last->data_len - len);
2201 m->pkt_len = (m->pkt_len - len);
2206 * Test if mbuf data is contiguous.
2211 * - 1, if all data is contiguous (one segment).
2212 * - 0, if there is several segments.
2214 static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m)
2216 __rte_mbuf_sanity_check(m, 1);
2217 return !!(m->nb_segs == 1);
2221 * @internal used by rte_pktmbuf_read().
2223 const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
2224 uint32_t len, void *buf);
2227 * Read len data bytes in a mbuf at specified offset.
2229 * If the data is contiguous, return the pointer in the mbuf data, else
2230 * copy the data in the buffer provided by the user and return its
2234 * The pointer to the mbuf.
2236 * The offset of the data in the mbuf.
2238 * The amount of bytes to read.
2240 * The buffer where data is copied if it is not contiguous in mbuf
2241 * data. Its length should be at least equal to the len parameter.
2243 * The pointer to the data, either in the mbuf if it is contiguous,
2244 * or in the user buffer. If mbuf is too small, NULL is returned.
2246 static inline const void *rte_pktmbuf_read(const struct rte_mbuf *m,
2247 uint32_t off, uint32_t len, void *buf)
2249 if (likely(off + len <= rte_pktmbuf_data_len(m)))
2250 return rte_pktmbuf_mtod_offset(m, char *, off);
2252 return __rte_pktmbuf_read(m, off, len, buf);
2256 * Chain an mbuf to another, thereby creating a segmented packet.
2258 * Note: The implementation will do a linear walk over the segments to find
2259 * the tail entry. For cases when there are many segments, it's better to
2260 * chain the entries manually.
2263 * The head of the mbuf chain (the first packet)
2265 * The mbuf to put last in the chain
2269 * - -EOVERFLOW, if the chain segment limit exceeded
2271 static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
2273 struct rte_mbuf *cur_tail;
2275 /* Check for number-of-segments-overflow */
2276 if (head->nb_segs + tail->nb_segs > RTE_MBUF_MAX_NB_SEGS)
2279 /* Chain 'tail' onto the old tail */
2280 cur_tail = rte_pktmbuf_lastseg(head);
2281 cur_tail->next = tail;
2283 /* accumulate number of segments and total length.
2284 * NB: elaborating the addition like this instead of using
2285 * -= allows us to ensure the result type is uint16_t
2286 * avoiding compiler warnings on gcc 8.1 at least */
2287 head->nb_segs = (uint16_t)(head->nb_segs + tail->nb_segs);
2288 head->pkt_len += tail->pkt_len;
2290 /* pkt_len is only set in the head */
2291 tail->pkt_len = tail->data_len;
2298 * @b EXPERIMENTAL: This API may change without prior notice.
2300 * For given input values generate raw tx_offload value.
2301 * Note that it is caller responsibility to make sure that input parameters
2302 * don't exceed maximum bit-field values.
2312 * outer_l3_len value.
2314 * outer_l2_len value.
2318 * raw tx_offload value.
2320 static __rte_always_inline uint64_t
2321 rte_mbuf_tx_offload(uint64_t il2, uint64_t il3, uint64_t il4, uint64_t tso,
2322 uint64_t ol3, uint64_t ol2, uint64_t unused)
2324 return il2 << RTE_MBUF_L2_LEN_OFS |
2325 il3 << RTE_MBUF_L3_LEN_OFS |
2326 il4 << RTE_MBUF_L4_LEN_OFS |
2327 tso << RTE_MBUF_TSO_SEGSZ_OFS |
2328 ol3 << RTE_MBUF_OUTL3_LEN_OFS |
2329 ol2 << RTE_MBUF_OUTL2_LEN_OFS |
2330 unused << RTE_MBUF_TXOFLD_UNUSED_OFS;
2334 * Validate general requirements for Tx offload in mbuf.
2336 * This function checks correctness and completeness of Tx offload settings.
2339 * The packet mbuf to be validated.
2341 * 0 if packet is valid
2344 rte_validate_tx_offload(const struct rte_mbuf *m)
2346 uint64_t ol_flags = m->ol_flags;
2348 /* Does packet set any of available offloads? */
2349 if (!(ol_flags & PKT_TX_OFFLOAD_MASK))
2352 /* IP checksum can be counted only for IPv4 packet */
2353 if ((ol_flags & PKT_TX_IP_CKSUM) && (ol_flags & PKT_TX_IPV6))
2356 /* IP type not set when required */
2357 if (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG))
2358 if (!(ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)))
2361 /* Check requirements for TSO packet */
2362 if (ol_flags & PKT_TX_TCP_SEG)
2363 if ((m->tso_segsz == 0) ||
2364 ((ol_flags & PKT_TX_IPV4) &&
2365 !(ol_flags & PKT_TX_IP_CKSUM)))
2368 /* PKT_TX_OUTER_IP_CKSUM set for non outer IPv4 packet. */
2369 if ((ol_flags & PKT_TX_OUTER_IP_CKSUM) &&
2370 !(ol_flags & PKT_TX_OUTER_IPV4))
2377 * Linearize data in mbuf.
2379 * This function moves the mbuf data in the first segment if there is enough
2380 * tailroom. The subsequent segments are unchained and freed.
2389 rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
2391 size_t seg_len, copy_len;
2393 struct rte_mbuf *m_next;
2396 if (rte_pktmbuf_is_contiguous(mbuf))
2399 /* Extend first segment to the total packet length */
2400 copy_len = rte_pktmbuf_pkt_len(mbuf) - rte_pktmbuf_data_len(mbuf);
2402 if (unlikely(copy_len > rte_pktmbuf_tailroom(mbuf)))
2405 buffer = rte_pktmbuf_mtod_offset(mbuf, char *, mbuf->data_len);
2406 mbuf->data_len = (uint16_t)(mbuf->pkt_len);
2408 /* Append data from next segments to the first one */
2413 seg_len = rte_pktmbuf_data_len(m);
2414 rte_memcpy(buffer, rte_pktmbuf_mtod(m, char *), seg_len);
2417 rte_pktmbuf_free_seg(m);
2428 * Dump an mbuf structure to a file.
2430 * Dump all fields for the given packet mbuf and all its associated
2431 * segments (in the case of a chained buffer).
2434 * A pointer to a file for output
2438 * If dump_len != 0, also dump the "dump_len" first data bytes of
2441 void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len);
2444 * Get the value of mbuf sched queue_id field.
2446 static inline uint32_t
2447 rte_mbuf_sched_queue_get(const struct rte_mbuf *m)
2449 return m->hash.sched.queue_id;
2453 * Get the value of mbuf sched traffic_class field.
2455 static inline uint8_t
2456 rte_mbuf_sched_traffic_class_get(const struct rte_mbuf *m)
2458 return m->hash.sched.traffic_class;
2462 * Get the value of mbuf sched color field.
2464 static inline uint8_t
2465 rte_mbuf_sched_color_get(const struct rte_mbuf *m)
2467 return m->hash.sched.color;
2471 * Get the values of mbuf sched queue_id, traffic_class and color.
2476 * Returns the queue id
2477 * @param traffic_class
2478 * Returns the traffic class id
2480 * Returns the colour id
2483 rte_mbuf_sched_get(const struct rte_mbuf *m, uint32_t *queue_id,
2484 uint8_t *traffic_class,
2487 struct rte_mbuf_sched sched = m->hash.sched;
2489 *queue_id = sched.queue_id;
2490 *traffic_class = sched.traffic_class;
2491 *color = sched.color;
2495 * Set the mbuf sched queue_id to the defined value.
2498 rte_mbuf_sched_queue_set(struct rte_mbuf *m, uint32_t queue_id)
2500 m->hash.sched.queue_id = queue_id;
2504 * Set the mbuf sched traffic_class id to the defined value.
2507 rte_mbuf_sched_traffic_class_set(struct rte_mbuf *m, uint8_t traffic_class)
2509 m->hash.sched.traffic_class = traffic_class;
2513 * Set the mbuf sched color id to the defined value.
2516 rte_mbuf_sched_color_set(struct rte_mbuf *m, uint8_t color)
2518 m->hash.sched.color = color;
2522 * Set the mbuf sched queue_id, traffic_class and color.
2527 * Queue id value to be set
2528 * @param traffic_class
2529 * Traffic class id value to be set
2531 * Color id to be set
2534 rte_mbuf_sched_set(struct rte_mbuf *m, uint32_t queue_id,
2535 uint8_t traffic_class,
2538 m->hash.sched = (struct rte_mbuf_sched){
2539 .queue_id = queue_id,
2540 .traffic_class = traffic_class,
2550 #endif /* _RTE_MBUF_H_ */