4 * Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 #include <sys/queue.h>
41 #include <rte_common.h>
42 #include <rte_interrupts.h>
43 #include <rte_byteorder.h>
45 #include <rte_debug.h>
47 #include <rte_ether.h>
48 #include <rte_ethdev.h>
49 #include <rte_memory.h>
50 #include <rte_memzone.h>
51 #include <rte_tailq.h>
53 #include <rte_atomic.h>
54 #include <rte_malloc.h>
56 #include "e1000_logs.h"
57 #include "e1000/e1000_api.h"
58 #include "e1000_ethdev.h"
60 #define EM_EIAC 0x000DC
62 #define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y))
65 static int eth_em_configure(struct rte_eth_dev *dev);
66 static int eth_em_start(struct rte_eth_dev *dev);
67 static void eth_em_stop(struct rte_eth_dev *dev);
68 static void eth_em_close(struct rte_eth_dev *dev);
69 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
70 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
71 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
72 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
73 static int eth_em_link_update(struct rte_eth_dev *dev,
74 int wait_to_complete);
75 static void eth_em_stats_get(struct rte_eth_dev *dev,
76 struct rte_eth_stats *rte_stats);
77 static void eth_em_stats_reset(struct rte_eth_dev *dev);
78 static void eth_em_infos_get(struct rte_eth_dev *dev,
79 struct rte_eth_dev_info *dev_info);
80 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
81 struct rte_eth_fc_conf *fc_conf);
82 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
83 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
84 static int eth_em_interrupt_action(struct rte_eth_dev *dev);
85 static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
88 static int em_hw_init(struct e1000_hw *hw);
89 static int em_hardware_init(struct e1000_hw *hw);
90 static void em_hw_control_acquire(struct e1000_hw *hw);
91 static void em_hw_control_release(struct e1000_hw *hw);
92 static void em_init_manageability(struct e1000_hw *hw);
93 static void em_release_manageability(struct e1000_hw *hw);
95 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
96 uint16_t vlan_id, int on);
97 static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
98 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
99 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
100 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
101 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
104 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
105 uint16_t vlan_id, int on);
107 static int eth_em_led_on(struct rte_eth_dev *dev);
108 static int eth_em_led_off(struct rte_eth_dev *dev);
110 static void em_intr_disable(struct e1000_hw *hw);
111 static int em_get_rx_buffer_size(struct e1000_hw *hw);
112 static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
113 uint32_t index, uint32_t pool);
114 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
116 #define EM_FC_PAUSE_TIME 0x0680
117 #define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
118 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
120 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
123 * The set of PCI devices this driver supports
125 static struct rte_pci_id pci_id_em_map[] = {
127 #define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
128 #include "rte_pci_dev_ids.h"
133 static struct eth_dev_ops eth_em_ops = {
134 .dev_configure = eth_em_configure,
135 .dev_start = eth_em_start,
136 .dev_stop = eth_em_stop,
137 .dev_close = eth_em_close,
138 .promiscuous_enable = eth_em_promiscuous_enable,
139 .promiscuous_disable = eth_em_promiscuous_disable,
140 .allmulticast_enable = eth_em_allmulticast_enable,
141 .allmulticast_disable = eth_em_allmulticast_disable,
142 .link_update = eth_em_link_update,
143 .stats_get = eth_em_stats_get,
144 .stats_reset = eth_em_stats_reset,
145 .dev_infos_get = eth_em_infos_get,
146 .vlan_filter_set = eth_em_vlan_filter_set,
147 .vlan_offload_set = eth_em_vlan_offload_set,
148 .rx_queue_setup = eth_em_rx_queue_setup,
149 .rx_queue_release = eth_em_rx_queue_release,
150 .rx_queue_count = eth_em_rx_queue_count,
151 .tx_queue_setup = eth_em_tx_queue_setup,
152 .tx_queue_release = eth_em_tx_queue_release,
153 .dev_led_on = eth_em_led_on,
154 .dev_led_off = eth_em_led_off,
155 .flow_ctrl_set = eth_em_flow_ctrl_set,
156 .mac_addr_add = eth_em_rar_set,
157 .mac_addr_remove = eth_em_rar_clear,
161 * Atomically reads the link status information from global
162 * structure rte_eth_dev.
165 * - Pointer to the structure rte_eth_dev to read from.
166 * - Pointer to the buffer to be saved with the link status.
169 * - On success, zero.
170 * - On failure, negative value.
173 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
174 struct rte_eth_link *link)
176 struct rte_eth_link *dst = link;
177 struct rte_eth_link *src = &(dev->data->dev_link);
179 if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
180 *(uint64_t *)src) == 0)
187 * Atomically writes the link status information into global
188 * structure rte_eth_dev.
191 * - Pointer to the structure rte_eth_dev to read from.
192 * - Pointer to the buffer to be saved with the link status.
195 * - On success, zero.
196 * - On failure, negative value.
199 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
200 struct rte_eth_link *link)
202 struct rte_eth_link *dst = &(dev->data->dev_link);
203 struct rte_eth_link *src = link;
205 if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
206 *(uint64_t *)src) == 0)
213 eth_em_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
214 struct rte_eth_dev *eth_dev)
216 struct rte_pci_device *pci_dev;
217 struct e1000_hw *hw =
218 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
219 struct e1000_vfta * shadow_vfta =
220 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
222 pci_dev = eth_dev->pci_dev;
223 eth_dev->dev_ops = ð_em_ops;
224 eth_dev->rx_pkt_burst = (eth_rx_burst_t)ð_em_recv_pkts;
225 eth_dev->tx_pkt_burst = (eth_tx_burst_t)ð_em_xmit_pkts;
227 /* for secondary processes, we don't initialise any further as primary
228 * has already done this work. Only check we don't need a different
230 if (rte_eal_process_type() != RTE_PROC_PRIMARY){
231 if (eth_dev->data->scattered_rx)
232 eth_dev->rx_pkt_burst =
233 (eth_rx_burst_t)ð_em_recv_scattered_pkts;
237 hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
238 hw->device_id = pci_dev->id.device_id;
240 /* For ICH8 support we'll need to map the flash memory BAR */
242 if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
243 em_hw_init(hw) != 0) {
244 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
246 eth_dev->data->port_id, pci_dev->id.vendor_id,
247 pci_dev->id.device_id);
251 /* Allocate memory for storing MAC addresses */
252 eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
253 hw->mac.rar_entry_count, 0);
254 if (eth_dev->data->mac_addrs == NULL) {
255 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
256 "store MAC addresses",
257 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
261 /* Copy the permanent MAC address */
262 ether_addr_copy((struct ether_addr *) hw->mac.addr,
263 eth_dev->data->mac_addrs);
265 /* initialize the vfta */
266 memset(shadow_vfta, 0, sizeof(*shadow_vfta));
268 PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x\n",
269 eth_dev->data->port_id, pci_dev->id.vendor_id,
270 pci_dev->id.device_id);
272 rte_intr_callback_register(&(pci_dev->intr_handle),
273 eth_em_interrupt_handler, (void *)eth_dev);
278 static struct eth_driver rte_em_pmd = {
280 .name = "rte_em_pmd",
281 .id_table = pci_id_em_map,
282 #ifdef RTE_EAL_UNBIND_PORTS
283 .drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
286 .eth_dev_init = eth_em_dev_init,
287 .dev_private_size = sizeof(struct e1000_adapter),
291 rte_em_pmd_init(void)
293 rte_eth_driver_register(&rte_em_pmd);
298 em_hw_init(struct e1000_hw *hw)
302 diag = hw->mac.ops.init_params(hw);
304 PMD_INIT_LOG(ERR, "MAC Initialization Error\n");
307 diag = hw->nvm.ops.init_params(hw);
309 PMD_INIT_LOG(ERR, "NVM Initialization Error\n");
312 diag = hw->phy.ops.init_params(hw);
314 PMD_INIT_LOG(ERR, "PHY Initialization Error\n");
317 (void) e1000_get_bus_info(hw);
320 hw->phy.autoneg_wait_to_complete = 0;
321 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
323 e1000_init_script_state_82541(hw, TRUE);
324 e1000_set_tbi_compatibility_82543(hw, TRUE);
327 if (hw->phy.media_type == e1000_media_type_copper) {
328 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
329 hw->phy.disable_polarity_correction = 0;
330 hw->phy.ms_type = e1000_ms_hw_default;
334 * Start from a known state, this is important in reading the nvm
339 /* Make sure we have a good EEPROM before we read from it */
340 if (e1000_validate_nvm_checksum(hw) < 0) {
342 * Some PCI-E parts fail the first check due to
343 * the link being in sleep state, call it again,
344 * if it fails a second time its a real issue.
346 diag = e1000_validate_nvm_checksum(hw);
348 PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
353 /* Read the permanent MAC address out of the EEPROM */
354 diag = e1000_read_mac_addr(hw);
356 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
360 /* Now initialize the hardware */
361 diag = em_hardware_init(hw);
363 PMD_INIT_LOG(ERR, "Hardware initialization failed");
367 hw->mac.get_link_status = 1;
369 /* Indicate SOL/IDER usage */
370 diag = e1000_check_reset_block(hw);
372 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
378 em_hw_control_release(hw);
383 eth_em_configure(struct rte_eth_dev *dev)
385 struct e1000_interrupt *intr =
386 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
388 PMD_INIT_LOG(DEBUG, ">>");
390 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
392 PMD_INIT_LOG(DEBUG, "<<");
397 em_set_pba(struct e1000_hw *hw)
402 * Packet Buffer Allocation (PBA)
403 * Writing PBA sets the receive portion of the buffer
404 * the remainder is used for the transmit buffer.
405 * Devices before the 82547 had a Packet Buffer of 64K.
406 * After the 82547 the buffer was reduced to 40K.
408 switch (hw->mac.type) {
410 case e1000_82547_rev_2:
411 /* 82547: Total Packet Buffer is 40K */
412 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
416 case e1000_80003es2lan:
417 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
419 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
420 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
424 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
438 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
441 E1000_WRITE_REG(hw, E1000_PBA, pba);
445 eth_em_start(struct rte_eth_dev *dev)
447 struct e1000_hw *hw =
448 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
451 PMD_INIT_LOG(DEBUG, ">>");
455 e1000_power_up_phy(hw);
457 /* Set default PBA value */
460 /* Put the address into the Receive Address Array */
461 e1000_rar_set(hw, hw->mac.addr, 0);
464 * With the 82571 adapter, RAR[0] may be overwritten
465 * when the other port is reset, we make a duplicate
466 * in RAR[14] for that eventuality, this assures
467 * the interface continues to function.
469 if (hw->mac.type == e1000_82571) {
470 e1000_set_laa_state_82571(hw, TRUE);
471 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
474 /* Initialize the hardware */
475 if (em_hardware_init(hw)) {
476 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
480 E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
482 /* Configure for OS presence */
483 em_init_manageability(hw);
487 ret = eth_em_rx_init(dev);
489 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
490 em_dev_clear_queues(dev);
494 e1000_clear_hw_cntrs_base_generic(hw);
496 mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
497 ETH_VLAN_EXTEND_MASK;
498 eth_em_vlan_offload_set(dev, mask);
500 /* Set Interrupt Throttling Rate to maximum allowed value. */
501 E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
503 /* Setup link speed and duplex */
504 switch (dev->data->dev_conf.link_speed) {
505 case ETH_LINK_SPEED_AUTONEG:
506 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
507 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
508 else if (dev->data->dev_conf.link_duplex ==
509 ETH_LINK_HALF_DUPLEX)
510 hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
511 else if (dev->data->dev_conf.link_duplex ==
512 ETH_LINK_FULL_DUPLEX)
513 hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
515 goto error_invalid_config;
517 case ETH_LINK_SPEED_10:
518 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
519 hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
520 else if (dev->data->dev_conf.link_duplex ==
521 ETH_LINK_HALF_DUPLEX)
522 hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
523 else if (dev->data->dev_conf.link_duplex ==
524 ETH_LINK_FULL_DUPLEX)
525 hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
527 goto error_invalid_config;
529 case ETH_LINK_SPEED_100:
530 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
531 hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
532 else if (dev->data->dev_conf.link_duplex ==
533 ETH_LINK_HALF_DUPLEX)
534 hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
535 else if (dev->data->dev_conf.link_duplex ==
536 ETH_LINK_FULL_DUPLEX)
537 hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
539 goto error_invalid_config;
541 case ETH_LINK_SPEED_1000:
542 if ((dev->data->dev_conf.link_duplex ==
543 ETH_LINK_AUTONEG_DUPLEX) ||
544 (dev->data->dev_conf.link_duplex ==
545 ETH_LINK_FULL_DUPLEX))
546 hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
548 goto error_invalid_config;
550 case ETH_LINK_SPEED_10000:
552 goto error_invalid_config;
554 e1000_setup_link(hw);
556 /* check if lsc interrupt feature is enabled */
557 if (dev->data->dev_conf.intr_conf.lsc != 0) {
558 ret = eth_em_interrupt_setup(dev);
560 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
561 em_dev_clear_queues(dev);
566 PMD_INIT_LOG(DEBUG, "<<");
570 error_invalid_config:
571 PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port "
572 "%u\n", dev->data->dev_conf.link_speed,
573 dev->data->dev_conf.link_duplex, dev->data->port_id);
574 em_dev_clear_queues(dev);
578 /*********************************************************************
580 * This routine disables all traffic on the adapter by issuing a
581 * global reset on the MAC.
583 **********************************************************************/
585 eth_em_stop(struct rte_eth_dev *dev)
587 struct rte_eth_link link;
588 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
592 if (hw->mac.type >= e1000_82544)
593 E1000_WRITE_REG(hw, E1000_WUC, 0);
595 /* Power down the phy. Needed to make the link go down */
596 e1000_power_down_phy(hw);
598 em_dev_clear_queues(dev);
600 /* clear the recorded link status */
601 memset(&link, 0, sizeof(link));
602 rte_em_dev_atomic_write_link_status(dev, &link);
606 eth_em_close(struct rte_eth_dev *dev)
608 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
611 e1000_phy_hw_reset(hw);
612 em_release_manageability(hw);
613 em_hw_control_release(hw);
617 em_get_rx_buffer_size(struct e1000_hw *hw)
619 uint32_t rx_buf_size;
621 rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
625 /*********************************************************************
627 * Initialize the hardware
629 **********************************************************************/
631 em_hardware_init(struct e1000_hw *hw)
633 uint32_t rx_buf_size;
636 /* Issue a global reset */
639 /* Let the firmware know the OS is in control */
640 em_hw_control_acquire(hw);
643 * These parameters control the automatic generation (Tx) and
644 * response (Rx) to Ethernet PAUSE frames.
645 * - High water mark should allow for at least two standard size (1518)
646 * frames to be received after sending an XOFF.
647 * - Low water mark works best when it is very near the high water mark.
648 * This allows the receiver to restart by sending XON when it has
649 * drained a bit. Here we use an arbitary value of 1500 which will
650 * restart after one full frame is pulled from the buffer. There
651 * could be several smaller frames in the buffer and if so they will
652 * not trigger the XON until their total number reduces the buffer
654 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
656 rx_buf_size = em_get_rx_buffer_size(hw);
658 hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
659 hw->fc.low_water = hw->fc.high_water - 1500;
661 if (hw->mac.type == e1000_80003es2lan)
662 hw->fc.pause_time = UINT16_MAX;
664 hw->fc.pause_time = EM_FC_PAUSE_TIME;
668 /* Set Flow control, use the tunable location if sane */
669 if (em_fc_setting <= e1000_fc_full)
670 hw->fc.requested_mode = em_fc_setting;
672 hw->fc.requested_mode = e1000_fc_none;
674 /* Workaround: no TX flow ctrl for PCH */
675 if (hw->mac.type == e1000_pchlan)
676 hw->fc.requested_mode = e1000_fc_rx_pause;
678 /* Override - settings for PCH2LAN, ya its magic :) */
679 if (hw->mac.type == e1000_pch2lan) {
680 hw->fc.high_water = 0x5C20;
681 hw->fc.low_water = 0x5048;
682 hw->fc.pause_time = 0x0650;
683 hw->fc.refresh_time = 0x0400;
686 diag = e1000_init_hw(hw);
689 e1000_check_for_link(hw);
693 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
695 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
697 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
698 struct e1000_hw_stats *stats =
699 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
702 if(hw->phy.media_type == e1000_media_type_copper ||
703 (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
704 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
705 stats->sec += E1000_READ_REG(hw, E1000_SEC);
708 stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
709 stats->mpc += E1000_READ_REG(hw, E1000_MPC);
710 stats->scc += E1000_READ_REG(hw, E1000_SCC);
711 stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
713 stats->mcc += E1000_READ_REG(hw, E1000_MCC);
714 stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
715 stats->colc += E1000_READ_REG(hw, E1000_COLC);
716 stats->dc += E1000_READ_REG(hw, E1000_DC);
717 stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
718 stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
719 stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
722 * For watchdog management we need to know if we have been
723 * paused during the last interval, so capture that here.
725 pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
726 stats->xoffrxc += pause_frames;
727 stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
728 stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
729 stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
730 stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
731 stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
732 stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
733 stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
734 stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
735 stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
736 stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
737 stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
738 stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
741 * For the 64-bit byte counters the low dword must be read first.
742 * Both registers clear on the read of the high dword.
745 stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
746 stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
747 stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
748 stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
750 stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
751 stats->ruc += E1000_READ_REG(hw, E1000_RUC);
752 stats->rfc += E1000_READ_REG(hw, E1000_RFC);
753 stats->roc += E1000_READ_REG(hw, E1000_ROC);
754 stats->rjc += E1000_READ_REG(hw, E1000_RJC);
756 stats->tor += E1000_READ_REG(hw, E1000_TORH);
757 stats->tot += E1000_READ_REG(hw, E1000_TOTH);
759 stats->tpr += E1000_READ_REG(hw, E1000_TPR);
760 stats->tpt += E1000_READ_REG(hw, E1000_TPT);
761 stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
762 stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
763 stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
764 stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
765 stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
766 stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
767 stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
768 stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
770 /* Interrupt Counts */
772 if (hw->mac.type >= e1000_82571) {
773 stats->iac += E1000_READ_REG(hw, E1000_IAC);
774 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
775 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
776 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
777 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
778 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
779 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
780 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
781 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
784 if (hw->mac.type >= e1000_82543) {
785 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
786 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
787 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
788 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
789 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
790 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
793 if (rte_stats == NULL)
797 rte_stats->ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
798 stats->ruc + stats->roc + stats->mpc + stats->cexterr;
801 rte_stats->oerrors = stats->ecol + stats->latecol;
803 rte_stats->ipackets = stats->gprc;
804 rte_stats->opackets = stats->gptc;
805 rte_stats->ibytes = stats->gorc;
806 rte_stats->obytes = stats->gotc;
810 eth_em_stats_reset(struct rte_eth_dev *dev)
812 struct e1000_hw_stats *hw_stats =
813 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
815 /* HW registers are cleared on read */
816 eth_em_stats_get(dev, NULL);
818 /* Reset software totals */
819 memset(hw_stats, 0, sizeof(*hw_stats));
823 em_get_max_pktlen(const struct e1000_hw *hw)
825 switch (hw->mac.type) {
832 case e1000_80003es2lan: /* 9K Jumbo Frame size */
836 /* Adapters that do not support jumbo frames */
839 return (ETHER_MAX_LEN);
841 return (MAX_JUMBO_FRAME_SIZE);
846 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
848 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
850 dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
851 dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
852 dev_info->max_mac_addrs = hw->mac.rar_entry_count;
855 * Starting with 631xESB hw supports 2 TX/RX queues per port.
856 * Unfortunatelly, all these nics have just one TX context.
857 * So we have few choises for TX:
858 * - Use just one TX queue.
859 * - Allow cksum offload only for one TX queue.
860 * - Don't allow TX cksum offload at all.
861 * For now, option #1 was chosen.
862 * To use second RX queue we have to use extended RX descriptor
863 * (Multiple Receive Queues are mutually exclusive with UDP
864 * fragmentation and are not supported when a legacy receive
865 * descriptor format is used).
866 * Which means separate RX routinies - as legacy nics (82540, 82545)
867 * don't support extended RXD.
868 * To avoid it we support just one RX queue for now (no RSS).
871 dev_info->max_rx_queues = 1;
872 dev_info->max_tx_queues = 1;
875 /* return 0 means link status changed, -1 means not changed */
877 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
879 struct e1000_hw *hw =
880 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
881 struct rte_eth_link link, old;
882 int link_check, count;
885 hw->mac.get_link_status = 1;
887 /* possible wait-to-complete in up to 9 seconds */
888 for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
889 /* Read the real link status */
890 switch (hw->phy.media_type) {
891 case e1000_media_type_copper:
892 /* Do the work to read phy */
893 e1000_check_for_link(hw);
894 link_check = !hw->mac.get_link_status;
897 case e1000_media_type_fiber:
898 e1000_check_for_link(hw);
899 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
903 case e1000_media_type_internal_serdes:
904 e1000_check_for_link(hw);
905 link_check = hw->mac.serdes_has_link;
911 if (link_check || wait_to_complete == 0)
913 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
915 memset(&link, 0, sizeof(link));
916 rte_em_dev_atomic_read_link_status(dev, &link);
919 /* Now we check if a transition has happened */
920 if (link_check && (link.link_status == 0)) {
921 hw->mac.ops.get_link_up_info(hw, &link.link_speed,
923 link.link_status = 1;
924 } else if (!link_check && (link.link_status == 1)) {
926 link.link_duplex = 0;
927 link.link_status = 0;
929 rte_em_dev_atomic_write_link_status(dev, &link);
932 if (old.link_status == link.link_status)
940 * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
941 * For ASF and Pass Through versions of f/w this means
942 * that the driver is loaded. For AMT version type f/w
943 * this means that the network i/f is open.
946 em_hw_control_acquire(struct e1000_hw *hw)
948 uint32_t ctrl_ext, swsm;
950 /* Let firmware know the driver has taken over */
951 if (hw->mac.type == e1000_82573) {
952 swsm = E1000_READ_REG(hw, E1000_SWSM);
953 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
956 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
957 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
958 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
963 * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
964 * For ASF and Pass Through versions of f/w this means that the
965 * driver is no longer loaded. For AMT versions of the
966 * f/w this means that the network i/f is closed.
969 em_hw_control_release(struct e1000_hw *hw)
971 uint32_t ctrl_ext, swsm;
973 /* Let firmware taken over control of h/w */
974 if (hw->mac.type == e1000_82573) {
975 swsm = E1000_READ_REG(hw, E1000_SWSM);
976 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
978 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
979 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
980 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
985 * Bit of a misnomer, what this really means is
986 * to enable OS management of the system... aka
987 * to disable special hardware management features.
990 em_init_manageability(struct e1000_hw *hw)
992 if (e1000_enable_mng_pass_thru(hw)) {
993 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
994 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
996 /* disable hardware interception of ARP */
997 manc &= ~(E1000_MANC_ARP_EN);
999 /* enable receiving management packets to the host */
1000 manc |= E1000_MANC_EN_MNG2HOST;
1001 manc2h |= 1 << 5; /* Mng Port 623 */
1002 manc2h |= 1 << 6; /* Mng Port 664 */
1003 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1004 E1000_WRITE_REG(hw, E1000_MANC, manc);
1009 * Give control back to hardware management
1010 * controller if there is one.
1013 em_release_manageability(struct e1000_hw *hw)
1017 if (e1000_enable_mng_pass_thru(hw)) {
1018 manc = E1000_READ_REG(hw, E1000_MANC);
1020 /* re-enable hardware interception of ARP */
1021 manc |= E1000_MANC_ARP_EN;
1022 manc &= ~E1000_MANC_EN_MNG2HOST;
1024 E1000_WRITE_REG(hw, E1000_MANC, manc);
1029 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1031 struct e1000_hw *hw =
1032 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1035 rctl = E1000_READ_REG(hw, E1000_RCTL);
1036 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1037 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1041 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1043 struct e1000_hw *hw =
1044 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1047 rctl = E1000_READ_REG(hw, E1000_RCTL);
1048 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1049 if (dev->data->all_multicast == 1)
1050 rctl |= E1000_RCTL_MPE;
1052 rctl &= (~E1000_RCTL_MPE);
1053 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1057 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1059 struct e1000_hw *hw =
1060 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1063 rctl = E1000_READ_REG(hw, E1000_RCTL);
1064 rctl |= E1000_RCTL_MPE;
1065 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1069 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1071 struct e1000_hw *hw =
1072 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1075 if (dev->data->promiscuous == 1)
1076 return; /* must remain in all_multicast mode */
1077 rctl = E1000_READ_REG(hw, E1000_RCTL);
1078 rctl &= (~E1000_RCTL_MPE);
1079 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1083 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1085 struct e1000_hw *hw =
1086 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1087 struct e1000_vfta * shadow_vfta =
1088 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1093 vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1094 E1000_VFTA_ENTRY_MASK);
1095 vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1096 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1101 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1103 /* update local VFTA copy */
1104 shadow_vfta->vfta[vid_idx] = vfta;
1110 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1112 struct e1000_hw *hw =
1113 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1116 /* Filter Table Disable */
1117 reg = E1000_READ_REG(hw, E1000_RCTL);
1118 reg &= ~E1000_RCTL_CFIEN;
1119 reg &= ~E1000_RCTL_VFE;
1120 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1124 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1126 struct e1000_hw *hw =
1127 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1128 struct e1000_vfta * shadow_vfta =
1129 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1133 /* Filter Table Enable, CFI not used for packet acceptance */
1134 reg = E1000_READ_REG(hw, E1000_RCTL);
1135 reg &= ~E1000_RCTL_CFIEN;
1136 reg |= E1000_RCTL_VFE;
1137 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1139 /* restore vfta from local copy */
1140 for (i = 0; i < IGB_VFTA_SIZE; i++)
1141 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1145 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1147 struct e1000_hw *hw =
1148 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1151 /* VLAN Mode Disable */
1152 reg = E1000_READ_REG(hw, E1000_CTRL);
1153 reg &= ~E1000_CTRL_VME;
1154 E1000_WRITE_REG(hw, E1000_CTRL, reg);
1159 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1161 struct e1000_hw *hw =
1162 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1165 /* VLAN Mode Enable */
1166 reg = E1000_READ_REG(hw, E1000_CTRL);
1167 reg |= E1000_CTRL_VME;
1168 E1000_WRITE_REG(hw, E1000_CTRL, reg);
1172 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1174 if(mask & ETH_VLAN_STRIP_MASK){
1175 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1176 em_vlan_hw_strip_enable(dev);
1178 em_vlan_hw_strip_disable(dev);
1181 if(mask & ETH_VLAN_FILTER_MASK){
1182 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1183 em_vlan_hw_filter_enable(dev);
1185 em_vlan_hw_filter_disable(dev);
1190 em_intr_disable(struct e1000_hw *hw)
1192 E1000_WRITE_REG(hw, E1000_IMC, ~0);
1196 * It enables the interrupt mask and then enable the interrupt.
1199 * Pointer to struct rte_eth_dev.
1202 * - On success, zero.
1203 * - On failure, a negative value.
1206 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1208 struct e1000_hw *hw =
1209 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1211 E1000_WRITE_REG(hw, E1000_IMS, E1000_ICR_LSC);
1212 rte_intr_enable(&(dev->pci_dev->intr_handle));
1217 * It reads ICR and gets interrupt causes, check it and set a bit flag
1218 * to update link status.
1221 * Pointer to struct rte_eth_dev.
1224 * - On success, zero.
1225 * - On failure, a negative value.
1228 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1231 struct e1000_hw *hw =
1232 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1233 struct e1000_interrupt *intr =
1234 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1236 /* read-on-clear nic registers here */
1237 icr = E1000_READ_REG(hw, E1000_ICR);
1238 if (icr & E1000_ICR_LSC) {
1239 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1246 * It executes link_update after knowing an interrupt is prsent.
1249 * Pointer to struct rte_eth_dev.
1252 * - On success, zero.
1253 * - On failure, a negative value.
1256 eth_em_interrupt_action(struct rte_eth_dev *dev)
1258 struct e1000_hw *hw =
1259 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1260 struct e1000_interrupt *intr =
1261 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1262 uint32_t tctl, rctl;
1263 struct rte_eth_link link;
1266 if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1269 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1270 rte_intr_enable(&(dev->pci_dev->intr_handle));
1272 /* set get_link_status to check register later */
1273 hw->mac.get_link_status = 1;
1274 ret = eth_em_link_update(dev, 0);
1276 /* check if link has changed */
1280 memset(&link, 0, sizeof(link));
1281 rte_em_dev_atomic_read_link_status(dev, &link);
1282 if (link.link_status) {
1284 " Port %d: Link Up - speed %u Mbps - %s\n",
1285 dev->data->port_id, (unsigned)link.link_speed,
1286 link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1287 "full-duplex" : "half-duplex");
1289 PMD_INIT_LOG(INFO, " Port %d: Link Down\n",
1290 dev->data->port_id);
1292 PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
1293 dev->pci_dev->addr.domain,
1294 dev->pci_dev->addr.bus,
1295 dev->pci_dev->addr.devid,
1296 dev->pci_dev->addr.function);
1297 tctl = E1000_READ_REG(hw, E1000_TCTL);
1298 rctl = E1000_READ_REG(hw, E1000_RCTL);
1299 if (link.link_status) {
1301 tctl |= E1000_TCTL_EN;
1302 rctl |= E1000_RCTL_EN;
1305 tctl &= ~E1000_TCTL_EN;
1306 rctl &= ~E1000_RCTL_EN;
1308 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1309 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1310 E1000_WRITE_FLUSH(hw);
1316 * Interrupt handler which shall be registered at first.
1319 * Pointer to interrupt handle.
1321 * The address of parameter (struct rte_eth_dev *) regsitered before.
1327 eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
1330 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1332 eth_em_interrupt_get_status(dev);
1333 eth_em_interrupt_action(dev);
1334 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
1338 eth_em_led_on(struct rte_eth_dev *dev)
1340 struct e1000_hw *hw;
1342 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1343 return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1347 eth_em_led_off(struct rte_eth_dev *dev)
1349 struct e1000_hw *hw;
1351 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1352 return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1356 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1358 struct e1000_hw *hw;
1360 enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1366 uint32_t rx_buf_size;
1367 uint32_t max_high_water;
1369 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1370 rx_buf_size = em_get_rx_buffer_size(hw);
1371 PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x \n", rx_buf_size);
1373 /* At least reserve one Ethernet frame for watermark */
1374 max_high_water = rx_buf_size - ETHER_MAX_LEN;
1375 if ((fc_conf->high_water > max_high_water) ||
1376 (fc_conf->high_water < fc_conf->low_water)) {
1377 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value \n");
1378 PMD_INIT_LOG(ERR, "high water must <= 0x%x \n", max_high_water);
1382 hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1383 hw->fc.pause_time = fc_conf->pause_time;
1384 hw->fc.high_water = fc_conf->high_water;
1385 hw->fc.low_water = fc_conf->low_water;
1386 hw->fc.send_xon = fc_conf->send_xon;
1388 err = e1000_setup_link_generic(hw);
1389 if (err == E1000_SUCCESS) {
1393 PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x \n", err);
1398 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1399 uint32_t index, __rte_unused uint32_t pool)
1401 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1403 e1000_rar_set(hw, mac_addr->addr_bytes, index);
1407 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1409 uint8_t addr[ETHER_ADDR_LEN];
1410 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1412 memset(addr, 0, sizeof(addr));
1414 e1000_rar_set(hw, addr, index);